


Neural Networks for
Pattern Recognition

CHRISTOPHER M. BISHOP

Department of Computer Science
and Applied Mathematics
Aston University
Birmingham, UK

CLARENDON PRESS - OXFORD
1995






FOREWORD
Geoffrey Hinton

Department of Computer Science
University of Toronto

For those entering the field of artificial neural networks, there has been an acute
need for an authoritative textbook that explains the main ideas clearly and con-
sistently using the basic tools of linear algebra, calculus, and simple probability
theory. There have been many attempts to provide such a text, but until now,
none has succeeded. Some authors have failed to separate the basic ideas and
principles from the soft and fuzzy intuitions that led to some of the models as
well as to most of the exaggerated claims. Others have been unwilling to use the
basic mathematical tools that are essential for a rigorous understanding of the
material. Yet others have tried to cover too many different kinagof neural net-
work without going into enough depth on any one of them. The4nost successful
attempt to date has been “Introduction to the Theory of Neural ‘Computation”
by Hertz, Krogh and Palmer. Unfortunately, this bocok started life as a graduate
course in statistical physics and it shows. So despite its many admirable qualities
it is not ideal as a general textbook.

Bishop is a leading researcher who has a deep understandlng of the material
and has gone to great lengths to organize it into a sequence that makes sense. He
has wisely avoided the temptation to try to cover everything and has therefore
omitted interesting topics like reinforcement learning, Hopfield Networks and
Boltzmann machines in order to focus on the types of neural network that are
most widely used in practical applications. He assumes that the reader has the
basic mathematical literacy required for an undergraduate science degree, and
using these tools he explains everything from scratch. Before introducing the
multilayer perceptron, for example, he lays a solid foundation of basic statistical
concepts. So the crucial concept of overfitting is first introduced using easily
visualised examples of one-dimensional polynomials and only later applied to
neural networks. An impressive aspect of this book is that it takes the reader all
the way from the simplest linear models to the very latest Bayesian multilayer
neural networks without ever requiring any great intellectual leaps.

Although Bishop has been involved in some of the most impressive applica-
tions of neural networks, the theme of the book is principles rather than applica-
tions. Nevertheless, it is much more useful than any of the applications-oriented
texts in preparing the reader for applying this technology effectively. The crucial
issues of how to get good generalization and rapid learning are covered in great
depth and detail and there are also excellent discussions of how to preprocess
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the input and how to choose a suitable error function for the output.

It is a sign of Lhe increasing maturity of the field that methods which were
once justified by vague appeals to their neuron-like qualities can now be given a
solid statistical foundation. Ultimately, we all hiope that a better statistical un-
derstanding of artificial neural networks will help us understand how the brain
actually works, but until that day comes it is reassuring to know why our cur-
rent models work and how to use them effectively to solve important practical
problems.

fLpere
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Introduction

In recent years neural computing has emerged as a practical technology, with
successful applications in many fields. The majority of these applications are
concerned with problems in pattern recognition, and make use of feed-forward
network architectures such as the multi-layer perceptron and the radial basis
function network. Also, it has also become widely acknowledged that success-
ful applications of neural computing require a principled, rather than ad hoc,
approach. My aim in writing this book has been to provide a more focused
treatment of neural networks than previously available, which reflects these de-
velopments. By deliberately concentrating on the pattern recognition aspects of
neural networks, it has become possible to treat many important topics in much
greater depth. For example, density estimation, error functions, parameter op-
timization algorithis, data pre-processing, and Bayesian methods are each the
subject of an entire chapter.

From the perspective of pattern recognition, neural networks can be regarded
as an extension of the many conventional techniques which have been developed
over several decades. Indeed, this book includes discussions of several concepts in
conventional statistical pattern recognition which I regard as essential for a clear
understanding of neural networks. More extensive treatments of these topics can
be found in the many texts on statistical pattern recognition, including Duda and
Hart (1973), Hand (1981}, Devijver and Kittler (1982), and Fukunaga (1990).
Recent review articles by Ripley (1994) and Cheng and Titterington (1994) have
also emphasized the statistical underpinnings of neural networks.

Historically, many concepts in neural computing have been inspired by studies
of biological networks. The pevspective of statistical pattern recoguition, how-
ever, offers a much more direct and principled route to many of the same con-
cepts. For example, the sum-and-threshold model of a neuron arises naturally as
the optimal discriminant function needed to distinguish two classes whose distri-
butions are normal with equal covariance matrices. Similarly, the familiar logistic
sigmoid is precisely the function needed to allow the output of a network to be
interpreted as a probability, when the distribution of hidden unit activations is
governed by a member of the exponential family.

An important assumption which is made throughout the book is that the pro-
cesses which give rise to the data do not themselves evolve with time. Techniques
for dealing with non-stationary sources of data are not so highly developed, nor so
well established, as those for static problems. Furthermore, the issues addressed
within this book remain equally important in the face of the additional compli-
cation of non-stationarity. It should be noted that this restriction does not mean
that applications involving the prediction of time scries are excluded. The key



rrejace

consideration for time series is not the time variation of the signals themselves,
but whether the underlying process which generates the data is itself evolving
with time, as discussed in Section 8.4.

Use as a course text

This book is aimed at researchers in neural computing as well as those wishing
to apply neural networks to practical applications. It is also intended to be used
used as the primary text for a graduate-level, or advanced undergraduate-level,
course on neural networks. In this case the book should be used sequentially, and
care has been taken to ensure that where possible the material in any particular
chapter depends only on concepts developed in earlier chapters.

Exercises are provided at the end of each chapter, and these are intended
to reinforce concepts developed in the main text, as well as to lead the reader
through some extensions of these concepts. Each exercise is assigned a grading
according to its complexity and the length of time needed to solve it, ranging from
{x) for a short, simple exercise, to (* xx) for a more extensive or more complex
exercise. Some of the exercises call for analytical derivations or proofs, while
others require varying degrees of numerical simulation. Many of the simulations
can be carried out using numerical analysis and graphical visualization packages,
while others specifically require the use of neural network software. Often suitable
network simulators are available as add-on tool-kits to the numerical analysis
packages. No particular software system has been prescribed, and the course
tutor, or the student, is free to select an appropriate package from the many
available. A few of the exercises require the student to develop the necessary
code in a standard language such as C or C++. In this case some very useful
software modules written in C, together with background information, can be
found in Press et al. (1992).

Prerequisites

This book is intended to be largely self-contained as far as the subject of neural
networks is concerned, although some prior exposure to the subject may be
helpful to the reader. A clear understanding of neural networks can only be
achieved with the use of a certain minimum level of mathematics. It is therefore
assumed that the reader has a good working knowledge of vector and matrix
algebra, as well as integral and differential calculus for several variables. Some
more specific results and techniques which are used at a number of places in the
text are described in the appendices.

Overview of the chapters

The first chapter provides an introduction to the principal concepts of pattern
recognition. By drawing an analogy with the problem of polynomial curve fit-
ting, it introduces many of the central ideas, such as parameter optimization,
generalization and model complexity, which will be discussed at greater length in
later chapters of the book. This chapter also gives an overview of the formalism
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of statistical pattern recognition, including probabilities, decision criteria and
Bayes’ theorem.

Chapter 2 deals with the problem of modelling the probability distribution of
a set of data, and reviews conventional parametric and non-parametric methods,
as well as discussing more recent techniques based on mixture distributions.
Aside from being of considerable practical importance in their own right, the
concepts of probability density estimation are relevant to many aspects of neural
computing.

Neural networks having a single layer of adaptive weights are introduced in
Chapter 3. Although such networks have less flexibility than multi-layer net-
works, they can play an important role in practical applications, and they also
serve to motivate several ideas and techniques which are applicable also to more
general network structures.

Chapter 4 provides a comprehensive treatment of the multi-layer perceptron,
and describes the technique of error back-propagation and its significance as a
general framework for evaluating derivatives in multi-layer networks. The Hessian
matrix, which plays a central role in many parameter optimization algorithms
as well as in Bayesian techniques, is also treated at length.

An alternative, and complementary, approach to representing general non-
linear mappings is provided by radial basis function networks, and is discussed in
,Chapter 5. These networks are motivated from several distinct perspectives, and
hence provide a unifying framework linking a number of different approaches.

Several different error functions can be used for training neural networks,
and these are motivated, and their properties examined, in Chapter 6. The cir-
cumstances under which network outputs can be interpreted as probabilities are
discussed, and the corresponding interpretation of hidden unit activations is also
considered.

Chapter 7 reviews many of the most important algorithms for optimizing the
values of the parameters in a network, in other words for network training. Simple
algorithms, based on gradient descent with momentum, have serious limitations,
and an understanding of these helps to motivate some of the more powerful
algorithms, such as conjugate gradients and quasi-Newton methods.

One of the most important factors in determining the success of a practical
application of neural networks is the form of pre-processing applied to the data.
Chapter 8 covers a range of issues associated with data pre-processing, and de-
scribes several practical techniques related to dimensionality reduction and the
use of prior knowledge.

Chapter 9 provides a number of insights into the problem of generalization,
and describes methods for addressing the central issue of model order selec-
tion. The key insight of the bias—variance trade-off is introduced, and several
techniques for optimizing this trade-off, including regularization, are treated at
length.

The final chapter discusses the treatment of neural networks from a Bayesian
perspective. As well as providing a more fundamental view of learning in neural
networks, the Bayesian approach also leads to practical procedures for assigning
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error bars to network predictions and for optimizing the values of regularization
coeflicients.

Some useful mathematical results are derived in the appendices, relating to
the properties of symmetric matrices, Gaussian integration, Lagrange multiplicrs,
calculus of variations, and principal component analysis.

An extensive bibliography is included, which is intended to provide useful
pointers to the literature rather than a complete record of the historical devel-
opment of the subject.

Nomenclature

In trying to find a notation which is internally consistent, I have adopted a
number of general principles as follows. Lower-case bold letters, for example v,
are used to denote vectors, while upper-case bold letters, such as M, denote
matrices. One exception is that I have used the notation 7 to denote a vector
whose elements y™ represent thic values of a variable corresponding to different
patterns in a training set, to distinguish it from a vector y whose elements yx
correspond to different variables. Related variables are indexed by lower-case
Roman letters, and a set of such variables is denoted by enclosing braces. For
instance, {z;} denotes a set, of input variables z;, where 1 = 1, ..., d. Vectors are
considered to be column vectors, with the corresponding row vector denoted by
a superscript T indicating the transpose, so that, for example, x¥ = (z1,...,24).
Similarly, MT denotes the transpose of a matrix M. The notation M = (M;;)
is used to denote the fact that the matrix M has the elements M;;, while the
notation (M),; is used to denote the ij element of a watrix M. The Euclidean
length of a vector x is denoted by ||x||, while the magnitude of a scalar z is
denoted by {z]. The determinant of a matrix M is written as |M].

I typically use an upper-case P to denote a probability and a lower-case p to
denote a probability density. Note that T use p(x) to represent the distribution
of x and p(y) to represent the distribution of y, so that these distributions are
denoted by the saine symbo! p even though they represent different functions. By
a similar abuse of notation I frequently use, for example, yx to denote the outputs
of a neural network, and at the same time use yx(x; w) to denote the non-linear
mapping function represented by the network. I hope these conventions will save
more confusion than they cause.

To denote functionals (Appendix D) I use square brackets, so that, for exam-
ple, E[f] denotes [unctional of the function f(x). Square brackets are also used
in the notation £[Q} which denotes the expectation (i.e. average) of a random
variable Q.

I use the notation O(N) to denote that a quantity is of order N. Given two
functions f(N)} and g(N), we say that f = O(g) if f(N) < Ag(N), where A is
a constant, for all values of N (although we are typically interested in large V).
Stmilarly, we will say that f ~ g if the ratio f(N)/g(N) — 1 as N — co.

I find it indispensable to use two distinct conventions to describe the weight
paramicters in a network. Sometimes it is convenient to refer explicitly to the
weight which goes fo a unit labelled by j from a unit (or input) labelled by i
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Such a weight will be denoted by wj;. In other contexts it is more convenient
to label the weights using a single index, as in wy, where k runs from 1 to W,
and W is the total number of weights. The variables wy, can then be gathered
together to make a vector w whose elements coruprise all of the weights (or more
generally all of the adaptive parameters) in the network.

The notation 6;; denotes the usual Kronecker delta symbol, in other words
8;; = 1if i = j and 6;; = O otherwise. Similarly, the notation §{(x) denotes the
Dirac delta function, which has the properties §(x) == 0 for  # 0 and

o0
/ §(z)dz =1
J =00
In d-dimensions the Dirac delta function is defined by
d
§(x) = Hé(xz)
i=1

The symbols used for the most commonly occurring quantities in the book
are listed below:

c number of outputs; nmnber of classes
Cy kth class

d number of inputs

E error function

£[Q] expectation of a random variable Q
9() activation function

i input label

7 hidden unit label

k output unit label

M number of hidden units

n pattern label

N number of patterns

P(:) probability

p(-) probability density function

t target value

T time step in iterative algorithms

W number of weights and biases in a network
T network input variable

Y network output variable

z activation of hidden unit

In logarithm to base e

log, logarithm to base 2
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1
STATISTICAL PATTERN RECOGNITION

The term pattern recognition encompasses a wide range of information processing
problems of great practical significance, from speech recognition and the classi-
fication of handwritten characters, to fault detection in machinery and medical
diagnosis. Often these are problems which many humans solve in a seemingly
effortless fashion. However, their solution using computers has, in many cases,
proved to be immensely difficult. In order to have the best opportunity of devel-
oping effective solutions, it is important to adopt a principled approach based
on sound theoretical concepts. .

The most general, and most natural, framework in which to formulate solu-
tions to pattern recognition problems is a statistical one, which recognizes the
probabilistic nature both of the information we seek to process, and of the form
in which we should express the results. Statistical pattern recognitionis a well
established field with a long history. Throughout this book, we shall view neu-
ral networks as an extension of conventional techniques in statistical pattern
recognition, and we shall build on, rather than ignore, the many powerful results
which this field offers.

In this first chapter we provide a gentle introduction to many of the key
concepts in pattern recognition which will be central to ocur treatment of neural
networks. By using a simple pattern classification example, and analogies to the
problem of curve fitting, we introduce a number of important issues which will
re-emerge in later chapters in the context of neural networks. This chapter also
serves to introduce some of the basic formalism of statistical pattern recognition.

1.1 An example — character recognition

We can introduce many of the fundamental concepts of statistical pattern recog-
nition by considering a simple, hypothetical, problem of distinguishing hand-
written versions of the characters ‘a’ and ‘b’. Images of the characters might be
captured by a television camera and fed to a computer, and we seek an algo-
rithm which can distinguish as reliably as possible between the two characters.
An image is represented by an array of pixels, as illustrated in Figure 1.1, each
of which carries an associated value which we shall denote-by z; (where the
index ¢ labels the individual pixels). The value of z; might, for instance, range
from 0 for a completely white pixel to 1 for a completely black pixel. It is of-
ten convenient to gather the x; variables together and denote them by a single
vector x = (z1,...,24)" where d is the total number of such variables, and the
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Figure 1.1. IHustration of two hypothetical images representing handwritten
versions of the characters ‘2’ and ‘U, Each image is described by an array of
pixel values x; which range from 0 to 1 according to the fraction of the pixel
square occupied by black ink.

superscript, ‘T denotes the transpose. In considering this example we shall ignore
a number of detailed practical considerations which would have to be addressed
in a real implementation, and focus instead on the underlying issues.

'T'he goal in this classification problem is to develop an algorithm which will
assigh any image, represented by a vector x, to one of two classes, which we
shall denote by Cp, where k == 1,2, so that class Cy corresponds to the character
‘a’ and class Cy corresponds to ‘b’. We shall suppose that we are provided with
a large munber of examples of images corresponding to both ‘a’ aud ‘0, which
have already been classified by a human. Such a collection will be referred to as
a data sel. In the statistics literature it would be called a sample.

One obvious problem which we face stems from the high dimensionality of
the data which we arc collecting. For a typical image size of 256 x 256 pixels,
each image can be represented as a point in a d-dimensional space, where d =
65 536. 'I'he axes of this space represent the grey-level values of the corresponding
pixels, which in this example might be represented by 8-bit wunbers. In principle
we might think of storing every possible iinage together witl its corresponding
class label. In practice, of course, this is completely impractical due to the very
large number of possible images: for a 256 x 256 image with 8-bit pixel values
there would be 28%256%256 ~ 10158000 difforent, images. By contrast, we might
typically have a few thousand examples in our training set. It is clear then that
the classifier system must be designed so as to be able to classify correctly a
previously unscen image vector. This is the problem of generalization, which is
discussed at length in Chapters 9 and 10.

As we shall see in Section 1.4, the presence of a large number of input variables
can present some severe problems for pattern recognition systems. One technique
to help alleviate such problems is to combine tuput variables together to make a
smaller number of new variables called features. These might be constructed ‘by
hand’ based on some understanding of the particular problem being tackled, or
they might be derived from the data by automated procedures. In the present
example, we could, for instance, evaluate the ratio of the height of the character
to its width, which we shall denote by 7y, since we might expect that characters

KPR,
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Figure 1.2. Schematic plot of the histograms of the feature variable 2, given
by the ratio of the height of a character to its width, for a data sct of images
containing examples from classes €, = ‘@’ and C2 = ‘b’ Notice that characters
from class Cz tend to have Jarger values of @ than characters from class
but that there is a significant overlap between the two histograms. If a new
image is observed which has a value of ;7 given by A, we might evpect the
image is more likely to belong to class €y than Ca.

from class Cp (corresponding to ‘h’) will typically have larger values of Ty than
characters from class €y (corresponding to ‘@’). We might then hope that the
value of Ty alone will allow new images to be assigned to the correct class,
Suppose we measure the value of Z; for each of the images in our data set, and
plot their values as histograms for each of the two classes. Figure 1.2 shows the
form which these histograms might take. We sce that typically examples of the
character ‘b’ have larger values of T1 than examples of the character a’, but we
also see that the two histograms overlap, so that occasionally we might encounter
an example of ‘D’ which bas a smaller value of 7y than some example of ‘a’. Wea
therefore cannot distinguish the two classes perfectly using the value of Ty alone.

If we suppose for the moment that the only information available is the
value of ¥y, we may wish to know how to make best use of it to classify a new
image so as to minimize the number of misclassifications. For a new image which
has a value of Ty given by A as indicated in Figure 1.2, we might expect that
the image is more likely to belong to class €y than to class €. One approach
would therefore be to build a classifier system which simply uses a threshold for
the value of 1 and which classifies as Cp any image for which 7y exceeds the
threshold, and which classifies all other images as Cy. We might expect that the
number of misclassifications in this appreach would be minimized if we choose
the threshold to be at the point where the two histograms cross. This intuition
turns out to be essentially correct, as we shall see in Section 1.9.

The classification procedure we have described so far is based on the evalu-
ation of T; followed by its comparison with a threshold. While we would expect.
this to give some degree of discrimination between the two classes, it suffers
from the problem, indicated in Figure 1.2, that there is still significant overlap
of the histograms, and henee we must expect that many of the new characters
on which we might fest it will be misclassified. One way to tryv to improve the
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Figure 1.3. A hypothetical classification problem involving two feature vari-
ables ; and 2. Circles denote patterns from class C; and crosses denote
patterns from class C2. The decision boundary (shown by the line) is able to
provide good separation of the two classes, although there are still a few pat-
terns which would be incorrectly classified by this boundary. Note that if the
value of either of the two features were considered separately (corresponding
to a projection of the data onto one or other of the axes), then there would be
substantially greater overlap of the two classes.

situation is to consider a second feature Ty (whose actual definition we need not
consider) and to try to classify new images on the basis of the values of T, and
Ty considered together. The reason why this might be beneficial is indicated in
Figure 1.3. Here we see examples of patterns from two classes plotted in- the
(Zy,Tq) space. It is possible to draw a line in this space, known as a decision
boundary, which gives good separation of the two classes. New patterns which lie
above the decision boundary are classified as belonging to class C; while patterns
fulling below the decision boundary are classified as C2. A few examples are still
incorrectly classified, but the separation of the patterns is much better than if
either feature had been considered individually, as can be seen by considering all
of the data points projected as histograms onto one or other of the two axes.

We could continue to consider ever larger numbers of (independent) features
in the hope of improving the performance indefinitely. In fact, as we shall see in
Section 1.4, adding too many features can, paradoxically, lead to a worsening of
performance. Furthermore, for many real pattern recognition applications, it is
the case that some overlap between the distributions of the classes is inevitable.
"This highlights the intrinsically probabilistic nature of the pattern classification
problem. With handwritten characters, for example, there is considerable vari-
ability in the way the characters are drawn. We are forced to treat the measured
variables as random quantities, and to accept that perfect classification of new
examples may not always be possible. Instead we could aim to build a classifier
which has the smallest probability of making a mistake.
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1.2 Classification and regression

The system considered above for classifying handwritten characters was designed
to take an image and to assign it to one of the two classes C; or Ca. We can
represent the outcome of the classification in terms of a variable y which takes
the value 1 if the image is classified as C;, and the value 0 if it is classified as
Cy. Thus, the overall system can be viewed as a mapping from a set of input
variables x1,...,%q4, representing the pixel intensities, to an output variable y
representing the class label. In more complex problems there may be several
output variables, which we shall denote by y, where &k = 1,...,c. Thus, if we
wanted to classify all 26 letters of the alphabet, we might consider 26 ocutput
variables each of which corresponds to one of the possible letters.

In general it will not be possible to determine a suitable form for the required
mapping, except with the help of a data set of examples. The mapping is therefore
modelled in terms of some mathematical function which contains a number of
adjustable parameters, whose values are determined with the help of the data.
We can write such functions in the form

Yk = Yk (%; W) (1:1)

where w- denotes the vector of parameters. A neural network model, of the kind
considered in this book, can be regarded simply as a particular choice for the
set of functions yi(x;w). In this case, the parameters comprising w are often
called weights. For the character classification example considered above, the
threshold on T was an example of a parameter whose value was found from
the data by plotting histograms as in Figure 1.2. The use of a simple threshold
function, however, corresponds to a very limited form for y(x;w), and for most
practical applications we need to consider much more flexible functions. The
importance of neural networks in this context is that they offer a very powerful
and very general framework for representing non-linear mappings from several
input variables to several output variables, where the form of the mapping is
governed by a number of adjustable parameters. The process of determining the
values for these parameters on the basis of the data set is called learning or
training, and for this reason the data set of examples is generally referred to as a
training set. Neural network models, as well as many conventional approaches to
statistical pattern recognition, can be viewed as specific choices for the functional
forms used to represent the mapping (1.1), together with particular procedures
for optimizing the parameters in the mapping. In fact, neural network models
often contain conventional approaches as special cases, as discussed in subsequent
chapters.

In classification problems the task is to assign new inputs to one of a number
of discrete classes or categories. However, there are many other pattern recogni-
tion tasks, which we shall refer to as regression problems, in which the outputs
represent the values of continuous variables. Examples include the determina-
tion of the fraction of oil in a pipeline from measurements of the attenuation
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of gamma beams passing through the pipe, and the prediction of the value of
a currency exchange rate at the some future time, given its values at a num-
ber of recent times. In fact, as discussed in Section 2.4, the term ‘regression’
refers to a specific kind of finction defined in terms of an average over a random
quantity. Both tegression and classification problems cau be seen as particular
cases of function approximation. In the case of regression problems it is the re-
gression function (defined in Section 6.1.3) which we wish to approximate, while
for classic »ation problems the functions which we seck to approximate arc the
probabilities of men.ership of the different classes expressed as functions of the
input variables. Laany of the key issues which need to be addressed in tackling
pattern recognition problems are common both to classification and regression.

1.3 Pre-processing and feature extraction

Rather than represent the entire transformation from the set of input variables
Ty, .., xq to the set of output variables ¢y, . . ., 3. by a single ncural network func-
tion, there iz often great benefit in breaking down the mapping into an initial
pre-processing stage, followed by the paramcetrized neural network model itself.
This is illustrated schematically in Figure 1.4. For many applications, the outputs
from the network also undergo post-processing to convert them to the requited
form. In our character recognition example, the original input variables, given
by the pixel values x;, were first transformed to a single variable Ty. This is an
exnmple of a form of pre-processing which is generally called feature exiraction.
The distinction between the pre-processing stage and the neural network is not
always clear cut, but often the pre-processing can be regarded as a fixed trans-
formation of the variables, while the network itself contains adaptive parameters
wlose values are set as part of the training process. The use of pre-processing
can often greatly improve the performance of a patiern recognition system, and
there are several reasons why this may be so, as we now discuss.

In our character recognition example, we know .1 at the decision on whether
to classify a character as ‘a’ or ‘b’ should not. depend on where in the imoge that
character is located. A classification system whose decisions are insensitive to
the location of an object within an image is said to cxhibit fransletion invari-
ance. The simple approach to character recognition considered above satisfies
this property because the feature Z; (the ratio of height to width of the charac-
ter) does not depend on the character’s position. Note that this feature variable
also exhibits scale invariance, since it is unchanged if the size of the character is
uniformly re-scaled. Such invariance properties are examples of prior knowledge,
that is, information which we possess about the desired form of the solution
which is additional to the information provided by the training data. The in-
clusion of prior knowledge into the design of a pattern recognition system con
improve its performance dramatically, and the use of pre-processing is one im-
portant way of achieving this. Since pre-processing and feature extraction can
have such a significant impact on the final performance of a pattern recognition
system, we have devoted the whole of Chapter 8 to a detailed discussion of these
topics.
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Figure 1.4. The majority of neural network applications require the original
input variables a11,...,24 to be transformed by some form of pre-processing
Lo give a nwew set of variables =1, ..., %4, These are then treated as the mputs
to the neural network, whose outputs are denoted by y1,.. ., ye..

1.4 The curse of dimensionality

There is another importent reason why pre-processing can have a profound ef-
fect on the performance of a pattern recognition system. Lo sce this let us return
again to the character recognition problem, where we saw that increasing the
number of features from 1 t2 2 could lead to an jimprovement in performance.
This suggests that we might use an ever larger nummber of such features, or even
dispense with feature extraction altogether and simply use all 65 538 pixel values
directly as inputs to our neural network. In practice, however, we often find that,
beyond a certain point, adding new features can actually lead to a reduction in
the performance of the classification system. In order to understand this impor-
tant effect, consider the following very simple technique (not recommended in
practice) for modelling non-linear mappings from a set of input variables xz; to
an output variable y on the basis of a set of training data.

We begin by dividing each of the input variables into a number of intervals,
so that the value of a variable can be specified approximately by saying in which
interval it lies. 'This leads to a division of the whole input space into a large
nunber of boxes or cells as indicated in Figure 1.5, Each of the training examples
corresponds to a point in one of the cells, and carries an associated value of
the output variable y. If we are given a new point in the input space, we can
determine a corresponding value for y by finding which cell the point falls in, and
then returning the average valne of y for all of the training points which lie in
that cell. By increasing the number of divisions along each axis we could increase
the precision with which the input variables can be specified. There is, however, a
major problem. If each input variable is divided into A divisions, then the total
number of cells is M™ and this grows exponentially with the dimensionality of
the input space. Siuce each cell miust contain at least oue data point, this inplies
that the quantity of training data needed to specify the mapping also grows
exponentially. ‘This phenomenon has been termed the curse of dimensionality
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X3
x, [EBk
& X,
Figure 1.5. One way to specify a mapping from a d-dimensional space z1,...,Zq4°

to an output variable y is to divide the input space into a number of cells, as
indicated here for the case of d = 3, and to specify the value of y for each of
the cells. The major problem with this approach is that the number of cells,
and hence the number of example data points required, grows exponentially
with d, a phenomenon known as the ‘curse of dimensionality’.

(Bellman, 1961). If we are forced to work with a limited quantity of data, as we
are in practice, then increasing the dimensionality of the space rapidly leads to
the point where the data is very sparse, in which case it provides a very poor
representation of the mapping.

Of course, the technique of dividing up the input space into cells is a par-
ticularly inefficient way to represent a multivariate non-linear function. In sub-
sequent chapters we shall consider other approaches to this problem, based on
feed-forward neural networks, which are much less susceptible to the curse of
dimensionality. These techniques are able to exploit two important properties of
real data. First, the input variables are generally correlated in some way, so that
the data points do not fill out the entire input space but tend to be restricted to
a sub-space of lower dimensionality. This leads to the concept of intrinsic dimen-
sionality which is discussed further in Section 8.6.1. Second, for most mappings
of practical interest, the value of the output variables will not change arbitrarily
from one region of input space to another, but will typically vary smoothly as
a function of the input variables. Thus, it is possible to infer the values of the
output variables at intermediate points, where no data is available, by a process
similar to interpolation.

Although the effects of dimensionality are generally not as severe as the exam-
ple of Figure 1.5 might suggest, it remains true that, in many problems, reducing
the number of input variables can sometimes lead to improved performance for
a given data set, even though information is being discarded. The fixed quantity
of data is better able to specify the mapping in the lower-dimensional space, and
this more than compensates for the loss of information. In our simple character
recognition problem we could have considered all 65536 pixel values as inputs
to our non-linear model. Such an approach, however, would be expected to give
extremely poor results as a consequence of the effects of dimensionality coupled
with a limited size of data set. As we shall discuss in Chapter 8, one of the impor-
tant roles of pre-processing in many applications is to reduce the dimensionality
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of the data before using it to train a neural network or other pattern recognition
system.

1.5 Polynomial curve fitting

Many of the important issues concerning the application of neural networks
can be introduced in the simpler context of polynomial curve fitting. Here the
problem is to fit a polynomial to a set of N data points by the technique of
minimizing an error function. Consider the Mth-order polynomial given by

M
y(z) = wo + w1z + -+ - + wyz™ =ij:1:j. (1.2)
=0 ;

This can be regarded as a non-linear mapping which takes z as input and pro-
duces y as output. The precise form of the function y(z) is determined by the
values of the parameters wyg,...wys, which are analogous to the weights in a
neural network. It is convenient to denote the set of parameters (wq, ..., wys) by
the vector w. The polynomial can then be written as a functional mapping in
the form y = y(z; w) as was done for more general non-linear mappinggzn (1.1).

We shall label the data with the index n = 1,..., N, so that each data point
consists of a value of z, denoted by z", and a corresponding desiredsyalue for
the output y, which we shall denote by . These desired outputs age called
target values in the neural network context. In order to find suitable yglues for
the coefficients in the polynomial, it is convenient to consider the error.between
the desired output t”, for a particular input z”, and the correspondipng value
predicted by the polynomial function given by y(z"; w). Standard curye-fitting
procedures involve minimizing the square of this error, summed over:-all data
points, given by

1 ‘
B=3 3 {yamw) - ). 3)
n=1

We can regard E as being a function of w, and so the polynomial can be fitted
to the data by choosing a value for w, which we denote by w*, which minimizes
E. Note that the polynomial (1.2) is a linear function of the parameters w
and so (1.3) is a quadratic function of w. This means that the minimum of
E can be found in terms of the solution of a set of linear algebraic equations
(Exercise 1.5). Functions which depend linearly on the adaptive parameters are
called linear models, even though they may be non-linear functions of the original
input variables. Many concepts which arise in the study of such models are also
of direct relevance to the more complex non-linear neural networks considered in
Chapters 4 and 5. We therefore present an extended discussion of linear models
(in the guise of ‘single-layer networks’) in Chapter 3.
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The minimization of an error function such as (1.3), which involves target
values for the nelwork outputs, is called supervised learning since for each input
pattera the value of the desired ouiput is shecified. 4 second form of learning in
ne.ral networks, called unsupervised lzariing, aoes not involve the use of target
Cava rastead of lcarning an input-o.t . GLs mapping, tae goal may be to model the
poobability distribution of the input duta (as discussed at length in Chapter 2)
0. to discover clusters or other structu.e 1. tue daca. There is a third form of
learning, called reinforcement leerning ("lertz el al., 1991) in which information
is supplied as to whether the network cutputs are good or bad, but again no
actual desired values arc given. This is mainiy used for control applications, and
will not be discussed further.

We have introduced the sum-of-squares ervor ranction from a heuristic view-
point. rror lunctions play wn important role in the use of aeural networks, and
the whole of Chapter 6 is devoted to a detailed discussion of their properties.
There we suall sce how the sum-of-squases crror funclion can be derived {rom
son: generas shacistical principles, provided we make certain assumptions about
Li.e properaoes of the data. We sha. also i..vestigale osher forms of error function
whicl, are approp.iate when these assumstioas are not valid.

We can illustrate the techuique of polynomial cuzve fitting by gencrating
sytnthetic data in a way which is intended %o capture sonie of the basic properties
ol real data sets used in patlern recognition probiems. Specilically, we generate
training data from the function

hz) = 0.5+ 0dsin(2r2) (1.4)

by sampling the function Az} at cqual intervals of @ and then adding random
toise with a Gaussian distribution (Section 2.1.1) having standard deviation
o = 0.05. Thus Jor each data point a new value for the noise contribution is
choseit. A basic property of most data sets of interest in patiern recognition is
that the data exhibits an underlying zvstematic aspect, represented in this case
by the function h{z), but is corrupted with random noise. The central goal in
pattern recognition is to produce a system which makes good predictions for
new data, in other words one which exhibits good generalization. In ovder to
measure the generalization capabilities of the polynomial, we have generated a
second data set called a test set, which is produced ia the saine way as the
training set, but with new values for the noise comnonent. This reflects the basic
assumption that the data on which we wish to use the pattern recognition system
is produced by the same underlying mechanism as the training data. As we shall
discuss at length in Chapter 9, the best generalization to new data is obtained
when the mapping represents the underlying systematic aspects of the data,
rather capturing the specific details (i.c. the noise contribution) of the particular
training set. We will thercfore be interested in secing how close the polynomial
y(x) is to the function h(x).

Figure 1.6 shows the 11 points from the training sct, as well as the fuuction
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0.0 : |
0.0 0.5 x 1.0

Figure 1.6. An example of a set of 11 data points obtained by sampling the
function h(zx), defined by (1.4), at equal intervals of z and adding random noise.
The dashed curve shows the function h(z), while the solid curve shows the
rather poor approximation obtained with a linear polynomial, corresponding
to M =1in (1.2).

h{z) from (1.4), together with the result of fitting a linecar polynomial, given by
(1.2) with A = 1. As can be seen, this polynomial gives a poor representation
of h(z), as a conscquence of its limited flexibility. We can cbtain a better fit by
increasing the order of the polynomial, since this increases the number of degrees
of freedom (1c the unmber of free parameters) in the function, which gives
it greater flexibility. Figure 1.7 shows the result of fitting a cubic polynomial
(M = 3) which gives a much better approximation to h(xr). If, however, we
increase the order of the polynomial too far, then the approximation to the
underlying function actually gets worse. Figure 1.8 shows the result of fitting a
10th-order polynomial (AL = 10). This is now able to achieve a perfect {it to the
training data, since a 10th-order polynomial has 11 free parameters, and thers
are 11 data points. However, the polynoruial has fitted the data by developing
some dramatic oscillations. Such functions are said to be over-fitted to the data.
As a consequence, this function gives a poor representation of h(w).

1.5.1 Generalization

In order to assess the capability of the polynomisl to generalize to new data, it
is convenient to consider the root-mean-square (RMS) error given by

N
) 1
LRMS =, N Z{y(wn; VV*) _ tn}? (]5)
n=1

where w* represeuts the veetor of ceefficients corresponding to the minimum
of the error function, so that y{x; w*) represents the fitted polynomial. For the
purpose of evaluating the cffectiveness of the polynomial at predicting new data,
this is a more convenient quantity to consider than the original sum-of-squares
ervor {1.3) since the strong dependence on the number of data points has been
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Figure 1.7. This shows the same data set as in Figure 1.6, but this time fitted by .
a cubic (M = 3) polynomial, showing the significantly improved approximation
to h(z) achieved by this more flexible function.

