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ABSTRACT Nowadays, advances in Artificial Intelligence (AI), especially in machine and deep learning,
present new opportunities to build tools that support the work of specialists in areas apparently far from
the information technology field. One example of such areas is that of ancient Egyptian hieroglyphic
writing. In this study, we explore the ability of different convolutional neural networks (CNNs) to classify
pictures of ancient Egyptian hieroglyphs coming from two different datasets of images. Three well-known
CNN architectures (ResNet-50, Inception-v3 and Xception) were taken into consideration and trained on
the available images. The paradigm of transfer learning was tested as well. In addition, modifying the
architecture of one of the previous networks, we developed a specifically dedicated CNN, named Glyphnet,
tailoring its complexity to our classification task. Performance comparison tests were carried out and
Glyphnet showed the best performances with respect to the other CNNs. In conclusion, this work shows
how the ancient Egyptian hieroglyphs identification task can be supported by the deep learning paradigm,
laying the foundation for information tools supporting automatic documents recognition, classification and,
most importantly, the language translation task.

INDEX TERMS Deep learning, convolutional neural networks, image recognition and classification, ancient
Egyptian hieroglyphs, cultural heritage.

I. INTRODUCTION
Artificial Intelligence (AI) and machine learning applica-
tions are spreading in any field of science, from fundamental
physics to natural language processing and clinical medicine,
with everyday awesome results strongly impacting our life
[1]–[5]. Despite the concerns related to its use [6]–[8], there
is in AI the amazing power and the perceived hope not only
to automate human tasks, but also to improve human under-
standing. Fields such as archaeology, philology and human
sciences are now beginning to be permeated from AI, even
though its actual role has still to be fully understood.

Taking advantage of the results coming from other fields,
where methods related to AI and machine learning have
already laid strong and deep roots, in this work the problem
of ancient Egyptian hieroglyphs classification is addressed.

Several examples of applications of the new technolo-
gies to the classification of ideograms belonging to ancient
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or no more used languages can be found in the litera-
ture. In [9], [10], for example, the KuroNet network, based
on a Unet architecture, is proposed to recognize the old
Kuzushiji Japanese writing style. In [11], linear autoencoders
are used to characterize local regions of complex shapes and
are applied to indexing a collection of hieroglyphs from the
ancient Maya civilization.

The advantages of such techniques are numerous also for
the Egyptian philology, both at the synchronic and diachronic
level [12]: the graphemic and hieroglyphics palaeography
evolutions, the recognition of variants, the calculation of
the logographic, syllabic and alphabetic percentage of hiero-
glyphic writing system, to name a few. The problem of
ancient Egyptian language retrieval and classification has
been addressed, with different purposes, in several works.
In [13], image descriptors and image matching techniques
are proposed to classify a database of more than 4000
hieroglyphs [14]. In [15], computer vision methods are used
to identify hieroglyphs in fragments of Egyptian cartouches
with the aim of contributing to a navigation system for
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museums. Computer vision methods for hieroglyph recogni-
tion are used also in [16]. A text information retrieval system,
designed to work with Egyptian hieroglyphic texts, has been
proposed in [17]. Further, the identification and transliter-
ation of the signs is proposed in [18] and [19]. Recently,
the world of hieroglyphs recognition has witnessed new inter-
est from the Google team [20], [21]. However, to the best
of authors’ knowledge, there is still a lack of tools enabling
a semi-automated approach to deciphering ancient Egyptian
texts.

Hieroglyphs are represented by a wide spectrum of
ideograms, generally assignable to about 26 categories, which
are combined to give words and sounds [22]. They were writ-
ten in different ways, such as monumental or cursive, in dif-
ferent directions (see Fig. 1), and on various supports such as
papyrus, wood and stones. Today, a civilization lasting almost
5000 years has left a large amount of documents, which
still need to be acquired, translated and interpreted. Here
is exactly where AI comes into play, supporting ideograms
classification and subsequently translation.

FIGURE 1. Examples of hieroglyphic signs and their reading direction.

