

Neural Networks for
Pattern Recognition

CHRISTOPHER M. BISHOP
Department of Computer Science

and Applied Mathematics
Aston University
Birmingham, UK

C L A R E N D O N PRESS • O X F O R D

1995

FOREWORD
Geoffrey Hinton

Department of Computer Science
University of Toronto

For those entering the field of artificial neural networks, there has been an acute
need for an authoritative textbook that explains the main ideas clearly and con­
sistently using the basic tools of linear algebra, calculus, and simple probability
theory. There have been many attempts to provide such a text, but until now,
none has succeeded. Some authors have failed to separate the basic ideas and
principles from the soft and fuzzy intuitions that led to some of the models as
well as to most of the exaggerated claims. Others have been unwilling to use the
basic mathematical tools that are essential for a rigorous understanding of the
material. Yet others have tried to cover too many different kinds of neural net­
work without going into enough depth on any one of them. The most successful
attempt to date has been "Introduction to the Theory of Neural Computation"
by Hertz, Krogh and Palmer. Unfortunately, this book started life as a graduate
course in statistical physics and it shows. So despite its many admirable qualities
it is not ideal as a general textbook.

Bishop is a leading researcher who has a deep understanding of the material
and has gone to great lengths to organize it into a sequence that makes sense. He
has wisely avoided the temptation to try to cover everything and has therefore
omitted interesting topics like reinforcement learning, Hopfield Networks and
Boltzmann machines in order to focus on the types of neural network that are
most widely used in practical applications. He assumes that the reader has the
basic mathematical literacy required for an undergraduate science degree, and
using these tools he explains everything from scratch. Before introducing the
multilayer perceptron, for example, he lays a solid foundation of basic statistical
concepts. So the crucial concept of overfitting is first introduced using easily
visualised examples of one-dimensional polynomials and only later applied to
neural networks. An impressive aspect of this book is that it takes the reader all
the way from the simplest linear models to the very latest Bayesian multilayer
neural networks without ever requiring any great intellectual leaps.

Although Bishop has been involved in some of the most impressive applica­
tions of neural networks, the theme of the book is principles rather than applica­
tions. Nevertheless, it is much more useful than any of the applications-oriented
texts in preparing the reader for applying this technology effectively. The crucial
issues of how to get good generalization and rapid learning are covered in great
depth and detail and there are also excellent discussions of how to preprocess

vni Foreword

the input and how to choose a suitable error function for the output.
It is a sign of the increasing maturity of the field that methods which were

once justified by vague appeals to their neuron-like qualities can now be given a
solid statistical foundation. Ultimately, we all hope that a better statistical un­
derstanding of artificial neural networks will help us understand how the brain
actually works, but until that day comes it is reassuring to know why our cur­
rent models work and how to use them effectively to solve important practical
problems.

PREFACE

I n t r o d u c t i o n

In recent years neural computing has emerged as a practical technology, with
successful applications in many fields. The majority of these applications are
concerned with problems in pattern recognition, and make use of feed-forward
network architectures such as the multi-layer perceptron and the radial basis
function network. Also, it has also become widely acknowledged that success­
ful applications of neural computing require a principled, rather than ad hoc,
approach. My aim in writing this book has been to provide a more focused
treatment of neural networks than previously available, which reflects these de­
velopments. By deliberately concentrating on the pattern recognition aspects of
neural networks, it has become possible to treat many important topics in much
greater depth. For example, density estimation, error functions, parameter op­
timization algorithms, data pre-processing, and Bayesian methods are each the
subject of an entire chapter.

From the perspective of pattern recognition, neural networks can be regarded
as an extension of the many conventional techniques which have been developed
over several decades. Indeed, this book includes discussions of several concepts in
conventional statistical pattern recognition which I regard as essential for a clear
understanding of neural networks. More extensive treatments of these topics can
be found in the many texts on statistical pattern recognition, including Duda and
Hart (1973), Hand (1981), Devijver and Kifctler (1982), and Fiikunaga (1990).
Recent review articles by Ripley (1994) and Cheng and Titterington (1994) have
also emphasized the statistical underpinnings of neural networks.

Historically, many concepts in neural computing have been inspired by studies
of biological networks. The perspective of statistical pattern recognition, how­
ever, offers a much more direct and principled route to many of the same con­
cepts. For example, the sum-and-threshold model of a neuron arises naturally as
the optimal discriminant function needed to distinguish two classes whose distri­
butions are normal with equal covariance matrices. Similarly, the familiar logistic
sigmoid is precisely the function needed to allow the output of a network to be
interpreted as a probability, when the distribution of hidden unit activations is
governed by a member of the exponential family.

An important assumption which is made throughout the book is that the pro­
cesses which give rise to the data do not themselves evolve with time. Techniques
for dealing with non-stationary sources of data are not so highly developed, nor so
well established, as those for static problems. Furthermore, the issues addressed
within this book remain equally important in the face of the additional compli­
cation of non-stationarity. It should be noted that this restriction does not mean
that applications involving the prediction of time series are excluded. The key

rrejace

consideration for time series is not the time variation of the signals themselves,
but whether the underlying process which generates the data is itself evolving
with time, as discussed in Section 8.4.