1.0

05

0.0 i “
0.0 05 x 1.0

Figure 1.8. The result of fitting the same data set as in Figure 1.6 using a 10th-
order (M = 10) polynomial. This gives a perfect fit to the training data, but.
at the expense of a function which has large oscillations, and which therefore
gives a poorer representation of the generator function h(z) than did the cubic
polynomial of Figure 1.7.

removed. Figure 1.9 shows a plot of ERMS for both the training data set and the
test data set, as a function of the order M of the polynomial. We see that the
training set error decreases steadily as the order of the polynomial increases. The
test set error, however, reaches a minimum at M = 3, and thereafter increases
as the order of the polynomial is increased. v

The ability of the polynomial to generalize to new data (i.e. to the test set)
therefore reaches an optimum value for a polynomial of a particular degree of
complexity. Generalization is treated at greater length in Chapter 9, where we
discuss the trade-off between the bias and the variance of a2 model. A model
which has too little flexibility, such as the linear polynomial of Figure 1.6, has a
high bias, while a model which has too much flexibility, such as the 10th-order
polynomial of Figure 1.8, has a high variance. The point of best generalization is
determined by the trade-off between these two competing properties, and occurs
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Figure 1.9. Plots of the RMS error (1.5) as a function of the order of the poly-
nomial for both training and test sets, for the example problem considered in
the previous three figures. The error with respect to the training set decreases
monotonically with M, while the error in making predictions for new data (as
measured by the test set) shows a minimum at M = 3.

Figure 1.10. A schematic example of vectors in two dimensions (z),z2) be-
longing to two classes shown by crosses and circles. The solid curve shows the
decision boundary of a simple model which gives relatively poor separation of
the two classes.

when the number of degrees of freedom in the model is relatively small compared
to the size of the data set (4 free parameters for M = 3, compared with 11 data
points in this example).

The problem of over-fitting is one which also arises in classification tasks. Fig-
ures 1.10-1.12 show a succession of decision boundaries for a schematic example
of a classification problem involving two classes, and two input variables. As the
complexity of the model is increased, so the decision boundary can become more
complex and hence give a better fit to the training data. For many applications,
however, the best generalization performance is again obtained from a model
with an intermediate level of flexibility.
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Figwie LT A in Figure 110, but showing the decision boundary correspond-
satton of the training daia.

it.g to aore yexsble model, which gives helter sc,

Figure 1.12. As in Figure 1.10, but showing the decision boundary correspond-
ing to a highly flexible model which is able {0 acliieve perfect separation of
the training data. In many applications the distributions of data from ditlerent
classes overlap, and the best generaliza.ion perfora.aace is then achieved by a
model with inicrmediate complexity, coresponding to the decision boundary
in igure 111

1.6 Model co.nplexity

Using an example of polynomial curve fitting, we bave scen that the best gener-
alization performance is achieved by a model whose complexity (measured liere
by the order of the polynomial) is veither too small nor too large. The problem
of finding the eptimal complexity for a wodel provides an example of Occam’s
razor, named after William of Qccam (1285-1249). 'This is the principle that we
should prefer simpler models to more complex models, and that this preference
should be tradad off against the extent Lo which the medels fit the data, Thus a
highly comnplex model which fits the data exivemely well {snch as the 10th-order

-
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polynomial above) actually gives a poorer representation of the systematic as-
pects of the data than would a simpler mode) (such as the Sid-order polynomial).
A model whica is too simple, however, as in the tst-crder polynomial, is alsa not
prefered as 15 gives Yoo poor a fit to the data. The sance considerations apply to
reuaral netwo.k modais, where again we can control the cosuplexity of the model
gy contro.ing L2 ammber of free parnineters which it possesses.

An alter..ative agproach to eptimuzing the genevalization perforiaance of a
maodel is to control ils effective complerity. This can be achicved by considering
a wodel witlh many adjustable parameters, and then altering the tvaining pre-
cedure by adding a peacily term §2 to the error function. The tctal error then
Lzcomes

I =F+uQ (1.6)

where Q is celled a regularizafion term, The value of & depends on the mapping
function p(x}), and if the functional form of § is chosen appropriately, it can be
used to control ever-fitting., For example, if we examine the function represented
by the 10th-order polynomial in Figure 1.8, we sce that it has lavge escillations,
and hence the function y(2) has regions of large curvature. We might thevefore
choose o regularization function which is large for functions with Iarge values of
the second derivative, such as

oot “dPy\
Q== == dx. 7
2 / (da;?> * (1.7

The parameter » in (1.6) controls the extent to which the regularization terns
influences the form of the solution, and hence controls the effective complexity
of the mode.. Repularization is discussed in greater detail in Sections. 5.4, 9.2
and 10.1.5.

We have seen that, for a fixed size of data set, it is iinportant to achieve the
optimum level of complexity for the model in order to minimize the commbina-
tion of bias and variauce. By using a sequence of successively larger data sets,
Lowever, and a corresponding set of models with successively greater complexity,
it is possible in principle to reduce both bias and variance simultaneously and
hence to improve the gencralization performanen of the network. The ultimate
generalization aclicvable will be limmited by the intrinsic noise on the data.

i

1.7  Multivariate non-BLear unelions

The role of neursl netwoils, as wr have already indicated, is to provide general
parametrized non-linear mappings between a set of input variables and a set of
output variables. Polynowinte provide such mappings for the ease of one juput
variable and one output variable. Provided we have a sulliciently lavge num-
ber of terws in the potyaominl, we can approvimate any reasonable function to

arhitrary acenracy. This suggests that wo could simply extend the concept of
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a polynomial to higher dimensions. Thus, for & input variables, and again one
output variable, we could consider higher-order polynomials up to, say, order 3,
given by

y=wo+ Z Wi, Ty + Z Z wm,leml, + }: z Z wmzta“’uxumza (1.8)

=1 11=11iz=1 i1=1 12—1 iz3=1

For an Mth-order ‘polynomial of this kind, the numbqr of independent adjust;ab]e
parameters would grow like d™ (Exercise 1.8). While this now has a power
law dependence on d, rather than: the exponential dependence of the model
represented in Figure 1.5, it still represents a dramatic growth in the number of
degrees of freedom of the: model as the dlmens10nahty of the input space increases.
For medium to. large apphcatlons, such’a:model 'would need huge quantltlés of
training data in order to ensure that the \adaptxve parameters (the coeﬁicxencs
in the polynomlal) were ‘well determmed(. : ‘

There are in fact many different ways n whlch to represent general non-lmear
mappings between multidimensional spaces The importance of neural networks,
and similar techniques, lies in the way m iwhich ‘they deal with the problem of
scaling with dimensionality. Generally; thﬁsse models represent non-linear func-
tions of many variables:in terms of superp051t10ns of non-linear functions of a
single variable, which we might call ‘hidden functions’ (also called hidden umts)
The key point is that the hidden functions are themselves adapted to the data
as part of the training process, and so the nimber of such functions only needs
to grow as the complex1ty of the problem itself: grows, and not simply as the
dimensionality grows. The number of free parameters in such models, for a given
number of hidden functions, typically ohly grows linearly, or quadratically, with
the dlmenslonahty of the input space, as icompared with, the dM™ growth for' a
general Mth-order polynomlal We devote Chapteérs 4 and 5 to a study of two of
the most popular such models, known respectlvely as the multz layer perceptron
and the radial basis functzon network. -

Barron (1993) 'has studied the way m Wthh the residual sum-of—squares er-
ror decreases as the number of parameters in a model is increased. For neural
networks he showed that this error falls as O(1/M) where M is the number of
hidden units in the network, irrespective ‘of the number of input variables. By
contrast, the error only decreases as O(1 /M2/ ), where d is the dimensionality
of input space, for, polynomials or indeed any other seriés expansion in which it
is the coefficients of linear combinations of fixed functions which are adapted.
We see that neural networks therefore offer 'adramatic advantage for function
approximation in spaces; ‘of many dimensions. i

The price which we pay for this efficient scaling with dimensionality is that;
the network functions are now necessarily non-linear functions of the adaptive
parameters. Unlike polynomial curve fitting, the procedure for determining the
values of the parameters is now a problem in non-linear optimization, which is
computationally intensive and which presents a number of additional complica-

i
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tions, such as the presence of mtjxltiple minima in the error function. Chapter 7 is
therefore concerned with the important topic of finding efficient algorithms for
performing this optimization. :

1.8 Bayes’ theorem

In the remainder of this chapter we introduce some of the basic concepts of the
statistical approach to pattern recognition, in preparation for later chapters. For
readers interested in a more detailed account of these topics there are many stan-
dard textbooks which specializ¢ in this area, including Duda and Hart (1973),
Hand (1981), Devijver and Kittler (1982), and Fukunaga (1990). Rather than
present these concepts in an abstract fashion, we let them unfold naturaily in
the context of the character recogmtxon problem mtroduced at the start of this
chapter.

‘We begin by supposmg that we w1sh to classify a new character but as yet we
have made no measurenients on the i image of that character. The goal is to classify
the character in such a way as to minimize the probability of misclassification. If
we had collected a large number of examples of the characters, we could find the
fractions which belong in each of the two classes. We formalize this by introducing
the prior probabilities P(Ci) of an image belonging to each of the classes Cy.

"These correspond to the fractions of characters in each class, in the limit of an
infinite number of obsérvations. Thus, if the letter ‘a’ occurs three times as often
as the letter ‘b’; we have P(C;) = 0.75 and P(C;) = 0.25.

If we were forced to, classify a new character without being allowed to see
the corresponding image, then the best we can do'is to assign it to the class
having the higher prior probability. That is, we assign the image to class C; if
P(C;) > P(C;), and to-class C; gtherwise. In the character recognition example,
this means we would always classify a new character as ‘a’. This procedure
minimizes the probability of misclassification, even though we know that some
of the images will correspond to the character ‘b’.

Now suppose that we have measured the value of the feature variable T, for
the image. It is clear from Figure 1.2 that this gives us further information on
which to base our classification decision, and we seek a formalism which allows
this information to be combined with the prior probabxhtxes which we already
possess. To begin with, we shall suppose that Z; is assigned to one of a discrete
set of values {X'}, as was done for the histogram plot of Figure 1.2. We can

" represent this information in a slightly different way, as an array of cells, as in
Figure 1.13. The joint probability P(Cx, X') is defined to be the probability that
the image has the feature value X Land belongs to class C. This corresponds to

-the fraction of the images which fall into la particular cell (in row Ci. and column
X!) in the limit of an infinite number of i images. The prior probabilities P(Cy)
introduced earlier correspond to the tatal fraction of images in the corresponding
row of the array.

Next we introduce the condttzonal probability P(X*|Cx) which specifies the
probability that the observation falls in column X' of the array given that it
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L x!
Figure 1.13. Data from the histogram of Figure 1.2 ‘represented as an array.
The feature variable Z, can take one of the discrete values X! and each imége
is assigned to one of the two classes C; ‘or C2. The nuniber of dots in each cell
represents the number of images having the corresponding value of X ! and the
corresponding class label. Various probabilities are defined in the text in terms
of the fraction of points: fa,!ling in different regio‘ns of the array

; , Lo .

belongs to class Cg. It is given by the fraction of the gmages in row Cx, which fall .

in cell X! (in the limit of an infinite number of 1mages)
We now note that the fractxon of the total number of images which fall into

cell (Cx, X') is given by the fraction of. ‘the number of images in row Cy which -
fall in cell (C, X") times the fraction of the total number of i images which fall in -
row Cg. This is equlvalent; tQ wrltmg the joint probablhty in: the form

cck,x ) = P(x |ck>P(ck> g (1.9)

By a similar argument, we can see that the ]omt probablhty can also be written
in the form

P(ck,X‘) = P(ckIX‘>P(X‘) i (1.10)
where P(CiiX") is the probabxllty that the class is Ck given. that the measured
value of F; falls in the cell X!, The quantity P(X')'is thé probability of ob- -
serving a value X' with respect to the whole data set, irrespective of the class
membership, and is therefore given by the fmctlon of the total number of images
which fall into column X* The two expréssions for the Jomt probabilities in (1.9) -
and (1.10) must, however, be equal. Thus, we can write

PX'iCypCy)

P(CalX') = =g

(r.11)

|
:

This expression is referred to as Bayes’ theorem (after the Revd. Thomas Bayes,
1702-1761). The quantity on the left-hand side of (1.11) is called the posterior
probability, since it gives the probability that the class is Cy after we have made
a measurement of ;. Bayes’ theorem allows the posterior probability to be
expressed in terms of the prior prabability P(Cy), together with the quantity
P(X'|Cx) which is called the class-conditional probability of X' for class Cy.
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[

o A P(CIT) P(C,I%)

0.0

: Figure 1.14. Histogram plot of posterior probabilities, corresponding to the
histogram of observations in Figure 1:2, for prior probabilities P(C,) = 0.6
and P(C2) = 0.4.

The denominator in Bayes' theorem, P(X'), plays the role of a normalization
factor, and ensures that the posterior probabilities sum to unity. As we shall
see shortly, the posterior probability is a quantity of central interest since it
allows us to make optimal decisions regarding the class. membership of new data.
In particular, assigning a new image to the class having the largest posterior
probability: minimizes the probability of misclassification of that image.

The denominator in Bayes’ theorem can be expressed in terms of the prior
probabilities and the class-conditional probabilities. To do this we note that any
new measurement must be assigned to one of the two classes C; or Cy. Thus

P(Ci|X"Y) + P(Ca]X') = 1. (1.12)
Substituting (1.11) into (1.12) we obtain

, o P(XY) = P(XYC)P(C) + P(XYCo)P(Ca). (1.13)
1.8.1 Inference and decision
The importance of Bayes’ theorem lies in the fact that it re-expresses the poste-
rior probabilities in terms of quantities which are often much easier to calculate.
We have seen in our character recognition example that the prior probabilities
can be estimated from the proportions of the training data which fall into each
of the classes. Similarly, the class-conditional probabilities P{X"|Cy) could be
estimated from the histograms of Figure 1.2. From these quantities we can also
find the normalization factor in Bayes’ theorem, by use of (1.13), and hence eval-
uate the posterior probabilities. Figure 1.14 shows the histograms of posterior
probability, corresponding to the class-conditional probabilities in Figure 1.2, for
prior probabilities P(C;) = 0.6 and P(C;) = 0.4.
For a new image, having feature value X, the probability of misclassification
is minimized if we assign the image to the class Ci for which the posterior prob-
ability P(Cx|X") is largest, as we shall demonstrate in Section 1.9. Thus, if we
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observe a new image with feature value A, as shown in Figure 1.14, it should be
assigned to class Cy.

In some cases the prior probabilities can be estimated directly from the train-
ing data itself. However, it sometimes happens {(often by design) that the frac-
tions of examples from different classes in the training data set differ from the
probabilities expected when our trained pattern recognition system is applied to
new data. As an example, consider the problem of designing a system to distin-
guish between normal tissue (class C;) and tumours (class C3) on medical X-ray
images, for use in mass screening. From medical statistics we may know that,
in the general population, the probability of observing a tumour is 1% and so
we should use prior probabilities of P(Cy) = 0.99 and P(Cy) = 0.01. In collect-
ing a training data set, however, we might choose to include equal numbers of
examples from both classes to ensure that we get a reasonable number of repre-
sentatives of tumours, without having to use a huge number of images in total.
We can still use the images in our data set to estimate the class-conditional
probabilities P(X*|C,) and then use Bayes’ theorem to calculate the correct pos-
terior probabilities using the known prior probabilities. Note that in practice
these prior probabilities could be obtained from medical statistics without the
need to collect images or determine their class. In this example, failure to take
correct account of the prior probabilities would lead to significantly sub-optimal
results.

One approach to statistical pattern recognition is therefore to evaluate the
class-conditional probabilities and the prior probabilities separately and then
combine themn using Bayes’ theorem to give posterior probabilities, which can
then be used to classify new examples. An alternative approach is to estimate
the posterior probability functions directly. As we shall see in Chapter 6, the
outputs of a neural network can be interpreted as (approximations to) posterior
probabilities, provided the error function used to train the network is chosen
appropriately.

It is important to distinguish between two separate stages in the classification
process. The first is inference whereby data is used to determine values for the
posterior probabilities. These are then used in the second stage which is decision
making in which those probabilities are used to make decisions such as assigning

"a new data point to one of the possible classes. So far we have based classifica-
tion decisions on the goal of minimizing the probability of misclassification. In
Section 1.10 we shall discuss more general decision criteria, and introduce the
concept of a loss matrix.

As we have indicated, the minimum probability of misclassification is ob-
tained by assigning each new observation to the class for which the posterior
probability is largest. In the literature this is sometimes referred to as the “Bayes’
rule”. We avoid this terminology, however, since the role of Bayes’ theorem is
in the evaluation of posterior probabilities, and this is quite distinct from any
subsequent decision procedure.
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1.8.2  Bayesian versus frequentist staiistics

Until now we have defined probabilities in terms of fractions of a set of obser-
vations in the limit where the number of observations tends: to infinity. Such a
view of probabilities is known as frequentist. There is, however, a totally differ-
ent way of viewing the same formalism. Consider, for example, the problem of
predicting the winner of a bicycle race. The ‘probability’ of a particular cyclist
winning does not sit naturally within the frequentist framework since the race
will take place only once, and so it will not be possible to perform a large number
of trials. Nevertheless, it would not seem unusual to hear someone say that a
particular cyclist has a 30% probability of winning. In this| case we are using
the term probablhty to express a subjective ‘degree of behef’ in a particular
outcorme.

Suppose we try to encode these subJectlve beliefs as real numbers In a key
paper, Cox (1946) showed that, provided we impose some simple, and very nat-
ural, consistency requirements, we are led uniquely to the Bayesian formalism.
If we use a value of 1 to dencte complete certainty that an event will occur, and
0 to denote complete certainty that the event will not occur (with intermedi-
ate values representing corresponding degrees of belief), then these real values
behave exactly like conventional probabilities. Bayes’ theorem then provides us
with a precise quantitative prescription for updating these probabllltles when we
are presented with new data. The prior probability represents our degree of belief
before the data arrives. After we observe the data, we can use Bayes’ theorem
to convert this prior probability into a posterior probability. Jaynes (1986) gives
an enlightening review of the fascmatmg, and sometlmes controversial, history
of Bayesxan statistics.

1.8.3 ' Probability densities iy

So far we have treated the feature variable & T by dlscretlzmg it into a finite set
of valies. In many apphcatxons it will be more appropriaté to. regard the feature
variables as continuous. Probabilities for discrete variables are then replaced by
probability densities. From now on we shall omit the ™ symbol and suppose that
the variables z; now refer to input quantltles ‘after any pre~processmg and feature
extraction have been. performed.

A probability density function p(z) specnﬁes that the prohablllty of the vari-
able z lying in the interval between any two points £ = a and x = b is given
by : !

. |
P(z € [a, b)) :/ p(z)dz. (1.14)

The function p(z) is normalized so that P(z € [a,b]) = 1 if the interval [a, ] cor-
responds to the whole of z-space. Note that we use upper-case letters for probabil-
ities and lower-case letters for probability densities. For continuous variables, the
class-conditional probabilities introduced above become class-conditional prob-
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ability density functions, which we write in the form p(z|Ci). The histograms
plotted in Figure 1.2 effectively provide unnormalized, discretized estimates of
the two functions p(z|Cy) and p(z|C2).

If there are d variables z1,...,zq4, we may group them into a vector x =
(z1,-..,%4)T corresponding to a pomt in a-d-dimensional space. The distribution
of values of x can be described by probablhty densnty function p(x), such that
the probability of x lying in a region R of x-space is given by

Puem=/pumx' (1.15)

We define the ezpectatzon, or ezpected (i.e. average) value, of a function Q(x)
with respect to a probablhty density p(x) to be

£1Q] = / Q(x)p(X)dx (1.16)

where the integral is over the whole of x-space For a finite set of data points
xL,...,x, drawn from the distribution p(x), the expectation can be approxi-
mated by the average over the data: po;qts .

y ‘ N : .
o= [ QEpedx 5 Y Q6. (117)
» S L 3

1.8.4° Bayes' theorem in general r
For continuous vatiables the prior probabilities can be combined with the class-
conditional densities to give the posterior probabilities P(Ckla:) using Bayes

theorem, whlch ‘can now be written in the form

(xlck)P(ck) (1.18)

P(Cklm): p(.’t)

Here p(x) is the unconditional den51ty functnon, that is the density functlon for
T irrespective of the class, and is given by

plz) = p(wlcl)P(Cx) +p(z|c2)P(cz) (L19)

Again this plays the role of a normahzmg factor in {1.18) and ensures that the
posterior probabilities sum to 1

P(Cyz) + P(Calz) = 1 (1.20)

as can be verified by substituting (1.18) into (1.20) and using (1.19).
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A large part of Chapter 2 is devoted to the problem of modelling probability
density functions on the basis of a set of example data. One application for
such techniques is for estimating class-conditional densities for subsequent use
in Bayes’ theorem to find posterior probabilities.

In most practical pattern classification problems it is necessary to use more
than one feature variable. We may also wish to consider more than two possible
classes, so that in our character recognition problem we might consider more than
two characters. For ¢ different classes Cy,...,C,, and for a continuous feature
vector x, we can write Bayes’ theorem in the form

_ p(x|Ck) P(Ck)
P(Cilx) = —————= 1.21
(Crlx) | () (1.21)
where the unconditional density p(x) is given by
c
p(x) =) p(x|Ck) P(Ck) (1.22)
k=1
which ensures that the posterior probabilities sum to unity
> P(Cylx) = 1. (1.23)
k=1 .

In practice, we might choose to model the class-conditional densities p(x|Cx)
by parametrized functional forms. When viewed as functions of the parameters
they are referred to as likelthood functions, for the observed value of x. Bayes’
theorem can therefore be summarized in the form

likelihood x prior
normalization factor’

posterior = (1.24)

1.9 Decision boundaries

The posterior probability P(Ci|x) gives the probability of the pattern belonging
to class Cr once we have observed the feature vector x. The probability of mis-
classification is minimized by selecting the class C having the largest posterior
probability, so that a feature vector x is assigned to class Cy if

P(Cix) > P(Cjlx) for all j # k. (1.25)

We shall examine the justification for this rule shortly. Since the unconditional
density p(x) is independent of the class, it may be dropped from the Bayes’
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formula for the purposes of comparing posterior probabilities. Thus, we can use
(1.21) to write the criterion (1.25) in the form

p(x|Ci) P(Cr) > p(x|C;) P(C;) for all j # k. (1.26)

A pattern classifier provides a rule for assigning each point of feature space
to one of ¢ classes. We can therefore regard the feature space as being divided
up into ¢ decision regions Rq,...,R. such that a point falling in region Ry is
assigned to class Ci. Note that each of these regions need not be contiguous,
but may itself be divided into several disjoint regions all of which are associated
with the same class. The boundaries between these regions are known as decision
surfaces or decision boundaries.

In order to find the optimal criterion for placement of decision boundaries,
consider again the case of a one-dimensional feature space z and two classes
C; and Cy. We seek a decision boundary which minimizes the probability of
misclassification, as illustrated in Figure 1.15. A misclassification error will occur
if we assign a new pattern to class Cy when in fact it belongs to class Cq, or vice
versa. We can calculate the total probability of an error of either kind by writing
(Duda and Hart, 1973)

P(error) = P(z € Ry,Cy) + P(z € Ry,C2)

= P(.’L‘ € Rzlcl)P(Cx) + P($ S RﬂCz)P(‘Cz)

- / p(|C)P(CL) dz + / p2lC)P(C)dz  (1.27)
Ra

1

where P(z € Ry,C2) is the joint probability of z being assigned to class C; and
the true class being Cy. Thus, if p(z|C1}P(C1) > p(z|C2)P(C2) for a given x, we
should choose the regions R, and R, such that x is in R, since this gives a
smaller contribution to the error. We recognise this as the decision rule given by
(1.26) for minimizing the probability of misclassification. The same result can be
seen graphically in Figure 1.15, in which misclassification errors arise from the
shaded region. By choosing the decision boundary to coincide with the value of
at which the two distributions cross (shown by the arrow) we minimize the area
of the shaded region and hence minimize the probability of misclassification. This
corresponds to classifying each new pattern x using (1.26), which is equivalent
to assigning each pattern to the class having the largest posterior probability.
A similar justification for this decision rule may be given for the general case
of ¢ classes and d-dimensional feature vectors. In this case it is easier to calculate
the probability of a new pattern being correctly classified (Duda and Hart, 1973)

[4
P(correct) = Z P(x € Ry, Ck)
k=1




1.9: Decision boundaries 25

p(xIC)P(C)

p(xICHP(C)

&
R, R,

Figure 1,15. Schematic illustration of the joint probability densities, given by
plz,Ce) = p(x|Ce ) P(Cr), as a function of a feature value x, for two classes C; )
and C,. If the vertical line j is used as the decision boundary then the classifica:
tion errors arise from the shaded region. By placing the decision boundary at
the point where the two probability density curves cross (shown by the arrow),
the probability of misclassification is minimized.

= iP(x € Ri[Cr) P(Ck)
k=1

=3 /R P(x|Cx) P(Cy) dx. (1.28)
k=1"7"Ck

This probability is maxmuzed by choosing the {R} such that each x is assigned
to the class for which the mtegrand is a maximum, which is equivalent to (1.26).

1.9.1 Discriminant functions

Although we have focused on probability distribution functions, the decision on
class membership in our classifiers has been based solely on the relative sizes
of the probabilities. This observation allows us to reformulate the classification
process in terms of a set of discriminant functions y(x), .. ., y.(x) such that an
input vector x is assigned to class Cy, if :

yr(x) > y;(x) for all j # k. o (1.29)

The decision rule for minimizing the probability of misclassification may easily
be cast in terms of discriminant functions, simply by choosing

yk(x) = P(Cklx) (1.30)
If we use Bayes’ theorem, and note that the unconditional density p(x) in the

denominator does not depend on the class label C, and therefore does not affect
the classification decision, we can write an equivalent discriminant function in
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the form

Yr(x) = p(x|Cx) P(Ck)- N (1.31)

Since it is only the relative magnitudes of the discriminant functions which are
important in determining the class, we can replace yx(x) by g(ye{x)), where g(-)
is any monotonic function, and the decisions of the classifier will not be affected.
By taking logarithms for example, we could write our discriminant functions in
the form

yr(x) = Inp(x|Ck) + In P(Cy). (1.32)
In general the decision boundaries are given by the regiohs where the discrimi-

nant functions are equal, so that if Ry, and R; are contiguous then the decision
boundary separating them is given by

yr(x) = y;(x). T (1.33)

The locations of the decision boundaries are therefore unaffected by monotonic
transformations of the discriminant functions. '

Discriminant functions for two-class decision problems are traditionally writ-

ten in a slightly different form. Instead of using two discriminant functions y; (x)
and yo(x), we introduce a single discriminant function

y(x) = y1(x) — y2(x) , (1.34)

and we now use the rule that x is assigned to class €y if y(x) > 0 and to class

€2 if y(x) < 0. From the remarks above it follows that we can use several forms
for y(x) including

y(x) = P(Cax) = P(Calx) (1.35)

or alternatively

. p(x|€1) P(Cy)
y(x) =1In P(xIC2) +In B(G)’ (1.36)

It may not appear that we have gained a great deal by introducing discrim-
inant functions, but as we shall see it is often possible to determine suitable
discriminant functions from our training data without having to go through the
intermediate step of probability density estimation. However, by relating the
discriminant functions to the probabilities, we retain the link to the optimal
criteria of decision theory introduced above. There are also important links be-
tween discriminant functions and neural networks, and these will be explored in
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subsequent chapters.

1.10 Minimizing risk
So far we have based our classification decisions on the desire to minimize the
probability of misclassifying a new pattern. In many applications this may not
be the most appropriate criterion. Consider for instance the medical screening
problem discussed on page 20. There may be much more serious consequences if
we classify an image of a tumour as normal than if we classify a normal image
as that of a tumour. Such effects may easily be taken into account as follows.
We define a loss matriz with elements Ly; specifying the penalty associated
with assigning a pattern to class C; when in fact it belongs to class €. Consider
all the patterns x which belong to class Cx. Then the ezpected (i.e. average) loss
for those patterns is given by

Re=3 Ly / P(X|Ce) dx. (1.37)
j=1 Rj
Thus, the overall expected loss, or risk, for patterns from all classes is

R = iRkP(Ck) (1.38)
k=1

= ;/n, {;ijp(xlck)P(Ck)} dx.

This risk is minimized if the integrand is minimized at each point x, that is if
the regions R; are chosen such that x € R; when

Zijp(XICk)P(Ck) < ZLkiP(xlck)P(Ck) for all i # j (1.39)
k=1 k=1

which represents a generalization of the usual decision rule for minimizing the
probability of misclassification. Note that, if we assign a loss of 1 if the pattern
is placed in the wrong class, and a loss of 0 if it is placed in the correct class,
so that Ly; = 1 — 6x; (where 6y; is the Kronecker delta symbol defined on
page xiii), then (1.39) reduces to the decision rule for minimizing the probability
of misclassification, given by (1.26). In an application such as the medical image
classification problem, the values of the coefficients Ly; would probably be chosen
by hand, based on the views of experienced medical staff. For other applications,
in finance for example, it may be possible to choose values for the Lj; in a more
systematic fashion since the risks can be more easily quantified.
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1.10.1 Rejection thresholds

In general we expect most of the misclassification errors to occur in those regions
of x-space where the largest of the posterior probabilities is relatively low, since
there is then a strong overlap between different classes. In some applications
it may be better not to make a classification decision in such cases. This is
sometimes called the reject option. For the medical classification problem for
example, it may be better not to rely on an automatic classification system in
doubtful cases, but to have these classified instead by a human expert. We then
arrive at the following procedure

>0, then classify x

< 6, then reject x (1.40)

if max P(Ci{x) {

where ¢ is a threshold in the range (0,1). The larger the value of 8, the fewer
points will be classified. One way in which the reject option can be used is to
to design a relatively simple but fast classifier system to cover the bulk of the
feature space, while leaving the remaining regions to a more sophisticated system
which might be relatively slow.

The reject option can be applied to neural networks by making use of the
result, to be discussed in Chapter 6, that the outputs of a correctly trained
network approximate Bayesian posterior probabilities.

Exercises

1.1 (%) The first four exercises explore the failure of common intuition when
dealing with spaces of many dimensions. In Appendix B it is shown that

/_: exp {—:2\—3:2} dx = (?)1/2. (1.41)

Consider the following identity involving the transformation from Cartesian
to polar coordinates

d  roo 2 o0 2
H/ e % dx; = Sd/ e " rdtdr (1.42)
=17 7% 0

where S is the surface area of the unit sphere in d dimensions. By making
use of (1.41) show that
g = 2T 1.43
=T (1.43)

where I'(z) is the gamma function defined by

I(z) = /0 ” u®le ™ du. (1.44)
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Using the results I'(1) = 1 and T'(3/2) = /7/2, verify that (1.43) reduces

.to the well-known expressions when d =2 and d = 3.
1.2 (*) Using the result (1.43), show that the volume of a hypersphere of radius

" a in d-dimensions is given by
Sgad :
V=242 (1.45)
d

Hence show that the ratio of the volume of a hypersphere of radius a to
the volume of a hypercube of side 2a (i.e. the circumscribed hypercube) is

_given by , :
volume of sphere wd/? (1.46)
volume of cube ~ d29-1T(d/2)’ ‘
Using Stirling’s approximation
D(z + 1) ~ (21)Y 225 +1/2 (1.47)

. which is valid when = is large, show that, as d — oo, the ratio (1.46) goes
. to zero. Similarly, show that the ratio of the distance from the centre of the
_hypercube to one of the corners, divided by the perpendicular distance to
"one of the edges, is V/d, and therefore goes to co as d — oco. These results
. show that, in a high dimensional space, most of the volume of a cube is
. concentrated in the large number of corners, which themselves become very
‘long ‘spikes’.
1.3 (*) Consider a sphere of radius a in d dimensions. Use the result (1.45) to
' show that the fraction of the volume of the sphere which lies at values of
: the radius between a — € and a, where 0 < € < g, is given by

f=1- (1—§)d. (1.48)

" Hence show that, for any fixed € no matter how small, this fraction tends
:to 1 as d — oo. Evaluate the ratio f numerically, with ¢/a = 0.01, for
. the cases d = 2, d = 10 and d = 1000. Similarly, evaluate the fraction
" of the volume of the sphere which lies inside the radius a/2, again for
d =2, d = 10 and d = 1000. We see that, for points which are uniformly
distributed inside a sphere in d dimensions where d is large, almost all of
the points are concentrated in a thin shell close to the surface.
1.4 (x*) Consider a probability density function p(x) in d dimensions which is
a function only of radius r = ||x|| and which has a Gaussian form

1 2
p(x) = m exp (—— "2);"2 ) . (1.49)

By changing variables from Cartesian to polar coordinates, show that the
probability mass inside a thin shell of radius r and thickness ¢ is given by
p(r)e where
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S 7.d 1 r2
where Sj is the surface area of a unit sphere in d dimensions. Show that the
function p(r) has a single maximum which, for large values of d, is located

at ¥ ~ v/do. Finally, by considering p(7 + €) where ¢ < 7 show that for
large d :

2
p(F + €) = p(7) exp (—gg—) . (1.51)

Thus, we see that p(r) decays exponentially away from its maximum at
7 with length scale 0. Since ¢ <« 7 at large d, we see that most of the
probability mass is concentrated in a thin shell at large radius. By contrast,
note that the value of the probability density itself is exp(d/2) times bigger
at the origin than at the radius @, as can be seen by comparing p(x) in
(1.49) for ||x||? = 0 with p(x) for ||x||> = 72 =io?d. Thus, the bulk of the
probability mass is located in a different part of space from the region of
high probability density.

1.5 (*) By differentiating of the sum-of-squares error function (1.3), using the
form of the polynomial given in (1.2), show that the values of the polyno-
mial coefficients which minimize the error are given by the solution of the
following set of linear s1multaneous equations

ZA'j,.,w,- =Ty (1.52)
j=1
where we have, defined ‘
Ajy = Z(x")fﬂ" Ty =Y ey (1.53)
n ‘n
1.6 (x) Consider the second-order terms in a higher-order polynomial in d di-
mensions, given by
d d ﬁ
ZZwija:ixj. . (154)
i=1 j=1 ‘ :
Show that the matrix w;; can be written as the sum of a symmetrlc matrix
w = (wi; + wji)/2 and an antl-symmetnc matrix w,J = (wy; — w;i)/2.
Venfy that these satisfy w w ;-and w ——wA Hence show that

d d d d
DD wymims =) Y wizms (1.55)

i=1 j=1 ) i=1 j=1

50 that the contribution from the anti-symmetric matrix vanishes. This
demonstrates that the matrix w;; can be chosen to be symmetric without
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loss of generality. Show that, as a consequence of this symmetry, the number
of independent parameters in the matrix wy; is given by d(d + 1)/2.

1.7 (x*) Consider the Mth-order term in a multivariate polynomial in d dimen-
sions, given by

d d d

Z Z Wiyigeipg Tiy Tig *  * Tipge (1.56)
i1=11p=1 im=1
The M-dimensional array wi,i,...;,, contains d™ elements, but many of
these are related as a consequence of the many interchange symmetries of
the factor z;,zi, - - - z;,,. Show that the redundancy in the coefficients ¢an
be removed by rewriting (1.56) in the form

iM-1

d i
Z Z o Z Wiyigeipg TiyTig ** * Tipg e (1.57)

ty=1ip=1 iv=1

Hence show that the number of independent parameters n(d, M) which
appear at order M satisfies the relation

d
n(d, M) =% n(i, M —1). (1.58)

i=1
Use this relation to show, by induction, that

(d+M—~1)

™d M) = ST

(1.59)
To do this, first show that the result is true for M = 2, and any value of
d > 1, by comparing (1.59) with the result of Exercise 1.6. Now use (1.58)

to show that, if the result holds at order M — 1, then it will also hold at
order M provided the following relation is satisfied:

d .
;(i(z+M—2)! _(d+M=1) (1.60)

DM -1 T @- 1) MT

Finally, use induction to prove (1.60). This can be done by first showing
that (1.60) is correct for d = 1 and arbitrary M (making use of the result
0f = 1), then assuming it is correct for dimension d and verifying that it is
correct for dimension d + 1.