In this work, we focused on single hieroglyph classification
using the deep learning approach, in particular the archi-
tectures known as Convolutional Neural Networks (CNN),
which can be considered the best choice for visual recognition
tasks. Starting from two labelled datasets of ancient Egyptian
hieroglyphs, one publicly available and the other constructed
by the authors, three well-known CNNs – successfully pro-
posed for image recognition tasks – were tested, either by

using the transfer learning paradigm or by training from
scratch. Inspired by the architecture of one of the previous
networks, a new CNN, specifically tailored to the complexity
of the classification problem at hand, was also developed.
Experimental classification tests were performed to compare
the classical CNNs and the new proposed one, referred to
in the following as Glyphnet. Results demonstrate how deep
learning methods yield extremely good results in terms of
classification rates, with Glyphnet outperforming the other
tested CNNs.

The paper is organized as follows. In Section II, some
details about the ancient Egyptian hieroglyphic writing sys-
tem and the used datasets are presented. In Section III,
the CNNs that were tested to solve the classification task
are described. The experimental tests that were performed to
compare the various networks are shown in Section IV. Some
concluding remarks are drawn in Section V.

II. THE PROBLEM OF HIEROGLYPHS RECOGNITION
AND THE USED DATASETS
In this Section, the problem of hieroglyphs recognition is
stated and the materials used in this study are described.

A. THE ANCIENT EGYPTIAN HIEROGLYPHIC
WRITING SYSTEM
The Egyptian word is a linguistic sign with a signifier
and a signified following the Sausserian definition [12].
The first component represents the external aspect, merely
graphic, that can be composed of one or more hieroglyphics.
The second one represents the internal structure, essentially
linguistics. The Egyptian hieroglyph is a complex sign com-
posed of two elements: a semagram (or ideogram) and a
phonogram. The semagram is a graphic symbol represent-
ing an idea in relation to it. Our modern culture is liter-
ally surrounded by semagrams, just think of the road signs,
the logos of many brands, or the social networks emoticons.
A semagram can have two different values, depending on
its function in the word: the proper semagram, which means
the represented object indicating directly a word, and the
determinative, a sign with a purely semantic and no pho-
netic value, whose function is to express the lexical field
to which the word belongs. The ‘‘phonogram’’ may also
have two different roles as well: the proper phonogram,
which can indicate the phonetic value of the sign and meta-
phonically the sound (or phonetic sequence) only; and the
phonetic complement, a specific series of signs that expresses
in a redundant way the sound of the sign to which they
are accompanied (see Fig. 2). Given this complex nature,
the hieroglyphic sign proves to be a fertile ground for the
application of a deep learning approach for its recognition and
classification.

B. IMAGE DATASETS
In this study, two different datasets of images have been
used, referred to in the following as D1 and D2 for the
sake of brevity: the first one is publicly available [13] and
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FIGURE 2. The structural elements of an Egyptian hieroglyph:
(a) semagram (OWL) and phonogram /m/; (b) semagram (NOSE),
determinative (nose, face, and associated actions), and phonogram;
(c) semagram (MOUTH), phonogram /r/ and phonetic complement (R).

FIGURE 3. Sample images belonging to the D1 (a) and D2 (b) datasets.

FIGURE 4. Examples of images labeled according to the Gardiner sign list.

contains labelled images of Egyptian hieroglyphs found in
the Pyramid of Unas; the second one contains images selected
and labelled by the authors, representing hieroglyphs on dif-
ferent supports. Fig. 3 shows some sample images belonging
to the D1 and D2 datasets.

The hieroglyphs represented in the images are labelled
according to the Gardiner sign list [22], i.e., with an alpha-
betic character followed by a number. Examples of image
labelling is shown in Fig. 4.

1) ORIGINAL DATASETS
The first dataset [13], namely D1, contains 4310 grayscale
images representing hieroglyphs taken from photos of the
walls inside the pyramid of Unas [23]. Each image has a
dimension of 75 × 50 pixels and represents a single hiero-
glyph. The number of different hieroglyphs contained in this
dataset is 172.