Use as a course t ex t

This book is aimed at researchers in neural computing as well as those wishing
to apply neural networks to practical applications. It is also intended to be used
used as the primary text for a graduate-level, or advanced undergraduate-level,
course on neural networks. In this case the book should be used sequentially, and
care has been taken to ensure that where possible the material in any particular
chapter depends only on concepts developed in earlier chapters.

Exercises are provided at the end of each chapter, and these are intended
to reinforce concepts developed in the main text, as well as to lead the reader
through some extensions of these concepts. Each exercise is assigned a grading
according to its complexity and the length of time needed to solve it, ranging from
(*) for a short, simple exercise, to (***) for a more extensive or more complex
exercise. Some of the exercises call for analytical derivations or proofs, while
others require varying degrees of numerical simulation. Many of the simulations
can be carried out using numerical analysis and graphical visualization packages,
while others specifically require the use of neural network software. Often suitable
network simulators are available as add-on tool-kits to the numerical analysis
packages. No particular software system has been prescribed, and the course
tutor, or the student, is free to select an appropriate package from the many
available. A few of the exercises require the student to develop the necessary
code in a standard language such as C or C + + . In this case some very useful
software modules written in C, together with background information, can be
found in Press et al. (1992).

Prerequis i tes

This book is intended to be largely self-contained as far as the subject of neural
networks is concerned, although some prior exposure to the subject may be
helpful to the reader. A clear understanding of neural networks can only be
achieved with the use of a certain minimum level of mathematics. It is therefore
assumed that the reader has a good working knowledge of vector and matrix
algebra, as well as integral and differential calculus for several variables. Some
more specific results and techniques which are used at a number of places in the
text are described in the appendices.

Overview of t h e chap te r s

The first chapter provides an introduction to the principal concepts of pattern
recognition. By drawing an analogy with the problem of polynomial curve fit­
ting, it introduces many of the central ideas, such as parameter optimization,
generalization and model complexity, which will be discussed at greater length in
later chapters of the book. This chapter also gives an overview of the formalism

Preface XI

of statistical pattern recognition, including probabilities, decision criteria and
Bayes' theorem.

Chapter 2 deals with the problem of modelling the probability distribution of
a set of data, and reviews conventional parametric and non-parametric methods,
as well as discussing more recent techniques based on mixture distributions.
Aside from being of considerable practical importance in their own right, the
concepts of probability density estimation are relevant to many aspects of neural
computing.

Neural networks having a single layer of adaptive weights are introduced in
Chapter 3. Although such networks have less flexibility than multi-layer net­
works, they can play an important role in practical applications, and they also
serve to motivate several ideas and techniques which are applicable also to more
general network structures.

Chapter 4 provides a comprehensive treatment of the multi-layer perceptron,
and describes the technique of error back-propagation and its significance as a
general framework for evaluating derivatives in multi-layer networks. The Hessian
matrix, which plays a central role in many parameter optimization algorithms
as well as in Bayesian techniques, is also treated at length.

An alternative, and complementary, approach to representing general non­
linear mappings is provided by radial basis function networks, and is discussed in
Chapter 5. These networks are motivated from several distinct perspectives, and
hence provide a unifying framework linking a number of different approaches.

Several different error functions can be used for training neural networks,
and these are motivated, and their properties examined, in Chapter 6. The cir­
cumstances under which network outputs can be interpreted as probabilities are
discussed, and the corresponding interpretation of hidden unit activations is also
considered.

Chapter 7 reviews many of the most important algorithms for optimizing the
values of the parameters in a network, in other words for network training. Simple
algorithms, based on gradient descent with momentum, have serious limitations,
and an understanding of these helps to motivate some of the more powerful
algorithms, such as conjugate gradients and quasi-Newton methods.

One of the most important factors in determining the success of a practical
application of neural networks is the form of pre-processing applied to the data.
Chapter 8 covers a range of issues associated with data pre-processing, and de­
scribes several practical techniques related to dimensionality reduction and the
use of prior knowledge.

Chapter 9 provides a number of insights into the problem of generalization,
and describes methods for addressing the central issue of model order selec­
tion. The key insight of the bias-variance trade-off is introduced, and several
techniques for optimizing this trade-off, including regularization, are treated at
length.

The final chapter discusses the treatment of neural networks from a Bayesian
perspective. As well as providing a more fundamental view of learning in neural
networks, the Bayesian approach also leads to practical procedures for assigning

XII Preface

error bars to network predictions and for optimizing the values of regularization
coefficients.

Some useful mathematical results are derived in the appendices, relating to
the properties of symmetric matrices, Gaussian integration, Lagrange multipliers,
calculus of variations, and principal component analysis.