1.8 (xx) In the previous exercise we considered the Mth-order term in a gener-
alized polynomial. Now consider all of the terms up to and including the
Mth order. Show that the total number N(d, Af) of independent parawme-
ters satisfies
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M

N(d,M) =" n(d,j). (1.61)

=0

Hence, using the expression (1.59), show by induction that

(d + M)!

N, M) = —5n

(1.62)
To do this, first show that the resuit (1.62) holds for M = 0 and arbitrary
d > 1. Then, by assuming that (1.62) holds at order M, show that it holds
at order M + 1. Use Stirling’s approximation in the form Inn! ~ nlnn—-n
to show that, for large d, the quantity N(d, M) grows like d™. For the
general cubic (M = 3) polynomial in d-dimensions, evaluate numerically
the total number of independent parameters for (i) d = 10 and (ii) d = 100,
which correspond to typical small-scale and medium-scale applications.

1.9 (x) Suppose we have a box containing 8 apples and 4 oranges, and we have a

second box containing 10 apples and 2 oranges. One of the boxes is chosen
at random (with equal probability) and an item is selected from the box
and found to be an apple. Use Bayes’ theorem to find the probability that
the apple came from the first box.

1.10 (*) Consider two non-negative numbers a and b and show that, ifa < b

then a < (ab)!/2. Use this result to show that, if the decision regions are
chosen to minimize the probability of mlsclassxﬁcatlon this probablhty will
satisfy

Plerror) < / (PIC)PECPIC)PC)}? dx. (1.63)

1.11 () Verify that the minimum-risk decision criterion (1.39) reduces to the

decision rule (1.26) for minimizing the probability of misclassification when
the loss matrix is given by Lg; = 1 — 6.




2
PROBABILITY DENSITY ESTIMATION

In this chapter we consider the problem of modelling a probability density func-
tion p(x), given a finite number of data points x", n = 1,..., N drawn from
that density function. The methods we describe can be used to build classifier
systems by considering each of the classes Cy in turn, and estimating the corre-
sponding class-conditional densities p(x|Cy) by making use of the fact that each
data point is labelled according to its class. These densities can then be used in
Bayes’ theorem (Section 1.8) to find the posterior probabilities corresponding to
a new measurement of x, which can in turn be used to make a classification of
X.

Density estimation can alsa be applied to unlabelled data (that is data with-
out any class labels) where it has a number of applications. In the context of
neural networks it can be applied to the distribution of data in the input space
as part of the training process for radial basis function networks (Section 5.9),
and to provide a method for validating the outputs of a trained neural network
(Bishop, 1994b).

In Chapter 6, techniques for density estimation are combined with neural
network models to provide a general framework for modelling conditional density
functions.

Here we consider three alternative approaches to density estimation. The
first of these involves parametric methods in which a specific functional form
for the density model is assumed. This contains a number of parameters which
are then optimized by fitting the model to the data set. The drawback of such
an approach is that the particular form of parametric function chosen might be
incapable of providing a good representation of the true density. By contrast,
the second technique of non-parametric estimation does not assume a particular
functional form, but allows the form of the density to be determined entirely
by the data. Such methods typically suffer from the problem that the number
of parameters in the model grows with the size of the data set, so that the
models can quickly become unwieldy. The third approach, sometimes called semi-
parametric estimation, tries to achieve the best of both worlds by allowing a very
general class of functional forms in which the number of adaptive parameters can
be increased in a systematic way to build ever more flexible models, but where the
total number of parameters in the model can be varied independently from the
size of the data set. We shall focus on semi-parametric models based on mizture
distributions. Feed-forward neural networks can be regarded as semi-parametric
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models for conditional density estimation, as discussed further in Chapter 6.

It should be emphasized that accurate modelling of probability densities from
finite data sets in spaces of high dimensionality (where high could be as low as
d = 10) is, in general, extremely difficult. In Exercise 1.4 it was shown that most
of the probability mass associated with a Gaussian distribution in a space of high
dimensionality occurs in a thin shell at large radius. With a finite data set, there
may be few, if any, data points associated with the region of high probability
density near the origin. This is another example of the ‘curse of dimensionality’
discussed in Section 1.4.

The techniques described in this chapter are not only of great interest in
their own right, but they also provide an excellent introduction to many of the
central issues which must be addressed when using neural networks in practical
applications. More extensive discussions of density estimation can be found in
Duda and Hart (1973), Titterington et al. (1985), Silverman (1986), McLachlan
and Basford (1988), Fukunaga (1990) and Scott (1992).

2.1 Parametric methods

One of the most straightforward approaches to density estimation is to represent
the probability density p(x) in terms of a specific functional form which contains
a number of adjustable parameters. The values of the parameters can then be
optimized to give the best fit to the data. The simplest, and most widely used,
parametric model is the normal or Gaussian distribution, which has a number
of convenient analytical and statistical properties. Since our aim is to explain the
basic principles of parametric density estimation, we shall limit our discussion
to normal distributions.

We shall also describe the two principal techniques for determining the pa-
rameters of the model distribution, known respectively as mazimum likelihood
and Bayesian inference. As an illustration of the Bayesian approach, we consider
the problem of finding the mean of a normal distribution. Bayesian methods are
also considered in Chapter 10 where they are applied to the more complex prob-
lem of learning in neural networks. We shall also consider stochastic techniques
for on-line learning in which the data values arrive sequentially and must be
discarded as soon as they are used.

2.1.1 The normal distribution

The normal density function, for the case of a single variable, can be written in
the form

1 Ry
P(z) = Gro7yize &P {”(xzog) } (21)

where i and o2 are called the mean and variance respectively, and the parameter
o {which is the square root of the variance) is called the standard deviation. The
coefficient in front of the exponential in (2.1) ensures that ffooo p(z)dz = 1, as
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can easily be verified using the results derived in Appendix B. The mean and
variance of the one-dimensional normal distribution satisfy

p=Ez] = /ﬂoo zp(z) dz (2.2)
o = el =) = [ (- nPpla)do (2)

where £[] denotes the expectation.
In d dimensions the general multivariate normal probability density can be
written

§) = g o {3 - WS - | @)

where the mean p is now a d-dimensional vector, X is a d x d covariance
matriz, and |¥| is the determinant of ¥. The pre-factor in (2.4) ensures that
ffooo p(x)dx = 1, as can again be verified using the results derived in Appendix B.
The density function p(x) is governed by the parameters pt and 3, which satisfy

p=Ex| (2.5)
2= Ef(x - p)(x—p)7) (2.6)

From (2.6) we see that 3 is a symmetric matrix, and therefore has d(d + 1)/2
independent components. There are also d independent elements in g, and so the
density function is completely specified once the values of d(d -+ 3)/2 parameters
have been determined. The quantity

A? = (x - )" (x - pr) (2.7)

which appears in the exponent in (2.4), is called the Mahalanobis distance from
x to p. From the results derived in Appendix A for the properties of real sym-
metric matrices, we see that the surfaces of constant probability density for (2.4)
are hyperellipsoids on which A? is constant, as shown for the case of two dimen-
sions in Figure 2.1. The principal axes of the hyperellipsoids are given by the
eigenvectors u; of X which satisfy

Eu,- = }\iui (28)

and the corresponding eigenvalues A; give the variances along the respective
principal directions.
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\4

X

Figure 2.1. A normal distribution in two dimensions is governed by a mean
vector u and a covariance matrix with eigenvectors u; and uz, and correspond-
ing eigenvalues A1 and A2. The ellipse corresponds to a contour of constant
probability density on which the density is smaller by a factor e~*? than it is
at the point p.

It is sometimes convenient to consider a simplified form of Gaussian distri-
bution in which the covariance matrix is diagonal,

(E)ij = 61']'0']?, (29)

which reduces the total number of independent parameters in the distribution
to 2d. In this case the contours of constant density are hyperellipsoids with the
principal directions aligned with the coordinate axes. The components of x are
then said to be statistically independent since the distribution of x can be written
as the product of the distributions for each of the components separately in the
form

d
p(x) = [[ o(z:). (2.10)
i=1 .

Further simplification can obtained by choosing o; = ¢ for all j, which reduces
the number of parameters still further to d + 1. The contours of constant den-
sity are then hyperspheres. A surface plot of the normal distribution for this
case is shown in Figure 2.2. Although these simplified distributions have fewer
parameters, they also clearly have less generality.

2.1.2  Properties of the normal distribution

The normal distribution has a number of important properties which make it a
common choice for use in parametric density estimation:




2.1: Parametric methods 37

Figure 2.2. Surface plot of a normal distribution in two dimensions for a diag-
onal covariance matrix governed by a single variance parameter o2,

. It has relatively simple analytical properties allowing many useful results
to be obtained explicitly. For instance, any moment of the distribution can
be expressed as a function of p and 3.

. The central limit theorem states that, under rather general circumstances,
the mean of M random variables tends to be distributed normally, in the
limit as M tends to infinity. The main condition is that the variance of any
one variable should not dominate. A common application is to the sum
of a set of variables drawn independently from the same distribution. In
practice, convergence tends to be very rapid, so that for values of M as
small as 10 the approximation to a normal distribution can be very good.
We might hope that measurements of naturally occurring phenomena have
several constituent components, leading to a distribution which is close to
normal.

. Under any non-singular linear transformation of the coordinate system,
the Mahalanobis distance keeps its quadratic form and remains positive
definite. Thus, after such a transformation, the distribution is again normal,
but with different mean and covariance parameters.

. The marginal densities of a normal distribution, obtained by integrating
out some of the variables, are themselves normal. Similarly, the conditional
densities, obtained by setting some of the variables to fixed values, are also
normal. )

. There exists a linear transformation which diagonalizes the covariance ma-
trix. This leads to a new coordinate system, based on the eigenvectors of
3, in which the variables are statistically independent, so that the density
function for the vector x factors into the product of the densities for each
of the component variables separately (Exercise 2.2).

. For given values of the mean and the covariance matrix, the normal den-
sity function maximizes the entropy. This point is discussed further in
Section 6.10.
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In practice, the main reason for choosing a normal distribution is usually its
analytical simplicity.

2.1.3 Discriminant functions

In Section 1.9.1 we introduced the concept of a discriminant function, and showed
how it could be related to the class-conditional density functions through Bayes’
theorem. This led to a particular form of discriminant function given by

yk(x) = Inp(x|Ci) + In P(Cx) (2.11)

where C}, denotes the kth class, and P(Cy) denotes the corresponding prior prob-
ability. Each new input vector x is assigned to the class C; which gives the largest
value for the corresponding discriminant yy(x). This choice of classification crite-
rion minimizes the probability of misclassification. If each of the class-conditional
density functions p(x|Cy) in (2.11) is taken to be an independent normal distri-
bution, then from (2.4) we have

w0 = 5~ )T (- ) — SISl A PC)  (212)

where we have dropped constant terms. The decision boundaries, along which
yk(x) = y;(x), are therefore general quadratic functions in d-dimensional space.
An important simplification occurs if the covariance matrices for the various
classes are equal, so that I = X. Then the |Zy| terms are class independent and
may be dropped from (2.12). Similarly, the quadratic term x* ™ }x is also class
independent and can be dropped. Since X is a symmetric matrix, its inverse must
also be symmetric (Appendix A). It therefore follows that xTX ™y, = puTS~'x.
This gives a set of discriminant functions which can be written in the form

ye(x) = wix + wio (2.13)

where
wi =izt (2.14)
wg = ~%u52“1yk + In P{Cy) (2.15)

The functions in (2.13) are an example of linear discriminants, since they are
linear functions of x. Decision boundaries, corresponding to yx(x) = y;(x), are
then hyperplanar. This result is illustrated for a two-class problem with two
variables, in which the two classes have equal covariance matrices, in Figure 2.3.
Linear discriminants are closely related to neural network models which have a
single layer of adaptive weights, as will be discussed in Section 3.1.

Another simplification of the discriminant functions is possible if again the
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A ¥(x) = y,(X)

L -
>

Xy

Figure 2.3. For two classes having normal probability densities with equal co-
variance matrices, the decision boundary corresponding to the contour along
which the discriminant functions are equal, is linear. Here the ellipses corre-
spond to contours of constant class-conditional density, while the straight line
represents the decision boundary which minimizes the probability of misclas-
sification for equal prior probabilities P(C1) = P(Cz).

covariance matrices for all of the classes are equal, and in addition all of the
variables are statistically independent, so that ¥ becomes a diagonal matrix.
Then I = ¢?I (where I denotes the unit matrix) and the discriminant functions
in (2.12) can be written

— 2
() = —'l’i%’;i +1n P(Cy) (2.16)

- where the class-independent term —dino has been dropped. If the classes have

equal prior probabilities P(Cx) then the decision rule takes a particularly simple
form: measure the Euclidean distance to each of the class means p, and assign
the vector to the class with the nearest mean. In this case the mean vectors act
as templates or prototypes and the decision rule corresponds to simple template
matching. If the prior probabilities are not equal then this template matching rule
becomes modified as indicated by (2.16). The concept of a prototype also arises
in connection with radial basis function networks, as discussed in Chapter 5.

2.2 Maximum likelihood

Having decided on a parametric form for a density function p(x), the next stage is
to use the data set to find values for the parameters. In this section and the next
we review briefly the two principal approaches to this problem, known respec-
tively as mazimum likelihood and Bayesian inference. Although these methods
often lead to similar results, their conceptual basis is rather different. Maximum
likelihood seeks to find the optimum values for the parameters by maximizing a
likelihood function derived from the training data. By contrast, in the Bayesian
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approach the parameters are described by a probability distribution. This is
initially set to some prior distribution, which is then converted to a posterior
distribution, through the use of Bayes’ theorem, once the data has been ob-
served. The final expression for the desired probability density of input variables
is then given by an integral over all possible values of the parameters, weighted
by their posterior distribution. Note that the Bayesian approach does not in-
volve setting the parameters to specific values, unlike the maximum likelihood
method. Since our aim in this chapter is to give an overview of conventional
pattern recognition techniques, we shall restrict our attention to the case of the
normal density function for which the results are relatively straightforward.

We begin our discussion of parameter estimation by considering the maximum
likelihood procedure. Suppose we consider a density function p(x) which depends
on a set of parameters 8 = (y,...,0r)T. In a classification problem we would
take one such function for each of the classes. Here we shall omit the class labels
for simplicity, but essentially the same steps are performed separately for each
class in the problem. To make the dependence on the parameters explicit, we
shall write the density function in the form p(x}8). We also have a data set of
N vectors X = {x!,...,x"}. If these vectors are drawn independently from the
distribution p(x|@), then the joint probability density of the whole data set X is
given by

N
p(X10) = [] p(x"16) = £(8) (2.17)
n=1 “

where £(8) can be viewed as a function of @ for fixed X, in which case it is
referred to as the likelithood of 6 for the given X. The technique of maximum
likelihood then sets the value of 8 by maximizing £{6). This corresponds to.the
intuitively reasonable idea of choosing the 8 which is most likely to give rise to the
observed data. A more formal discussion of the origins of the maximum likelihood
procedure is given in Akaike (1973). In practice, it is often more convenient to
consider the negative logarithm of the likelihood

N
E=-InL(6)=-) Inp(x"|6) (2.18)
n=1

and to find a minimum of E. This is equivalent to maximizing £ since the negative
logarithm is a monotonically decreasing function. The negative log-likelihood can
be regarded as an error function, as discussed at greater length in Chapter 6.
For most choices of density function, the optimum 8 will have to be found by
an iterative numerical procedure of the kind described in Chapter 7. However,
for the special case of a multivariate normal density, we can find the maximum
likelihood solution by analytic differentiation of (2.18), with p(x|@) given by
(2.4). Some straightforward but rather involved matrix algebra (Anderson, 1958;
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Tatsuoka, 1971) then leads to the following results

1 '

b= fi‘:, x" (2.19)
~ 1 &

=5 ;(x" — @) - @)" (2.20)

which represents the intuitive result that the maximum likelihood estimate i of
the mean vector p is given by the sample average (i.e. the average with respect to
the given data set). We recall from (2.5) that, for data generated from a normal
distribution, the expectation of x (i.e. the average value of x over an infinite
sample) gives the true mean . Similarly, the maximum likelihood estimate >
of the covariance matrix ¥ is given by the sample average of the outer product
(x”® — ) (x® — fi)T. Again, from (2.6), we note that, for data generated from
a normal distribution, the expectation of this quantity (with zi replaced by u)
gives the true covariance matrix 3.

Although the maximum likelihood approach seems intuitively reasonable, we
should point out that it can suffer from some deficiencies. Consider the maximum
likelihood estimates for the mean and variance of a normal distribution in one
dimension, given from (2.19) and (2.20), by

I
H= N nz___:lxn, (221)
1 N
52 = ¥ > @ - Pt (2.22)

n=1

If we consider the expectation, defined in (1.16), of the estimate for 5%, then we
obtain (Exercise 2.4)

N"laz

£p%) = m

(2.23)

where ¢? is the true variance of the distribution from which the data set was
generated. An estimate such as this, whose expected value differs from the true
value, is said to exhibit bias. In the limit N — o0, we see that the bias disappears,
and indeed for moderate values of N the maximum likelihood estimator gives
a reasonable approximation. The problem has arisen because, in the expression
(2.22) for 5%, we have used our estimate Ji for the mean, rather than the true
value u. In Chapter 10 a similar effect is discussed in the context of learning
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Figure 2.4. Schematic illustration of Bayesian inference for a parameter 8. The
prior distribution reflects our initial belief in the range of values which 8 might
take, before we have observed any data, and is typically very broad. Once we
have observed the data set X', we can calculate the corresponding posterior
distribution using Bayes’ theorem. Since some values of the parameter will be
more consistent with the data than others, this leads to posterior distribution
which is narrower than the prior distribution.

in neural networks. In this case the consequences are potentially much more
serious, as a result of the much larger number of parameters which have to be
determined.

2.3 Bayesian inference

In the maximum likelihood methad described above, the goal is to find the
single most likely value for the parameter vector @ given the observed data. The
Bayesian approach, however, is rather different. Our uncertainty in the values
of the parameters is represented by a probability density function, as discussed
in Section 1.8.2. Before we observe the data, the parameters are described by a
prior probability density, which is typically very broad to reflect the fact that
we have little idea of what values the parameters should take. Once we observe
the data, we can make use of Bayes’ theorem to find the corresponding posterior
probability density. Since some values of the parameters are more consistent with
the data than others, we find that the posterior distribution is narrower than
the prior distribution. This phenomenon is known as Bayesian learning, and is
illustrated schematically in Figure 2.4.

We first give a formal discussion of Bayesian learning in general terms, and
then consider a very simple example to see how it operates in practice. In Chap-
ter 10 we apply Bayesian techniques to the much more complex problems of
determining the parameters in a neural network, and of comparing different net-
work models.

We begin by writing the desired density function for the vector x, given the
training data set X, as an integral over a joint distribution of the form

(X)) = / p(x, 6)X) d6. (2.24)
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From the definition of conditional probability densities, we can then write
p(x, 0|X) = p(x|6, X)p(6]X). (2.25)

The first factor, however, is independent of X since it is just our assumed form
for the parametrized density, and is completely specified once the values of the
parameters @ have been set. We therefore have

p(x1) = [ pxio)p(01) . (2.26)

Thus, instead of choosing a specific value for @, the Bayesian approach performs
a weighted average over all values of 8. The weighting factor p(8|X), which is the
posterior distribution of 0, is determined by starting from some assumed prior
distribution p(6) and then updating it using Bayes’ theorem to take account of
the data set X. Since the data points {x!,...,x"} are assumed to be drawn
independently from the same underlying distribution, we can write

N
p(X18) = [] p(x"10) (2.27)

n=1

which is precisely the likelihood function introduced in (2.17). Using Bayes’ the-
orem we can then write the posterior distribution for @ in the form

N

= x"|0 2.28)
e el | Ll (

p(6]%) = ZX1OP(E) _ p(6)

where the normalization factor in the denominator is given by

N
p(X) = / p(@) [] px"16) a6’ (2.20)

n=1

and ensures that [ p(8]X)d@ = 1. Typically, the evaluation of integrals such
as (2.26) and (2.29) is a very complex undertaking, and, in general, it is only
analytically feasible for the class of density functions for which the posterior
density in (2.28) has the same functional form as the prior. For a given choice
of density p(x|0), a prior p(6) which gives rise to a posterior p(8|X) having the
same functional form is said to be a conjugate prior. If we were to update the
distribution of @ using a succession of data points, with the posterior at each
stage forming the prior at the next stage, then the distribution would retain
the same functional form throughout. Such functions are known as reproducing
densities (Duda and Hart, 1973), and include the normal distribution as the
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most commonly encountered example.

In order to illustrate the technique of Bayesian learning, we consider a simple
example involving a one-dimensional input space governed by a single variable
x. We shall suppose that the data is generated from a normal distribution for
which the standard deviation ¢ is assumed to be known. The goal is to find the
mean p of the distribution, given a set of data points {z!,...,z"V}. We shall take
the prior density for p to be a normal distribution having mean y and standard
deviation oy, given by

— 2 :
po(p) = (—27‘185175 exp {_(i_l;_@_} . (2.30)

20§

This expresses our prior knowledge of the mean y, and so if we are very uncertain
as to its value we would choose a large value for gg. Once we have observed a
given set of N data points, we can calculate the posterior density p(u|X) =

N{u|z1,...,zN) using Bayes’ theorem. It is important to distinguish clearly
between the distribution of x, which we are trying to model, and the distributions
po(p) and py(pl&’), which describe our uncertainty in the value of u. In this
particular example, all of these distributions are normal.

Using (2.28) we can write the posterior distribution in the form

o (pld p‘é{,‘)) H p(z"|u). \ (2.31)

Then, using the form (2.1) for the normal distribution for p(z|p), it is straight-
forward to show (Exercise 2.5) that the posterior distribution py(p]|X’) is also
normal, with mean uy and variance g% given by

NUO 0'2
z 2.32
BN = NoZ +o? +Nag+azu0 (2:32)
1 N 1
— = — + —3 2.33
oy o2 + op (2.33)
where T is the sample mean
.
=3 > an. (2.34)
n=1

From (2.32) and (2.33) we see that, as the number of data points N increases,
the mean of the posterior distribution for u approaches the sample mean Z.
Similarly, the standard deviation o approaches zero. This result is illustrated
for a particular set of parameter values in Figure 2.5.
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Figure 2.5. An illustration of Bayesian inference for the case of data drawn
from a normal density function. The plot shows the posterior density for the
mean p, which is itself also given by a normal distribution in this example. As
the number N of data points increases, the posterior density becomes more
sharply peaked. In this example, the prior distribution was chosen to have a
mean of 0.0 and standard deviation of 0.3 to reflect the fact that we have little
idea of what value u should have. The true mean of the distribution of z from
which the data was generated, was 0.8 (with a standard deviation of 0.3 which
is assumed to be known}. Note that, as the size N of the sample increases, the
posterior distribution concentrates around the true value of the mean.

There is a simple relationship between the technique of Bayesian inference
and the maximum likelihood method. From (2.17) and (2.28) we have, omitting
the denominator since it is independent of 8,

p(8]xY, ..., xN) o« L£(0)p(8). (2.35)

If we have little prior information about 8 then p(8) will be relatively flat. The
likelihood function by definition peaks at the maximum likelihood value 0. 1f
the peak is relatively sharp, then the integral in (2.26) will be dominated by the
region around 6, and the integral in (2.26) will be given approximately by

p(x|X) = p(x[8) / p(61X) d6 = p(x[6) (2.36)

where we have used [p(6|X)d@ = 1. Thus, the distribution is just given by
the maximum likelihood expression. We have seen that, as the number N of
observations increases, the posterior probability density for 8 tends to become
more and more sharply peaked. For large numbers of observations, therefore, the
Bayesian representation of the density p(x) approaches the maximum likelihood
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solution. For a limited number of observations, however, the two approaches will
tend to give somewhat different results.

2.4 Sequential parameter estimation

There are several other approaches to the problem of parameter estimation,
which we do not have space to discuss in detail here. One technique which is
worthy of mention, however, is that of sequential parameter estimation, since it
underpins a number of algorithms used in adaptive neural networks.

Sequential methods for parameter estimation make use of iterative techniques
to update the parameter values as new data points or observations are acquired.
They play an important role in pattern recognition for a number of reasons. First,
they do not require the storage of a complete data set since each data point can
be discarded once it has been used, and so they can prove useful when large
volumes of data are available. Second, they can be used for ‘on-line’ learning in
real-time adaptive systems. Finally, if the underlying process which generates
the data has a slow time variation, the parameter values can adapt to ‘track’ the
behaviour of the system.

In simple cases it may be possible to take a standard ‘batch’ technique for
parameter estimation and separate out the contribution from the (N + 1)th
data point to give a sequential update formula. For instance, from the maximum
likelihood expression for the mean of a normal distribution, given by (2.19), we
obtain

N1 _

Awss = i + g OV = ). (2.37)
We see that it is only necessary to store the values of i and N, and so each data
point is used once and can then be discarded. Note that the contribution of each
successive data point decreases as a consequence of the 1/(N + 1) coefficient.
Although this heuristic procedure seems reasonable, we would like to find some
formal assurance that it will converge satisfactorily. To do this, we turn to a

more general view of sequential parameter estimation.

2.4.1  The Robbins-Monro algorithm

The iterative formula of {(2.37) is a particular example of a more general proce-
dure for finding the roots of functions which are defined stochastically. Consider a
pair of random variables g and @ which are correlated, as indicated in Figure 2.6.
The average value of g for each value of @ defines a function f(6)

f(8) = &lgl6] (2.38)

where £[-|6] denotes the expectation for the given value of 8. Thus, if we could
make several measurements of the value of g for a given value of 8 we would obtain
a set of random values whose average value (in the limit of an infinite sample)
defines the value of the function f at that value of 8. Functions which have this
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i )]
Figure 2.6. The regression function f(8) is defined to be the expectation of a

random variable g for each value of €. The root 8* of f(8) can be found by the
Robbins—Monro algorithm.

general form are referred to as regression functions, and a general procedure for
finding the roots of such functions was given by Robbins and Monro (1951).

The goal is to find a value §* for which f(6*) = 0. We shall assume that g
has finite variance

Ellg - £)*16] < 0 (2.39)
and we shall also assume, without loss of generality, that f(#) > 0 for # < 8* and

f(6) < 0 for & > 6* as indicated in Figure 2.6. The Robbins-Monro procedure
then specifies a sequence of successive estimates for the root given by

Ony1=0n +ang(On) (2.40)

where g(6x) is a value for the random variable g obtained when 6 takes the value
On. The coefficients {ay} represent a sequence of positive numbers which satisfy
the following three conditions:

im ay =0 (2.41)

i
N-—00

i ay = 0o (2.42)

Z a% < oo (2.43)

It can then be shown that the sequence of estimates 8y does indeed converge to
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the root 8* with probability 1 (Robbins and Monro, 1951). For a simple proof of
this result, see Fukunaga (1990).

The first condition (2.41) ensures that successive corrections tend to decrease
in magnitude so that the process converges to a limiting value, while the second
condition (2.42) ensures that the corrections are sufficiently large that the root is
eventually found. The final condition (2.43) ensures that the accumulated noise
has finite variance so that the noise does not spoil the convergence to the root.

An analogous procedure for finding the minimum of a regression function
has been given by Kiefer and Wolfowitz (1952). These stochastic approximation
schemes have also been extended to the multidimensional case by Blum (1954).

‘We can formulate the maximum likelihood parameter estimate as a sequential
update method using the Robbins-Monro formula as follows. The maximum
likelihood value 8 is given by a solution of

3 N
- {H p(x"le)} =
n=1 [)

Since we can equally well seek a maximum of the logarithm of the likelihood
function, we can also write

g {Zlnpwo)}

where we have introduced an extra factor of 1/N, which allows us to take the
limit N — oo and hence obtain the expectation

(2.44)

(2.45)

§ ..
Jim_ 1% ; {-é% In p(x";a)} y [a% tn p(mge)] (2.46)

Thus, the maximum likelihood solution is asymptotically equivalent to finding a
solution of

[69 lnp(a:|0)] =0. (2.47)

From the Robbins—Monro formula (2.40) this can be solved using an iterative
scheme of the form

Oni1 = BN +an : Inp(zVt19) (2.48)

(2
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Figure 2.7. This figure shows the specific form taken by the diagram in Fig-
ure 2.6, for the particular case of data drawn from an assumed normal distribu-
tion in which the variable g corresponds to the derivative of the log-likelihood
function, and is given by (z — f2)/0%. The dashed line represent the regres-
sion function (i — f)/0?, and its root gives the required maximum likelihood
estimate [z of the mean in the limit of an infinite set of data.

This is a very straightforward scheme to implement, once we have chosen a
functional form for the density p(z|).

As a specific example, consider the case where p(z|6) is taken to be a normal
distribution, with known standard deviation o and unknown mean pu. It is then
a few lines of algebra (Exercise 2.6) to show that, if we choose ay = a%/(N +1),
we recover the one-dimensional version of (2.37). This choice of ay satisfies the
criteria (2.41) — {2.43), and so convergence is assured. In this case, the random
variable 8 of Figure 2.6 is given by the estimate ¥ of the mean, and the random
variable g is given by (z — fi)/0?. The corresponding regression function f(8)
is then &[(z — fI)/0?] = (u — [i)/o?, and the root of this regression function
gives the required maximum likelihood estimate fi = u of the mean, in the
limit of an infinite supply of data, as shown in Figure 2.7. Similar stochastic
learning schemes are discussed in the context of adaptive neural networks in
later chapters.

2.5 Non-parametric methods

In this section we consider some of the more important non-parametric tech-
niques for probability density estimation. The term non-parametric is used to de-
scribe probability density functions for which the functional form is not specified
in advance, but which depends on the data itself. We begin with a discussion of
simple histogram methods, and then move onto kernel-based approaches which,
as discussed in Chapter 5, have a close connection with radial basis function
neural networks. We then discuss another important non-parametric estimation
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Figure 2.8. An illustration of the histogram approach to density estimation. A
set of thirty data points was generated by sampling a density function given by
the sum of two normal distributions with means 1 = 0.3, ua = 0.8, standard
deviations g1 = g2 = 0.1, and amplitudes of 0.7 and 0.3 respectively. The
original distribution is shown by the dashed curve, and the histogram estimates
are shown by the solid curves. The number M of histogram bins within the
given interval determines the width of the bins, which in turn controls the
smoothness of the estimated density.

technique called K-nearest-neighbours and show how this approach can be used
both for density estimation and to provide classification decisions directly. Fi-
nally, we consider the role of the smoothing parameters which govern the degree
of smoothness of the estimated density and which arise in any non-parametric
technique. Determination of suitable values for such parameters is an important
part of the density estimation process.

2.5.1 Histograms

The basic problem of non-parametric density estimation is very simple. Given a
set of data points, we wish to model the probability distribution which generated
the data, without making any prior assumption about the form of the distribution
function (except for some general smoothness properties, which we shall discuss
shortly). In Section 1.1 we considered a histogram of hypothetical values for a
feature 71 for each of two classes. The histogram is obtained simply by dividing
the T;-axis into a number of bins, and approximating the density at each value
of Z; by the fraction of the points which fall inside the corresponding bin. This
procedure represents a simple form of non-parametric density estimation.

In Figure 2.8 we show a simple example of density estimation using the
histogram approach. Note that we can choose both the number of bins M, and
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their starting position on the axis. The results are often not too sensitive to the
starting position, but the parameter M plays a crucial role. Figure 2.8 shows the
histograms which result from values of M of 3, 7 and 22. We see that the number
of bins (or more precisely the bin width) is acting as a smoothing parameter. If
the bin width is too small then the estimated density is very spiky, while if its
value is too large then some of the true structure in the density (in this case the
bimodal nature of the distribution) is smoothed out. In general we expect-there to
be some optimum value for the bin width which represents the best compromise
between these problems. This situation is closely related to that encountered in
Section 1.5 in the context of curve fitting with polynomials. There we saw the
importance of choosing a suitable number of terms in the polynomial in order
to capture the underlying structure in the data, without over-fitting to the noise
on the individual data points. Similarly, in the case of density estimation, we do
not know the true underlying density, and so we are faced with the problem of
how to choose a suitable value for the parameter M. We shall see that this is
a key issue which will arise in a number of different guises, both in the context
of conventional techniques and of neural networks. For the moment we defer the
problem of finding the optimal value for parameters such as M while we examine
alternative approaches to non-parametric density estimation.

One advantage of the histogram method is that, once the histogram has been
constructed, the data can be discarded and only the information on the sizes and
locations of the histogram bins need be retained. (In this sense, the histogram
representation should strictly be regarded as a semi-parametric technique). In-
deed, the histogram may be constructed sequentially in which data points are
considered one at a time and then discarded. The benefits of sequential tech-
niques were discussed in Section 2.4. However, the simple histogram suffers from
a number of difficulties which make it unsuitable for use in most practical ap-
plications, except for rapid visualization of data in one or two dimensions. One
problem is that the estimated density function is not smooth but has discon-
tinuities at the boundaries of the histogram bins. Since these boundaries were
selected by hand in advance of observing the data, it is unlikely that they repre-
sent true structure in the distribution. A second very serious problem becomes
apparent when we consider the generalization to higher dimensions. If we divide
each variable into M intervals, then a d-dimensional feature space will be di-
vided into M*? bins. This exponential growth with d is an example of the ‘curse
of dimensionality’ discussed in Section 1.4. In high dimensions we would either
require a huge number of data points to obtain a density estimate, or most of
the bins would be empty, corresponding to an estimated density of zero.

2.5.2 Density estimation in general

So far we have given a rather heuristic discussion of density estimation based on
the idea of histograms. To proceed further we return to the basic definition of
probability density functions. The probability that a new vector x, drawn from
the unknown density function p(x), will fall inside some region R of x-space is,
by definition, given by
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P=/Rp(x’)dx'. (2.49)

If we have N data points drawn independently from p(x) then the probability
that K of them will fall within the region R is given by the binomial law

N!

PriE) = grw —wi

PX(1 - P)N-K, (2.50)

The mean fraction of points falling in this regions is given by £{K/N] = P and
the variance around this mean is given by £[(K/N — P)?] = P(1 — P)/N. Thus
the distribution is sharply peaked as N — oo. We therefore expect that a good
estimate of the probability P can be obtained from the mean fraction of the
points which fall within R, so that

P~K/N. (2.51)

If we assume that p(x) is continuous and does not vary appreciably over the
region R, then we can approximate {2.49) by

P= f p(x') dx == p(x)V (2.52)
R

where V is the volume of R, and x is some point lying insidé: R. From (2.51)
and (2.52) we obtain the intnitive result

p(x) ~ NI%- (2:53)

Note that to obtain this estimate we have had to make two assumptions, the
validity of which is governed by the choice of the region R. In order for (2.51) to
hold accurately we require R to be relatively large, so that P will be large and
the binomial distribution will be sharply peaked. However, the approximation in
(2.52) is most accurate when R is relatively small, so that p(x) is approximately
constant inside the integration region. Once again, we see that there is a choice
to be made regarding the degree of smoothing to be performed, and for a given
size of data set we expect that there will be some optimum value for the size
of R which will give the best estimate of p(x). We shall return to this problem
shortly. ,

In applying (2.53) to practical density estimation problems there are two
basic approaches we can adopt. The first is to choose a fixed value of K and
determine the corresponding volume V from the data. This gives rise to the K-
nearest-neighbour approach discussed later. Alternatively we can fix the volume
V and determine K from the data. This leads to the class of kernel-based density
estimation techniques, which we describe next.
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We expect that, in the limit of an infinite number of data points, our esti-
mation procedure should become exact, since the volume of R can be shrunk
to zero, thereby ensuring that (2.52) becomes increasingly accurate, while also
improving the accuracy of (2.51) by ensuring that R contains an ever increasing
number of points. It can be shown that both kernel methods and K-nearest-
neighbour methods do indeed converge to the true probability density in the
limit of infinite N, provided that V shrinks with N, and K grows with N, in a
suitable way (Duda and Hart, 1973).