The second dataset, namely D2, contains 1310 labelled
color (RGB format) images, having variable dimensions and
each representing a single element belonging to 48 possible
different hieroglyphs. These images are taken from different
documents, written by different hands and systems (sculpted,
drawn, etc.) and belonging to diverse periods of Egyptian
history, unlike those of the first dataset belonging to the
same context. This choice increases the generalizability of
the recognition. The images of theD2 dataset were processed
in order to uniform their dimensions and, for congruence
with the D1 dataset, the color information was converted to
grayscale. As can be seen from Fig. 3-(b), the images were cut
from scanned photos, with an irregular contour, and the final
images were obtained by filling their rectangular bounding
box with a white background. To achieve an uniform for-
mat, each image has been inscribed into a square, without
altering the aspect ratio of the original data; then, the arti-
ficial white background has been removed and filled with
a pseudorandom Gaussian texture resembling the original
background around the hieroglyph. Eventually, the images
have been scaled to obtain a dimension of 100× 100 pixels.
The preprocessing procedure described above is summarized
in Fig. 5.

FIGURE 5. Preprocessing of images belonging to the D2 dataset.

2) MERGED DATASET
The images in D1 are characterized by the same physical
support and appear quite uniform, whereas images in D2
are taken from different supports (papyrus, stone, wood).
Heterogeneous datasets are requierd by machine learning
algorithms to achieve a high capacity of generalization.
Therefore, the original D1 and D2 datasets were merged
into a single dataset, referred to in the following as D. The
joint dataset is not the union of D1 and D2, but only the
images belonging to classes (i.e., hieroglyphs) contained in
both datasets were selected. Let us denote the elements of the
datasets as

D1 = {(x
(1)
i , y(1)i )} with i = 1, . . . , |D1|

D2 = {(x
(2)
i , y(2)i )} with i = 1, . . . , |D2|,
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where |Dk | denotes the cardinality of the kth dataset, x(k)i an
image within the kth dataset, and y(k)i its label. Let Y1 and
Y2 be the sets of the different labels in D1 e D2, respectively.
Then, the final dataset is given by

D = {(xi, yi)} with yi ∈ Y1 ∩ Y2,

where (xi, yi) belongs either to D1 or to D2. At the end of
this selection process, we achieved the final dataset D com-
posed of 4309 images, distributed into 40 classes. The images
belonging to the D1 dataset have been extended to 75 × 75
(adding some background) and then resized to 100 × 100
pixels. Fig. 6 shows a histogram representing the number of
images for each class inD. As can be seen, the dataset is quite
unbalanced: this issue is addressed in the following section.

FIGURE 6. Number of images for each label (according to Gardiner sign
list [22]) within the joint dataset D.

3) DATA AUGMENTATION AND DATASET BALANCING
In machine learning problems, a labelled dataset needs to
be divided into training, validation and test subsets; in our
experiments, the distribution of the entire dataset into such
subsets was 70%, 15% and 15%, in that order. In order to limit
the unbalanced dataset issue, data augmentation was applied
to the training data. Augmentation is widely used in deep
learning approaches to increase the size of the training set
[24]: usually, it helps to increase the performance of the CNN
and to reduce the overfitting problem. Augmentation consists
in creating new labelled items from the available ones to be
used for training. Transformations like translation, rotation
and zooming, are often exploited: such operators are also
helpful to make the network invariant to different orientations
and scales.

As already mentioned, in this study, augmentation was
used to achieve a better balancing of the training set. New
items were added to classes containing a number of images
below a threshold, whereas images were dropped from
excessively numerous ones. More specifically, we used ran-
dom translation along the horizontal and vertical directions
(maximum 10 pixels), small random rotations (±10 degrees)
as well as random zooming (zooming factor from 0.95 to
1.05). After this, since hieroglyphs can be oriented either
left or right (without changing their meaning), augmentation
also involved horizontal flipping. At the end, the maximum
number of training images that a class can contain is set to

two times the average number of images per label. The total
number of images in the training set is 3014 and after data
augmentation and downsampling, it becomes 3670, which
increases to 7340 after flipping. In Fig. 7, the cardinality of
each class of the augmented training dataset is shown.