An extensive bibliography is included, which is intended to provide useful
pointers to the literature rather than a complete record of the historical devel­
opment of the subject.

N o m e n c l a t u r e

In trying to find a notation which is internally consistent, I have adopted a
number of general principles as follows. Lower-case bold letters, for example v,
are used to denote vectors, while upper-case bold letters, such as M , denote
matrices. One exception is that I have used the notation y to denote a vector
whose elements yn represent the values of a variable corresponding to different
patterns in a training set, to distinguish it from a vector y whose elements yk
correspond to different variables. Related variables are indexed by lower-case
Roman letters, and a set of such variables is denoted by enclosing braces. For
instance, {xt} denotes a set of input variables .T;, where ?' = ! , . . . , (/ . Vectors are
considered to be column vectors, with the corresponding row vector denoted by
a superscript T indicating the transpose, so that, for example, x r = (xi,..., x,i)-
Similarly, M 1 denotes the transpose of a matrix M. The notation M = (A/y)
is used to denote the fact that the matrix M has the elements My, while the
notation (M)y is used to denote the ij element of a matrix M. The Euclidean
length of a vector x is denoted by ||x||, while the magnitude of a scalar x is
denoted by |.r|. The determinant of a matrix M is written as |M| .

I typically use an upper-case P to denote a probability and a lower-case p to
denote a probability density. Note that I use p(x) to represent the distribution
of x and p(y) to represent the distribution of y, so that these distributions are
denoted by the same symbol p even though they represent different functions. By
a similar abuse of notation 1 frequently use, for example, yk to denote the outputs
of a neural network, and at the same time use j/it(x; w) to denote the non-linear
mapping function represented by the network. I hope these conventions will save
more confusion than they cause.

To denote functionals (Appendix D) I use square brackets, so that, for exam­
ple, E[f] denotes functional of the function / (x) . Square brackets are also used
in the notation £ [Q] which denotes the expectation (i.e. average) of a random
variable Q.

I use the notation O(N) to denote that a quantity is of order N. Given two
functions f(N) and g(N), we say that / = O(g) if f(N) < Ag(N), where A is
a constant, for all values of N (although we are typically interested in large A^).
Similarly, we will say that / ~ g if the ratio f(N)/g(N) -> 1 as W — > oo.

I find it indispensable to use two distinct conventions to describe the weight
parameters in a network. Sometimes it is convenient to refer explicitly to the
weight which goes to a unit labelled by j from a unit (or input) labelled by i.

Preface xui

Such a weight will be denoted by Wji- In other contexts it is more convenient
to label the weights using a single index, as in Wk, where k runs from 1 to W,
and W is the total number of weights. The variables Wk can then be gathered
together to make a vector w whose elements comprise all of the weights (or more
generally all of the adaptive parameters) in the network.

The notation r5y denotes the usual Kronecker delta symbol, in other words
5ij — 1 if i — j and 6y = 0 otherwise. Similarly, the notation S(x) denotes the
Dirac delta function, which has the properties 6(x) — 0 for x /= 0 and

TOO

/ 5(x) dx = 1.

111 (/-dimensions the Dirac delta function is defined by

d

6{x) = Y[8{Xi).
<=i

The symbols used for the most commonly occurring quantities in the book
are listed below:

c number of outputs; number of classes
Cfc fcth c lass
d number of inputs
E error function
£{Q) expectation of a random variable Q
g(-) activation function
i input label
j hidden unit label
k output unit label
M number of hidden units
n pattern label
N number of patterns
P(-) probability
p(-) probability density function
t target value
T time step in iterative algorithms
W number of weights and biases in a network
x network input variable
y network output variable
z activation of hidden unit
In logarithm to base e
!og2 logarithm to base 2

xiv Preface

Acknowledgemen t s

Finally, I wish to express my considerable gratitude to the many people who,
in one way or another, have helped with the process of writing this book. The
first of these is Jenna, who has displayed considerable patience and good hu­
mour, notwithstanding my consistent underestimates of the time and effort re­
quired to complete this book. I am particularly grateful to a number of people
for carefully reviewing draft material for this book, and for discussions which
in one way or another have influenced parts of the text: Geoff Hinton, David
Lowe, Stephen Luttrell, David MacKay, Alan McLachlan, Martin M0ller, Rad­
ford Neal, Cazhaow Qazaz, Brian Ripley, Richard Rohwer, David Saad, Iain
Strachan, Markus Svensen, Lionel Tarassenko, David Wallace, Chris Williams,
Peter Williams and Colin Windsor. I would also like to thank Richard Lister
for providing considerable assistance while I was typesetting the text in I^TgX.
Finally, I wish to thank staff at Oxford University Press for their help in the
final stages of preparing this book.