2.5.3 Kernel-based methods

Suppose we take the region R to be a hypercube with sides of length h centred
on the point x. Its volume is then given by

V = hd. (2.54)

We can find an expression for K, the number of points which fall within this
region, by defining a kernel function H(u), also known as a Parzen window
{Rosenblatt, 1956; Parzen, 1962) given by

(1 jyl<1/2  j=1,....d
H{w) = {0 otherwise (2.55)

so that H(u) corresponds to a unit hypercube centred at the origin. Thus, for
all data points x™, the quantity H((x — x™)/h) is equal to unity if the point x"
falls inside a hypercube of side & centred on x, and is zero otherwise. The total
number of points falling inside the hypercube is then simply

K= f:H(x‘hx"). (2.56)
n=1

If we substitute (2.56) and (2.54) into (2.53) we obtain the following estimate
for the density at the point x:

N n
lx) = % Z} ElgH (%) (2.57)

where p(x) denotes the model density. We can regard this density estimate as
consisting of the superposition of N cubes of side h, with each cube centred
on one of the data points. This is somewhat reminiscent of the histogram ap-
proach, except that, instead of bins which are defined in advance, we have cells
whose locations are determined by the data points. Nevertheless, we still have
an estimate which has discontinuities.

We can smooth out the estimate by choosing different forms for the kernel
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function H(u). For instance, a common choice is a multivariate normal kernel,
for which ‘

N
~oy 1 1 Ix — x™||2
p(x) = v ,?=1 k)i exp{ TR (2.58)
In general, if the kernel functions satisfy
H(u) >0 (2.59)

and
/ H(u)du =1 (2.60)

then the estimate in (2.57) will satisfy p(x) > 0 and [ p(x) dx = 1, as required.

As a simple example of kernel density estimation, we return to the data
set used to construct the histograms of Figure 2.8. In Figure 2.9 we plot the
results of density estimation using a Gaussian kernel function, with values of the
width parameter h given by 0.2, 0.08 and 0.01 respectively. This shows that h is
acting as a smoothing parameter, and that an appropriate choice for the value
of h is important if a good approximation to the true density is to be obtained.
When the kernel width A is too large the estimated density is over-smoothed
and the bimodal nature of the underlying distribution is lost. Conversely, when
h is too small, a great deal of structure is present in the estimated density which
represents the properties of the particular data set rather than true structure in
the underlying distribution.

Some insight into the role of the kernel function can be obtained by computing
the expectation of the estimated density, in other words the average value of the
model density at some given point x, where the average is taken over different
possible selections of the data points x™. Making use of (2.57) we have

oo~ el (5%
=s[%ﬂ<f-af-'>1

- / %H (x—;-’-‘-') p(x') dx’ (2.61)

where, in the third line, we have used the fact that the vectors x™ are drawn
independently from the density p(x), and so the expectation is simply given by an
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Figure 2.9. An example of the kernel approach to density estimation, using
the same data as in Figure 2.8. Gaussian kernel functions have been used with
various values for the kernel width h.

integral weighted by this density. We see that the expectation of the estimated
density is a convolution of the true density with the kernel function, and so
represents a smoothed version of the true density. Here the kernel width h plays
the role of the smoothing parameter. For A — 0, the kernel approaches a delta
function and p(x) approaches the true density. For a finite sample size, however,
a small value of h leads to a noisy representation for p(x) which approaches a set
of delta functions centred on the data points. Once again, we see that we must
choose a compromise value for the smoothing parameter h.

The kernel-based method suffers from the drawback of requiring all of the
data points to be stored, which can make evaluation of the density very slow if
the number of data points is large. One solution is to use fewer kernel functions
and to adapt their positions and widths in response to the data. Methods for
doing this, based on maximum likelihood, will be described in Section 2.6.

Another problem with the kernel-based estimator is that it gives a biased es-
timate of the density. In fact, Rosenblatt (1956) showed that, for a finite data set,
there is no non-negative estimator which is unbiased for all continuous density
functions.

The use of kernel methods to estimate regression functions is discussed in
Chapter 5, which also demonstrates the close link with radial basis function
networks.

2.5.4 K -nearest-neighbours

One of the potential problems with the kernel-based approach to density estima-
tion arises from the use of a fixed width parameter h for all of the data points.
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Figure 2.10. The K-nearest-neighbour approach to density estimation, again
using the same data as in Figure 2.8, for various values of K.

If h is too large there may be regions of x-space in which the estimate is over-
smoothed. Reducing h may, however, lead to problems in regions of lower density
where the model density § will become noisy. Thus, the optimum choice of h may
be a function of position. This difficulty is addressed in the K-néarest-neighbour
approach to density estimation.

We again return to (2.53) as our starting point, but we now fix K and allow
the volume V to vary. Thus, we consider a small hypersphere centred at a point
X, and allow the radius of the sphere to grow until it contains precisely K data
points. The estimate of the density at the point x is then given by (2.53), where
V is the volume of the sphere. In Figure 2.10 we show the result of the K -nearest-
neighbour approach, for the same data set as used in Figures 2.8 and 2.9, for the
values K = 20, 8 and 1. We see that K acts as a smoothing parameter and that
there is an optimum choice for the value of K.

One disadvantage of the K-nearest-neighbour technique is that the resulting
estimate is not a true probability density since its integral over all x-space di-
verges. A disadvantage of both kernel and K-nearest-neighbour methods is that
all of the training data points must be retained. This might lead to problems of
computer storage, and can require large amounts of processing to evaluate the
density for new values of x. More sophisticated versions of these algorithms al-
low fewer data points to be used (Hart, 1968; Gates, 1972; Hand and Batchelor,
1978). There also exist tree search techniques which speed up the process finding
the near neighbours of a point (Fukunaga and Narendra, 1975).

As we have already indicated, one of the applications of density estimation is
in the construction of classifiers through the use of Bayes’ theorem. This involves
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modelling the class-conditional densities for each class separately, and then com-
bining them with priors to give models for the posterior probabilities which can
then be used to make classification decisions. We can use this approach to find a
classifier based directly on the K-nearest-neighbour technique by the following
slight modification. Suppose our data set contains Ny points in class C; and N
points in total, so that 3, Ny = N. We then draw a hypersphere around the
point x which encompasses K points irrespective of their class label. Suppose
this sphere, of volume V, contains K} points from class C;. Then we can use
(2.53) to give approximations for the class-conditional densities in the form

p(x|Ck) = AR (2.62)
The unconditional density can be similarly estimated from
K
p(x) = v (2.63)
while the priors can be estimated using
Ny
P(C) = N (2.64)
We now use Bayes’ theorem to give
P(Clclx) = p(XICk)P(Ck) - E’E (2.65)

p(x) K’

Thus, to minimize the probability of misclassifying a new vector x, it should
be assigned to the class Cy for which the ratio K /K is largest. This is known
as the K -nearest-neighbour classification rule. It involves finding a hypersphere
around the point x which contains K points (independent of their class), and
then assigning x to the class having the largest number of representatives inside
the hypersphere. For the special case of K = 1 we have the nearest-neighbour
rule, which simply assigns a point x to the same class as that of the nearest point
from the training set. Figure 2.11 shows an example of the decision boundary
corresponding to the nearest-neighbour classification rule.

2.5.5 Smoothing parameters

For all of the density estimation techniques discussed in this section we have seen
that there is always some form of smoothing parameter governing the nature of
the estimated density. For histograms it is the width of the bins, for kernel
methods it is the kernel width h, and for K-nearest-neighbours it is the value of
K. If the model density is over-smoothed, the bias becomes large and leads to a
relatively poor estimator. However, with insufficient smoothing the variance is
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Figure 2.11. Example of the decision boundary produced by the nearest-
neighbour classification rule. Note that the boundary is piecewise linear, with
each segment corresponding to the perpendicular bisector between two data
points belonging to different classes.

high, so that the model density is noisy and very sensitive to the individual data
points. (Bias and variance are defined more precisely in Section 9.1). The choice
of a suitable value for the smoothing parameter is analogous to the problem of
choosing the number of terms in a polynomial used in curve fitting, discussed
in Section 1.5. Similar smoothing parameters will appear in our discussions of
neural networks. For instance, the number of hidden units in a layered feed-
forward network can play a similar role to the number of terms in a polynomial.

It is important to realize that we cannot simply pick the value of the smooth-
ing parameter which gives the largest value for the likelihood, as the likelihood
can always be increased indefinitely by choosing ever smaller values for the
smoothing parameter. Consider for instance the case of kernel estimators. The
likelihood function can be written as

N
C(hy = [ px"thsx, ... xN) (2.66)
n=1

where p(x]...) is given by (2.58) for the case of Gaussian kernels. It is easily
verified that unconstrained maximization of £(h) leads to b — 0 so that the
resulting density estimate consists of a delta function at each data point, with
zero density elsewhere.

The goal in selecting smoothing parameters is to produce a model for the
probability density which is as close as possible to the {unknown) true den-
sity p(x). It is often convenient to have a formal measure of the difference, or
‘distance’, between two density functions. If p(x) is our model of the density
function, then the average negative log-likelihood per data point, in the limit as
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the number of data points goes to infinity, can be written as an expectation in
the form

N
£l-Inf] =~ lim Nl—Zlnﬁ(x") (2.67)

- / p(x) InF(x) dx (2.68)

which can be regarded as a measure of the extent to which the model density
and the true density agree. When p(x)} = p(x) this measure has a residual value
given by

— /p(x) Inp(x) dx (2.69)

which is known as the entropy of p(x) (Section 6.10). It is convenient to subtract
off this residual value to give a measure of the ‘distance’ between p(x) and p(x)
in the form

px) o
L= /p(x)ln pre ) (2.70)

which is known as the Kullback-Leibler distance or asymmetric divergence (Kull-
back and Leibler, 1951; Kullback, 1959). It is easily shown (Exercise 2.10) that
L > 0 with equality if, and only if, the two density functions are equal. Note
that L is not symmetric with respect to the two probability distributions. This is
reasonable since it is more important for the model distribution p(x) to be close
to the true distribution p(x) in regions where data is more likely to be found.
Thus the integral in (2.70) is weighted by the true distribution.

In a practical density estimation problem we are therefore faced with the
difficulty of deciding a suitable value for the smoothing parameter. This is an
example of a very general, and very important, issue which is concerned with
choosing the optimal level of complexity, or flexibility, of a model for a given
data set. Rather than consider this problem in the framework of density estima-
tion, we defer further discussion until Chapters 9 and 10, where we consider the
analogous issue in the context of neural network models. There we shall discuss
two general approaches for dealing with model complexity, based respectively on
cross-validation and Bayesian inference.

2.6 Mixture models

So far in this chapter we have considered two general approaches to density
estimation, parametric and non-parametric, each of which has its merits and
limitations. In particular, the parametric approach assumes a specific form for
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the density function, which might be very different from the true density. Usually,
however, parametric models allow the density function to be evaluated very
rapidly for new values of the input vector. Non-parametric methods, by contrast,
allow very general forms of density function, but suffer from the fact that the
number of variables in the model grows directly with the number of training data
points. This leads to models which can be very slow to evaluate for new input
vectors.

In order to combine the advantages of both parametric and non-parametric
methods we need to find techniques which are not restricted to specific functional
forms, and yet where the size of the model only grows with the complexity of
the problem being solved, and not simply with the size of the data set. This
leads us to a class of models which we shall call semi-parametric. The price we
have to pay is that the process of setting up the model using the data set (i.e.
the training of the model) is computationally intensive compared to the simple
procedures needed for parametric or non-parametric methods (which in some
cases involve little more than evaluating a few expressions for parameter values,
or even just storing the training data).

In this section we shall restrict attention to one particular form of density
function, called a mizture model. As well as providing powerful techniques for
density estimation, mixture models find important applications in the context
of neural networks, for example in configuring the basis functions in radial basis
function networks (Section 5.9), in techniques for conditional density estimation
(Section 6.4), in the technique of soft weight sharing (Section 9.4), and in the
mixture-of-experts model (Section 9.7). Here we discuss three training methods
for mixture models, all of which are based on maximum likelihood, involving
respectively non-linear optimization, re-estimation (leading to the EM algorithm)
and stochastic sequential estimation.

In the non-parametric kernel-based approach to density estimation, the den-
sity function was represented as a linear superposition of kernel functions, with
one kernel centred on each data point. Here we consider models in which the den-
sity function is again formed from a linear combination of basis functions, but
where the number M of basis functions is treated as a parameter of the model
and is typically much less than the number N of data points. We therefore write
our model for the density as a linear combination of component densities p(x|j)
in the form

M
p(x) =) _ plxl5)P(5)- (2.71)
=

Such a representation is called a mizture distribution (Titterington et al., 1985;
McLachlan and Basford, 1988) and the coefficients P(j) are called the mizxing
parameters. Notice that there is a strong similarity between (2.71) and the ex-
pression given in equation (1.22) for the unconditional density of data taken from
a mixture of several classes. This similarity has been emphasized by our choice of
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notation. We shall call P(j) the prior probability of the data point having been
generated from component j of the mixture. These priors are chosen to satisfy
the constraints

M
Y PG) =1 (2.72)
j=1
0< PG)<1. (2.73)

Similarly, the component density functions p(x|j) are normalized so that

/ p(x|j)dx =1 (2.74)

and hence can be regarded as class-conditional densities. To generate a data
point from the probability distribution (2.71), one of the components j is first
selected at random with probability P(j), and then a data point is generated
from the corresponding component density p(x{j). An important property of such
mixture models is that, for many choices of component density function, they can
approximate any continuous density to arbitrary accuracy provided the model
has a sufficiently large number of components, and provided the parameters of
the model are chosen correctly.

The key difference between the mixture model representation and a true
classification problem lies in the nature of the training data, since in this case we
are not provided with any ‘class labels’ to say which component was responsible
for generating each data point. This represents an example of incomplete data,
and we shall discuss this problem at greater length when we consider the EM
algorithm in Section 2.6.2. As with any of the other density estimation techniques
discussed in this chapter, the technique of mixture modelling can be applied
separately to each class Cy. in a true classification problem. In this case, each
class-conditional density p(x|Cy) is represented by an independent mixture model
of the form (2.71). ‘

Having made the link with prior probabilities and conditional densities, we
can introduce the corresponding posterior probabilities, which we can express
using Bayes’ theorem in the form

P(ib) - POIPG)

20 (2.75)

where p(x) is given by (2.71). These posterior probabilities satisfy

M
) P(ix) =1. (2.76)
F=1
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X \ X4
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Figure 2.12. Representation of the mixture model (2.71) in terms of a network
diagram. For Gaussian component densities p(x|j) given by (2.77), the lines
connecting the inputs z; to the components p(x|j) represent the elements ;i
of the corresponding mean vectors p;.

The value of P(j|x) represents the probability that a particular component j
was responsible for generating the data point x.

In this section, we shall limit our attention to mixture models in which the
individual component densities are given by Gaussian distribution functions. We
shall further assume that the Gaussians each have a covariance matrix which is
some scalar multiple of the identity matrix so that ¥; = 0?1 (where I is the
identity matrix) and hence

. 1 % — p; [
p(x|j) = GroT)ire exp { —’Td']g”—} . (2.77)
In fact, the techniques we shall describe are easily extended to general Gaussian
component densities having full covariance matrices as discussed in Section 2.1.1
in the context of parametric distributions.

The mixture model can be represented in terms of a network diagram as
shown in Figure 2.12. This is simply a diagrammatic representation of a mathe-
matical function, in this case the mixture model in (2.71). Such diagrams prove
particularly useful when considering complex neural network structures, as dis-
cussed in later chapters.

2.6.1 Mazimum likelthood

Various procedures have been developed for determining the parameters of a
Gaussian mixture model from a set of data. In the remainder of this chapter we
consider three approaches, all of them based on maximizing the likelihood of the
parameters for the given data set. A review of maximum likelihood techniques
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in this context has been given by Redner and Walker (1984).

For the case of Gaussian components of the form (2.77), the mixture den-
sity contains the following adjustable parameters: P(j), p; and o; (where j =
1,..., M). The negative log-likelihood for the data set is given by

N N M
E=-InL=-) Inpx") == Inq¢> p(x"j)P() (2.78)
n=1 n=1 j=1

which can be regarded as an error function. Maximizing the likelihood £ is then
equivalent to minimizing E.

It is important to emphasize that minimizing this error function is non-trivial
in a number of respects. First of all, there exist parameter values for which the
likelihood goes to infinity (Day, 1969). These arise when one of the Gaussian
components collapses onto one of the data points, as can be seen by setting
p; = x in (2.77) and then letting 0; — 0. In addition, small groups of points
which are close together can give rise to local minima in the error function which
may give poor representations of the true distribution. In practical problems we
wish to avoid the singular solutions and the inappropriate local minima. Several
techniques for dealing with the problems of singularities have been proposed. One
approach is to constrain the components to have equal covariance matrices (Day,
1969). Alternatively, when one of the variance parameters shrinks to a small value
during the course of an iterative algorithm, the corresponding Gaussian can be
replaced with one having a larger width.

Since the error function is a smooth differentiable function of the parameters
of the mixture model, we can employ standard non-linear optimization tech-
niques, such as those described in Chapter 7, to find its minima. We shall see in
Chapter 7, that there are considerable computational advantages in making use
of gradient information provided it can be evaluated efficiently. In the present
case the derivatives of F can be found analytically.

For the centres pt; of the Gaussian components we find, by simple differenti-
ation of (2.78), and making use of (2.75) and (2.77),

OFE oy (B —X7)
— = P(§|x™) L —5—=. 2.79

8 Moo d X plf?
5(_7; :Zp(]|x ){(_T; ___&;3__1_}. (2.80)

The minimization of E with respect to the mixing parameters F(j) must be
carried out subject to the constraints (2.72) and (2.73). This can be done by



64 2: Probability Density Estimation

representing the mixing parameters in terms of a set of M auxiliary variables
{7;} such that

N exp(;) : 9
Fo) il exp(yx) (28

The transformation given by (2.81) is called the softmaz function, or normalized
exponential, and ensures that, for —00 < 7; < oo, the constraints (2.72) and
(2.73) are satisfied as required for probabilities. We can now perform an uncon-
strained minimization of the error function with respect to the {v;}. To find the
derivatives of E with respect to ; we make use of

228 ~ 5P ) - PP (262)

which follows from (2.81). Using the chain rule in the form
M

aE OE 0P(k)
=2 550 o,

(2.83)

together with (2.75) and (2.78), we then obtain the required derivatives in the
form

=" S (PG ~ () (2.84)

n=1

where we have made use of (2.76). The complete set of derivatives of the error
function with respect to the parameters of the model, given by (2.79), (2.80)
and (2.84), can then be used in the non-linear optimization algorithms described
in Chapter 7 to provide practical techniques for finding minima of the error
function.

Some insight into the nature of the maximum likelihood solution can be
obtained by considering the expressions for the parameters at a minimum of E.
Setting (2.79) to zero we obtain

~ 2. PUlxM)x® .
B = 3 PG (259

which represents the intuitively satisfying result that the mean of the jth compo-
nent is just the mean of the data vectors, weighted by the posterior probabilities
that the corresponding data points were generated from that component. Simi-
larly, setting the derivatives in (2.80) to zero we find
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s _ 1 5a PG - )
AR YW D)

i

(2.86)

which again represents the intuitive result that the variance of the jth component
is given by the variance of the data with respect to the mean of that component,
again weighted with the posterior probabilities. Finally, setting the derivative in
(2.84) to zero we obtain

~ 1 &
P(j) = D P(ilx™) (2:87)
n=1

so that, at the maximum likelihood solution, the prior probability for the jth
component is given by the posterior probabilities for that component, averaged
over the data set.

2.6.2 The EM algorithm

While the formulae given in (2.85), (2.86) and (2.87) provide useful insight into
the nature of the maximum likelihood solution, they do not provide a direct
method for calculating the parameters. In fact they represent highly non-linear
coupled equations, since the parameters occur implicitly on the right-hand sides
by virtue of (2.75). They do, however, suggest that we might seek an iterative
scheme for finding the minima of F. Suppose we begin by making some initial .
guess for the parameters of the Gaussian mixture model, which we shall call
the ‘old’ parameter values. We can then evaluate the right-hand sides in (2.85),
(2.86) and (2.87), and this will give a revised estimate for the parameters, which
we shall call the ‘new’ parameter values, for which we might hope the value of the
error function is smaller. These parameter values then become the ‘old’ values,
and the process is repeated. We shall show that, provided some care is taken
over the way in which the updates are performed, an algorithm of this form can
be found which is guaranteed to decrease the error function at each iteration,
until a local minimum is found. This provides a simple, practical method for
estimating the mixture parameters which avoids the complexities of non-linear
optimization algorithms. We shall also see that this is a special case of a more
general procedure known as the erpectation—marimization, or EM, algorithm
{Dempster et al., 1977).

From (2.78) we can write the change in error when we replace the old pa-
rameter values by the new values in the form

Frew _ pold _ Zm{ new(xn)} (2.88)

Id
- pld(xm)

where p"®¥(x) depotes the probability density evaluated using the new values
for the parameters, while p°!¥(x) represents the density evaluated using the old
parameter values. Using the definition of the mixture distribution given by {2.71),
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we can write this in the form

e gty [ Sy PR 00) P
BB = Z'{ PG Po‘d(j\xn)}

(2.89)

where the last factor inside the brackets is simply the identity. We now make use
of Jensen’s inequality (Exercise 2.13) which says that, given a set of numbers
Aj = 0 such that Zj Aj=1,

In [ > " Nzj | 23 AIn(s). (2.90)
J J

Since the probabilities P°'(j|x) in the numerator of (2.89) sum to unity, they
can play the role of the A; in (2.90). This gives

Enew _ Eold < - Z Z Pold(]'lxn) In {;T;?,Ei))z;:‘:l:gj‘:('i; } . (2.91)

We wish to minimize E™¥ with respect to the ‘new’ parameters. If we let @ be
the right-hand side in (2.91) then we have E"®¥ < E°' 4+ and so E° -+ Q rep-
resents an upper bound on the value of E™". We can therefore seek to minimize
this bound with respect to the ‘new’ values of the parameters, as illustrated in
Figure 2.13 (Luttrell, 1994). Minimizing @ will necessarily lead to a decrease in
the value of the E"®¥ unless E™V¥ is already at a local minimum.

If we now drop terms which depend only on the ‘old’ parameters, we can
write the right-hand side of (2.91) in the form

é [ Z Z Pold(jIXn) In {PneW(j)pneW(xnlj)} (2'92)

and the smallest value for the upper bound is found by minimizing this quantity.
If we consider the specific case of a Gaussian mixture model then we have

o = g
2(07°v)?

Q - _ ZZPOld(j|xn) {kaneW(j) _ dlno_;ew _
i

n

} + const.

(2.93)
‘We can now minimize this function with respect to the ‘new’ parameters. For
the parameters p1; and o; this minimization is straightforward. However, for the
mixing parameters P"*% () we must take account of the constraint 3 3 P i) =
1. This is easilv done bv introducing a Lagrange mnltipter A and minimizing the
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Figure 2.13. Schematic plot of the error function E as a function of the new
value 6™" of one of the parameters of the mixture model. The curve E¢ +
Q(8"°") provides an upper bound on the value of E™* and the EM algorithm
involves finding the minimum value of this upper bound.

Q+x{dpP()-1]. (2.94)
i
Setting the derivatives of (2.94) with respect to P"*¥(j) to zero we obtain

old ( ;1,1
0= _P___(:ﬂiz + A (2.95)

Pnew(j) '

The value of A can be found by multiplying both sides of (2.95) by P"*¥(j)
and summing over j. Using 37, P"¥(j) = 1 and 3, Pol(j|x") = 1 we obtain
A = N. We then finally obtain the following update equations for the parameters
of the mixture model:

3, P (g )xe
R P GR) 299
n
13, PG e — puse 2
newy2 __ _ &n j 97
) =T, PG (290
ynew _ 1 -
PO = = ) PGIXY). (2.09)

-

Notice carefully where the ‘new’ and ‘old’ parameters appear on the right-hand
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Figure 2.14. Example of the application of the EM algorithm to mixture den-
sity estimation showing 1000 data points drawn from a distribution which is
uniform inside an annular region.

sides of these expressions. These should be compared with the corresponding
maximum likelihood results (2.85)-(2.87). The algorithm is readily extended to
include Gaussian functions with full covariance matrices.

As a simple example of the use of the EM algorithm for density estimation,
we consider a set of 1000 data points generated from a distribution which is
uniform within an annular-shaped region, as shown in Figure 2.14. A Gaussian
mixture model, with seven components of the form (2.77), was then fitted to
this data. The initial configuration of the model is shown in Figure 2.15. After
20 cycles of the EM algorithm the Gaussians had evolved to the form shown
in Figure 2.16. The corresponding contours of probability density are shown in
Figure 2.17.

Further insight into the EM algorithm can be obtained by returning to our
earlier remarks concerning the similarities between a mixture density model and
the representation for the unconditional density in a classification problem. In
the latter case, the data points x™ all carry a class label indicating which com-
ponent density function was responsible for generating them. This allows each
class-conditional density function to be considered separately, and its parameters
found by maximizing the likelihood using only the data points from that class.
If the class-conditional densities are given by Gaussian functions, then we saw in
Section 2.2 that the corresponding maximum likelihood problem could be solved
analytically to give expressions such as (2.19) and (2.20) for the parameters of
the Gaussians.

For the problem of unconditional density estimation using a mixture model we
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Figure 2.15. This shows the initial configuration of seven Gaussians of a mix-
ture model which has been initialized using the data in Figure 2.14. Each circle
represents the line along which ||x — p;f| = o; for the corresponding Gaus-
sian component. The parameters of the mixture model were initialized by first
setting the centres u; to a random subset of the data points. The width pa-
rameter o; for each component was initialized to the distance to the nearest
other component centre, and finally the priors P(j) were all set to 1/M, where
M =7 in this example.

do not have corresponding ‘class’ labels. The data set is said to be incomplete, and
the maximum likelihood procedure leads to a non-linear optimization problem
which does not have an analytic solution. A very general treatment of such
incomplete-data problems was given by Dempster et al. (1977), who developed
the EM algorithm as an elegant and powerful approach to their solution. It can
also be applied to problems in which incompleteness of the data takes the form
of missing values for some of the variables in the training set. The example of
re-estimating the parameters of a Gaussian mixture model discussed above is a
special case of the EM algorithm.

We have already remarked that the problem of determining the parameters
in the mixture model would be very straightforward if we knew which compo-
nent j was responsible for generating each data point. We therefore consider
a hypothetical complete data set in which each data point is labelled with the
component which generated it. Thus, for each data point x", we can introduce a
variable z®, which is an integer in the range (1, M) specifying which component
of the mixture generated the data point. The negative log-likelihood (or error
function) for the complete data problem, for ‘new’ parameter values, is given by
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Figure 2.16. Final configuration of the Gaussians from Figure 2.15 after 20
cycles of the EM algorithm using the data set from Figure 2.14.
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Figure 2.17. Contours of constant probability density corresponding to the
Gaussian mixture model of Figure 2.16.
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E°omP — _ | £COMP (2.99)
N
= -3 Inp""(x",2") (2.100)
n=1
N
==Y In{P""(z")p"" (x"|2")}. (2.101)
n=1

If we knew which component was responsible for generating each data point,
then P"¥(2") = 1 and the complete-data error function decomposes into a sum
of independent terms, one for each component of the mixture, each of which only
involves the data points generated by that component. This sum is then easily
minimized with respect to the parameters of the component distributions. The
problem, however, is that we do not know which component is responsible for
each data point, and hence we do not know the distribution of the z". We there-
fore adopt the following procedure. First we guess some values for the parameters
of the mixture model (the ‘old’ parameter values) and we then use these, together
with Bayes’ theorem, to find the probability distribution of the {2"}. We then
compute the expectation of E°°™P with respect to this distribution. This is the
ezpectation or E-step of the EM algorithm. The ‘new’ parameter values are then
found by minimizing this expected error with respect to the parameters. This
is the mazimization or M-step of the EM algorithm (since minimizing an error
function is equivalent to maximizing the corresponding likelihood).

The probability for 2™, given the value of x™ and the ‘old’ parameter values,
is just P°14(2"|x™). Thus, the expectation of E°™P over the complete set of {z"}
values is obtained by summing (2.101) over all possible values of the {2"} with
a weighting factor given by the probability distribution for the {z"} to give

) = 3 E°°'""HP°“’(Z”lx") (2102)

zl=1 zN =1

It is convenient to rewrite E°°™P from (2.101) in the equivalent form

N M
Fcomp Z Z iz In {PneW(j)pneW(xnU)} . (2.103)

We now substitute (2.103) into (2.102), and perform the sums over the {z"}
variables by making use of the identity

N

M M ,
Do 3 g J] PMEYIXY) = PG (2.104)
zN=1 !

zl=1 n'=1
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which can be proved using

M
D PY(z]x) = 1. (2.105)

z=1

This gives the expectation of the complete-data likelihood in the form

N M ‘
S[Ecomp] - Z Z Pold(jlxn) In {Pnew(j)pneW(xnlj)} . (2.106)

n=1 j=1

We now note that (2.108) is identical o {2.92). Thus, minimization of (2.106)
leads to the form of the EM algorithm derived above.

2.6.3 Stochastic estimation of parameters

As a third approach to the determination of the parameters of a Gaussian mix-
ture model we consider the technique of stochastic on-line optimization (Travén,
1991). Again we seek to minimize the error function, but now we suppose that
the data points are arriving one at a time and we wish to find a sequential update
scheme. Consider the minimum-error expression (2.85) for the mean u; of the
jth component of the mixture for a data set consisting of N points

¥ = Zag PURX
T Taa PGk

From the corresponding expression for N + 1 data points, we can separate off
the contribution from x¥*! in order to obtain an expression for u;v *1in terms
of p,f’ . This is analogous to the procedure we adopted for stochastic estimation
of the parameters of a single Gaussian function in Section 2.4. After some simple
algebra we obtain

(2.107)

“;}1+1 =l + n]{V+1(xN+1 - (2.108)
3 _

where the parameter njv *1 s given by

Sk
Yy

P e N+1
N EN%%GI;)"_)' (2.109)

As it stands this does not constitute a useful algorithm since the denominator
in (2.109) contains an ever increasing number of terms, all of which would have to
be re-estimated every time the parameter values were changed. It would therefore
require the storage-of all previous data points, in conflict with the goal of a
stochastic learning procedure. One approach is to note that, if the model had
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already converged to the maximum likelihood solution, we could use (2.87) to

. write (2.109) in the form

N+t = M (2.110)
! (N +1)P(5)

and then to use this as an approximation for the 7;. Alternatively, the pérameters

7; can themselves also be estimated stochastically, using the update formula

1 i (JIXN) 1
= - —+1 2.111
TI;V+1 P(]|XN+1) n;V ( )

which follows directly from the definition (2.109). If the data is arriving on-line,
as distinct from being taken from a fixed training set with replacement, then the
problem of singular solutions, discussed in Section 2.6.1, will not arise since an
individual data point is used once only and then discarded.

Exercises

2.1 (%) Using the form (2.1) for the normal distribution in one dimension, and
the results derived in Appendix B, show that [p(z)dz = 1, and verify
(2.2) and (2.3).

2.2 () Consider the Gaussian distribution in d dimensions given by (2.4). By
using the properties of symmetric matrices derived in Appendix A, show
that there exists a transformation to a new coordinate system, defined
by the eigenvectors of 3, such that the transformed variables Z; become
statistically independent, so that the distribution of the T; can be written
as p(%,...,T4) = [1,p(Fi). Hence show that show that [p(x)dx = 1.
Finally, verify (2.5) and (2.6).

2.3 (*) Using the expression {2.1) for the normal distribution in one dimension,’
show that values of the mean and variance parameters which minimize the
error function (2.18) are given by (2.21) and (2.22). .

2.4 (x+) Using the definition of expected value given by (1.16), and the form
of the normal distribution (2.1), derive the result {2.23). Now consider the
following estimate of the variance

N
1
=5 nE=1(:c -0 | (2.112)

where i is the maximum likelihood estimate for the mean given by (2.21).
Show that this estimate has the property that its expected value is equal
to the true variance ¢2. Estimators which have this property are said to
be unbiased. If the mean p of the distribution is known exactly, instead of
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being determined from the data, show that the estimate of the variance
given by

N
1
~2 n 2
=5 }:1(:1: ) (2.113)

is unbiased.

2.5 (*) Derive the results (2.32) and (2.33) for the mean and variance of the
posterior distribution of ;1 given a set of N observed values of z.

2.6 (x) Using the maximum likelihood expression (2.19) for the mean p of a
Gaussian distribution, derive the result (2.37) for the iterative sequential
estimation of p.

2.7 (xx) Consider the problem of parametric density estimation for data in one
dimension using a normal distribution with mean g and variance o2, Show
that the Robbins-Monro formula (2.48) for sequential maximum likelihood
gives rise to the heuristic formula (2.37) for the estimation of p provided we
choose the coefficients ay = a? /(N +1). Obtain the corresponding formula
for iterative estimation of o2, analogous to (2.37) for y1, by separating out
the contribution from the (N -+ 1)*" data point in the maximum likelihood
expression (2.22). Verify that substitution of a normal distribution into the
Robbins-Monro formula (2.48) gives the same result, for a suitable choice
of the coefficients ay.

2.8 (x} Consider two class-conditional densities in d-dimensions, each of which is
described by a Gaussian with a covariance matrix given by Xy, = 071, where
I is the unit matrix, but with different values of the variance parameter oZ.
Show that the decision boundary along which the posterior probabilities
for the two classes are equal takes the form of a hypersphere.

2.9 (x+«) This exercise explores numerically the behaviour of the K-nearest-
neighbour classification algorithm. Begin by generating data in two dimen-
sions from two classes, each described by a Gaussian distribution having a
covariance matrix which is proportional to the unit matrix, but with dif-
ferent variances. Assume equal class priors but use different class means.
Plot the data points, using a different symbol for each of the two classes,
and also plot the optimal decision boundary given by the result derived in
Exercise 2.8. Also plot the decision boundaries predicted by the K-nearest-
neighbour classification algorithm for various values of K. One way to do
this is to consider a fine grid of points covering the region of interest,
and assign each point the value 41 or —1 according to the class predicted
the K-nearest-neighbour classification described on page 57. Then use a
contouring package to plot the contour having value 0. By restricting the
number of data points, show that there exists an optimal value for K in
order for the decision boundary predicted by the algorithm to be as close
as possible to the optimal one, and that smaller or larger values of K give
poorer results.




Exzercises 75

2.10 () By sketching graphs of Inz and = — 1 verify the inequality Inz <z ~1
with equality if, and only if, x = 1. Confirm this result by differentiation
of Inz — (z — 1). Hence show that the Kullback-Leibler distance (2.70)
satisfies L > 0 with equality if, and only if, the two distributions are equal.

2.11 (x) Consider two discrete probability distributions p; and ¢; such that
Yipi = 1 and 3 ,q; = 1. The corresponding discrete version of the
Kullback~Leibler distance can be written

—zi:piln (i—’) (2.114)

By differentiating (2.114) with respect to ¢;, and making use of a Lagrange
multiplier (Appendix C) to ensure that the constraint } , g; = 1 is satisfied,
show that this distance is minimized when ¢; = p; for all 4, and that the
corresponding value for the distance is zero.

2.12 (+) Using the result (2.105), verify the identity (2.104).

2.13 (x*) In discussing the convergence properties of the EM algorithm we made
use of Jensen’s inequality for convex functions. We can define a convex
function f(z) as one for which every chord lies on or below the graph of
the function (a chord being a straight line which connects two points on the
graph of the function). This is illustrated in Figure 2.18. Use this definition

\ 4

a X, b x

Figure 2.18. Itlustration of a convex function f(x) as used to derive Jensen’s
inequality.

to show that, for a point z; = (1 —t)a+tb part way along the chord, where
0 <t <1, we have

F((1 = t)a +tb) > (1 — t)f(a) + t£(b). (2.115)

Given a set of points z; all lying in the interval (a,b), and a set of M
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numbers A; > 0 such that 37 A; = 1, show that the quantity 3°, Aj FT5
also lies in the interval (a, b). Startmg from (2.115) use induction to prove
Jensen’s inequality

M

M
Y Az Z £(z;), ©(2.116)
j=1

for any M > 2. This is the form of Jensen’s inequality used in (2.90).