FIGURE 7. Final training dataset class population after data
augmentation and downsampling.

III. ARCHITECTURES FOR HIEROGLYPH CLASSIFICATION
In this section, the architectures that were used in this
study are introduced. First, some well-known state-of-
the-art networks, used for image recognition tasks, namely
ResNet-50, Inception-v3, and Xception, are recalled. All of
them achieved excellent results on the ImageNet challenge.
After this review, a new architecture, specifically designed
for hieroglyphs classification, is proposed. All the architec-
tures addressed here will be compared to each other in our
experimental tests.

A. ARCHITECTURES FOR IMAGE CLASSIFICATION
ResNet [25], developed by Microsoft Research, introduced
the Residual Network architecture in order to solve the
problem of the vanishing/exploding gradient. In ResNet,
the underlying mapping function that is looked for does not
aim to map the input onto the output, but rather to model
their difference, i.e., the residual. In other words, the under-
lying assumption is that it is easier optimizing the residual
mapping than the original, unreferenced, mapping. Actually,
the residual mapping approach is applied to successive blocks
of the entire net, each composed by a few stacked layers,
in which ‘‘shortcut’’ connection are used to compute the
residual between the input and output of the block. In our
tests, we used ResNet-50, which has over 23 million trainable
parameters and was designed to process images with dimen-
sion 224× 224 pixels.

Inception-v3 [26] is the third version of the GoogleNet
model. The network has a depth of 42 layers; all convolution
layers use the activation function ReLU and apply batch
normalization (BN). After standard convolution and pooling
layers to reduce the dimensions of the input, Inception-v3
presents its principal characteristic layers, i.e., the inception
modules. They are parallel running convolution layers with
different kernel sizes. The basic idea behind the inception
modules is that they can extract similar features, but at
different scales. The network, designed for the ImageNet
challenge, processes images having a dimension of 299×299
pixels.
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The Xception network [27] is an ‘‘extreme’’ evolution of
the Inception model. In this network, the canonical inception
block is simplified, making it similar to a depthwise separable
convolution. This type of convolution consists of a spatial
convolution performed independently over each channel of
an input followed by a pointwise convolution; in the Xcep-
tion module, instead, the order of the operations is 1 × 1
convolution first and then channel-wise spatial convolution.
Another difference between Inception and Xception is the
presence/absence of a non-linearity after the first operation.
While in Inception model both operations are followed by a
ReLU non-linearity, Xception does not introduce any non-
linearity. As Inception-v3, the net was designed to process
images with a dimension of 299× 299 pixels.

B. PROPOSED NETWORK: GLYPHNET
In this section, a novel network, inspired by those previously
described, is presented. The underlying idea is that, focusing
on the specific task of hieroglyph recognition and tailoring
the network on it, the complexity and overfitting issues can
be reduced without, however, losing performance. In the next
paragraphs, we will illustrate the network architecture and the
choices of the hyperparameters for the training.

1) THE NETWORK ARCHITECTURE
At the basis of our model there are the separable convolu-
tional layers, a feature also present in the Xception network.
The overall organization of the network consists of six blocks,
as detailed in the following.

1) The first block is the input stage and is composed of
two identical sections, each composed by:
a) a standard convolution layer, with 64 filters hav-

ing a kernel size of 3× 3, stride 1× 1;
b) a BN, a max pooling layer (with a kernel size of

3× 3 and a stride of 2× 2), and a ReLU.
2) Two identical blocks follow, each composed by:

a) a separable convolutional layer, with 128 filters
having a kernel size of 3× 3, stride 1× 1;

b) a BN and a ReLU;
c) a separable convolutional layer, with 128 filters

having a kernel size of 3× 3, stride 1× 1;
d) a BN, a max pooling layer (identical to the first

block), and a ReLU.
3) Two blocks identical to the previous ones – with the

only difference that the number of filters in the separa-
ble convolutional layers are 256 instead of 128 – follow.