Several of the diagrams in the book have been inspired by similar diagrams
appearing in published work, as follows:

Figures 1.15, 2.3, 2.5, and 3.1 (Duda and Hart, 1973)
Figure 2.13 (Luttrell, 1994)
Figures 3.10 and 3.14 (Minsky and Papert, 1969)
Figure 4.4 (Lippmann, 1987)
Figure 5.8 (Lowe, 1995)
Figures 5.9 and 5.10 (Hartman et al., 1990)
Figure 8.3 (Ghahramani and Jordan, 1994a)
Figure 9.12 (Fahlman and Lebiere, 1990)
Figure 9.14 (Jacobs et al, 1991)
Figure 9.19 (Hertz et al, 1991)
Figures 10.1, 10.10, 10.11 and 10.15 (MacKay, 1994a)
Figures 10.3, 10.4, 10.5 and 10.6 (MacKay, 1995a)
Figures 9.3 and 10.12 (MacKay, 1992a)

Chris Bishop

CONTENTS

1 Statistical Pattern Recogni t ion 1
1.1 An example - character recognition 1
1.2 Classification and regression 5
1.3 Pre-processing and feature extraction 6
1.4 The curse of dimensionality 7
1.5 Polynomial curve fitting 9
1.6 Model complexity 14
1.7 Multivariate non-linear functions 15
1.8 Bayes' theorem 17
1.9 Decision boundaries 23
1.10 Minimizing risk 27
Exercises - - 28

2 Probabil ity Densi ty Estimation 33
2.1 Parametric methods 34
2.2 Maximum likelihood 39
2.3 Bayesian inference 42
2.4 Sequential parameter estimation 46
2.5 Non-parametric methods 49
2.6 Mixture models 59
Exercises 73

3 Single-Layer Networks 77
3.1 Linear discriminant functions 77
3.2 Linear separability 85
3.3 Generalized linear discriminants 88
3.4 Least-squares techniques 89
3.5 The perceptron 98
3.6 Fisher's linear discriminant 105
Exercises 112

4 The Multi-layer Perceptron • 116
4.1 Feed-forward network mappings 116
4.2 Threshold units 121
4.3 Sigmoidal units 126
4.4 Weight-space symmetries 133
4.5 Higher-order networks 133
4.6 Projection pursuit regression 135
4.7 Kolmogorov's theorem 137

xvi Contents

4.8 Error back-propagation 140
4.9 The Jacobian matrix 148
4.10 The Hessian matrix 150
Exercises 161

5 Rad ia l Basis Func t ions 164
5.1 Exact interpolation 164
5.2 Radial basis function networks 167
5.3 Network training 170
5.4 Regularization theory 171
5.5 Noisy interpolation theory 176
5.6 Relation to kernel regression 177
5.7 Radial basis function networks for classification 179
5.8 Comparison with the multi-layer perceptron 182
5.9 Basis function optimization 183
5.10 Supervised training 190
Exercises 191

6 E r r o r Func t ions 194
6.1 Sum-of-squares error 195
6.2 Minkowski error 208
6.3 Input-dependent variance 211
6.4 Modelling conditional distributions 212
6.5 Estimating posterior probabilities 222
6.6 Sum-of-squares for classification 225
6.7 Cross-entropy for two classes 230
6.8 Multiple independent attributes 236
6.9 Cross-eutropy for multiple classes 237
6.10 Entropy 240
6.11 General conditions for outputs to be probabilities 245
Exercises 248

7 P a r a m e t e r Op t imiza t ion A l g o r i t h m s 253
7.1 Error surfaces 254
7.2 Local quadratic approximation 257
7.3 Linear output units 259
7.4 Optimization in practice 260
7.5 Gradient descent 263
7.6 Line search 272
7.7 Conjugate gradients 274
7.8 Scaled conjugate gradients 282
7.9 Newton's method 285
7.10 Quasi-Newton methods 287
7.11 The Levenberg-Marquardt; algorithm 290
Exercises 292

Contents xvii

8 P re -p rocess ing and F e a t u r e E x t r a c t i o n 295
8.1 Pre-processing and post-processing 296
8.2 Input normalization and encoding 298
8.3 Missing data 301
8.4 Time series prediction 302
8.5 Feature selection 304
8.6 Principal component analysis 310
8.7 Invariances and prior knowledge 319
Exercises 329

9 Lea rn ing a n d Genera l i za t ion 332
9.1 Bias and variance 333
9.2 Regularization 338
9.3 Training with noise 346
9.4 Soft weight sharing 349
9.5 Growing and pruning algorithms 353
9.6 Committees of networks 364
9.7 Mixtures of experts 369
9.8 Model order selection 371
9.9 Vapnik-Chervonenkis dimension 377
Exercises , 380

10 Bayesian Techniques 385
10.1 Bayesian learning of network weights 387
10.2 Distribution of network outputs 398
10.3 Application to classification problems 403
10.4 The evidence framework for a and /3 406
10.5 Integration over hyperparameters 415
10.6 Bayesian mode! comparison 418
10.7 Committees of networks 422
10.8 Practical implementation of Bayesian techniques 424
10.9 Monte Carlo methods 425
10.10 Minimum description length 429
Exercises 433