2.14 (x %) Starting from (2.107), derive the expression (2.108) for the stochastic
update of the mean p; of the jth component of a Gaussian mixture model.
Similarly, starting from the maximum likelihood expression for the variance
of a spherical Gaussian given by (2.86), obtain the corresponding expression
for (o2)M*1. Finally, derive (2.111) from (2.109).




3
SINGLE-LAYER NETWORKS

In Chapter 1 we showed that the optimal decision rule for minimizing the prob-
ability of misclassification requires a new pattern to be assigned to -the class
having the largest posterior probability. We also showed how the posterior prob-
abilities can be related to class-conditional densities through Bayes’ theorem, and
in Chapter 2 we described several techniques for estimating these densities. An
alternative approach, which circumvents the determination of probability densi-

_ties, is based on the idea of a discriminant function, also introduced in Chapter 1.
In a practical application of discriminant functions, specific parametrized func-
tional forms are chosen, and the values of the parameters are then determined
from a set of training data by means of a suitable learning algorithm.

The simplest choice of discriminant function consists of a linear combination
of the input variables, in which the coefficients in the linear combination are the
parameters of the model, and has been considered widely in the literature on
conventional approaches to pattern recognition. This simple discriminant can be
generalized by transforming the linear combination with a non-linear function
(called an activation function) which leads to concepts such as logistic regression
and the perceptron. Another extension involves transforming the input variables
with fixed non-linear functions before forming the linear combination, to give
generalized linear discriminants. As we shall see, these various forms of linear
discriminant can be regarded as forms of neural network in which there is a single
layer of adaptive weights between the inputs and the outputs. -

Various techniques exist for determining the weight values in single-layer
networks, and in this chapter we shall consider several of them in detail. In
particular, we shall study perceptron learning, least-squares methods and the
Fisher discriminant. As well as forming an important class of techniques in their
own right, single-layer networks provide many useful insights into the properties
of more complex multi-layer networks. Single-layer networks were widely studied
in the 1960’s, and the history of such networks is reviewed in Widrow and Lehr
(1990). Two useful books from this period are Nilsson (1965) and Lewis and
Coates (1967).

3.1 Linear discriminant functions

In Chapter 1 we saw that optimal discriminant functions can be determined
from class-conditional densities via Bayes’ theorem. Instead of performing density
estimation, however, we can postulate specific parametrized functional forms for
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the discriminant functions and use the training data set to determine suitable
values for the parameters. In this section we consider various forms of linear
discriminant, and discuss their properties.

3.1.1 Two classes

We begin by considering the two-category classification problem. In Chapter 1
we introduced the concept of a discriminant function y{x) such that the vector
X is assigned to class C; if y(x) > 0 and to class C; if y(x) < 0. The simplest
choice of discriminant function is one which is linear in the components of x,
and which can therefore be written as

y(x) = wTx 4+ wy (3.1)

where we shall refer to the d-dimensional vector w as the weight vector and the
parameter wg as the bias. Sometimes —wy is called a threshold. Note that the use
of the term bias here is quite distinct from the concept of statistical bias which
is discussed briefly on page 41, and at length in Section 9.1. From Section 2.1.3
we know that, for class-conditional densities having normal distributions with
equal covariance matrices, a linear discriminant of the form (3.1) is optimal.

The expression in (3.1) has a simple geometrical interpretation (Duda and
Hart, 1973) as follows. We first note that the decision boundary y(x) = 0 cor-
responds to a (d — 1)-dimensional hyperplane in d-dimensional x-space. For the
case of a two-dimensional input space, d = 2, the decision boundary is a straight
line, as shown in Figure 3.1. If x4 and xZ are two points on the hyperplane, then
y(x4) = 0 = y(xP) and so, using (3.1}, we have wT(x? — x4) = 0. Thus, w is
normal to any vector lying in the hyperplane, and so we see that w determines
the orientation of the decision boundary. If x is a point on the hyperplane then
the normal distance from the origin to the hyperplane is given by

wTx wo
P T T (32)
where we have used y(x) = 0 together with (3.1). Thus, the bias wy determines
the position of the hyperplane in x-space, as indicated in Figure 3.1,

There is a slightly different notation which we can adopt which will often
prove convenient. If we define new (d + 1)-dimensional vectors W = (wp, w) and
¥ = (1, x), then we can rewrite (3.1) in the form

y(x) = wWT%. (3.3)

With this notation we can interpret the decision boundary y(x) = 0 as a d-
dimensional hyperplane which passes through the origin in (d + 1)-dimensional
X-space.

We can represent the linear discriminant function in (3.1) or (3.3) in terms
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Figure 3.1. A linear decision boundary, corresponding to y(x) = 0, in a two-
dimensional input space (zi,z2). The weight vector w, which can be rep-
resented as a vector in x-space, defines the orientation of the decision plane,
while the bias wo defines the position of the plane in terms of its perpendicular
distance from. the origin.

bias

x(, xl xd
inputs

Figure 3.2. Representation of a linear discriminant function as a neural network
diagram. Each component in the diagram corresponds to a variable in the linear
discriminant expression. The bias wo can be considered as a weight parameter
from an extra input whose activation zp is permanently set to +1.

of a network diagram as shown in Figure 3.2. Inputs z;,...,z4 are shown as
circles, which are connected by the weights wy,...,wq to the output y(x). The
bias wp is represented as a weight from an extra input zo which is permanently
set to unity.
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3.1.2 Several classes

Linear discriminants can easily be extended to the case of ¢ classes by following
-the ideas introduced in Chapter 1 and using one discriminant function yx(x) for
each class Cy. of the form :

Yi(X) = WX + wio. (3.4)

A new point x is then assigned to class Cy, if yx(x) > y;(x) for all j # k. The
decision boundary separating class C, from class C; is given by yr(x) = y;(x)
which, for linear discriminants, corresponds to a hyperplane of the form

(Wi, — w;)Tx + (wro — wjo) = 0. (3.5)

By analogy with our earlier results for the single discriminant (3.1), we see that
the normal to the decision boundary is given by the difference between the two
weight vectors, and that the perpendicular distance of the decision boundary
from the origin is given by

(wro — Wjo)
= A A 3.
Fwi = w;] (36)

The multiclass linear discriminant function (3.4) can be expressed in terms of
a neural network diagram as shown in Figure 3.3. The circles at the top of
the diagram, corresponding to the functions yx(x) in (3.4) are sometimes called
processing units, and the evaluation of the discriminant functions can be viewed
as a flow of information from the inputs to the outputs. Each output y(x) is
associated with a weight vector wy and a bias wgp. We can express the network
outputs in terms of the components of the vectors {wy} to give

d
k(%) = ) wrii + wio. (3.7)

i=1

Then each line in Figure 3.3 connecting an input ¢ to an output & corresponds to
a weight parameter wg;. As before, we can regard the bias parameters as being
weights from an extra input zg = 1, so that

d
yi(x) = Z’wkil‘i- ' (3.8)

i=0

Once the network is trained, a new vector is classified by applying it to the
inputs of the network, computing the output unit activations, and assigning the
vector to the class whose output unit has the largest activation. This leads to
a set of decision regions which are always simply connected and convex. To see
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Figure 3.3. Representation of multiple linear discriminant functions yx(x) as
a neural network diagram having ¢ output units. Again, the biases are repre-
sented as weights from an extra input o = 1.

Figure 3.4. Example of decision boundaries produced by a multiclass linear
discriminant. If two points x* and xZ both lie in decision region Ry, then every
point X on the line connecting them must also lie in region R. It therefore
follows that the decision regions must be simply connected and convex.

this, consider two points x4 and xZ which both lie in the region Ry as shown in
Figure 3.4. Any point X which lies on the line joining x# and x®.can be written
as

R=ax?+ (1 -a)x? T (3.9)

where 0 < a < 1. Since x* and xZ both lie in R, they must satisfy yx(x4) >
y;(x1) and yx(x?) > y;(xB) for all j # k. Using (3.4) and (3.9) it follows that
yr(X) = ayr(x?) + (1 — a@)yx(xB) and hence yx(X) > y;(X) for all § # k. Thus,
all points on the line connecting x? and x? also lie in Ry and so the region Ry
must be simply connected and convex.
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3.1.3 Logistic discrimination

So far we have considered discriminant functions which are simple linear func-
tions of the input variables. There are several ways in which such functions can
be generalized, and here we consider the use of a non-linear function g(-) which
acts on the linear sum to give a discriminant function for the two-class problem
of the form

y = g(wx + wo) (3.10)

where g(-) is called an activation function and is generally chosen to be mono-
tonic. The form (3.10) is still regarded as a linear discriminant since the decision
boundary which it generates is still linear, as a consequence of the monotonic
nature of g{).

As a motivation for this form of discriminant, consider a two-class problem
in which the class-conditional densities are given by Gaussian distributions with
equal covariance matrices 3y = g = X, so that

p(I0) = g e { 5w TS )} @)

Using Bayes’ theorem, the posterior probability of membership of class C; is
given by

p(x|C1)P(Cy)
P(Cy]x) = 3.12
b = e P(en) + pxlC P(E) (312
1
" 1+ exp(—a) (3.13)
= g(a) (3.14)
where
p(x|C1)P(Cy)
=ln =1 3.15
® = G P(Ca) (319
and the function g(a) is the logistic sigmoid activation function given by
()= o (3.16)
=7 + exp(—a) '

which is plotted in Figure 3.5. If we now substitute expressions for the class-
conditional densities from (3.11) into (3.15) we obtain
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Figure 3.5. Plot of the logistic sigmoid activation function given by (3.16).

a=wIx+wp (3.17)
where
w =" 1y — pa) (3.18)
L | P(Gy)
== v Spls 1 . .
wo lat! X + ot Ko +In P(Ca) (3.19)

Thus, we see that the use of the logistic sigmoid activation function allows the
outputs of the discriminant to be interpreted as posterior probabilities. This
implies that such a discriminant is providing more than simply a classification
decision, and is potentially a very powerful result. The importance of interpreting
the outputs of networks in terms of probabilities is discussed at much greater
length in Chapter 6.

The term sigmoid means ‘S-shaped’, and the logistic form of the sigmoid maps
the interval (—o0, 00) onto (0, 1). If la] is small, then the logistic sigmoid function
g{e) can be approximated by a linear function, and so in this sense a network
with sigmoidal activation functions contains a linear network as a special case.
If there are more than two classes then an extension of the previous analysis
leads to a generalization of the logistic sigmoid called a normalized exponential
or softmaz, which is discussed in detail in Section 6.9.

Linear discriminants with logistic activation functions have been widely used
in the statistics literature under the name logistic discrimination {Anderson,
1982). Sigmoidal activation functions also play a crucial role in multi-layer neural
networks, as discussed in Chapter 4.

Another form of linear discriminant was introduced by McCulloch and Pitts
(1943) as a simple mathematical model for the behaviour of a single neuron in
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a biological nervous system. Again this takes the form (3.10) with an activation
function which is the Heaviside step function

6 whena<0
9la) = { 1 whena>0. (3.20)
In this model the inputs z; represent the level of activity of other neurons which
connect to the neuron being modelled, the weights w; represent the strengths of
the interconnections, called synapses, between the neurons, and the bias wq rep-
resents the threshold for the neuron to ‘fire’. Although this model has its origins
in biology, it is clear that it can equally well be motivated within the framework
of statistical pattern recognition. Networks of threshold units were studied by
Rosenblatt (1962) under the name perceptrons and by Widrow and Hoff (1960)
who called them adalines. They will be discussed in detail in Section 3.5.
Note that it is sometimes convenient to regard the linear discriminant (3.1)
as a special case of the more general form (3.10). In this case the model is said
to have a linear activation function, which in fact is just the identity g(a) = a.

3.1.4 Binary input vectors

Linear discriminants, and the logistic activation function, also arise in a natural
way when we consider input patterns in which the variables are binary (so that
each z; can take only the values 0 or 1). Let Py; denote the probability that
the input z; takes the value +1 when the input vector is drawn from the class
Ci. The corresponding probability that z; = 0 is then given by 1 — Py;. We can
combine these together to write the probability for z; to take either of its allowed
values in the form

p(2:|Ci) = P& (1 — Pey)' ™ (3.21)

which is called a Bernoulli distribution. If we now assume that thé input variables
_are statistically independent, we obtain the probability for the complete input
vector as the product of the probabilities for each of the components separately:

d
p(x|Ck) = [ [ P& (1 = Pua)* = (3.22)

i=1

We now recall from Chapter 1 that we can write a discriminant function which
minimizes the probability of misclassifying new inputs in the form

Ye(x) = In P(x|Ci) + In P(Cy). (3.23)

Substituting (3.22) into (3.23) we obtain a linear discriminant function given by
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d

yp(x) = Z Wi T; + Wio (3.24)
i=1 .

in which the weights and bias are given by

ki = In Pki e ln(l —_ Pki) (3.25)
d

weo = Y In(1 = Py;) + ln P(Cy). (3.26)
i=1

We have already seen that, for two classes with normally distributed class-
conditional densities, the posterior probabilities can be obtained from the linear
discriminant by applying a logistic activation function. A similar result holds
also for the Bernoulli distribution. Consider a set of independent binary variables
z;, having Bernoulli class-conditional densities given by (3.22). If we substitute
(3.22) into (3.12) we again obtain a single-layer network structure, with a logistic
activation function, of the form

P(C1|x) = g(wTx + wy) | (3.27)

where g(a) is given by (3.16) and

Plz P(Cl)
wo = § 'In 2 T By (3.28)
Pu 1Py
wi=ln 7~ In B, (3.29)

We have shown that, both for normally distributed and Bernoulii distributed
class-conditional densities, the posterior probabilities are obtained by a logistic
single-layer network. In fact these are particular instances of a much more general
result, which is derived in Section 6.7.1.

3.2 Linear separability

So far in this chapter we have discussed discriminant functions having a decision
boundary which is linear, or more generally hyperplanar in higher dimensions.
Clearly this is a very restricted class of decision boundary, and we might well
expect such systems to have less than optimal performance for many practical
applications. Indeed, this provides the principal motivation for using multi-layer
networks of the kind discussed in Chapters 4 and 5. The particular nature of
the limitation inherent in single-layer systems warrants some careful discussion,

" however.
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Figure 3.6. The exclusive-OR. problem consists of four patterns in a two-
dimensional space as shown. It provides a simple example of a problem which
is not linearly separable.

Consider for the moment the problem of learning to classify a given data set
exactly, where each input vector has been labelled as belonging to one of two
classes Cy and C,. If all of the points can be a classified correctly by a linear
(i.e. hyperplanar) decision boundary, then the points are said to be linearly
separable. For such a data set there exist weight and bias values such that a
linear discriminant will lead to perfect classification. A simple example of a data
set which is not linearly separable is provided by the two-dimensional exclusive-
OR problem, also known as XOR, illustrated in Figure 3.6. The input vectors
x = (0,0) and (1, 1) belong to class C;, while the input vectors (0, 1) and (1,0)
belong to class C,. It is clear that there is no linear decision boundary which can
classify all four points correctly. This problem can be generalized to d-dimensions
when it is known as the d-bit parity problem. In this case the data set consists
of all possible binary input vectors of length d, which are classified as class C; if
there is an even number of 1’s in the input vector, and as class C; otherwise.

For the case of continuous input variables it is interesting to consider the
probability that a random set of patterns will be linearly separable. Suppose
we have N data points distributed at random in d dimensions. Note that the
particular distribution used to generate the random points is not relevant. All
that we require is that there are no accidental degeneracies, i.e. that there is no
subset of d or fewer points which are linearly dependent. The points are then
said to be in general position. Having chosen the points, imagine that we then
randomly assign each of the points to one of the two classes Cy and Cy with equal
probability. Each possible assignment for the complete data set is referred to as
a dichotomy, and for N points there are 2V possible dichotomies. We now ask
what fraction F(N,d) of these dichotomies is linearly separable. It can be shown
(Cover, 1965) that this fraction is given by the expression
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Figure 3.7. Plot of the fraction F(N,d) of the dichotomies of N data points
in d dimensions which are linearly separable, as a function of N/(d + 1), for
various values of d.

1 when N <d+1

d

F(N,d) = 1 N-1 3.30

(N, d) 2N—1E ( i ) when N > d+1 (3.30)
=0

which is plotted as a function of N/(d + 1) in Figure 3.7 for d = 1, d = 20 and
d = o0o. Here the symbol

(ﬁ)zawg%mm (3.31)

denotes the number of combinations of M objects selected from a total of N. We
see from (3.30) that, if the number of data points is fewer than d-+1, any labelling
of the points will always lead to a linearly separable problem. For N = 2(d 4 1),
the probability of linear separability is 0.5 for any value of d (Exercise 3.5). In
a practical application, the positions of points from the same class will tend to
be correlated, and so the probability that a data set with a much larger number
of points than 2(d + 1) will be linearly separable is higher than (3.30) would
suggest.

For the case of binary input patterns, if there are d inputs then there are
24 possible input patterns and hence 92" possible labellings of those patterns
between two classes. Those which can be implemented by a perceptron are called
threshold logic functions and form an extremely small subset (less than 27’ /d)
of the total (Lewis and Coates, 1967).

In the neural computing literature a lot of attention is often paid to the in-
ability of single-layer networks to solve simple problems such ag XOR. From our
statistical pattern recognition perspective, however, we see that the ability of
a particular model to provide an exact representation of a given training set is
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largely irrelevant. We are primarily interested in designing systems with good
generalization performance, so that they give the greatest accuracy when pre-
sented with previously unseen data. Furthermore, problems such as XOR and
parity involve learning the complete set of all possible input patterns, so the
concept of generalization does not even apply. Finally, they have the property
that the smallest possible change in the input pattern produces the largest pos-
sible change in the output. Most practical pattern recognition problems have the
opposite characteristic, so that smali changes in the inputs do not, for the most
part, produce large changes in the outputs, and hence the mapping represented
by the network should be relatively smooth.

Consider the problem of two normally-distributed classes with equal covari-
ance matrices, discussed in Section 2.1.3. Since the class distributions overlap it
is entirely possible that a finite sized data set drawn from these distributions will
not be linearly separable. However, we know that the optimal decision boundary
is in fact linear. A single-layer network can therefore achieve the best possible
classification performance on unseen data, even though it may not separate the
training data exactly.

The key consideration concerns the choice of an appropriate discriminant
function for the particular problem in hand. This may involve a combination
of prior knowledge of the general form which the solution should take, coupled
with an empirical comparison of the performance of alternative models. These
issues are considered in more detail in Chapters 8, 9 and 10. Here we simply
note that single-layer networks correspond to a very narrow class of possible
discriminant functions, and in many practical situations may not represent the
optimal choice. Nevertheless, single-layer networks remain of considerable prac-
tical importance in providing a benchmark against which the performance of
more complex multi-layer networks can be assessed. The fact that single-layer
networks can often be trained very quickly, as shown in Section 3.4, gives them a
particular advantage over more complex network structures which often require
considerable computational effort to train.

3.3 Generalized linear discriminants

One way to generalize the discriminant functions, so as to permit a much larger
range of possible decision boundaries, is to transform the input vector x using a
set of M predefined non-linear functions ¢;(x), sometimes called basis functions,
and then to represent the output as a linear combination of these functions

M
Y (%) = Y wk;d;(x) + wio. (3.32)

i=1

This now represents a much larger class of functions yx(x). In fact, as discussed in
Chapters 4 and 5, for a suitable choice of the basis functions ¢;(x}, the function
in (3.32) can approximate any continuous functional transformation to arbitrary
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accuracy. Again, we can absorb the biases as special cases of the weights by
defining an extra basis function ¢¢ = 1, so that

M
(%) = Y wijdy(x). (3.33)
j=0

We have assumed that the basis functions ¢;(x) are fixed, independently of the
data. Chapters 4 and 5 discuss multi-layer neural networks, many of which can
be regarded as generalized discriminant functions of the form (3.32), but in which
the basis functions themselves can be modified during the training process.

3.4 Least-squares techniques

So far in this chapter we have discussed various forms of single-layer network
and explored some of their properties. The remainder of the chapter is concerned
with techniques for training such networks, and we begin with a discussion of
methods based on the minimization of a sum-of-squares error function. This is
the simplest form of error function and is most suitable for regression problems.
While it can also be used for classification problems, there exist other, more
appropriate, error functions, discussed at length in Chapter 6.

3.4.1 Sum-of-squares error function

For consistency with the discussions in Chapter 5, we shall consider the error
minimization problem in the context of the generalized linear network (3.33).
This contains the simple linear discriminant of (3.4) as a special case in which
the ¢,(x) simply correspond to the input variables x;. The sum-of-squares error
function is given by a sum over all patterns in the training set, and over all
outputs, of the form

[4

N
B(w) =3 503 neiw) — 4 (339

where yi (x™; w) represents the output of unit k as a function of the input vector
x" and the weight vector w, N is the number of training patterns, and c is the
number of outputs. The quantity ¢} represents the target value for output unit k
when the input vector is x™. This error function is a smooth function of the weight
parameters wg;, and can be minimized by a variety of standard techniques. Since
(3.33) is a linear function of the weights, the error function E(w) is a quadratic
function of the weights, and hence its derivatives with respect to the weights
are linear functions of the weights.. The solution for the weight values at the
minimum of the error function can therefore be found exactly in closed form, as
we shall see in Section 3.4.3.
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Figure 3.8. Geometrical interpretation of the solution to the least-squares prob-
lem, illustrated for the case of 3 training patterns (N = 3) and 2 basis functions
¢o and ¢; (corresponding to M = 1). The target values t" are grouped together
to form an N-dimensional vector £ which lives in an N-dimensional Euclidean
space. The corresponding network outputs can similarly be represented as a
vector § which consists of a linear combination of M + 1 basis vectors J;j,
which themselves span an (M + 1)-dimensional Euclidean sub-space S. The
least-squares solution for 7 is given by the orthogonal projection of £ onto S.

3.4.2 Geometrical interpretation of least squares

Before deriving a solution for the weights, it is instructive to consider a geo-
metrical interpretation of the least-squares problem. To do this we consider a
network having a single output y. There is no loss of generality in doing this
as the same discussion applies separately to each output of the network. For a
particular input pattern x™ we can write the network output as

M
YU =) wigl (3.35)
§=0

where ¢7 = ¢;(x"). We now group the target values together to form an N-
dimensional vector ¢ whose elements are given by ¢". This vector can be con-
sidered to live in an N-dimensional Euclidean space, as indicated in Figure 3.8.
For each basis function ¢;(x) we can similarly group the N values of ¢7, corre-

sponding to the N data points, to make a vector 5_7‘, also of dimension N, which
can be drawn in the same space as the vector {. For the moment we shall assume
that the number of basis functions (including the bias) is less than the number
of patterns, so that M +1 < N. The M + 1 vectors $j, corresponding to the
M + 1 basis functions, then form a (non-orthogonal) basis set which spans an
{M + 1)-dimensional Euclidean sub-space S. The network outputs y™ can also
be grouped to form a vector §. From (3.35) we see that ¥ is given by a linear
combination of the d_;j of the form
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M -
7= ijd)j (3.36)

j=0

so that ¢ is constrained to lie in the sub-space S, as shown in Figure 3.8. By
changing the values of the weights w; we can change the location of §f subject to
this constraint.

The sum-of-squares error (3.34) can now be written in the form

2

[
E=3 ;wm,--t (3.37)

If we minimize this expression with respect to the weights w; we find

OE o .

This represents a set of coupled equations for the weights, known as the normal
equations of the least-squares problem, for which we shall find an explicit solution
shortly. Before-doing so, however, it is useful to consider the geometrical inter-
pretation of (3.38). Let us decompose & into the sum of two vectors £ = £; + F”
where ﬁ| is the orthogonal projection of ¥ onto the sub-space S, and iy is the

remainder. Then @T {1 = 0 by definition, and hence from (3.38) we have

Since the vectors ¢; form a basis set which span the sub-space S, we can solve
(3.39) to give

P

7= (3.40)

and so the solution vector is just the projection of the vector of target values
onto the sub-space spanned by the basis vectors, as indicated in Figure 3.8. This
result is intuitively correct, since the process of learning corresponds to choosing
a direction for  such as to minimize its distance from £. Since 7 is constrained
to lie in the sub-space, the best we can do is choose it to correspond to the
orthogonal projection of £ onto S. This minimizes the length of the error vector
€= ¢ — . Note that the residual error vector émnin = f" — = —f, is then

orthogonal to S, so that $JTanin =0.
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3.4.3 Pseudo-inverse solution

We now proceed to find an exact solution to the least-squares problem. To do
this we return to the case of a network having c outputs. Using the expression
(3.33), we can write the sum-of-squares error function (3.34) in the form

2

N ¢ M
B(w) = % SO wggt -t (3.41)

n=1k=1 | j=0

Differentiating this expression with respect to wy; and setting the derivative to
zero gives the normal equations for the least-squares problem in the form

N M
ST T wnpdl — 13 p $7 =0. (3.42)
n=1 { j/'=0 .

In order to find a solution to (3.42) it is convenient to write it in a matrix
notation to give ’

(2Te)WT = aTT. | (3.43)

" Here @ has dimensions N x M and elements ¢7, W has dimensions ¢ X M and

elements wy;, and T has dimensions N x ¢ and elements t}. The matrix TP
in (3.43) is a square matrix of dimension M x M. Provided it is non-singular we
may invert it to obtain a solution to (3.43) which can be written in the form

wT = gl (3.44)

where ®! is an M x N matrix known as the pseudo-inverse of P (Golub and
Kahan, 1965; Rao and Mitra, 1971) and is given by

3t = (8Te) 18T (3.45)

Since ® is, in general, a non-square matrix it does not itself have a true inverse,
but the pseudo-inverse does have the property (as is easily seen from 3.45) that
#1® = I where I is the unit matrix. Note, however, that <I><I>T # I in general. If
the matrix @7 ® is singular then (3.43) does not have a unique solution. However,
if the pseudo-inverse is defined by

af = lim (87®+e)'e" (3.46)
€—
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then it can be shown that the limit always exists, and that this limiting value
minimizes E (Rao and Mitra, 1971).

In practice, the direct solution of the normal equations can lead to numerical
difficulties due to the possibility of ®T&® being singular or nearly singular. This
can arise if two of the basis vectors q—%, shown in Figure 3.8, are nearly collinear.
The effects of noise and numerical error can then lead to very large values for
the weights which give near cancellation between these vectors. Figure 3.9(a)
shows two basis vectors ¢; and $2 which are nearly orthogonal, together with
the component % of ¥ which lies in the plane spanned by ¢; and $2. The corre-

sponding weight values needed to express ¢ as a linear combination of 451 and
$2 have relatively small values. By contrast, Figure 3.9(b) shows the correspond-
ing situation when the vectors qﬁl and @ are nearly collinear. In this case the

weights need to adopt large (positive or negative) values in order to represent
%) as a linear combination of the basis vectors. In the case where the two basis

vectors are exactly collinear, we can write ¢2 = /\¢1 for some constant A. Then
w1¢1 + wade = (wy + )\wg)dn and only the combination (w; + Awg) is fixed
by the least-squares procedure, with the value of we, say, being arbitrary. Near
degeneracies will not be uncommon when dealing with real, noisy data sets. In
practice, such problems are best resolved by using the technique of singular value
decomposition (SVD) to find a solution for the weights. A good introduction to
SVD, together with a suggested numerical implementation, can be found in Press
et al. (1992). Such an approach avoids problems due to the accumulation of nu-
merical roundoff errors, and automatically selects (from amongst a set of nearly
degenerate solutions) the one for which the length ||wy|| of the kth weight vector
is shortest.

In the above discussion, the bias parameters were treated as a special case
of the weights. We can gain some insight into the role of the biases if we make
them explicit, If we consider the minimization of (3.41) with respect to the bias
parameters alone we obtain

OF
o = }: Zwkﬂp, fwgg—tR $ =0 (3.47)

n=1 | j=1
which can be solved for the biases to give
who = fi — Z wi; b (3.48)
Jj=1

where
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Figure 3.9. In (a) we see two basis vectors #1 and ¢2 which are nearly orthog-
onal. The least-squares solution vector 7 is given by a linear combination of
these vectors, with relatively small values for the coefficients w; and ws. In (b)
the basis vectors are nearly collinear, and the magnitudes of the corresponding
weight values become very large.
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This result tells us that the role of the bias parameters is to compensate for the
difference between the mean (over the training set) of the output vector for the
network and the corresponding mean of the target data.

If 7 is a square non-singular matrix, the pseudo-inverse reduces to the usual
inverse. The matrix is square when N = M, so that the number of patterns equals
the number of basis functions. If we multiply (3.43) by (%)~! we obtain

WY =T, (3.50)

If we write this in index notation we have
M
> wiid} =ty (3.51)
j=0

and we see that, for each input pattern, the network outputs are exactly equal to
the corresponding target values, and hence the sum-of-squares error (3.41) will
be zero. The condition for (®7)~! to exist is that the columns ¢" of the matrix
&7 be linearly independent. If the vectors ¢™ are not linearly independent, so
that the effective value of N is less than M, then the least-squares problem
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is under-determined. Similarly, if there are fewer patterns than basis functions,
so that N < M, then the least-squares problem is again under-determined. In
such cases, there is a continuum of solutions for the weights, all of which give
zero error. Singular value decomposition leads to a numerically well-behaved
algorithm which picks out the particular solution for which the magnitude |jwy]|
of the weight vector for each output unit k& is the shortest. As we have already
indicated in Chapter 1, it is desirable to have a sufficiently large training set
that the weight values are ‘over-determined’, so that in practice we arrange that
N > M, which corresponds to the situation depicted in Figure 3.8.

3.4.4 Gradient descent

We have shown how, for a linear network, the weight values which minimize the
sum-of-squares error function can be found explicitly in terms of the pseudo-
inverse of a matrix. It is important to note that this result is only possible for
the case of a linear network, with a sum-of-squares error function. If a non-linear
activation function, such as a sigmoid, is used, or if a different error function
is considered, then a closed form solution is no longer possible. However, if the
activation function is differentiable, as is the case for the logistic sigmoid in (3.16)
for instance, the derivatives of the error function with respect to the weight
parameters can easily be evaluated. These derivatives can then be used in a
variety of gradient-based optimization algorithms, discussed in Chapter 7, for
finding the minimum of the error function. Here we consider one of the simplest
of such algorithms, known as gradient descent.

It is convenient to group all of the parameters (weights and biases) in the
network together to form a single weight vector w, so that the error function
can be expressed as E = E(w). Provided F is a differentiable function of w we
may adopt the following procedure. We begin with an initial guess for w (which
might for instance be chosen at random) and we then update the weight vector
by moving a small distance in w-space in the direction in which E decreases most
rapidly, i.e. in the direction of —V E. By iterating this process we generate a
sequence of weight vectors w("} whose components are calculated using

(r+1) — () _ oF 3.52
wkj wkj awkj w ( - )

where 77 is a small positive number called the learning rate parameter. Under
suitable conditions the sequence of weight vectors will converge to a point at
which F is minimized. The choice of the value for 7 can be fairly critical, since
if it is too small the reduction in error will be very slow, while, if it is too large,
divergent oscillations can result.

In general the error function is given by a sum of terms each of which is
calculated using just one of the patterns from the training set, so that

E(w) =Y E™(w) (3.53)

n
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where the term E™ is calculated using pattern n only. In this case we can update

the weight vector using just one pattern at a time

(1) _, (v OE"
R F

(3.54)

and this is repeated many times by cycling through all of the patterns used in the
.definition of E. This form of sequential, or pattern-based, update is reminiscent
of the Robbins-Monro procedure introduced in Section 2.4, and many of the
same comments apply here. In particular, this technique-allows the system to be
used in real-time adaptive applications in which data is arriving continuously.
Each data point can be used once and then discarded, and if the value of 5
is chosen appropriately, the system may be able to ‘track’ any slow changes
in the characteristics of the data. If 5 is chosen to decrease with time in a
suitable way during the learning process, then gradient descent becomes precisely
thie Robbins-Monro procedure for finding the root of the regression function
E|OE™) 0w} where £ denotes the expectation. If the value of 4 is chosen to be
steadily decreasing with time, so that (") = 59/ (which satisfies the conditions
for the Robbins—Monro theorem stated in Section 2.4), then the weight matrix
W can be shown to converge to a solution of

2T (@W -T)=0 . (3.55)

where @ is defined on page 92, irrespective of whether or not &7 ® is singular.
Gradient descent, and its limitations, are discussed at greater length in Chap-
ter 7, along with a variety of more sophisticated optimization algorithms.

In order to implement gradient descent, we need explicit expressions for the
derivatives of the error function with respect to the weights. We consider first
the pattern-based form of gradient descent given by (3.54). For a generalized
linear network function of the form (3.33) the derivatives are given by

oOE™ " . i sogn .
Bwr; {yn(x") — tE}6;(x") = 6L 85 (8.56)

where we have defined
6F = y(x") — ;- (3.57)

We see that the derivative with respect to a weight wg; connecting basis function
4 to output k can be expressed as the product of 6 for the output unit and ¢; for
the basis function. Thus, the derivative can be calculated from quantities which
are ‘local’ (in the sense of the network diagram) to the weight concerned. This
property is discussed at greater length in the context of multi-layer networks in
Section 4.8. Combining (3.54) and (3.56) we see that the change in the weights
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due to presentation of a particular pattern is given by
Awpy = ~nbp ¢7. : (3.58)
This rule, and its variants, are known by a variety of names including the LMS

(least mean squares) rule, the adaline rule, the Widrow—Hoff rule (Widrow and
Hoff, 1960), and the delta rule.
For networks with differentiable non-linear activation functions, such as the

logistic sigmoid shown in Figure 3.5, we can write the network outputs in the
form

Yk = g(ax) (3.59)

where g(-) is the activation function, and

M
ay = zwkj¢j~ (3.60)
i=0
The derivatives of the error function for pattern n again take the form
gf; = g'(ax)6; 0} (3.61)
in which
5 = 9@ (x") ). (3.62)

For the logistic sigmoid given by (3.16), the derivative of the activation function
can be expressed in the simple form

g'(a) = g(a)(1 ~ g(a)). (3.63)

For gradient descent based on the total error function (summed over all patterns
in the training set) given by (3.52), the derivatives are obtained by computing
the derivatives for each pattern separately and then summing over all patterns

OE BE"
B~ ; P (3.64)
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Figure 3.10. The perceptron network used a fixed set of processing elements,
denoted ¢;, followed by a layer of adaptive weights w; and a threshold acti-
vation function g{-). The processing elements ¢; typically also had threshold
activation functions, and took inputs from a randomly chosen subset of the
pixels of the input image.

3.5 The perceptron

Single-layer networks, with threshold activation functions, were studied by Rosen-
blatt (1962) who called them perceptrons. Rosenblatt also built hardware imple-
mentations of these networks, which incorporated learning using an algorithm
to be discussed below. These networks were applied to classification problems,
in which the inputs were usually binary images of characters or simple shapes.
The properties of perceptrons are reviewed in Block (1962).

At the same time as Rosenblatt was developing the perceptron, Widrow and
co-workers were working along similar lines using systems known as adalines
(Widrow and Lehr, 1990). The term adaline comes from ADAptive LINear Ele-
ment, and refers to a single processing unit with threshold non-linearity (Widrow
and Hoff, 1960) of essentially the same form as the perceptron.