4) The last block is the output stage and is composed of:
a) a separable convolutional layer with 512 filters

having a kernel size of 3× 3, stride 1× 1;
b) a BN and a ReLU;
c) a Global Average Pooling;
d) a Dropout Regularizator with a fraction of the

input units to drop equal to 0.15;
e) a Fully Connected layer;
f) a Softmax layer.

The architecture of the proposed network is sketched
in Fig. 8. The dimensions of the input images has been set
to 100× 100 pixels, which represents a sufficiently compact
size that allows the humans easily recognize the details of the
hieroglyphic and the computation burden to be reduced with-
out, nevertheless, affecting the classification performance.

Thanks to the reduction of the number of filters and of the
number of layers with respect to the architectures described in
Section III-A, the proposed network has a much lower num-
ber of parameters, which is only 498856 (of which 494504 are
trainable), compared to the over 20 million parameters of the
classical networks.

2) NETWORK HYPERPARAMETERS
The proposed architecture was implemented and trained
using Keras [28] and TensorFlow [29], the well-known
open-source software libraries providing a Python interface
to artificial neural networks and machine learning systems
design.

The loss function used to optimize the model during train-
ing is the categorical cross-entropy. As optimization method,
ADAM (adaptive moment estimation) [30] was used, with a
batch size of 32 images.

To improve the generalization capacity of the network,
we used batch normalization after each convolution, L2-Loss
to regularize the weights in the fully connected layer of the
final block as well as a dropout layer. An adaptive learn-
ing rate was also used: the initial learning rate was set to
0.001 and halved every 15 epochs. Initial learning rate and
decay factor were chosen empirically, after having performed
several tests with a trial-and-error strategy.

All weights in dense, convolutional and separable con-
volutional layers were inizialized with the Glorot Uniform
strategy without bias.

C. TRANSFER LEARNING
The networks described in Sections III-A can be trained on a
given image dataset either ‘‘from scratch’’ or using the trans-
fer learning [31] approach. The idea of transfer learning is to
use previous knowledge acquired for one task to solve newer
and related ones. In transfer learning, the weights/filters
learned by a known architecture – trained on a given task
by means of a huge dataset – are reused to face a different
task. The underlying idea here is that early stages are devoted
to extract basic image descriptors [32], while the final ones
are dedicated to combine them for the specific classification
problem we are dealing with.

In this study, we used the pre-trained models described in
Section III-A, exploiting most of the bottom layers of the
original architectures with frozen weights, and substituting
the last output layers with new fully connected layers to be
trained with our dataset. As an example, the new top layers
applied to the ResNet-50 were chosen as follows:

• a Global Average Pooling layer;
• a Dense layer with 128 units;
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FIGURE 8. The proposed Glyphnet architecture.

• a Dropout layer with dropout rate equal to 0.15;
• a Dense layer with 40 neurons (number of classes);
• a Softmax activation layer as output for classification.

Similar layers, with small changes, were used for the
Inception-v3 and Xception networks. The performance
obtained from transfer learning will be shown for compar-
isons in the next section.

IV. EXPERIMENTAL RESULTS
In this section, the performance of the classical networks
described in Section III-A and the new Glyphnet, pro-
posed in Section III-B, are compared to each other. The
evaluation metrics are the standard accuracy, precision,
F1-Score, and recall, which are commonly used to evalu-
ate classification performances. The performance of all the
networks were obtained by using the hieroglyph dataset D
described in Section II-B, with data augmentation applied
to the training set. Computation times, relative to train-
ing and prediction, were also evaluated for the different
architectures.

Table 1 reports the evaluation metrics obtained by using
the transfer learning approach described in Section III-C
applied to the standard networks described in Section III-A,
i.e., ResNet-50 [25], Inception-v3 [26], and Xception [27],
whereas Table 2 reports the same metrics when the different
networks, including Glyphnet, were trained from scratch.
Comparing Tables 1 and 2, we observe that the classical net-
works yield better results when they are trained from scratch
with respect to the case when transfer learning is used. The
results in Table 2 show also that the new architecture proposed
in this study yields, with reference to all the metrics, the best
performances.