A S y m m e t r i c Ma t r i ces 440

B Gauss i an In tegra ls 444

C Lagrange Mul t ip l ie rs 448

D Calculus of Var ia t ions 451

E P r inc ipa l C o m p o n e n t s 454

References 457

I n d e x 477

1

STATISTICAL PATTERN RECOGNITION

The term pattern recognition encompasses a wide range of information processing
problems of great practical significance, from speech recognition and the classi­
fication of handwritten characters, to fault detection in machinery and medical
diagnosis. Often these are problems which many humans solve in a seemingly
effortless fashion. However, their solution using computers has, in many cases,
proved to be immensely difficult. In order to have the best opportunity of devel­
oping effective solutions, it is important to adopt a principled approach based
on sound theoretical concepts.

The most general, and most natural, framework in which to formulate solu­
tions to pattern recognition problems is a statistical one, which recognizes the
probabilistic nature both of the information we seek to process, and of the form
in which we should express the results. Statistical pattern recognitionis a well
established field with a long history. Throughout this book, we shall view neu­
ral networks as an extension of conventional techniques in statistical pattern
recognition, and we shall build on, rather than ignore, the many powerful results
which this field offers.

In this first chapter we provide a gentle introduction to many of the key
concepts in pattern recognition which will be central to our treatment of neural
networks. By using a simple pattern classification example, and analogies to the
problem of curve fitting, we introduce a number of important issues which will
re-emerge in later chapters in the context of neural networks. This chapter also
serves to introduce some of the basic formalism of statistical pattern recognition.

1.1 A n example — character recognition

We can introduce many of the fundamental concepts of statistical pattern recog­
nition by considering a simple, hypothetical, problem of distinguishing hand­
written versions of the characters 'a' and 'b' . Images of the characters might be
captured by a television camera and fed to a compute:*, and we seek an algo­
rithm which can distinguish as reliably as possible between the two characters.
An image is represented by an array of pixels, as illustrated in Figure 1.1, each
of which carries an associated value which we shall denote- by a:* (where the
index i labels the individual pixels). The value of Xi might, for instance, range
from 0 for a completely white pixel to 1 for a completely black pixel. It is of­
ten convenient to gather the x% variables together and denote them by a single
vector x = {x\,..., Xd)T where d is the total number of such variables, and the

2 1: Statistical Pattern Recognition

Figure 1.1. Illustration of two hypothetical images representing handwritten
versions of the characters 'a' and 'b'. Each image is described by an array of
pixel values xt which range from 0 to 1 according to the fraction of the pixel
square occupied by black ink.

superscript T denotes the transpose. In considering this example we shall ignore
a number of detailed practical considerations which would have to be addressed
in a real implementation, and focus instead on the underlying issues.

The goal in this classification problem is to develop an algorithm which will
assign any image, represented by a vector x, to one of two classes, which we
shall denote by C'j., where k -- 1,2, so that class C\ corresponds to the character
'a' and class C2 corresponds to 'b ' . We shall suppose that we are provided with
a large number of examples of images corresponding to both 'a' and '!>', which
have already been classified by a human. Such a collection will be referred to as
a data set. In the statistics literature it would be called a sample.

One obvious problem which we face stems from the high dimensionality of
the data which we arc collecting. For a typical image size of 256 x 256 pixels,
each image can be represented as a point in a c/-dimcnsiona] space, where d =
65 536. The axes of this space represent the grey-level values of the corresponding
pixels, which in this example might be represented by 8-bit numbers. In principle
we might think of storing every possible image together with its corresponding
class label. In practice, of course, this is completely impractical due to the very
large number of possible images: for a 256 x 250 image with 8-bit pixel values
there would be 2 8 x 2 5 B x 2 5 C ~ l0 l r , s o o ° different images. By contrast, we might
typically have a few thousand examples in our training set. It is clear then that,
the classifier system must be designed so as to be able to classify correctly a
previously unseen image vector. This is the problem of generalization, which is
discussed at length in Chapters 9 and 10.

As we shall see in Section 1.4, the presence of a large number of input variables
can present some severe problems for pattern recognition systems. One technique
to help alleviate such problems is to combine input variables together to make a
smaller number of new variables called features. These might be constructed 'by
hand' based on some understanding of the particular problem being tackled, or
they might be derived from the data by automated procedures. In the present
example, we could, for instance, evaluate the ratio of the height of the character
to its width, which we shall denote by .TJ, since we might expect that characters

1.1: An example - character recognition 3

A
. . . J 1 .