We have already seen that a network with a single layer of weights has very
limited capabilities. To improve the performance of the perceptron, Rosenblatt
used a layer of fixed processing elements to transform the raw input data, as
shown in Figure 3.10. These processing elements can be regarded as the basis
functions of a generalized linear discriminant. They typically took the form of
fixed weights connected to a random subset of the input pixels, with a threshold
activation function of the form (3.20). We shall again use the convention intro-
duced earlier of defining an extra basis function ¢ whose activation is perma-
nently set to 41, together with a corresponding bias parameter wo. The output
of the perceptron is therefore given by

M
v=9|Y widi(x) | = g(w'9) (3.65)
j=0

where ¢ denotes the vector formed from the activations ¢y, ..., dp. The output
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unit activation function is most conveniently chosen to be an anti-symmetric
version of the threshold activation function of the form

-1 whena<@
9(a) = {+1 when a > 0. (3.66)

We now turn to a discussion of the procedures used to train the perceptron.

3.5.1 The perceptron criterion

Since our goal is to produce an effective classification system, it would be natural
to define the error function in terms of the total number of misclassifications over
the training set. More generally we could introduce a loss matrix (Section 1.10)
and consider the total loss incurred as a result of a particular classification of
the data set. Such error measures, however, prove very difficult to work with
in practice. This is because smooth changes in the values of the weights (and
biases) cause the decision boundaries to move across the data points resulting
in discontinuous changes in the error. The error function is therefore piecewise
constant, and so procedures akin to gradient descent cannot be applied. We
therefore seek other error functions which can be more easily minimized.

In this section we consider a continuous, piecewise-linear error function called
the perceptron criterion. As each input vector x™ is presented to the inputs of
the network it generates a corresponding vector of activations ¢™ in the first-
layer processing elements. Suppose we associate with each input vector x" a
corresponding target value t™, such that the desired output from the network
is t™ = +1 if the input vector belongs to class Cy, and t™ = -1 if the vector
belongs to class Cp. From (3.65) and (3.66) we want wT¢™ > 0 for vectors from
class Cy, and wT@™ < 0 for vectors from class Cy. It therefore follows that for all
vectors we want to have wT(¢"t") > 0. This suggests that we try to minimize
the following error function, known as the perceptron criterion

EPre(w) =~ ) wT(¢™t") (3.67)

P eM

where M is the set of vectors ¢™ which are misclassified by the current weight
vector w. The error function EP*°(w) is the sum of a number of positive terms,
and equals zero if all of the data points are correctly classified. From the dis-
cussion in Section 3.1 we see that EP®™(w) is proportional to the sum, over all
of the input patterns which are misclassified, of the (absolute) distances to the
decision boundary. During training, the decision boundary will move and some
points which were previously misclassified will become correctly classified (and
vice versa) so that the set of patterns which contribute to the sum in (3.67) will
change. The perceptron criterion is therefore continuous and piecewise linear
with discontinuities in its gradient.
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3.5.2  Perceptron learning

If we apply the pattern-by-pattern gradient descent rule (3.54) to the perceptron
criterion (3.67) we obtain

Wl = w7 4 penen, (3.68)

This corresponds to a very simple learning algorithm which can be summarized
as follows. Cycle through all of the patterns in the training set and test each
pattern in turn using the current set of weight values. If the pattern is correctly
classified do nothing, otherwise add the pattern vector (multiplied by 1) to the
weight vector if the pattern is labelled class C; or subtract the pattern vector
(multiplied by n) from the weight vector if the pattern is labelled class Cs. It is
easy to see that this procedure tends to reduce the error since

_w(-r+l)T(¢ntn) - _W(T)T(¢ntn) _ 7’)((}5ntn)T(¢ntn) < _W(T)T(¢"t") (3_69)

since [|¢"t*||> > 0 and 5 > 0.

For the particular case of the perceptron criterion, we see that the value of
7 is in fact unimportant since a change in 7 is equivalent to a re-scaling of the
weights and bias (assuming the initial parameter values are similarly re-scaled).
This leaves the location of the decision boundaries unchanged. To see this, recall
that the location of the decision boundary is given by (3.2), and is therefore
unchanged if all of the weights, including the bias, are rescaled by the same
constant. Thus, when minimizing the perceptron criterion, we can take n = 1
with no loss of generality. This property does not hold, however, for most other
forms of error function.

In Figures 3.11-3.13 we give a simple example of learning in a perceptron, for
the case of one basis function ¢;, so that, with biases included as special cases of
the weights, the data points live in a two-dimensional space (@, ¢1) with ¢g = 1.

3.5.3  Perceptron convergence theorem

There is an interesting result which states that, for any data set which is linearly
separable, the learning rule in (3.68) is guaranteed to find a solution in a finite
number of steps (Rosenblatt, 1962; Block, 1962; Nilsson, 1965; Minsky and Pa-
pert, 1969; Duda and Hart, 1973; Hand, 1981; Arbib, 1987; Hertz et al., 1991).
This is known as the perceptron convergence theorem. Here we give a relatively
simple proof, based on Hertz et al. (1991).

Since we are considering a data set which is linearly separable, we know
that there exists at least one weight vector W for which all training vectors are
correctly classified, so that

wT¢™™ >0  for all n. (3.70)
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Figure 3.11. A simple example of perceptron learning, for a data set with four
patterns. Circles represent patterns belonging to class C; and squares represent
patterns belonging to class C;. The initial decision boundary, corresponding to
the weight vector w(®, shown by the dashed curve, leaves one of the points,
at ¢, incorrectly classified.

The learning process starts with some arbitrary weight vector which, without loss

of generality, we can assume to be the zero vector. At each step of the algorithm,
the weight vector is updated using

wiTth) = (1) 4 gnyn (3.71)
where ¢" is a vector which is misclassified by the perceptron. Suppose that, after
running the algorithm for some time, the number of times that each vector ¢"

has been presented and misclassified is 7™. Then the weight vector at this point
will be given by

w=) T¢"" (3.72)
n .
We now take the scalar product of this equation with W to give
WTW = Z TnV’C’T(ﬁntn
n
> 7 min (WT¢"t") (3.73)
n

where 7 = ) 7" is the total number of weight updates, and the inequality
results from replacing each update vector by the smallest of the update vectors.



102 8: Single-Layer Networks
A
7
pY /
¢ ®© /o
m 7/
W /
Z ¢’
/ d n
/7
7 u]

Figure 3.12. To correct for the misclassification of ¢! in Figure 3.11 we add
(minus) ¢! onto w'? to give a new weight vector w(?), with the new decision
boundary again shown by the dashed curve. The point at ¢' is now correctly
classified, but the point at ¢2 is now incorrectly classified.
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Figure 3.13. To correct for the misclassification of ¢ in Figure 3.12 we add

$? onto w'b) to give a new weight
correctly.

From (3.70) it then follows that the value of W w is bounded below by a function

which grows linearly with 7.

Keeping this result in mind, we now turn to a consideration of the magnitude

vector w(® which classifies all the points

of the weight vector w. From (3.71) we have
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WP = w2 4 g™ 7 (™) + 2w Tt
< w2+ " (> (3.74)

where the inequality follows from the fact that the pattern ¢" must have been
misclassified, and so w{T¢p™" < 0. We also have (¢7)? = 1 since t* = +1, and
™11 < li@ll2.ax where |l|lmax is the length of the longest input vector. Thus,
the change in the value of [|w||? satisfies

Altwl? = w2 — WO < | li7hax (3.75)
and so after 7 weight vector updates we have

wil? < 7llellFax (3.76)

and so the length ||w|| of the weight vector increases no faster than /2, We
now recall the previous result that % Tw is bounded below by a linear function
of 7. Since W is fixed, we see that for sufficiently large 7 these two results would
become incompatible. Thus 7 cannot grow indefinitely, and so the algorithm
must converge in a finite number of steps.

One of the difficulties with the perceptron learning rule is that, if the data
set happens not to be linearly separable, then the learning algorithm will never
terminate. Furthermore, if we arbitrarily stop the learning process there is no
guarantee that the weight vector found will generalize well for new data. Various
heuristics have been proposed with a view to giving good performance on prob-
lems which are not linearly separable while still ensuring convergence when the
problem is linearly separable. For example, the value of the parameter # may be
made to decrease during the learning process so that the corrections gradually
become smaller. One approach is to take 5 = K/ where K is a constant and 7 is
the step number, by analogy with the Robbins-Monro procedure (Section 2.4.1).
An alternative algorithm for finding good solutions on problems which are not
linearly separable, called the pocket algorithm, is described in Section 9.5.1. As
we have already discussed, the issue of linear separability is a somewhat arti-
ficial one, and it is more important to develop learning algorithms which can
be expected to give good performance across a wide range of problems, even if
this means sacrificing the guarantee of perfect classification for linearly separable
problems,

3.5.4 Limitations of the perceptron

When perceptrons were being studied experimentally in the 1960s, it was found
that they could solve many problems very readily, whereas other problems, which
superficially appeared to be no more difficult, proved impossible to solve. A crit-
ical appraisal of the capabilities of these networks, from a formal mathematical
viewpoint, was given by Minsky and Papert (1969) in their book Perceptrons.
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They showed that there are many types of problem which a perceptron cannot,
in any practical sense, be used to solve. In this context a solution is taken to be
a correct classification of all of the patterns in the training set.

Many recent textbooks on neural networks have summarized Minsky and
Papert’s contribution by pointing out that a single-layer network can only classify
data sets which are linearly separable, and hence can not solve problems such as
the XOR example considered earlier. In fact, the arguments of Minsky and Papert
are rather more subtle, and shed light on the nature of multi-layer networks in
which only one of the layers of weights is adaptive. Consider the perceptron
shown in Figure 3.10. The first layer of fixed (non-adaptive) processing units
computes a set of functions ¢; whose values depend on the input pattern. Even
though the data set of input patterns may not be linearly separable, when viewed
in the space of original input variables, it can easily be the case that the same
set of patterns becomes linearly separable when transformed into the space of
¢; values. Thus a perceptron can solve a linearly inseparable problem, provided
it has an appropriate set of first-layer processing elements.

The real difficulty with the perceptron arises from the fact that these pro-
cessing elements are fixed in advance and cannot be adapted to the particular
problem (or data set) which is being considered. As a consequence of this, it turns
out that the number, or complexity, of such units must grow very rapidly (typi-
cally exponentially) with the dimensionality of the problem if the perceptron is
to remain capable in general of providing a solution. It is therefore necessary to
limit either the number or the complexity of the first-layer units. Minsky and
Papert discuss a range of different forms of perceptron (depending on the form
of the functions ¢;) and for each of them they provide examples of problems
which cannot be solved.

Here we consider one particular form, called a diameter-limited perceptron,
in which we consider two-dimensional input images as shown in Figure 3.10, and
in which each of the ¢; takes its inputs only from within a small localized region
of the image, called a receptive field, having fixed diameter. Minsky and Papert
(1969) provide a simple geometrical proof that such a perceptron cannot solve a
simple problem involving the determination of whether a binary geometrical im-
age is simply connected. This is illustrated in Figure 3.14. We shall suppose that
connected shapes are labelled with targets +1 and that disconnected shapes have
targets —1. Note that the overall length of the shapes is taken to be much larger
than the maximum diameter of the receptive fields (indicated by the dashed cir-
cles), so that no single receptive field can overlap both ends of the shape. For the
shape in Figure 3.14 (a), the functions ¢; and the adaptive weights in the per-
ceptron must be such that the linear sum which forms the input to the threshold
function is negative, if this figure is to be correctly classified as ‘disconnected’.
In going to 3.14 (b), only the left-hand end of the shape has changed, so the
receptive fields which lie in this region, and their corresponding weights, must
be such that the linear sum is increased sufficiently to make it go positive, since
this shape is ‘connected’. Similarly, in going from 3.14 (a) to 3.14 (c) the linear
sum must also be increased sufficiently to make it positive. However, in going
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Figure 3.14. An example of a simple problem, involving the determination of
whether a geometrical figure is simply connected, which cannot be solved by
a perceptron whose inputs are taken from regions of limited diameter.

from 3.14 (a) to 3.14 (d), both ends of the shape have been changed in this way,
and so the linear sum must be even more positive. This is inevitable since the
diameter limitation means that the response due to the two ends of the shape are
independent. Thus, the linear sum cannot be negative for the shape in 3.14 (d),
which will therefore be misclassified. v .

Various alternative approaches to limiting the complexity of the first-layer
units can be considered. For instance, in an order-limited perceptron, each of the
¢; can take inputs only from a limited number of input pixels (which may lie
anywhere on the input image). Counter-examples similar to the one presented
above can be found also for these other choices of ¢;. These difficulties can be
circumvented by allowing the number and complexity of the ¢; to grow suffi-
ciently rapidly with the dimensionality of the problem. For example, it is shown
in Section 4.2.1 that, for networks with binary inputs, there is a simple proce-
dure for constructing the ¢; such that any set of input patterns is guaranteed to
be linearly separable in the ¢; space. The number of such units, however, must
grow exponentially with the input dimensionality. Such an approach is therefore
totally impractical for anything other than toy problems.

The practical solution to these difficulties is to allow the functions ¢; to be
adaptive, so that they are chosen as part of the learning process. This leads to a
consideration of multi-layer adaptive networks, as discussed in Chapters 4 and 5.

3.6 Fisher’s linear discriminant

As the final topic of this chapter we consider a rather different approach to lin-
ear discriminants, introduced by Fisher (1936). In Section 1.4 we encountered
the problem of the ‘curse of dimensionality’ whereby the design of a good clas-
sifier becomes rapidly more difficult as the dimensionality of the input space
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increases. One way of dealing with this problem is to pre-process the data so
as to reduce its dimensionality before applying a classification algorithm. The
Fisher discriminant aims to achieve an optimal linear dimensionality reduction.
It is therefore not strictly a discriminant itself, but it can easily be used to
construct a discriminant. As well as bheing an important technique in its own
right, the Fisher discriminant provides insight into the representations learned
by multi-layer networks, as discussed in Section 6.6.1.

3.6.1 Two classes

One very simple approach to dimensionality reduction, motivated by our earlier
discussion of single-layer networks, is to use a linear projection of the data onto
a one-dimensional space, so that an input vector x is projected onto a value y
given by '

y=wlx (3.77)

where, as before, w is a vector of adjustable weight parameters. Note that this
expression does not contain any bias parameter. We shall return to this point
shortly. In general, the projection onto one dimension leads to a considerable loss
of information, and classes which are well separated in the original d-dimensional
space may become strongly overlapping in one dimension. However, by adjusting
the components of the weight vector w we can select a projection which maxi-
mizes the class separation. To begin with, consider a two-class problem in which
there are Ny points of class C; and N3 points of class C3. The mean vectors of
the two classes are given by

1 T 1 T
my = — X, mo = — X, 3.78
l NlnEC1 ’ N2n€C2 ( )

We might think of defining the separation of the classes, when projected onto
w, as being the separation of the projected class means. This suggests that we
might choose w so as to maximize

mg — My = WT(mz - ml) (3.79)
where
e wT
ME = W my (3.80)
is the class mean of the projected data from class C. However, this expression
can be made arbitrarily large simply by increasing the magnitude of w. To solve
this problem, we could constrain w to have unit length, so that ), w? = 1. Using

a Lagrange multiplier (Appendix C) to perform the constrained maximization
we then find that w o< (my — my). There is still a problem with this approach,
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Figure 3.15. A schematic illustration of why it is important to take account of
the within-class covariances when constructing the Fisher linear discriminant
criterion. Projection of the data onto the z;-axis leads to greater separation
of the projected class means than does projection onto the zz-axis, and yet it
leads to greater class overlap. The problem is resolved by taking account of
the within-class scatter of the data points.

however, as illustrated in Figure 3.15. This shows two classes which are well
separated in the original two-dimensional space (z1,12). We see that projection
onto the zy-axis gives a much larger separation of the projected class means
than does projection onto the x;-axis. Nevertheless, separation of the projected
data is much better when the data is projected onto the xo-axis than when it is
projected onto the zy-axis. This difficulty arises from the substantial difference
of the within-class spreads along the two axis directions. The resolution proposed
by Fisher is to maximize a function which represents the difference between the
projected class means, normalized by a measure of the within-class scatter along
the direction of w.

The projection formula (3.77) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class scatter of the
transformed data from class Cy, is described the within-class covariance, given by

se= Y (y*—m) (3.81)

neCy

and we can define the total within-class covariance for the whole data set to be
simply s? + s2. We therefore arrive at the Fisher criterion given by

(3.82)

We can make the dependence on w explicit by using (3.77), (3.80) and (3.81) to
rewrite the Fisher criterion in the form
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wTSpw
J = 3.83
where Sp is the between-class covariance matrix and is given by
SB = (mg - ml)(m2 — ml)T (384)

and Sy is the total within-class covariance matrix, given by

Sw = Z (x* = mp)(x" = my)T + Z (x™ — my)(x™ — my)T. (l3.85)
n€ely n&Cs

Differentiating {3.83) with respect to w, we find that J(w) is maximized when
(wTSpw)Sww = (WISyyw)Spw. {3.86)

From (3.84) we see that Sgw is always in the direction of (mz — m;). Further-
more, we do not care about the magnitude of w, only its direction. Thus, we can
drop any scalar factors. Multiplying both sides of (3.86) by S‘TVI we then obtain

WX S‘;,l(mz - ml). (387)

This is known as Fisher’s linear discriminant, although strictly it is not a dis-
criminant but rather a specific choice of direction for projection of the data down
to one dimension. Note that, if the within-class covariance is isotropic, so that
Sw is proportional to the unit matrix, we find that w is proportional to the
difference of the class means, as discussed above. The projected data can sub-
sequently be used to construct a discriminant, by choosing a threshold yy so
that we classify a new point as belonging to C; if y(x) > yo, and classify it as
belonging to Ca otherwise. In doing this we note that y = wTx is the sum of
a set of random variables, and so we may invoke the central limit theorem (see
page 37) and model the class-conditional density functions p(y|Cy) using normal
distributions. The techniques of Chapter 2 can then be used to find the param-
eters of the normal distributions by maximum likelihood, and the formalism of
Chapter 1 then gives an expression for the optimal threshold.

Once we have obtained a suitable weight vector and a threshold, the proce-
dure for deciding the class of a new vector is identical to that of the perceptron
network of Section 3.5. We can therefore view the Fisher criterion as a specific
procedure for choosing the weights (and subsequently the bias) in a single-layer
network. More conventionally, however, it is regarded as a technique for dimen-
sionality reduction, a subject which is discussed at greater length in Chapter 8. In
reducing the dimensionality of the data we are discarding information, and this
cannot reduce {and will typically increase) the theoretical minimum achievable
error rate. Dimensionality reduction may be worthwhile in practice, however, as
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it alleviates problems associated with the curse of dimensionality. Thus, with
finite-sized data sets, reduction of the dimensionality may well lead to overall
improvements in the performance of a classifier system.

3.6.2 Relation to the least-squares approach

The least-squares approach to the determination of a linear discriminant was
based on the goal of making the network outputs as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maxi-
mum class separation in the output space. It is interesting to see the relationship
between these two approaches. In particular, we shall show that, for the two-class
problem, the Fisher criterion can be obtained as a special case of least squares.
So far we have taken the target values to be +1 for class Cy and —1 for
class Cy. If, however, we adopt a slightly different target coding scheme then the
least-squares solution solution for the weights becomes equivalent to the Fisher
solution (Duda and Hart, 1973). In particular, we shall take the targets for class
Ci to be N/Nj, where N; is the number of patterns in class C;, and N is the
total number of patterns. This target value approximates the reciprocal of the
prior probability for class C;. For class Ca we shall take the targets to be —IN/N.
The sum-of-squares error function can be written

N
—%Z (wTx™ +wo-—t") (3.88)

Setting the derivatives of F with respect to wp and w to zero we obtain respec-
tively

N
ST (wTx™ fwg —t") =0 (3.89)
n=1
N
Z (wa" + wp — t") x" = 0. (3.90)

n=1

From (3.89), and making use of our choice of target coding scheme for the t7,
we obtain an expression for the bias in the form

wp = —wim (3.91)

where m is the mean of the total data set and is given by

N .
1 1
= ﬁ E X" = —N—(Nlml + szz). (392)
n=1
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After some straightforward algebra, and again making use of the choice of 7,
the second equation (3.90) becomes

(Sw -+ N;VNz SB> w = N(m1 - mg) (3.93)
where Sw is defined by (3.85), Sp is defined by (3.84), and we have substituted
for the bias using (3.91). Using (3.84) we note that Sgw is always in the direction
of (mg — my). Thus we can write

w o Sy (mg — my) (3.94)

where we have ignored irrelevant scale factors. Thus the weight vector coincides
with that found from the Fisher criterion. In addition, we have also found an
expression for the bias value wg given by (3.91). This tells us that a new vector
x should be classified as belonging to class C; if wT(x — m) > 0 and class Cy
otherwise.

3.6.3 Several classes

We now consider the generalization of the Fisher discriminant to several classes,
and we shall assume that the dimensionality of the input space is greater than
the number of classes, so that d > ¢. Also, we introduce d’ > 1 linear ‘features’
yr = Wi x, where k = 1,...,d". These feature values can conveniently be grouped
together to form a vector y. Similarly, the weight vectors {wy} can be considered
to be the rows of a matrix W, so that

y=Wx (3.95)

The generalization of the within-class covariance matrix to the case of ¢ classes
follows from (3.85) to give

c
Sw =) Sk (3.96)
k=1
where
Sk =3 (x" - my)(x" — my)" (3.97)
ne€C
and
1 n
my = Y X (3.98)
k



8.6: Fisher’s linear discriminant 111

where Ny, is the number of patterns in class Ci. In order to find a generalization
of the between-class covariance matrix, we follow Duda and Hart (1973) and
consider first the total covariance matrix

N ;
Sp = Z(x” —m)(x" ~m)T (3.99)

n=1

where m is the mean of the total data set

N c
1 1
m= E x" = N E Niemy, (3.100)
n=1 k=1 ’

and N =3, Ny is the total number of data points. The total covariance matrix
can be decomposed into the sum of the within-class covariance matrix, given by
(3.96) and (3.97), plus an additional matrix Sp which we identify as a measure
of the between-class covariance

Sr=8w + Sp ‘ (3.101)
where
[+
Sp =Y Ni(mg — m)(m; —m)". (3.102)
k=1

These covariance matrices have been defined in the original x-space. We can now
define similar matrices in the projected d'-dimensional y-space

[+
sw=3_ > (" — )" )" (3.103)
k=1neC;
and
[+
sp =) Nelpe — ) (e — )" (3.104)
k=1
where
1 1<
A >y, r=5 > Nepye (3.105)
neCy k=1

Again we wish to construct a scalar which is large when the between-class co-
variance is large and when the within-class covariance is small. There are now
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many possible choices of criterion (Fukunaga, 1990). One example is given by
J(W) =Tr {s'sB} (3.106)

where Tr{M} denotes the trace of a matrix M. This criterion can then be rewrit-
ten as an explicit function of the projection matrix W in the form

J(W) =Tr {(WSy WT)~"}(WSpWT)}. (3.107)
Maximization of such criteria is straightforward, though somewhat involved,
and is discussed at length in Fukunaga (1990). The weight values are determined
by those eigenvectors of S;;/Sp which correspond to the d’ largest eigenvalues.
There is one important result which is common to all such criteria, which is
worth emphasizing. We first note from (3.102) that Sp is composed of the sum
of ¢ matrices, each of which is an outer product of two vectors and therefore of
rank 1. In addition only (¢ — 1) of these matrices are independent as a result
of the constraint (3.100). Thus, Sg has rank at most equal to (¢ — 1) and so
there are at most (¢ — 1) non-zero eigenvalues. This shows that the projection
down onto the (¢ — 1)-dimensional sub-space spanned by the eigenvectors of Sg
does not alter the value of J(W), and so we are therefore unable to find more
than (¢ ~ 1) linear ‘features’ by this means (Fukunaga, 1990). Dimensionality
reduction and feature extraction are discussed at greater length in Chapter 8.

Exercises

3.1 (x) Consider a point T which lies on the plane y(X) = 0, where y(x) is given
by {3.1). By minimizing the distance ||x — X|| with respect to X subject
to this constraint, show that the value of the linear discriminant function
y(x) gives a {signed) measure of the perpendicular distance L of the point
x to the decision boundary y(x) = 0 of the form

N (3.108)

3.2 (x) There are seveial possible ways in which to generalize the concept of a
linear discriminant function from two classes to ¢ classes. One possibility
would be to use (¢—1) linear discriminant functions, such that yx(x) > 0 for
inputs x in class Cp, and y(x) < 0 for inputs not in class Cx. By drawing
a simple example in two dimensions for ¢ = 3, show that this approach
can lead to regions of x-space for which the classification is ambiguous.
Another approach would be to use one discriminant function y;i(x) for
each possible pair of classes C; and Cy, such that y;k(x) > 0 for patterns in
class C;, and y;x(x) < 0 for patterns in class C. For ¢ classes we would need
¢(c ~ 1)/2 discriminant functions. Again, by drawing a specific example
in two dimensions for ¢ = 3, show that this approach can also lead to
ambiguous regions.
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3.3 (x) Consider a mixture model of the form (2.71) in which the component
densities are given by

d
p(xlj) = HPf;(l — Py) 7% (3.109)
=1

which is equiv.alent' to (3.22). Show that the maximum likelihood solution
for the parameters Pj; is given by

5 _ S, Pl
L P

where P(j|x) is the posterior probability for component j corresponding
to an input vector x and is given, from Bayes’ theorem, by

p(x|7)P(5)
2k P(x|k)P(k)
and P(j) is the corresponding prior probability.

3.4 (x %) Given a set of data points {x"} we can define the convez hull to be the
set of all points x given by

(3.110)

P(j|x) = (3.111)

x = Z o, x"” (3.112)
n

where a, > 0 and 3, o, = 1. Consider a second set of points {z"} and its
corresponding convex hull. The two sets of points will be linearly separable
if there exists a vector W and a scalar wg such that WTx™ 4wy > 0 for all
x™, and W¥z" +wp < O for all z*. Show that, if their convex hulls intersect,
the two sets of points cannot be linearly separable, and conversely that, if
they are linearly separable, their convex hulls do not intersect.

3.5 (x%) Draw all 22 = 4 dichotomies of N = 2 points in one dimension, and
hence show that the fraction of such dichotomies which are linearly sepa-
rable is 1.0. By considering the binomial expansion of 2¢ = (1 +1)¢, verify
that the summation in (3.30) does indeed give F =1 when N =d + 1 for
any d. Similarly, by drawing all 2¢ = 16 dichotomies of N = 4 points in one
dimension, show that the fraction of dichotomies which are linearly sepa-
rable is 0.5. By considering the binomial expansion of 224+! = (1 4 1)2¢+}
show from (3.30) that the fraction of dichotomies which are linearly sep-
arable for N = 2(d + 1) is given by F(2d + 2,d) = 0.5 for any N. Verify
that these results are consistent with Figure 3.7.

: 3.6 (xxx) Generate and plot a set of data points in two dimensions, drawn

i from two classes each of which is described by a Gaussian class-conditional

: density function. Implement the gradient descent algorithm for training a

logistic discriminant, and plot the decision boundary at regular intervals
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Figure 3.16. Distribution of data in one dimension drawn from two classes,
used in Exercise 3.7.

during the training procedure on the same graph as the data. Explore the
effects of choosing different values for the learning rate parameter 1. Com-
pare the behaviour of the sequential and batch weight update procedures
described by (3.52) and (3.54) respectively.

3.7 (*+) Consider data in one dimension drawn from two classes having the dis-
tributions shown in Figure 3.16. What is the ratio of the prior probabilities
for the two classes? Find the linear discriminant function y(z) = wz + we
which minimizes the sum-of-squares error function defined by

E=3 fos{y(m) -1} dz + LS{y(m) + 1} dx (3.113)

where the target values are t = 1 for class Cy and t = —1 for class Co. Show
that the decision boundary given by y(z) = 0 just fails to separate the two
classes. Would a single-layer perceptron necessarily find a solution which
separates the two classes exactly? Justify your answer. Discuss briefly the
advantages and limitations of the least-squares and perceptron algorithms
in the light of these results.

3.8 (x) Prove that, for arbitrary vectors w and W, the following inequality is
satisfied: (Tw)?

wlw
e =" @1

Hence, using the results (3.73) and (3.76) from the proof of the percep-
tron convergence theorem given in the text, show that an upper limit on
the number of weight updates needed for convergence of the perceptron
algorithm is given by

_ _I¥El R
= TR (3.115)
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3.9 (xx*) Generate a data set consisting of a small number of vectors in two
dimensions, each belonging to one of two classes. Write a numerical im-
plementation of the perceptron learning algorithm, and plot both the data
points and the decision boundary after every iteration. Explore the be-
haviour of the algorithm both for data sets which are linearly separable
and for those which are not.

3.10 (») Use a Lagrange multiplier (Appendix C) to show that, for two classes,
the projection vector which maximizes the separation of the projected class
means given by (3.79), subject to the constraint ||w||? = 1, is given by
w o (mg — my).

3.11 (x ) Using the definitions of the between-class and within-class covariance
matrices given by (3.84) and (3.85) respectively, together with (3.91) and
(3.92) and the choice of target values described in Section 3.6.2, show that
the expression (3.90) which minimizes the sum-of-squares error function
can be written in the form (3.93).

3.12 (*) By making use of (3.98), show that the total covariance matrix Sy
given by (3.99) can be decomposed into within-class and between-class
covariance matrices as in (3.101), where the within-class covariance matrix
Sw is given by (3.96) and (3.97), and the between- class covariance matrix
Spg is given by (3.102).



4
THE MULTI-LAYER PERCEPTRON

In Chapter 3, we discussed the properties of networks having a single layer of
adaptive weights. Such networks have a number of important limitations in terms
of the range of functions which they can represent. To allow for more general map-
pings we might consider successive transformations corresponding to networks
having several layers of adaptive weights. In fact we shall see that networks with
just two layers of weights are capable of approximating any continuous functional
mapping. More generally we can consider arbitrary network diagrams (not nec-
- essarily having a simple layered structure) since any network diagram can be
converted into its corresponding mapping function. The only restriction is that
the diagram must be feed-forward, so that it contains no feedback loops. This
ensures that the network outputs can be calculated as explicit functions of the
inputs and the weights.

We begin this chapter by reviewing the representational capabilities of multi-
layered networks having either threshold or sigmoidal activation functions. Such
networks are generally called multi-layer perceptrons, even when the activation
functions are sigmoidal. For networks having differentiable activation functions,
there exists a powerful and computationally efficient method, called error back-
propagation, for finding the derivatives of an error function with respect to the
weights and biases in the network. This is an important feature of such networks
since these derivatives play a central role in the majority of training algorithms
for multi-layered networks, and we therefore discuss back-propagation at some
length. We also consider a variety of techniques for evaluating and approximating
the second derivatives of an error function. These derivatives form the elements
of the Hessian matrix, which has a variety of different applications in the context
of neural networks.

4.1 Feed-forward network mappings

In the first three sections of this chapter we consider a variety of different kinds
of feed-forward network, and explore the limitations which exist on the mappings
which they can generate. We are only concerned in this discussion with finding
fundamental restrictions on the capabilities of the networks, and so we shall for
instance assume that arbitrarily large networks can be constructed if needed. In
practice, we must deal with networks of a finite size, and this raises a number of
important issues which are discussed in later chapters.
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outputs

hidden
units

inputs

Figure 4.1. An example of a feed-forward network having two layers of adaptive
weights. The bias parameters in the first layer are shown as weights from an
extra input having a fixed value of zg = 1. Similarly, the bias parameters in the
second layer are shown as weights from an extra hidden unit, with activation
again fixed at zo = 1.

We shall view feed-forward neural networks as providing a general framework
for representing non-linear functional mappings between a set of input variables
and a set of output variables. This is achieved by representing the non-linear
function of many variables in terms of compositions of non-linear functions of
a single variable, called activation functions. Each multivariate function can be
represented in terms of a network diagram such that there is a one-to-one corre-
spondence between components of the function and the elements of the diagram.
Equally, any topology of network diagram, provided it is feed-forward, can be
translated into the corresponding mapping function. We can therefore catego-
rize different network functions by considering the structure of the corresponding
network diagrams.

4.1.1 Layered networks

We begin by looking at networks consisting of successive layers of adaptive
weights. As discussed in Chapter 3, single-layer networks are based on a linear
combination of the input variables which is transformed by a non-linear activa-
tion function. We can construct more general functions by considering networks
having successive layers of processing units, with connections running from every
unit in one layer to every unit in the next layer, but with no other connections
permitted. Such layered networks are easier to analyse theoretically than more
general topologies, and can often be implemented more efficiently in a software
simulation.

An example of a layered network is shown in Figure 4.1. Note that units
which are not treated as output units are called hidden units. In this network
there are d inputs, M hidden units and ¢ output units. We can write down the
analytic function corresponding to Figure 4.1 as foliows. The output of the jth
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hidden unit is obtained by first forming a weighted linear combination of the d
input values, and adding a bias, to give

E:w(l)rr1 + w(l) (4.1)

Here w ) denotes a weight in the first layer, going from input ¢ to hidden unit

J, and w jo) denotes the bias for hidden unit j. As with the single-layer networks
of Chapter 3, we have made the bias terms for the hidden units explicit in the
diagram of Figure 4.1 by the inclusion of an extra input variable z¢ whose value
is permanently set at g = 1. This can be represented analytically by rewriting
(4.1) in the form

a-§:wn (4.2)

1=0

The activation of hidden unit j is then obtained by transforming the linear sum
in (4.2) using an activation function g{-) to give

2 = gla). (4.3)

In this chapter we shall consider two principal forms of activation function
given respectively by the Heaviside step function, and by continuous sigmoidal
functions, as introduced already in the context of single-layer networks in Sec-
tion 3.1.3.

The outputs of the network are obtained by transforming the activations of
the hidden units using a second layer of processing elements. Thus, for each
output unit k, we construct a linear combination of the outputs of the hidden
units of the form

ar = Zwkl z + ,(j)). (4.4)
Again, we can absorb the bias into the weights to give
l 2
ar = Zw,(w)zj ' (4.5)

which can be represented diagrammatically by including an extra hidden unit
with activation zg = 1 as shown in Figure 4.1. The activation of the kth output
unit is then obtained by transforming this linear combination using a non-linear
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activation function, to give

Yk = glak). K | _ (4.6)

Here we have used the notation g(-) for the activation function of the output
units to emphasize that this need not be the same function as uqed for ‘the
hidden units.

If we combine (4.2), (4.3), (4.5) and (4.6) we obtain an explicit expreqqion for
the complete function represented by the network diagram in Figure 4.1 in tho
form

M
k=7 Zw (Zw(l) ) : (4.7

We note that, if the activation functions for the output units are taken to be
linear, so that g(a) = a, this functional form becomes a special case of the
generalized linear discriminant function discussed in Section 3.3, in which the
basis functions are given by the particular functions z; deﬁned by (4.2) and
(4.3). The crucial difference is that here we shall regard the weight parameters
appearing in the first layer of the network, as well as those in the second layer,

as being adaptive, so that their values can be changed during the process of
network training.

The network of Figure 4.1 corresponds to a transformation of the input vari-
ables by two successive single-layer networks. It is clear that we can extend this
class of networks by considering further successive transformations of the same
general kind, corresponding to networks with extra layers of weights. Through-
out this book, when we use the term L-layer network we shall be referring to
a network with L layers of adaptive weights. Thus we shall call the network of
Figure 4.1 a two-layer network, while the networks of Chapter 3 are called single-
layer networks. It should be noted, however, that an alternative convention is
sometimes also found in the literature. This counts layers of units rather than
layers of weights, and regards the inputs as separate units. According to this
convention the networks of Chapter 3 would be called two-layer networks, and
the network in Figure 4.1 would be said to have three layers. We do not recom-
mend this convention, however, since it is the layers of adaptive weights which
are crucial in determining the properties of the network function. Furthermore,
the circles representing inputs in a network diagram are not true processing units
since their sole purpose is to represent the values of the input variables.

A useful technique for visualization of the weight values in a neural network
is the Hinton diagram, illustrated in Figure 4.2. Each square in the diagram cor-
responds to one of the weight or bias parameters in the network, and the squarcs
are grouped into blocks corresponding to the parameters associated with each
unit. The size of a square is proportional to the magnitude of the corresponding
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biases

weights

weights |

A B

Figure 4.2. Example of a two-layer network which solves the XOR problem,
showing the corresponding Hinton diagram. The weights in the network have
the value 1.0 unless indicated otherwise.

parameter, and the square is black or white according to whether the parameter
is positive or negative.