TABLE 1. Networks performance by using the transfer learning approach.

TABLE 2. Networks performance by using training from scratch.

In order to better understand the robustness of the net-
works and achieve useful insights on their training process,
Figs. 9 and 10 show, for all the models that were analysed,
the trend of the accuracy and of the loss function, respectively,
vs. the epoch time during the training, validation and testing
processes.

In order to show the robustness of our tests, the results
of a stratified 5-fold cross-validation over the entire dataset
for the Glyphnet are shown in Fig. 11. Shaded areas enclose
the curves obtained at each run of the cross-validation.
As can be seen, the mean of the curves vs. the epoch
time tends to be flat and the standard deviation tends to
zero.
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FIGURE 9. Evolution of the accuracy function vs. epoch time during the
training, validation and testing processes for the different architectures:
(a) ResNet-50; (b) Inception-v3; (c) Xception; (d) the proposed Glyphnet.

Some results were also obtained by eliminating the possi-
bility of data augmentation within the training set, in order
to better understand the importance of its introduction. With
reference to the proposed Glyphnet, Fig. 12 shows the
evolution of accuracy vs. the epoch time when data aug-
mentation is either used or not in the training set. As can
be seen, the beneficial effects of data augmentation is
remarkable.

In order to evaluate the computational burden of the
analysed networks, we report in Fig. 13 the training
time, measured as milliseconds per training step (gradient

FIGURE 10. Evolution of the loss function vs. epoch time during the
training, validation and testing processes for the different architectures:
(a) ResNet-50; (b) Inception-v3; (c) Xception; (d) the proposed Glyphnet.

updates), as a function of the image dimension and for a
batch size equal to 32. Times have been measured on an
NVIDIA Tesla T4 GPU. As can be noticed, the proposed
network is the fastest among all tested CNNs, for all image
dimensions.

The times related to the prediction of the images were also
calculated on the same GPU. Batch-size was set to 1 and 32.
The results, obtained averaging 100 measures, are reported
in Table 3. As can be seen, also in this case, the proposed
Glyphnet is the fastest in the task of image prediction for any
image dimensions.

123444 VOLUME 9, 2021



A. Barucci et al.: Deep Learning Approach to Ancient Egyptian Hieroglyphs Classification

TABLE 3. Prediction runtimes for different batch-sizes and different image dimensions.

FIGURE 11. Results of 5-fold cross validation for the proposed Glyphnet:
accuracy (a) and loss (b) vs. epoch time.

FIGURE 12. Effect of data augmentation on the training set.

Summarizing, our proposed architecture, Glyphnet, has
shown the best performances in terms of classification rate
and computational time. This is related to a simpler architec-
ture, with fewer parameters to be trained and, thus, less prone
to overfitting.

FIGURE 13. Training computation time.

V. CONCLUSION
In this work, we have explored the capability of deep learning
techniques to face the problem of ancient Egyptian hiero-
glyphs classification. To this aim, standard networks already
proposed to tackle image recognition tasks have been tested
and a new one, Glyphnet, has been developed and tailored for
the specific purpose at hand. Two image datasets of labelled
hieroglyphs were used to train and test the networks. Perfor-
mances were measured using standard metrics, giving signif-
icant results for all the tested networks, with the proposed
Glyphnet outperforming the others, in terms of performance
as well as ease of training and computational saving.

Even though in this paper we focused on the single hiero-
glyph classification task, new and profitable perspectives are
opened by the application of deep learning techniques in the
Egyptologic field. In this view, the proposed work can be seen
as the starting point for the implementation of much more
complex goals. Actually, there are several open issues that
may benefit from the use of the proposed approaches: coding,
recognition and transliteration of hieroglyphic signs; recogni-
tion of determinatives and their semantic field; toposyntax of
the hieroglyphic signs combined to form words; linguistics
analysis of the hieroglyphic texts; recognition of corrupt,
rewritten, and erased signs, towards even the identifica-
tion of the ‘‘hand’’ of the scribe or the school of the
sculptor.
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