I 1 J . , . 1 «-J»
A X)

Figure 1.2. Schematic plot of the histograms of the feature variable x,\ given
by the ratio of the height of a character to its width, for a. data set of images
containing examples from classes C\ = 'a' and Ci = 'b'. Notice that characters
from class Ci tend to have larger values of ,ri than characters from class C\,
but that there is a significant overlap between the. two histograms. If a new
image is observed which has a value of xj given by A, we might expect the
image is more likely to belong to class C\ than C%.

from class C'2 (corresponding to 'b') will typically have larger values of X\ than
characters from class C\ (corresponding to 'a'). We might then hope that the
value of x\ alone will allow new images to be assigned to the correct class.
Suppose we measure the value of x\ for each of the images in our data set, and
plot their values as histograms for each of the two classes. Figure 1.2 shows the
form which these histograms might take. We see that typically examples of the
character 'b ' have larger values of x,\ than examples of the character 'a', but we
also see that the two histograms overlap, so that occasionally we might encounter
an example of 'b ' which has a smaller value of x,\ than some example of 'a'. We
therefore cannot distinguish the two classes perfectly using the value of x\ alone.

If we suppose for the moment that the only information available is the
value of x\, we may wish to know how to make best use of it to classify a new
imago so as to minimize the number of misclassifications. For a new image which
has a value of .TI given by A as indicated in Figure 1.2, we might expect that,
the image is more likely to belong to class C\ than to class Ci- One approach
would therefore be to build a classifier system which simply uses a threshold for
the value of x\ and which classifies as C2 any image for which x.\ exceeds the
threshold, and which classifies all other images as Ci. We might expect that the
number of misclassifications in this approach would be minimized if we choose
the threshold to be at the point where the two histograms cross. This intuition
turns out to be essentially correct, as we shall see in Section 1.9.

The classification procedure we have described so far is based on the evalu­
ation of xj followed by its comparison with a threshold. While we would expect
this to give some degree of discrimination between the two classes, it suffers
from the problem, indicated in Figure 1.2, that there is still significant overlap
of the histograms, and hence we must expect that many of the new characteis
on which we might test it will he iiiisclassifiee?. One way to try to improve the

•1 1: Statistical Pattern Recognition

figure 1.3. A hypothetical classification problem involving two feature vari­
ables xi and X2- Circles denote patterns from class Ci and crosses denote
patterns from class C2. The decision boundary (shown by the line) is able to
provide good separation of the two classes, although there are still a few pat­
terns which would be incorrectly classified by this boundary. Note that if the
value of either of the two features were considered separately (corresponding
to a projection of the data onto one or other of the axes), then there would be
substantially greater overlap of the two classes.

situation is to consider a second feature %i (whose actual definition we need not
consider) and to try to classify new images on the basis of the values of x\ and
x-2 considered together. The reason why this might be beneficial is indicated in
Figure 1.3. Here we see examples of patterns from two classes plotted in the
(£1,2:2) space. It is possible to draw a line in this space, known as a decision
boundary, which gives good separation of the two classes. New patterns which lie
above the decision boundary are classified as belonging to class C\ while patterns
falling below the decision boundary are classified as Ci- A few examples are still
incorrectly classified, but the separation of the patterns is much better than if
either feature had been considered individually, as can be seen by considering all
of the data points projected as histograms onto one or other of the two axes.

We could continue to consider ever larger numbers of (independent) features
in the hope of improving the performance indefinitely. In fact, as we shall see in
Section 1.4, adding too many features can, paradoxically, lead to a worsening of
performance. Furthermore, for many real pattern recognition applications, it is
the case that some overlap between the distributions of the classes is inevitable.
This highlights the intrinsically probabilistic nature of the pattern classification
problem. With handwritten characters, for example, there is considerable vari­
ability in the way the characters are drawn. We are forced to treat the measured
variables as random quantities, and to accept that perfect classification of new
examples may not always be possible. Instead we could aim to build a classifier
which has the smallest probability of making a mistake.

l.S: Classification and regression 5

1.2 Classification a n d regression

The system considered above for classifying handwritten characters was designed
to take an image and to assign it to one of the two classes C\ or C^- We can
represent the outcome of the classification in terms of a variable y which takes
the value 1 if the image is classified as C\, and the value 0 if it is classified as
Ci. Thus, the overall system can be viewed as a mapping from a set of input
variables xi,...,Xd, representing the pixel intensities, to an output variable y
representing the class label. In more complex problems there may be several
output variables, which we shall denote by y^ where A; = 1 , . . . ,c . Thus, if we
wanted to classify all 26 letters of the alphabet, we might consider 26 output
variables each of which corresponds to one of the possible letters.