4.1.2 General topologies

Since there is a direct correspondence between a network diagram and its mathe-
matical function, we can develop more general network mappings by considering
more complex network diagrams. We shall, however, restrict our attention to the
case of feed-forward networks. These have the property that.there are no feed-
back loops in the network. In general we say that a network is feed-forward if it
is possible to attach successive numbers to the inputs and to all of the hidden
and output units such that each unit only receives connections from inputs or
units having a smaller number. An example of a general feed-forward network
is shown in Figure 4.3. Such networks have the property that the outputs can
be expressed as deterministic functions of the inputs, and so the whole network
represents a multivariate non-linear functional mapping.

The procedure for translating a network diagram into the corresponding
mathematical function follows from a straightforward extension of the ideas
already discussed. Thus, the output of unit &k is obtained by transforming a
weighted linear sum with a non-linear activation function to give

=g > w7 (4.8)
i

where the sum runs over all inputs and units which send connections to unit &
(and a bias parameter is included in the surnmation). For a given set of values
applied to the inputs of the network, successive use of (4.8) allows the activations
of all units in the network to be evaluated including those of the output units.
This process can be regarded as a forward propagation of signals through the
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outputs
N Y2

x ¥

inputs

Figure 4.3. An example of a neural network having a general feed-forward
topology. Note that each unit has an associated bias parameter, which has
been omitted from the diagram for clarity.

network. In practice, there is little call to consider random networks, but there
is often considerable advantage in building a lot of structure into the network.
An example involving multiple layers of processing units, with highly restricted
and structured interconnections between the layers, is discussed in Section 8.7.3.

Note that, if the activation functions of all the hidden units in a network are
taken to be linear, then for any such network we can always find an equivalent
network without hidden units. This follows from the fact that the composition of
successive linear transformations is itself a linear transformation. Note, however,
that if the number of hidden units is smaller than either the number of input or
output units, then the linear transformation which the network generates is not
the most general possible since information is lost in the dimensionality reduction
at the hidden units. In Section 8.6.2 it is shown that such networks can be related
to conventional data processing techniques such as principal component analysis.
In general, however, there is little interest in multi-layer linear networks, and we
shall therefore mainly consider networks for which the hidden unit activation
functions are non-linear.

4.2 Threshold units

There are many possible choices for the non-linear activation functions in a multi-
layered network, and the choice of activation functions for the hidden units may
often be different from that for the output units. This is because hidden and
output units perform different roles, as is discussed at length in Sections 6.6.1
and 6.7.1. However, we begin by considering networks in which all units have
Heaviside, or step, activation functions of the form
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ola) = {0 when a < 0 (4.9)

1 whena>0.

Such units are also known as threshold units. We consider separately the cases
in which the inputs consist of binary and continuous variables.

4.2.1 Binary inputs

Consider first the case of binary inputs, so that z; = 0 or 1. Since the network
outputs are also 0 or 1, the network is computing a Boolean function. We can
easily show that a two-layer network of the form shown in Figure 4.1 can generate
any Boolean function, provided the number M of hidden units is sufficiently large
{McCulloch and Pitts, 1943). This can be seen by constructing a specific network
which computes a particular (arbitrary) Boolean function. We first note that for
d inputs the total possible number of binary patterns which we have to consider
is 29. A Boolean function is therefore completely specified once we have given
the output (0 or 1) corresponding to each of the 2% possible input patterns. To
construct the required network we take one hidden unit for every input pattern
which has an output target of 1. We then arrange for each hidden unit to respond
just to the corresponding pattern. This can be achieved by setting the weight
from an input to a given hidden unit to +1 if the corresponding pattern has a
1 for that input, and setting the weight to —1 if the pattern has a 0 for that
input. The bias for the hidden unit is set to 1 — b where b is the number of
non-zero inputs for that pattern. Thus, for any given hidden unit, presentation
of the corresponding pattern will generate a summed input of b and the unit will
give an output of 1, while any other pattern (including any of the patterns with
target 0) will give a summed input of at most b — 2 and the unit will have an
output of 0. It is now a simple matter to connect each hidden unit to the output
unit with a weight +1. An output bias of —1 then ensures that the output of the
network is correct for all patterns.

This construction is of little practical value, since it merely stores a set of
binary relations and has no capability to generalize to new patterns outside the
training set. (since the training set was exhaustive). It does, however, illustrate the
concept of a template. Each hidden unit acts as a template for the corresponding
input pattern and only generates an output when the input pattern matches the
template pattern.

4.2.2 Continuous inputs

We now discuss the case of continuous input variables, again for units with
threshold activation functions, and we consider the possible decision boundaries
which can be produced by networks having various numbers of layers (Lippmann,
1987; Lonstaff and Cross, 1987). In Section 3.1 it was shown that a network with
a single layer of weights, and a threshold output unit, has a decision boundary
which is a hyperplane. This is illustrated for a two-dimensional input space in
Figure 4.4 (a). Now consider networks with two layers of weights. Again, each
hidden units divides the input space with a hyperplane, so that it has activation
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(a) (b) (©)

Figure 4.4. ustration of some possible decision boundaries which can be gen-
erated by networks having threshold activation functions and various numbers
of layers. Note that, for the two-layer network in (b), a single convex region of
the form shown is not the most general possible.

z = 1 on one side of the hyperplane, and 2z = 0 on the other side. If there are M
hidden units and the bias on the output unit is set to —M, then the output unit
computes a logical AND of the outputs of the hidden units. In other words, the
output unit has an output of 1 only if all of the hidden units have an output of 1.
Such a network can generate decision boundaries which surround a single convex
region of the input space, whose boundary consists of segments of hyperplanes,
as illustrated in Figure 4.4 (b}. A convex region is defined to be one for which any
line joining two points on the boundary of the region passes only through points
which lie inside the region. These are not, however, the most general regions
which can be generated by a two-layer network of threshold units, as we shall
see shortly.

Networks having three layers of weights can generate arbitrary decision re-
gions, which may be non-convex and disjoint, as illustrated in Figure 4.4 (c). A
simple demonstration of this last property can be given as follows (Lippmann,
1987). Consider a particular network architecture in which, instead of having
full connectivity between adjacent layers as considered so far, the hidden units
are arranged into groups of 2d units, where d denotes the number of inputs. The
topology of the network is illustrated in Figure 4.5. The units in each group send
their outputs to a unit in the second hidden layer associated with that group.
Each second-layer unit then sends a connection to the output unit. Suppose the
input space is divided into a fine grid of hypercubes, each of which is labelled as
class €y or Cp. By making the input-space grid sufficiently fine we can approxi-
mate an arbitrarily shaped decision boundary as closely as we wish. One group
of first-layer units is assigned to each hypercube which corresponds to class Cy,
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inputs

Figure 4.5. Topology of a neural network to demonstrate that networks with

three layers of threshold units can generate arbitrarily complex decision bound-

aries. Biases have been omitted for clarity.

\& ok i

and there are no units correspondmg to class 6’2 Usmg the ‘AND’ construction
for two-layer networks discussed above, we now arrange that each second-layer
hidden unit generates a 1 only for inputs lying in the corresponding hypercube.
This can be done by arranging for the hyperplanes associated with the first-layer
units in the block to be aligned with the sides of the hypercube. Finally, the
output unit has a bias which is set to —1 so that it computes a logical ‘OR’
of the outputs of the second-layer hidden units. In other words the output unit
generates a 1 whenever one (or more) of the second-layer hidden units does so. If
the output unit activation is 1, this is interpreted as class C;, otherwise it is inter-
preted as class Cy. The resultmg decision boundary then reflects the (arbitrary)
assignment of hypercubes to classes Cy and C,.

The above existence proof demonstrates that feed-forward neural networks
with threshold units can generate arbitrarily complex decision boundaries. The
proof is of little practical interest, however, since it requires the decision boundary
to be specified in advance, and also it will typically lead to very large networks.
Although it is ‘constructive’ in that it provides a set of weights and thresholds
which generate a given decision boundary, it does not answer the more practical
question of how to choose an appropriate set of weights and biases for a particular
problem when we are given only a set of training examples and we do not know
in advance what the optimal decision boundary will be.

Returning to networks with two layers of weights, we have already seen how
the AND construction for the output unit allows such a network to generate
an arbitrary simply-connected convex decision region. However, by relaxing the
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Figure 4.6. Example of a non-convex decision boundary generated by a network
having two layers of threshold units. The dashed lines show the hyperplanes
corresponding to the hidden units, and the arrows show the direction in which
the hidden unit activations make the transition from 0 to 1. The second-layer
weights are all set to 1, and so the numbers represent the value of the linear
sum presented to the output unit. By setting the output unit bias to —3.5, the
decision boundary represented by the solid curve is generated.
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Figure 4.7. As in Figure 4.6, but showing how a disjoint decision region can
be produced. In this case the bias on the output unit is set to —4.5.

restriction of an AND output unit, more general decision boundaries can be con-
structed (Wieland and Leighton, 1987; Huang and Lippmann, 1988). Figure 4.6
shows an example of a non-convex decision boundary, and Figure 4.7 shows a
decision region which is disjoint. Huang and Lippmann (1988) give some exam-
ples of very complex decision boundaries for networks having a two layers of
threshold units. .

This would seem to suggest that a network with just two layers of weights
could generate arbitrary decision boundaries. This is not in fact the case (Gibson
and Cowan, 1990; Blum and Li, 1991) and Figure 4.8 shows an example of a
decision region which cannot be produced by a network having just two layers of
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Figure 4.8. An example of a decision boundary which cannot be produced by
a network having two layers of threshold units (Gibson and Cowan, 1990).

weights. Note, however, that any given decision boundary can be approximated
arbitrarily closely by a two-layer network having sigmoidal activation functions,
as discussed in Section 4.3.2.

So far we have discussed procedures for generating particular forms of deci-
sion boundary. A distinct, though related, issue whether a network can classify
correctly a given set of data points which have been labelled as belonging to one
of two classes (a dichotomy). In Chapter 3 it is shown that a network having a
single layer of threshold units could classify a set of points perfectly if they were
linearly separable. This would always be the case if the number of data points
was at most equal to d + 1 where d is the dimensionality of the input space.
Nilsson (1965) showed that, for a set of N data points, a two-layer network of
threshold units with N — 1 units in the hidden layer could exactly separate an
arbitrary dichotomy. Baum (1988) improved this result by showing that for N
points in general position (i.e. excluding exact degeneracies) in d-dimensional
space, a network with [N/d] hidden units in a single hidden layer could separate
them correctly into two classes. Here [N/d]| denotes the smallest integer which
is greater than or equal to N/d.

4.3 Sigmoidal units

We turn now to a consideration of multi-layer networks having differentiable
activation functions, and to the problem of representing smooth mappings be-
tween continuous variables. In Section 3.1.3 we introduced the logistic sigmoid
activation function, whose outputs lie in the range (0,1), given by

L (4.10)

Y

AR P
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Figure 4.9. Plot of the ‘tanh’ activation function given by (4.11).

which is plotted in Figure 3.5. We discuss the motivation for this form of acti-
vation function in Sections 3.1.3 and 6.7.1, where we show that the use of such
activation fqnctions on the network outputs plays an important role in allowing
the outputs to be given a probabilistic interpretation.

The logistic sigmoid (4.10) is often used for the hidden units of a multi-layer
network. However, there may be some small practical advantage in using a ‘tanh’
activation function of the form

e —e™ @
et +e ¢

g(a) = tanh(a) = (4.11)

which is plotted in Figure 4.9. Note that (4.11) differs from the logistic function
in (4.10) only through a linear transformation. Specifically, an activation function
§(@) = tanh() is equivalent to an activation function g(a) = 1/(1 +e™*) if we
apply a lincar transformation @ = a/2 to the input and a linear transformation
§ = 2¢ — 1 to the output. Thus a neural network whose hidden units use the
activation function in (4.11) is equivalent to one with hidden units using (4.10)
but having different values for the weights and biases. Empirically, it is often
found that ‘tanh’ activation functions give rise to faster convergence of training
algorithms than logistic functions.

In this section we shall consider networks with linear output units. As we
shall see, this does not restrict the class of functions which such networks can
approximate. The use of sigmoid units at the outputs would limit the range of
possible outputs to the range attainable by the sigmoid, and in some cases thm
would be undesirable. Even if the desited output always lay within the range
of the sigmoid we note that the sigmoid function g(-) is monotonic, and hence
is invertible, and so a desired output of y for a network with sigmoidal output
units is equivalent to a desired output of g~ '() for a network with linear output
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units. Note, however, that there are other reasons why we might wish to use
non-linear activation functions at the output units, as discussed in Chapter 6.

A sigmoidal hidden unit can approximate a linear hidden unit arbitrarily
accurately. This can be achieved by arranging for all of the weights feeding into
the unit, as well as the bias, to be very small, so that the summed input lies on
the linear part of the sigmoid curve near the origin. The weights on the outputs
of the unit leading to the next layer of units can then be made correspondingly
large to re-scale the activations (with a suitable offset to the biases if necessary).
Similarly, a sigmoidal hidden unit can be made to approximate a step function
by setting the weights and the bias feeding into that unit to very large values.

As we shall see shortly, essentially any continuous functional mapping can be
represented to arbitrary accuracy by a network having two layers of weights with
sigmoidal hidden units. We therefore know that networks with extra layers of
processing units also have general approximation capabilities since they contain
the two-layer network as a special case. This follows from the fact that the
remaining layers can be arranged to perform linear transformations as discussed
above, and the identity transformation is a special case of a linear transformation
(provided there is a sufficient number of hidden units so that no reduction in
dimensionality occurs). Nevertheless, it is instructive to begin with a discussion
of networks having three layers of weights.

4.3.1 Three-layer networks

In Section 4.2 we gave a heuristic proof that a three-layer network with threshold
activation functions could represent an arbitrary decision bounidary to arbitrary
accuracy. In the same spirit we can give an analogous proof that a network with
three layers of weights and sigmoidal activation functions can approximate, to
arbitrary accuracy, any smooth mapping (Lapedes and Farber, 1988). The re-
quired network topology has the same form as in Figure 4.5, with each group of
units in the first hidden layer again containing 2d units, where d is the dimen-
sionality of the input space. As we did for threshold units, we try to arrange for
each, group to provide a non-zero output only when the input vector lies within
a small region of the input space. For this purpose it is convenient to consider
the logistic sigmoid activation function given by (4.10).

We can illustrate the construction of the network by considering a two-
dimensional input space. In Figure 4.10 (a) we show the output from a single
unit in the first hidden layer, given by

z = g(wTx + wp). (4.12)

From the discussion in Section 3.1, we see that the orientation of the sigmoid is

determined by the direction of w, its location is determined by the bias wg, and

the steepness of the sigmoid slope is determined by |jw}j. Units in the second

hidden layer form linear combinations of these sigmoidal surfaces. Consider the

combination of two such surfaces in which we choose the second sigmoid to have

the same orientation as the first but displaced from it by a short distance. By
|
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Figure 4.10. Demonstration that a network with three layers of weights, and
sigmoidal hidden units, can approximate a smooth multivariate. mapping to
arbitrary accuracy. In (a) we see the output of a single sigmoidal unit as a
function of two input variables. Adding the outputs from two such units can
produce a ridge-like function (b), and adding two ridges can give a function
with a maximum {c). Transforming this function with another sigmoid gives a
localized response (d). By taking linear combinations of these localized func-
tions, we can approximate any smooth functional mapping.

adding the two sigmoids together we obtain a ridge-like function as shown in
Figure 4.10 (b). We next construct d of these ridges with orthogonal orientations
and add them together to give a bump-like structure as shown in Figure 4.10 (c).
Although this has a central peak there are also many other ridges present which
stretch out to infinity. These are removed by the action of the sigmoids of the
second-layer units which effectively provide a form of soft threshold to isolate
the central bump, as shown in Figure 4.10 (d). We now appeal to the intuitive
idea (discussed more formally in Section 5.2) that any reasonable function can
be approximated to arbitrary accuracy by a linear superposition of a sufficiently
large number of localized ‘bump’ functions, provided the coefficients in the linear
combination are appropriately chosen. This superposition is performed by the
output unit, which has a linear activation function.

Once again, although this is a constructive algorithm it is of little relevance to
practical applications and serves mainly as an existence proof. However, the idea
of representing a function as a linear superposition of localized bump functions
suggests that we might consider two-layer networks in which each hidden unit
generates a bump-like function directly. Such networks are called local basis
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function networks, and will be considered in detail in Chapter 5.

4.3.2 Two-loyer networks

We turn next to the question of the capabilities of networks having two layers of
weights and sigmoidal hidden units. This has proven to be an important class of
network for practical applications. The general topology is shown in Figure 4.1,
and the network function was given explicitly in (4.7). We shall see that such
networks can approximate arbitrarily well any functional (one-one or many-one)
continuous mapping from one finite-dimensional space to another, provided the
number M of hidden units is sufficiently large.

A considerable number of papers have appeared in the literature discussing
this property including Funahashi (1989), Hecht-Nielsen (1989), Cybenko (1989),
Hornik et al. (1989), Stinchecombe and White (1989), Cotter (1990), Ito (1991),
Hornik (1991) and Kreinovich (1991). An important corollary of this result is
that, in the context of a classification problem, networks with sigmoidal non-
linearities and two layers of weights can approximate any decision boundary to
arbitrary accuracy. Thus, such networks also provide universal non-linear dis-
criminant functions. More generally, the capability of such networks to approx-
imate general smooth functions allows them to model posterior probabilities of
class membership.

Here we outline a simple proof of the universality property (Jones, 1990; Blum
and Li, 1991). Consider the case of two input variables z; and z, and a single
output variable y (the extension to larger numbers of input or output variables
is straightforward). We know that, for any given value of z,, the desired function
y{x1, x2) can be approximated to within any given (sum-of-squares) error by a
Fourier decomposition in the variable x2, giving rise to terms of the form

y(zr,22) Z As{z1) cos(sza) (4.13)

where the coefficients A, are functions of . Similarly, the coefficients themselves
can be expressed in terms of a Fourier series giving

y(x1,x2) ZZASI cos(lzy) cos(sza) (4.14)
s

We can now use the standard trigonometric identity cosacosf = %cos(a +
B) + —%cos(a — B) to write this as a linear combination of terms of the form
cos(zs) and cos(z),) where zg = lzy + sx9 and 2, = lzy — sxg. Finally, we
note that the function cos(z) can be approximated to arbitrary accuracy by a
linear combination of threshold step functions. This can be seen by making an
explicit construction, illustrated in Figure 4.11, for a function f(z} in terms of a
piecewise constant function, of the form
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Figure 4.11. Approximation of a continuous function f(2) by a linear superpo-
sition of threshold step functions. This forms the basis of a simple proof that a
two-layer network having sigmoidal hidden units and linear output units can
approximate a continuous function to arbitrary accuracy.

N
@)~ fo+ Y {fir— fi} H(z ~ z) (4.15)

i=0

where H(z) is the Heaviside step function. Thus we see that the function y(xy, z3)
can be expressed as a linear combination of step functions whose arguments are
linear combinations of z; and xz3. In other words the function y(z, x3) can be
approximated by a two-layer network with threshold hidden units and linear
output units. Finally, we recall that threshold activation functions can be ap-
proximated arbitrarily well by sigmoidal functions, simply by scaling the weights
and biases.

Note that this proof does not indicate whether the network can simultanc-
ously approximate the derivatives of the function, since our approximation in
(4.15) has zero derivative except at discrete points at which the derivative is
undefined. A proof that two-layer networks having sigmoidal hidden units can
simultaneously approximate both a function and its derivatives was given by
Hornik et al. (1990).

As a simple illustration of the capabilities of two-layer networks with sig-
moidal hidden units we consider mappings from a single input z to a single
output y. In Figure 4.12 we show the result of training a network with five hid-
den units having ‘tanh’ activation functions given by (4.11). The data sets each
consist of 50 data points generated by a variety of functions, and the network
has a single linear output unit and was trained for 1000 epochs using the BFGS
quasi-Newton algorithm described in Section 7.10. We see that the same network
can generate a wide variety of different functions simply by choosing different
values for the weights and biases.

The above proofs were concerned with demonstrating that a network with a
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Figure 4.12. Examples of sets of data points (circles) together with the corre-
sponding functions represented by a multi-layer perceptron network which has
been trained using the data. The data sets were generated by sampling the
following functions: (a) &%, (b) sin(27z) (c) |#| which is continuous but with a
discontinuous first derivative, and (d) the step function 8(z) = sign(z), which
is discontinuous. '

sufficiently large number of hidden units could approximate a particular map-
ping. White (1990) and Gallant and White (1992) considered the conditions
under which a network will actually learn a given mapping from a finite data
set, showing how the number of hidden units must grow as the size of the data
set grows.

If we try to approximate a given function h(x) with a network having a finite
number M of hidden units, then there will be a residual error. Jones (1992) and
Barron (1993) have shown that this error decreases as O(1/M) as the number
M of hidden units is increased.

Since we know that, with a single hidden layer, we can approximate any map-
ping to arbitrary accuracy we might wonder if there is anything to be gained by
using any other network topology, for instance one having several hidden layers.
One possibility is that by using extra layers we might find more efficient approx-
imations in the sense of achieving the same level of accuracy with fewer weights
and biases in total. Very little is currently known about this issue. However,
later chapters discuss situations in which there are other good reasons to con-
sider networks with more complex topologies, including networks with several
hidden layers, and networks with only partial connectivity between layers.
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4.4 Weight-space symmetries

Consider a two-layer network having M hidden units, with ‘tanh’ activation
functions given by (4.11), and full connectivity in both layers. If we change the
sign of all of the weights and the bias feeding into a particular hidden unit,
then, for a given input pattern, the sign of the activation of the hidden unit
will be reversed, since (4.11) is an odd function. This can be compensated by
changing the sign of all of the weights leading out of that hidden unit. Thus,
by changing the signs of a particular group of weights (and a bias), the input—
output mapping function represented by the network is unchanged, and so we
have found two different weight vectors which give rise to the same mapping
function. For M hidden units, there will be M such ‘sign-flip’ symmetries, and
thus any given weight vector will be one of a set 2 equivalent weight vectors
(Chen et al., 1993).

Similarly, imagine that we interchange the values of all of the weights (and
the bias) leading into and out of a particular hidden unit with the corresponding
values of the weights (and bias) associated with a different hidden unit. Again,
this clearly leaves the network input-output mapping function unchanged, but
it corresponds to a different choice of weight vector. For M hidden units, any
given weight vector will have M1 equivalent weight vectors associated with this
interchange symmetry, corresponding to the M! different orderings of the hidden
units (Chen et al., 1993). The network will therefore have an overall weight-space
symmetry factor of M12. For networks with more than two layers of weights,
the total level of symmetry will be given by the product of such factors, one for
each layer of hidden units.

It turns out that these factors account for all of the symmetries in weight
space (except for possible accidental symmetries due to specific choices for the
weight values). Furthermore, the existence of these symmetries is not a particular
property of the ‘tanh’ function, but applies to a wide range of activation functions
(Sussmann, 1992; Chen et al, 1993; Albertini and Sontag, 1993; Kurkova and
Kainen, 1994). In many cases, these symmetries in weight space are of little
practical consequence. However, we shall encounter an example in Section 10.6
where we need to take them into account.

4.5 Higher-order networks

So far in this chapter we have considered units for which the output is given by
a non-linear activation function acting on a linear combination of the inputs of

. the form

aj = Z w;iT; + Wjo- : (4.16)
i

We have seen that networks composed of such units can in principle approximate
any functional mapping to arbitrary accuracy, and therefore constitute a univer-
sal class of parametrized multivariate non-linear mappings. Nevertheless, there
is still considerable interest in studying other forms of processing unit. Chapter 5
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y(x)

Figure 4.13. A one-dimensional input space z with decision regions Ry (which
is disjoint) and R3. A linear discriminant function cannot generate the required
decision boundaries, but a quadratic discriminant y(z), shown by the solid
curve, can. The required decision rule then assigns an input z to class C; if
y(z) > 0 and to class Cy otherwise.

for instance is devoted to a study of networks containing units whose activations
depend on the distance of an input vector from the weight vector. Here we con-
sider some extensions of the linear expression in (4.16) which therefore contain
(4.16) as a special case.

As discussed in Chapter 3, a network consisting of a single layer of units of
the form (4.16) can only produce decision boundaries which take the form of
piecewise hyperplanes in the input space. Such a network is therefore incapable
of generating decision regions which are concave or which are multiply connected.
Consider the one-dimensional input space x illustrated in Figure 4.13. We wish to
find a discriminant function which will divide the space into the decision regions
Ry and R, as shown. A linear discriminant function is not sufficient since the
region R is disjoint. However, the required decision boundaries can be generated
by a quadratic discriminant of the form

Y{x) = waz?® + wnz + wo (417)

provided the weights wq,w; and wo are chosen appropriately.

We can generalize this idea to higher orders than just quadratic, and to
several input variables (Ivakhnenko, 1971; Barron and Barron, 1988). This leads
to higher-order processing units (Giles and Maxwell, 1987, Ghosh and Shin,
1992), also known as sigma-pi units (Rumelhart et al., 1986). For second-order
units the generalization of (4.16) takes the form
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d d d
a; = w](-o) + Z wj(.:l)a:i, + Z Z wg-?l)izcv,-lxiz (4.18)

i1=1 iy=11y=1

where the sums run over all inputs, or units, which send connections to unit j.
As before, this sum is then transformed using a non-linear activation function to
give z; = g{a;). If terms up to degree M are retained, this will be known as an
Mth-order unit. Clearly (4.18) includes the conventional linear (first-order) unit
(4.16) as a special case. The similarity to the higher-order polynomials discussed
in Section 1.7 is clear. Note that the summations in (4.18) can be constrained
to allow for the permutation symmetry of the higher-order terms. For instance,
the term x;,x;, is equivalent to the term z;,7;, and so we need only retain one
of these in the summation. The total number of independent parameters in o
higher-order expression such as (4.18) is discussed in Exercises 1.6--1.8.

If we introduce an extra input 29 = +1 then, for an Mth-order unit we can
absorb all of the terms up to the Mth-order within the Mth-order term. For
instance, if we consider second-order units we can write (4.18) in the equivalent.
form

d d

@ = Z Z wﬁfizzilziz (4.19)

13=01=0

with similar generalizations to higher orders.

We see that there will typically be many more weight parameters in a higher-
order unit than there are in a first-order unit. For example, if we consider an
input dimensionality of d = 10 then a first-order unit will have 11 weight param-
eters (including the bias), a second-order unit will have 66 independent weights,
and a third-order unit will have 572 independent weights. This explosion in the
number of parameters is the principal difficulty with such higher-order units.
The compensating benefit is that it is possible to arrange for the response of the
unit to be invariant to various transformations of the input. In Section 8.7.4 it
is shown how a third-order unit can be simultaneously invariant to translations.
rotations and scalings of the input patterns when these are drawn from pixels
in a two-dimensional image. This is achieved by imposing constraints on the
weights, which also greatly reduce the number of independent parameters, and
thereby makes the use of such units a tractable proposition. Higher-order units
are generally used only in the first layer of a network, with subsequent layers
being composed of conventional first-order units.

4.6 Projection pursuit regression and other conventional techniques

Statisticians have developed a variety of techniques for classification and regroes-
sion which can be regarded as complementary to the multi-layer perceptron. Here
we give a brief overview of the most prominent of these approaches, and indi
cate their relation to neural networks. One of the most closely related is that of
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projection pursuit regression (Friedman and Stuetzle, 1981; Huber, 1985). For a
single output variable, the projection pursuit regression mapping can be written
in the form

M

y= Zwa‘¢j (ufx + wjo) + wo (4.20)
Jj=1 .

which is remarkably similar to a two-layer feed-forward neural network. The pa-
rameters u; and ujo define the projection of the input vector x onto a set of
planes labelled by § = 1,..., M, as in the multi-layer perceptron. These projec-
tions are transformed by non-linear ‘activation functions’ ¢; and these in turn
are linearly combined to form the output variable y. Determination of the param-
eters in the model is done by minimizing a sum-of-squares error function. One
important difference is that each ‘hidden unit’ in projection pursuit regression
is allowed a different activation function, and these functions are not prescribed
in advance, but are determined from the data as part of the training procedure.

Another difference is that typically all of the parameters in a neural net-
work are optimized simultaneously, while those in projection pursuit regression
are optimized cyclically in groups. Specifically, training in the projection pur-
suit regression network takes place for one hidden unit at a time, and for each
hidden unit the second-layer weights are optimized first, followed by the acti-
vation function, followed by the first-layer weights. The process is repeated for
each hidden unit in turn, until a sufficiently small value for the error function is
achieved, or until some other stopping criterion is satisfied. Since the output y in
(4.20) depends linearly on the second-layer parameters, these can be optimized
by linear least-squares techniques, as discussed in Section 3.4. Optimization of
the activation functions ¢; represents a problem in one-dimensional curve-fitting
for which a variety of techniques can be used, such as cubic splines {Press et
al., 1992). Finally, the optimization of the first-layer weights requires non-linear
techniques of the kind discussed in Chapter 7.

Several generalizations to more than one output variable are possible (Ripley,
" 1994) depending on whether the outputs share common basis functions ¢;, and
if not, whether the separate basis functions ¢;i (where k labels the outputs)
share common projection directions. In terms of representational capability, we
can regard projection pursuit regression as a generalization of the multi-layer
perceptron, in that the activation functions are more flexible. It is therefore not
surprising that projection pursuit regression should have the same ‘universal’ ap-
proximation capabilities as multi-layer perceptrons {Diaconis and Shahshahani,
1984; Jones, 1987). Projection pursuit regression is compared with multi-layer
perceptron networks in Hwang et al. (1994).

Another framework for non-linear regression is the class of generalized addi-
tive models (Hastie and Tibshirani, 1990) which take the form




4.7: Kolmogorov’s theorem 137

d
y=g (Z $il:) + wo) (4.21)

i=1

where the ¢;(-) are non-linear functions and g(-) represents the logistic sigmoid
function (4.10). This is actually a very restrictive class of models, since it does not
allow for interactions between the input variables. Thus a function of the form
Z1Tg, for example, cannot be modelled. They do, however, have an advantage in
terms of the interpretation of the trained model, since the individual univariate
functions ¢;(-) can be plotted.

An extension of the additive models which allows for interactions is given
by the technique of multivariate adaptive regression splines (MARS) (Friedman,
1991) for which the mapping function can be written

M K
y =) w; [] tirl@uies) +wo (4.22)

J=1 k=1

where the jth basis function is given by a product of some number K; of one-
dimensional spline functions ¢;i (Press et al., 1992) each of which depends on
one of the input variables z,, where the particular input variable used in each
case is governed by a label v(k, j). The basis functions are adaptive in that the
number of factors. K, the labels v(k, j}, and the knots for the one-dimensional
spline functions are all determined from the data. Basis functions are added
incrementally during learning, using the technique of sequential forward selection
discussed in Section 8.5.3.

An alternative framework for learning non-linear multivariate mappings in-
volves partitioning the input space into regions, and fitting a different mapping
within each region. In many such algorithms, the partitions are formed from
hyperplanes which are parallel to the input variable axes, as indicated in Fig-
ure 4.14. In the simplest case the output variable is taken to be constant within
each region. A common technique is to form a binary partition in which the
input space is divided into two regions, and then each of these is divided in turn,
and so on. This form of partitioning can then be described by a binary tree
structure, in which each leaf represents one of the regions. Successive branches
can be added to the tree during learning, with the locations of the hyperplanes
being determined by the data. Procedures are often also devised for pruning the
tree structure as a way of controlling the effective complexity of the model. Two
of the best known algorithms of this kind are classification and regression trees
(CART) (Breiman et al., 1984) and ID3 (Quinlan, 1986). A detailed discussion
of these algorithms would, however, take us too far afield.

4.7 Kolmogorov’s theorem

There is a theorem due to Kolmogorov (1957) which, although of no direct prac-
tical significance, does have an interesting relation to neural networks. The theo-
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Figure 4.14. An example of the partitioning of a space by hyperplanes which
are parallel to the coordinate axes. Such partitions form the basis of a number
of algorithms for solving classification and regression problems.

rem has its origins at the end of the nineteenth century when the mathematician
Hilbert compiled a list of 23 unsolved problems as a challenge for twentieth cen-
tury mathematicians (Hilbert, 1900). Hilbert’s thirteenth problem concerns the
issue of whether functions of several variables can be represented in terms of
superpositions of functions of fewer variables. He conjectured that there exist
continuous functions of three variables which cannot be represented as super-
positions of functions of two variablés. The conjecture was disproved by Arnold
(1957). However, a much more general result was obtained by Kolmogorov (1957)
who showed that every continuous function of several variables (for a closed and
bounded input domain) can be represented as the superposition of a small num-
ber of functions of one variable. Improved versions of Kolmogorov’s theorem have
been given by Sprecher (1965), Kahane (1975) and Lorentz (1976). In neural net-
work terms this theorem says that any continuous mapping y(x) from d input
variables x; to an output variable y can be represented exactly by a three-layer
neural network having d(2d + 1) units in the first hidden layer and (2d + 1) units
in the second hidden layer. The network topology is illustrated, for the case of
a single output, in Figure 4.15. Each unit in the first hidden layer computes a
function of one of the input variables z; given by hj;(x;) where j =1,...,2d +1
and the h; are strictly monotonic functions. The activation of the jth unit in
the second hidden layer is given by

d
2= Ahy(z:) (4.23)
i=1
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inputs

Figure 4.15. Network topology to implement Kolmogorov’s theorem.

where 0 < A\; < 1 are constants. The output y of the network is then given by

2d+1

Y= Z a(z;) (4.24)

j=1

where the function g is real and continuous. Note that the function g depends
on the particular function y(x) which is to be represented, while the functions
h; do not. This expression can be extended to a network with more that one
output unit simply by modifying (4.24) to give

2d+1

Yk = Z ox(2;). (4.25)
=

Note that the theorem only guarantees the existence of a suitable network. No ac-
tual examples of functions h; or g are known, and there is no known constructive
technique for finding them.

While Kolmogorov’s theorem is remarkable, its relevance to practical neural
computing is at best limited (Girosi and Poggio, 1989; Karkov4, 1991; Kirkova,
1992). There are two reasons for this. First, the functions h; are far from being
smooth. Indeed, it has been shown that if the functions h; are required to be
smooth then the theorem breaks down (Vitushkin, 1954). The presence of non-
smooth functions in a network would lead to problems of extreme sensitivity
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to the input variables. Smoothness of the network mapping is an important
property in connection with the generalization performance of a network, as is
discussed in greater detail in Section 9.2. The second reason is that the function
g depends on the particular function y(x) which we wish to represent. This is
the converse of the situation which we generally encounter with neural networks.
Usually, we consider fixed activation functions, and then adjust the number of
hidden units, and the values of the weights and biases, to give a sufficiently close
representation of the desired mapping. In Kolmogorov’s theorem the number of
hidden units is fixed, while the activation functions depend on the mapping. In
general, if we are trying to represent an arbitrary continuous function then we
cannot hope to do this exactly with a finite number of fixed activation functions
since the finite number of adjustable parameters represents a finite number of
degrees of freedom, and a general continuous function has effectively infinitely
many degrees of freedom.

4.8 Error back-propagation

So far in this chapter we have concentrated on the representational capabilities of
multi-layer networks. We next consider how such a network can learn a suitable
mapping from a given data set. As in previous chapters, learning will be based on
the definition of a suitable error function, which is then minimized with respect
to the weights and biases in the network.