In general it will not be possible to determine a suitable form for the required
mapping, except with the help of a data set of examples. The mapping is therefore
modelled in terms of some mathematical function which contains a number of
adjustable parameters, whose values are determined with the help of the data.
We can write such functions in the form

yfe=yfc(x;w) (1.1)

where w denotes the vector of parameters. A neural network model, of the kind
considered in this book, can be regarded simply as a particular choice for the
set of functions y/t(x;w). In this case, the parameters comprising w are often
called weights. For the character classification example considered above, the
threshold on x was an example of a parameter whose value was found from
the data by plotting histograms as in Figure 1.2. The use of a simple threshold
function, however, corresponds to a very limited form for y(x;w), and for most
practical applications we need to consider much more flexible functions. The
importance of neural networks in this context is that they offer a very powerful
and very general framework for representing non-linear mappings from several
input variables to several output variables, where the form of the mapping is
governed by a number of adjustable parameters. The process of determining the
values for these parameters on the basis of the data set is called learning or
training, and for this reason the data set of examples is generally referred to as a
training set. Neural network models, as well as many conventional approaches to
statistical pattern recognition, can be viewed as specific choices for the functional
forms used to represent the mapping (1.1), together with particular procedures
for optimizing the parameters in the mapping. In fact, neural network models
often contain conventional approaches as special cases, as discussed in subsequent
chapters.

In classification problems the task is to assign new inputs to one of a number
of discrete classes or categories. However, there are many other pattern recogni­
tion tasks, which we shall refer to as regression problems, in which the outputs
represent the values of continuous variables. Examples include the determina­
tion of the fraction of oil in a pipeline from measurements of the attenuation

6 /: Statistical Pattern Recognition

of gamma beams passing through the pipe, and the prediction of the value of
a currency exchange rate at the some future time, given its values at a num­
ber of recent times. In fact, as discussed in Section 2.4, the term 'regression'
refers to a specific kind of function defined in terms of an average over a random
quantity. Both iegression and classification problems can be seen as particular
cases of junction approximation. Jn the case of regression problems it is the re­
gression function (defined in Section G.1.3) which we wish to approximate, while
for classif. Nation problems the functions which we seek to approximate arc the
probabilities of men^crs'iip of the different classes expressed as functions of the
input variables. Mcny of the key issues which need to be addressed in tackling
pattern recognition problems are common both to classification and regression.

1.3 Pre-processing and feature extraction

Rather than represent the entire transformation from the set of input variables
x i , . . . , x,]. to the set of or.("put variables i.q,. . . , yc by a single neural network func­
tion, there is often great benefit in breaking down the mapping into an initial
pre-processing stage, followed by the parametrized neural network model itself.
This is illustrated schematically in Figure 1.4. For many applications, the outputs
from the network also undergo post-processing to convcit them to the requited
form. In our character recognition example, the original input variables, given
by the pixel values x,, were first transformed to a single variable xi. This is an
example of a form of pre-processing which is generally called feature extraction.
The distinction between the pre-processing stage and the neural network is not
always clear cut, but often the pre-processing can be regarded as a fixed trans­
formation of the variables, while the network itself contains adaptive parameters
whose values are set as part of the training process. The use of pre-processing
can often greatly improve the performance of a pattern recognition system, and
there are several reasons why this may be so, as we now discuss.

In our character recognition example, we know l'..at the decision on whether
to classify a character as 'a' or lb' should not, depend on where in the image that
character is located. A classification system whose decisions are insensitive to
the location of an object within an image is said to exhibit translation invari-
ance. The simple approach to character recognition considered above satisfies
this property because the feature Xi (the ratio of height to width of the charac­
ter) does not depend on the character's position. Note that this feature variable
also exhibits scale invariance, since it is unchanged if the size of the character is
uniformly re-scaled. Such invariance properties are examples of prior knowledge,
that is, information which we possess about the desired form of the solution
which is additional to the information provided by the training data. The in­
clusion of prior knowledge into the desigir of a pattern recognition system can
improve its performance dramatically, and the use of pre-processing is one im­
portant way of achieving this. Since pre-processing and feature extraction can
have such a significant impact on the final performance of a pattern recognition
system, we have devoted the whole of Chapter 8 to a detailed discussion of these
topics.

U,: The curse of dimensionality 7

neural 1
j n e t w o f k j

pre­
processing

x, T-----T xd
Figure 1.4. The majority of neural network applications require the original
input variables x\,...,Xi to be transformed by some form of pre-processing
to give a new set of variables xi,. . •, x# • These are then treated as the inputs
to the neural netwoik, whose outputs are denoted by y\,... ,yc .

1.4 T h e curse of d imensional i ty
There is another important reason why pre-processing can have a profound ef­
fect on the performance of a pattern recognition system. To see this let us return
again to the character recognition problem, where we saw that increasing the
number of features from 1 to 2 could lead to an improvement in performance.
This suggests that we might use an ever larger number of such features, or even
dispense with feature extraction altogether and simply use all 65 536 pixel values
directly as inputs to our neural network. In practice, however, we often find that,
beyond a certain point, adding new features can actually lead to a reduction in
the performance of the classification system. In order to understand this impor­
tant effect, consider the following very simple technique (not recommended in
practice) for modelling non-linear mappings from a set of input variables x% to
an output variable y on the basis of a set of training data.

We begin by dividing each of the input variables into a number of intervals,
so that the value of a vaiiable can be specified approximately by saying in which
interval it lies. This leads to a division of the whole input space into a large
number of boxes or cells as indicated in Figure 1.5. Each of the training examples
corresponds to a point in one of the cells, and carries an associated value of
the output variable y. If we arc given a new point in the input space, we can
determine a corresponding value for y by finding which cell the point falls in, and
then returning the average, value of y for all of the training points which lie in
that cell. By increasing the number of divisions along each axis we could increase
the precision with which the input variables can be specified. There is, however, a
major problem. If each input variable is divided into M divisions, then the total
number of cells is Md and this grows exponentially with the dimensionality of
the input space. Since each cell must contain at least one data point, this implies
that the quantity of (raining data needed to specify the mapping also grows
exponentially. This phenomenon lias been termed the curse of dimensionalUy

1: Statistical Pattern Recognition

Figure 1.5. One way to specify a mapping from a d-dimensional space x\,..., x£
to an output variable y is to divide the input space into a number of cells, as
indicated here for the case of d = 3, and to specify the value of y for each of
the cells. The major problem with this approach is that the number of cells,
and hence the number of example data points required, grows exponentially
with d, a phenomenon known as the 'curse of dimensionality'.

(Bellman, 1961). If we are forced to work with a limited quantity of data, as we
are in practice, then increasing the dimensionality of the space rapidly leads to
the point where the data is very sparse, in which case it provides a very poor
representation of the mapping.

Of course, the technique of dividing up the input space into cells is a par­
ticularly inefficient way to represent a multivariate non-linear function. In sub­
sequent chapters we shall consider other approaches to this problem, based on
feed-forward neural networks, which are much less susceptible to the curse of
dimensionality. These techniques are able to exploit two important properties of
real data. First, the input variables are generally correlated in some way, so that
the data points do not fill out the entire input space but tend to be restricted to
a sub-space of lower dimensionality. This leads to the concept of intrinsic dimen­
sionality which is discussed further in Section 8.6.1. Second, for most mappings
of practical interest, the value of the output variables will not change arbitrarily
from one region of input space to another, but will typically vary smoothly as
a function of the input variables. Thus, it is possible to infer the values of the
output variables at intermediate points, where no data is available, by a process
similar to interpolation.

Although the effects of dimensionality are generally not as severe as the exam­
ple of Figure 1.5 might suggest, it remains true that, in many problems, reducing
the number of input variables can sometimes lead to improved performance for
a given data set, even though information is being discarded. The fixed quantity
of data is better able to specify the mapping in the lower-dimensional space, and
this more than compensates for the loss of information. In our simple character
recognition problem we could have considered all 65 536 pixel values as inputs
to our non-linear model. Such an approach, however, would be expected to give
extremely poor results as a consequence of the effects of dimensionality coupled
with a limited size of data set. As we shall discuss in Chapter 8, one of the impor­
tant roles of pre-processing in many applications is to reduce the dimensionality

1.5: Polynomial curve fitting 9

of the data before using it to train a neural network or other pattern recognition
system.

1.5 Polynomial curve fitting

Many of the important issues concerning the application of neural networks
can be introduced in the simpler context of polynomial curve fitting. Here the
problem is to fit a polynomial to a set of N data points by the technique of
minimizing an error function. Consider the Mth-order polynomial given by

M

y(x) = WQ+ wix H \- WMXM = 2 ^ WjX*'. (1.2)
j=o

This can be regarded as a non-linear mapping which takes x as input and pro­
duces y as output. The precise form of the function y(x) is determined by the
values of the parameters woi • • • % , which are analogous to the weights in a
neural network. It is convenient to denote the set of parameters (WQ, ..., WM) by
the vector w. The polynomial can then be written as a functional mapping in
the form y = y(x; w) as was done for more general non-linear mapping^^i (1.1).

We shall label the data with the index n = 1 , . . . , N, so that each dAte point
consists of a value of a;, denoted by a;", and a corresponding desired*<|$ilue for
the output y, which we shall denote by tn. These desired outputs ajce called
target values in the neural network context. In order to find suitable .yalues for
the coefficients in the polynomial, it is convenient to consider the error between
the desired output tn, for a particular input xn, and the corresponding value
predicted by the polynomial function given by y(xn;w). Standard curj^e-fitting
procedures involve minimizing the square of this error, summed over all data
points, given by

1 N

E = -Y,{y(xn;v)-n2- .(i.3)
7 1 = 1

We can regard E as being a function of w, and so the polynomial can be fitted
to the data by choosing a value for w, which we denote by w*, which minimizes
E. Note that the polynomial (1.2) is a linear function of the parameters w
and so (1.3) is a quadratic function of w. This means that the minimum of
E can be found in terms of the solution of a set of linear algebraic equations
(Exercise 1.5). Functions which depend linearly on the adaptive parameters are
called linear models, even though they may be non-linear functions of the original
input variables. Many concepts which arise in the study of such models are also
of direct relevance to the more complex non-linear neural networks considered in
Chapters 4 and 5. We therefore present an extended discussion of linear models
(in the guise of 'single-layer networks') in Chapter 3.