Consider first the case of networks of threshold units. The final layer of
weights in the network can be regarded as a perceptron with inputs given by
the outputs of the last layer of hidden units. These weights could therefore be
chosen using the perceptron learning rule introduced in Chapter 3. Such an ap-
proach cannot, however, be used to determine the weights in earlier layers of
the network. Although such layers could in principle be regarded as being like
single-layer perceptrons, we have no procedure for assigning target values to their

outputs, and so the perceptron procedure cannot be applied. This is known as |

the credit assignment problem. If an output unit produces an incorrect response
when the network is presented with an input vector we have no way of determin-
ing which of the hidden units should be regarded as responsible for generating
the error, so there is no way of determining which weights to adjust or by how
much.

The solution to this credit assignment problem is relatively simple. If we
consider a network with differentiable activation functions, then the activations
of the output units become differentiable functions of both the input variables,
and of the weights and biases. If we define an error function, such as the sum-of-
squares error introduced in Chapter 1, which is a differentiable function of the
network outputs, then this error is itself a differentiable function of the weights.
We can therefore evaluate the derivatives of the error with respect to the weights,
and these derivatives can then be used to find weight values which minimize the
error function, by using either gradient descent or one of the more powerful
optimization methods discussed in Chapter 7. The algorithm for evaluating the
derivatives of the error function is known as back-propagation since, as we shall
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see, it corresponds to a propagation of errors backwards through the network.
The technique of back-propagation was popularized in a paper by Rumelhart,
Hinton and Williams (1986). However, similar ideas had been developed earlier
by a number of researchers including Werbos (1974) and Parker (1985).

It should be noted that the term back-propagation is used in the neural com-
puting literature to mean a variety of different things. For instance, the muiti-
layer perceptron architecture is sometimes called a back-propagation network.
The term back-propagation is also used to describe the training of a multi-layer
perceptron using gradient descent applied to a sum-of-squares error function. In
order to clarify the terminology it is useful to consider the nature of the training
process more carefully. Most training algorithms involve an iterative procedure
for minimization of an error function, with adjustments to the weights being
made in a sequence of steps. At each such step we can distinguish between
two distinct stages. In the first stage, the derivatives of the error function with
respect to the weights must be evaluated. As we shall see, the important con-
tribution of the back-propagation technique is in providing a computationally
efficient method for evaluating such derivatives. Since it is at this stage that
errors are propagated backwards through the network, we shall use the term
back-propagation specifically to describe the evaluation of derivatives. In the
second stage, the derivatives are then used to compute the adjustments to be
made to the weights. The simplest such technique, and the one originally con-
sidered by Rumelhart et al. {1986), involves gradient descent. It is important to
recognize that the two stages are distinct. Thus, the first stage process, namely
the propagation of errors backwards through the network in order to evaluate
derivatives, can be applied to many other kinds of network and not just the
multi-layer perceptron. It can also be applied to error functions other that just
the simple sum-of-squares, and to the evaluation of other derivatives such as the
Jacobian and Hessian matrices, as we shall see later in this chapter. Similarly, the
second stage of weight adjustment using the calculated derivatives can be tack-
led using a variety of optimization schemes (discussed at length in Chapter 7),
many of which are substantially more powerful than simple gradient descent.

4.8.1 Evaluation of error function derivatives

We now derive the back-propagation algorithm for a general network having
arbitrary feed-forward topology, and arbitrary differentiable non-linear activation
functions, for the case of an arbitrary differentiable error function. The resulting
formulae will then be illustrated using a simple layered network structure having
a single layer of sigmoidal hidden units and a sum-of-squares error.

In a general feed-forward network, each unit computes a weighted sum of its
inputs of the form '

aj; = ij,-z,- (426)
i

where z; is the activation of a unit, or input, which sends a connection to unit
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J, and wj; is the weight associated with that connection. The summation runs
over all units which send connections to unit j. In Section 4.1 we showed that
biases can be included in this sum by introducing an extra unit, or input, with
activation fixed at +1. We therefore do not need to deal with biases explicitly.
The sum in (4.26) is transformed by a non-linear activation function g(-) to give
the activation z; of unit j in the form

zj = g(a;). (4.27)

Note that one or more of the variables z; in the sum in (4.26) could be an input,
in which case we shall denote it by x;. Similarly, the unit 5 in (4.27) could be an
output unit, in which case we denote its activation by y.

As before, we shall seek to determine suitable values for the weights in the
network by minimization of an appropriate error function. Here we shali consider
error functions which can be written as a sum, over all patterns in the training
set, of an error defined for each pattern separately

E=) E" (4.28)

where n labels the patterns. Nearly all error functions of practical interest take
this form, for reasons which are explained in Chapter 6. We shall also suppose
that the error E™ can be expressed as a differentiable function of the network
output variables so that

E™ = E™y1,...,Ye)- (4.29)

Our goal is to find a procedure for evaluating the derivatives of the error function
E with respect to the weights and biases in the network. Using (4.28) we can
express these derivatives as sums over the training set patterns of the derivatives
for each pattern separately. From now on we shall therefore consider one pattern
at a time.

For each pattern we shall suppose that we have supplied the corresponding
input vector to the network and calculated the activations of all of the hidden
and output units in the network by successive application of (4.26) and (4.27).
This process is often called forward propagation since it can be regarded as a
forward flow of information through the network.

Now consider the evaluation of the derivative of E™ with respect to some
weight wj;. The outputs of the various units will depend on the particular input
pattern n. However, in order to keep the notation uncluttered, we shall omit
the superscript n from the input and activation variables. First we note that
E™ depends on the weight w;; only via the summed input a; to unit j. We can
therefore apply the chain rule for partial derivatives to give
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OE™  OFE™ Oa;
8U1ji N Oaj awji' (430)
We now introduce a useful notation
OE™
6 = 4.31
= (4.31)

where the §’s are often referred to as errors for reasons we shall see shortly. Using
(4.26) we can write

Baj
Gwﬁ

= 2. (4.32)

Substituting (4.31) and (4.32) into (4.30) we then obtain

oFE™
Ty 8;z;. (4.33)
Note that this has the same general form as obtained for single-layer networks
in Section 3.4. Equation (4.33) tells us that the required derivative is obtained
simply by multiplying the value of § for the unit at the output end of the weight
by the value of 2 for the unit at the input end of the weight (where z = 1 in
the case of a bias). Thus, in order to evaluate the derivatives, we need only to
calculate the value of §; for each hidden and output unit in the network, and
then apply (4.33).

For the output units the evaluation of 8y, is straightforward. From the defini-
tion (4.31) we have

(4.34)

where we have used (4.27) with z; denoted by yk. In order to evaluate (4.34) we
substitute appropriate expressions for g'(a) and 8E™/dy. This will be illustrated
with a simple example shortly.

To evaluate the 6’s for hidden units we again make use of the chain rule for
partial derivatives,

=k (4.35)

where the sum runs over all units k to which unit j sends connections. The
arrangement of units and weights is illustrated in Figure 4.16. Note that the
units labelled k could include other hidden units and/or output units. In writing
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Figure 4.16. Illustration of the calculation of §; for hidden unit j by back-
propagation of the §’s from those units k to which unit j sends connections.

down (4.35) we are making use of the fact that variations in a; give rise to
variations in the error function only through variations in the variables ax. If we
now substitute the definition of § given by (4.31) into (4.35), and make use of
(4.26) and (4.27), we obtain the following back-propagation formula

8; = g'(a;) Y wk;bk (4.36)
k

which tells us that the value of § for a particular hidden unit can be obtained by
propagating the §’s backwards from units higher up in the network, as illustrated
in Figure 4.16. Since we already know the values of the 8’s for the output units,
it follows that by recursively applying (4.36) we can evaluate the é’s for all of
the hidden units in a feed-forward network, regardless of its topology.

We can summarize the back-propagation procedure for evaluating the deriva-

tives of the error E™ with respect to the weights in four steps:

1. Apply an input vector x™ to the network and forward propagate through
the network using (4.26) and (4.27) to find the activations of all the hidden
and output units.

2. Evaluate the §; for all the output units using (4.34).

3. Back-propagate the §’s using (4.36) to obtain §; for each hidden unit in
the network.

4. Use (4.33) to evaluate the required derivatives.

The derivative of the total error E can then be obtained by repeating the above
steps for each pattern in the training set, and then summing over all patterns:
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OFE OE™
B = ; By (4.37)

In the above derivation we have implicitly assumed that each hidden or output
unit in the network has the same activation function g(-). The derivation is
easily generalized, however, to allow different units to have individual activation
functions, simply by keeping track of which form of g(-) goes with which unit.

4.8.2 A simple example

The above derivation of the back-propagation procedure allowed for general
forms for the error function, the activation functions and the network topol-
ogy. In order to illustrate the application of this algorithm, we shall consider a
particular example. This is chosen both for its simplicity and for its practical
importance, since many applications of neural networks reported in the litera-
ture make use of this type of network. Specifically, we shall consider a two-layer
network of the form illustrated in Figure 4.1, together with a sum-of-squares
error. The output units have linear activation functions while the hidden units
have logistic sigmoid activation functions given by (4.10), and repeated here:

1

9(a) = 1+ exp(—a)’

(4.38)

A useful feature of this function is that its derivative can be expressed in a
particularly simple form:

g'(a) = g(a)(1 - g(a)). (4.39)

In a software implementation of the network algorithm, {4.39) represents a con-
venient property since the derivative of the activation can be obtained efficiently
from the activation itself using two arithmetic operations.

For the standard sum-of-squares error function, the error for pattern n is
given by

=2 Y-t (4.40)
k=1

where yj, is the response of output unit k, and tj, is the corresponding target, for
a particular input pattern x".

Using the expressions derived above for back-propagation in a general net-
work, together with (4.39) and (4.40), we obtain the followmg results. For the
output units, the §’s are given by

Ok =y — bk (4.41)
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while for units in the hidden layer the &’s are found using

8= 2(1=2) ) w;k (4.42)
k=1

where the sum runs over all output units. The derivatives with respect to the
first-layer and second-layer weights are then given by

OE™ gE™
i . 4
awji 6]“”“ awk]’ 6kzj (4 3)

So far we have discussed the evaluation of the derivatives of the error function
with respect to the weights and biases in the network. In order to turn this into
a learning algorithm we need some method for updating the weights based on
these derivatives. In Chapter 7 we discuss several such parameter optimization
strategies in some detail. For the moment, we consider the fixed-step gradient
descent technique introduced in Section 3.4. We have the choice of updating the
weights either after presentation of each pattern (on-line learning) or after first
summing the derivatives over all the patterns in the training set {(batch learning).
In the former case the weights in the first layer are updated using

AWji = —775_,'.’1,‘,' (4.44)

while in the case of batch learning the first-layer weights are updated using
Awj; = -7 Z orxy (4.45)
n

with analogous expressions for the second-layer weights.

4.8.3 Efficiency of back-propagation

One of the most important aspects of back-propagation is its computational
efficiency. To understand this, let us examine how the number of computer op-
erations required to evaluate the derivatives of the error function scales with the
size of the network. Let W be the total number of weights and biases. Then a
single evaluation of the error function (for a given input pattern) would require
O(W) operations, for sufficiently large W. This follows from the fact that, except
for a network with very sparse connections, the number of weights is typically
much greater than the number of units. Thus, the bulk of the computational
effort in forward propagation is concerned with evaluating the sums in (4.26),
with the evaluation of the activation functions representing a small overhead.
Each term in the sum in (4.26) requires one multiplication and one addition,
leading to an overall computational cost which is O(W).

For W weights in total there are W such derivatives to evaluate. If we simply
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took the expression for the error function and wrote down explicit formulae for
the derivatives and then evaluated them numerically by forward propagation, we
would have to evaluate W such terms (one for each weight or bias) each requiring
O(W) operations. Thus, the total computational effort required to evaluate all
the derivatives would scale as O(W?). By comparison, back-propagation allows
the derivatives to be evaluated in O(W) operations. This follows from the fact
that both the forward and the backward propagation phases are O(W), and the
evaluation of the derivative using (4.33) also requires O(W) operations. Thus
back-propagation has reduced the computational complexity from O(Wz) to
O(W) for each input vector. Since the training of MLP networks, even using” -
back-propagation, can be very time consuming, this gain in efﬁcxency is cruc1al .
For a total of N training patterns, the number of computational steps required
to evaluate the complete error function for the whole data set is' N times larger
than for one pattern.

The practical importance of the O(W) scaling of back-propagation is anal-
ogous in some respects to that of the fast Fourier transform (FFT) algorl'rhm
(Brigham, 1974; Press et al., 1992) which reduces the computational complex-
ity of evaluatmg an L-point Fourier transform from O(L?) to O(Llog, L). The
discovery of this algorithm led to the widespread use of Fourier transforms in a
large range of practical applications.

4.8.4 Numerlical differentiation

An alternative approach to back-propagation for computing the derivatives of
the error function is to use finite differences. This can be done by perturbing
each weight in turn, and approximating the derivatives by the expression

JE™ _ E”(wﬁ + 6) — E”(wji)
e . + O(e) (4.46)

where € < 1 is a small quantity. In a software simulation, the accuracy of the
approximation to the derivatives can be improved by making ¢ smaller, until
numerical roundoff problems arise. The main problem with this approach is that
the highly desirable O(W) scaling has been lost. Each forward propagation re-
quires O(W) steps, and there are W weights in the network each of which must
be perturbed individually, so that the overall scaling is @(W?). However, finite
differences play an important role in practice, since a numerical comparison of
the derivatives calculated by back-propagation with those obtained using finite
differences provides a very powerful check on the correctness of any software
implementation of the back-propagation algorithm.

The accuracy of the finite differences method can be improved significantly
by using symmetrical central differences of the form

OE™ _ E™wji+¢€) — E™(wji —€)
61113',1 - 2¢

+ O(€?). : (4.47)
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In this case the O(e) corrections cancel, as is easily verified by Taylor expan-
sion on the right-hand side of (4.47), and so the residual corrections are O(€?).
The number of computational steps is, however, roughly doubled compared with
(4.486).

We have seen that the derivatives of an error function with respect to the
weights in a network can be expressed efficiently through the relation

OF OF

Instead of using the technique of central differences to evaluate the derivatives
OE™ [Dwj; directly, we can use it to estimate 8E™ /8a; since

OE™ . E"(a,- + 6) — E"(aj - 6)

O(e? .
P, 5 + O(%) (4.49)

We can then make use of (4.48) to evaluate the required derivatives. Because the
derivatives with respect to the weights are found from (4.48) this approach is
still relatively efficient. Back-propagation requires one forward and one backward
propagation through the network, each taking O(W) steps, in order to evaluate
all of the 8E/da;. By comparison, (4.49) requires 2M forward propagations,
where M is the number of hidden and output nodes. The overall scaling is there-
fore proportional to MW, which is typically much less than the O(W?) scaling
of (4.47), but more than the O(W) scaling of back-propagation. This technique
is called node perturbation (Jabri and Flower, 1991), and is closely related to the
madeline III learning rule (Widrow and Lehr, 1990).

In a software implementation, derivatives should be evaluated using back-
propagation, since this gives the greatest accuracy and numerical efficiency. How-
ever, the results should be compared with numerical differentiation using (4.47)
for a few test cases in order to check the correctness of the implementation.

4.9 The Jacobian matrix

We have seen how the derivatives of an error function with respect to the weights
can be obtained by the propagation of errors backwards through the network.
The technique of back-propagation can also be applied to the calculation of
other derivatives. Here we consider the evaluation of the Jacobian matrix, whose
elements are given by the derivatives of the network outputs with respect to the
inputs

Ji = ok (4.50)

~ where each such derivative is evaluated with all other inputs held fixed. Note
that the term Jacobian matrix is also sometimes used to describe the derivatives
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of the error function with respect to the network weights, as calculated easlier
using back-propagation. The Jacobian matrix provides a measure of the local
sensitivity of the outputs to changes in each of the input variables, and is useful
in several contexts in the application of neural networks. For instance, if there
are known errors associated with the input variables, then the Jacobian matrix
allows these to be propagated through the trained network in order to estimate
their contribution to the errors at the outputs. Thus, we have

Ayy ~ Z Am, (4.51)

In general, the network mapping represented by a trained neural network will
be non-linear, and so the elements of the Jacobian matrix will not be constants
but will depend on the particular input vector used. Thus (4.51) is valid only for
small perturbations of the inputs, and the Jacobian itself must be re-evaluated
for each new input vector.

The Jacobian matrix can be evaluated using a back-propagation procedure
which is very similar to the one derived earlier for evaluating the derivatives of
an error function with respect to the weights. We start by writing the element
Jii in the form

ayk Byk 8a,~
T = Bz; Z Ba; dz;
Oyx
I (4.52)
; 3 Ba,-

where we have made use of (4.26). The sum in (4.52) runs over all units j to
which the input unit ¢ sends connections (for example, over all units in the first
hidden layer in the layered topology considered earlier). We now write down a
recursive back-propagation formula to determine the derivatives dy;/da;

Oyx _ ~— Oy 9a
da; N Xl: day Ja;
Ay
= g:(aj)zlj WG (4.53)

where the sum runs over all units { to which unit j sends connections. Again, we
have made use of (4.26) and (4.27). This back-propagation starts at the output
units for which, using (4.27), we have
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Oy o
Bar, =9 (ak)Bki (4.54)

where 6xg is the Kronecker delta symbol, and equals 1 if k£ = &’ and 0 otherwise.
We can therefore summarize the procedure for evaluating the Jacobian matrix
as follows. Apply the input vector corresponding to the point in input space at
which the Jacobian matrix is to be found, and forward propagate in the usual
way to obtain the activations of all of the hidden and output units in the network.
Next, for each row k of the Jacobian matrix, corresponding to the output unit k,
back-propagate using the recursive relation (4.53), starting with (4.54), for all of
the hidden units in the network. Finally, use (4.52) to do the back-propagation
to the inputs. The second and third steps are then repeated for each value of k,
corresponding to each row of the Jacobian matrix.

The Jacobian can also be evaluated using an alternative forward propagation
formalism which can be derived in an analogous way to the back-propagation
approach given here (Exercise 4.6). Again, the implementation of such algorithms
can be checked by using numerical differentiation in the form

Oy _ yr(zi +€) — yr(a: —

€)
B P + O(e?). (4.55)

4.10 The Hessian matrix

We have shown how the technique of back-propagation can be used to obtain the
first derivatives of an error function with respect to the weights in the network.
Back-propagation can also be used to evaluate the second derivatives of the error,
given by

0’E
_— (4.56)
awjiaw,k
These derivatives form the elements of the Hessian matrix, which plays an im-
. portant role in many aspects of neural computing, including the following:

1. Several non-linear optimization algorithms used for training neural net-
works are based on considerations of the second-order properties of the
error surface, which are controlled by the Hessian matrix (Chapter 7).

2. The Hessian forms the basis of a fast procedure for re-training a feed-
forward network following a small change in the training data (Bishop,
1991a).

3. The inverse of the Hessian has been used to identify the least signifi-
cant weights in a network as part of network ‘pruning’ algorithms (Sec-
tion 9.5.3).

4. The inverse of the Hessian can also be used to assign error bars to the
predictions made by a trained network (Section 10.2).
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5. Suitable values for regularization parameters can be determined from the
eigenvalues of the Hessian (Section 10.4).

6. The determinant of the Hessian can be used to compare the relative prob-
abilities of different network models (Section 10.6).

For many of these applications, various approximation schemes have been

" used to evaluate the Hessian matrix. However, the Hessian can also be calculated

exactly using an extension of the back-propagation technique for evaluating the

- first derivatives of the error function.

An important consideration for many applications of the Hessian is the effi-

. ciency with which it can be evaluated. If there are W parameters (weights and
. biases) in the network then the Hessian matrix has dimensions W x W and
" so0 the computational effort needed to evaluate the Hessian must scale at least

like O(W?) for each pattern in the data set. As we shall see, there are efficient

. methods for evaluating the Hessian whose scaling is indeed O(W?2).

410.1 Diegonal approzimation

Some of the applications for the Hessian matrix discussed above require the
inverse of the Hessian, rather than the Hessian itself. For this reason there has

¢ been some interest in using a diagonal approximation to the Hessian, since its
. inverse is trivial to evaluate. We again shall assume, as is generally the case, that

the error function consists of a sum of terms, one for each pattern in the data
set, so that £ = )_  E™. The Hessian can then be obtained by considering one
pattern at a time, and then summing the results over all patterns. From (4.26)
the diagonal elements of the Hessian, for pattern n, can be written

62En a2En 2
= 22, (4.57)
w?; da3

Using (4.26) and (4.27), the second derivatives on the right-hand side of (4.57)
can be found recursively using the chain rule of differential calculus, to give a
back-propagation equation of the form

PE* o*E" QE"
5aT =9 (a5) Ek Ekl;wkaww Bardan T9 (@) Ek Wki Gor (4.58)

If we now neglect off-diagonal elements in the second derivative terms we obtain
(Becker and Le Cun, 1989; Le Cun et al., 1990)

8%En , 9 9 o2 En " oE™
— ; § il . E , . 4.59
6a]2 9'(a;) - We; aa% +9"(a;) - Wk dax ( )

Due to the neglect of off-diagonal terms on the right-hand side of (4.59), this
approach only gives an approximation to the diagonal terms of the Hessian.
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However, the number of computational steps is reduced from O(W?) to O(W).

Ricotti et al. (1988) also used the diagonal approximation to the Hessian,
but they retained all terms in the evaluation of 82E™/ Ba? and so obtained exact
expressions for the diagonal terms. Note that this no longer has O(W) scaling.
The major problem with diagonal approximations, however, is that in practice
the Hessian is typically found to be strongly non-diagonal, and so these approxi-
mations, which are driven mainly be computational convenience, must be treated
with great care.

4.10.2 QOuter product approximation

When neural networks are applied to regression problems, it is common to use
a sum-of-squares error function of the form

=3 Y- (4.60)

where we have considered the case of a single ocutput in order to keep the notation
simple (the extension to several outputs is straightforward). We can then write
the elements of the Hessian in the form

PE < Oy dy" i
Bwjiaw,k - Z 611)_7, awlk + Z(y ~t )an Bw (4,61)

If the network has been trained on the data set and its outputs y™ happen to be
very close to the target values t* then the second term in (4.61) will be small
and can be neglected. If the data are noisy, however, such a network mapping
is severely over-fitted to the data, and is not the kind of mapping we seek in
order to achieve good generalization (see Chapters 1 and 9). Instead we want to
find a mapping which averages over the noise in the data. It turns out that for
such a solution we may still be able to neglect the second term in (4.61). This
follows from the fact that the quantity (y™ — £"*) is a random variable with zero
mean, which is uncorrelated with the value of the second derivative term on the
right-hand side of (4.61). This whole term will therefore tend to average to zero
in the summation over n (Hassibi and Stork, 1993). A more formal derivation of
this result is given in Section 6.1.4.

By neglecting the second term in (4.61) we arrive at the Levenberg-Marquardt
approximation (Levenberg, 1944; Marquardt, 1963) or outer product approxima-
tion (since the Hessian matrix is built up from a sum of outer products of vectors),
given by

82E oy Y™
— = — . 4.62
Bwﬁ(’?wlk ; Bwﬁ szk ( )

Its evaluation is straightforward as it only involves first derivatives of the error
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function, which can be evaluated efficiently in O(W) steps using standard back-
propagation. The elements of the matrix can then be found in O(W?) steps by
simple multiplication. It is important to emphasize that this approximation is
only likely to be valid for a network which has been trained correctly on the
same data set used to evaluate the Hessian, or on one with the same statistical
properties. For a general network mapping, the second derivative terms on the
right-hand side of (4.61) will typically not be negligible.

4.10.3 Inverse Hessian

Hassibi and Stork (1993) have used the outer product approximation to develop a
computationally efficient procedure for approximating the inverse of the Hessian.
We first write the outer product approximation in matrix notation as

N
Hy =) g"(g")" (4.63)
n=1

where N is the number of patterns in the data set, and the vector g = Vy FE
is the gradient of the error function. This leads to a sequential procedure for
building up the Hessian, obtained by separating off the contribution from data
point N + 1 to give

Hyy1 = Hy + gV (g"t)T. (4.64)

In order to evaluate the inverse of the Hessian we now consider the matrix identity
(Kailath, 1980)

(A+BC) !=A"'-A"'B(I+CA!B)"!cA™! (4.65)

where I is the unit matrix. If we now identify Hy with A, gV¥t! with B, and
(gVt")T with C, then we can apply (4.65) to (4.64) to obtain

-l — g Hy "M THY
N+1 N 1+ (gN-H)THI—VlgN-H :

(4.66)

This represents a procedure for evaluating the inverse of the Hessian using a
single pass through the data set. The initial matrix Hy is chosen to be o, where
« is a small quantity, so that the algorithm actually finds the inverse of H+ al.
The results are not particularly sensitive to the precise value of a. Extension
of this algorithm to networks having more than one output is straightforward
(Exercise 4.9).

We note here that the Hessian matrix can sometimes be calculated indi-
rectly as part of the network training algorithm. In particular, quasi-Newton
non-linear optimization algorithms gradually build up an approximation to the
inverse of the Hessian during training. Such algorithms are discussed in detail in
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Section 7.10.

4.10.4 Finite differences

As with first derivatives of the error function, we can find the second derivatives
by using finite differences, with accuracy limited by the numerical precision of
our computer. If we perturb each possible pair of weights in turn, we obtain

Ow;iOwy,  4e? Wji T € Wik T € wyis F €, Wik — €

~E(wj; — €, wik + €) + E(wji — €, wik — €)} + O(?). (4.67)

Again, by using a symmetrical central differences formulation, we ensure that
the residual errors are O(e?) rather than O(e). Since there are W2 elements
in the Hessian matrix, and since the evaluation of each element requires four
forward propagations each needing O(W) operations (per pattern), we see that
this approach will require O(W?) operations to evaluate the complete Hessian.
It therefore has very poor scaling properties, although in practice it is very useful
as a check on the software implementation of back-propagation methods.

A more efficient version of numerical differentiation can be found by apply-
ing central differences to the first derivatives of the error function, which are
themselves calculated using back-propagation. This gives

9’E 1 (3E oF 2
Mawjiawlk =5 {-——awji(wtk +€) — ——awﬁ (wik, — e)} + O(€%). (4.68)

Since there are now only W weights to be perturbed, and since the gradients
can be evaluated in O(W) steps, we see that this method gives the Hessian in
O(W?) operations.

4.10.5 Ezact evaluation of the Hessian

So far we have considered various approximation schemes for evaluating the Hes-
sian matrix. We now describe an algorithm for evaluating the Hessian exactly,
which is valid for a network of arbitrary feed-forward topology, of the kind il-
lustrated schematically in Figure 4.3 (Bishop, 1991a, 1992). The algorithm is
based on an extension of the technique of back-propagation used to evaluate
first derivatives, and shares many of its desirable features including computa-
tional efficiency. It can be applied to any differentiable error function which can
be expressed as a function of the network outputs, and to networks having ar-
bitrary differentiable activation functions. The number of computational steps
needed to evaluate the Hessian scales like O(W?2). Similar algorithms have also
been considered by Buntine and Weigend (1993). As before, we shall consider
one pattern at a time. The complete Hessian is then obtained by summing over
all patterns.
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Consider the general expression {4.33) for the derivative of the error function
with respect to an arbitrary weight wyg, which we reproduce here for convenience

oE™
= 8 2. .
I 12k (4.69)

Differentiating this with respect to some other weight w;; we obtain

orEn da; O (OE" o (oE™
Ows0wy,  Owg; Oa; \ Jwy, Jaj \ Owy

where we have used (4.26). Here we have assumed that the weight w;; does not
occur on any forward propagation path connecting unit [ to the outputs of the

network. We shall return to this point shortly.
Making use of (4.69), together with the relation 2z, = g(ax), we can write

(4.70) in the form

52 E™

e T ; / . : . 4‘~
By Dy zi1g' (ak) s + zizbi (4.71)

where we have defined the quantities

__ Oayg,
hi; = 9a, (4.72)
a6,
com 2 4,
bij Pa; (4.73)

The quantities {hr;} can be evaluated by forward propagation as follows.
Using the chain rule for partial derivatives we have

_ aak aa,
hj = Z Pa. Bo, .79

where the sum runs over all units » which send connections to unit £. In fact,
contributions only arise from units which lie on paths connecting unit j to unit
k. From (4.26) and (4.27) we then obtain the forward propagation equation

hii = Y g'(ar)Werhej. (4.75)

The initial conditions for evaluating the {i;;} follow from the definition (4.72},
and can be stated as follows. For each unit § in the network, (except for input
units, for which the corresponding {h«;} are not required), set h;; = 1 and set


file:///dwik
file:///dwik
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hi; = 0 for all units &£ # j which do not lie on any forward propagation path
. starting from unit j, The remaining elements of hy; can then be found by forward
propagation using (4.75).

Similarly, we can derive a back-propagation equation which allows the {by;}
to be evaluated. We have already seen that the quantities §; can be found by
back-propagation

b =g'(a))  wabs. (4.76)

Substituting this into the definition of b;; in (4.73) we obtain

by = %}7 {g'(az) Zwstﬁs} (4.77)

which gives
by = g"(cu)h” Z’ws(&s + g'(a;) Z’wslbsj (4.78)
8 8

where the sums run over all units s to which unit [ sends connections. Note that,
in a software implementation, the first summation in (4.78) will already have
been computed in evaluating the {6} in (4.76). “

There is one subtlety which needs to be considered. The derivative 3/8a;
which appears in (4.77) arose from the derivative 8/0wj; in (4.70). This transfor-
mation, from wj; to a;, is valid provided wj; does not appear explicitly within the
brackets on the right-hand side of (4.77). In other words, the weight w;; should
not lie on any of the forward-propagation paths from unit ! to the outputs of the
network, since these are also the paths used to evaluate §; by back-propagation.
In practice the problem is easily avoided as follows. If w;; does occur in the
sequence of back-propagations needed to evaluate §;, then we simply consider
instead the diagonally opposite element of the Hessian matrix for which this
problem will not arise (since the network has a feed-forward topology). We then
make use of the fact that the Hessian is a symmetric matrix.

The initial conditions for the back-propagation in (4.78) follow from (4.72)
and (4.73), together with the initial conditions (4.34) for the §’s, to give

bj = > Hirhij (4.79)
kl

where we have defined

O*E"

= —, .80
aakaa;c (48 )
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This algorithm represents a straightforward extension of the usual forward
and backward propagation procedures used to find the first derivatives of the
ervor function. We can summarize the algorithm in five steps:

1. Evaluate the activations of all of the hidden and output units, for a given
input pattern, by using the usual forward propagation equations. Similarly,
compute the initial conditions for the hy; and forward propagate through
the network using (4.75) to find the remaining non-zero elements of hy;.

2. Evaluate 8, for the output units in the usual way. Similarly, evaluate the
Hj, for all the output units using (4.80).

3. Use the standard back-propagation equations to find §; for all hidden units
in the network. Similarly, back-propagate to find the {b;;} by using (4.78)
with initial conditions given by (4.79).

4. Evaluate the elements of the Hessian for this input pattern using (4.71).

5. Repeat the above steps for each pattern in the training set, and then sum
to obtain the full Hessian.

In a practical implementation, we substitute appropriate expressions for the
error function and the activation functions. For the sum-of-squares error function
and linear output units, for example, we have

Ok = Yk — Uk, Hir = Spr (4.81)
where 8+ is the Kronecker delta symbol.

4.10.6 Ezact Hessian for two-layer network

As an illustration of the above algorithm, we consider the specific case of a layered
network having two layers of weights. We can then use the results obtained above
to write down explicit expressions for the elements of the Hessian matrix. We
shall use indices 7 and 4’ to denote inputs, indices 7 and j' to denoted units in the
hidden layer, and indices k and k' to denote outputs. Using the previous results,
the Hessian matrix for this network can then be considered in three separate
blocks as follows.

1. Both weights in the second layer:

O%E™

—_— == 72 Ok Hike 4.82
6wk,«3wkzj. ZJ Z] 6kk Hkk ( )

2. Both weights in the first layer:

92 En .
— = LTy a; )65 E w, ")
8w]-,-8wj,i, iLig ( 7 ) 13 . k' Ok

+ xx0g'(aj )9 (a;) Z Wij Wi Hik. (4.83)
k



158 4: The Multi-layer Perceptron

3. One weight in each layer:

OB = x;9"(a;) {6x6;5 + zjrwp; Her } (4.84)
awjiawkjl = Tig \Cqj kOj4° §r Wejdlkk f - ' .
If one or both of the weights is a bias term, then the corresponding expressions
are obtained simply by setting the appropriate activation(s) to 1.

4.10.7 Fast multiplication by the Hessian

In some applications of the Hessian, the quantity of interest is not the Hessian
matrix H itself, but the product of H with some vector v. We have seen that the
evaluation of the Hessian takes O(W?) operations, and it also requires storage
which is O(W?). The vector vIH which we wish to calculate itself only has
W elements, so instead of computing the Hessian as an intermediate step, we
can instead try to find an efficient approach to evaluating vTH directly, which
requires only O(W) operations.
We first note that

vIH = vIV(VE) (4.85)

where V denotes the gradient operator in weight space. We can then estimate
the right-hand side of (4.85) using finite differences to give

VIV(VE) = VE(w + E\;) — VE(w)

+ O(e). (4.86)

Thus, the quantity v'H can be found by forward propagating first with the
original weights, and then with the weights perturbed by the small vector ev.
This procedure therefore takes O(W) operations. It was used by Le Cun et al.
(1993) as part of a technique for on-line estimation of the learning rate parameter
in gradient descent.

Note that the residual error in (4.86) can again be reduced from O(e) to
O(e?) by using central differences of the form

VE(w +ev) — VE(w —ev)
2¢

vIV(VE) = + O(e?) (4.87)

which again scales as O(W).

The problem with a finite-difference approach is one of numerical inaccu-
racies. This can be resolved by adopting an analytic approach (Mgller, 1993a;
Pearlmutter, 1994). Suppose we write down standard forward-propagation and
back-propagation equations for the evaluation of VE. We can then apply (4.85)
to these equations to give a set of forward-propagation and back-propagation
equations for the evaluation of vTH. This corresponds to acting on the original
forward-propagation and back-propagation equations with a differential operator
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vTV. Pearlmutter (1994) used the notation R{-} to denote the operator vIV
and we shall follow this notation. The analysis is straightforward, and makes use
of the usual rules of differential calculus, together with the result

R{w} =v. (4.88) -

The technique is best illustrated with a simple example, and again we choose
a two-layer network with linear output units and a sum-of-squares error function.
As before, we consider the contribution to the error function from one pattern in
the data set. The required vector is then obtained as usual by summing over the
contributions from each of the patterns separately. For the two-layer network,
the forward-propagation equations are given by

a; = Zwﬁxi (4.89)

2 = g(ay) (4.90)

e = D Wiz (4.91)
i

We now act on these equations using the R{.} operator to obtain a set of forward
propagation equations in the form

Ria;} = Zvjixi (4.92)

R{z} = ¢'(a;)R{a;} (4.93)

Rive} =D wijR{z} + Y a2 (4.94)
j j

where v;; is the element of the vector v which corresponds to the weight w;;.
Quantities of the form R{z;}, R{a;} and R{yx} are to be regarded as new
variables whose values are found using the above equations.

Since we are considering a sum-of-squares error function, we have the follow-
ing standard back-propagation expressions:

6k =Yk — tk (495)

8 = g'(a;) Y wrsbx. (4.96)
k
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Again we act on these equations with the R{-} operator to obtain a set of back-
propagation equations in the form

R{bk} = R{yx} (4.97)

R{8;} = g"(a;)R{a;} > _ wi;¢
k
+9'(a;) D v
k

+9'(a5) > wi;R{6k}. (4.98)
k

Finally, we have the usual equations for the first derivatives of the error

oF
awkj = 6k2j (499)
OF

Wji = 57‘1‘1 (4.100)

and acting on these with the R{-} operator we obtain expressiqns for the elements
of the vector vTH:

OE
R { Bk } = R{6k}z + 8k R{z} (4.101)
R { aawi } = zR{6;}. (4.102)

The implementation of this algorithm involves the introduction of additional
variables R{a;}, R{z;} and R{6;} for the hidden units, and R{6;} and R{yx}
for the output units. For each input pattern, the values of these quantities can
be found using the above results, and the elements of vIH are then given by
(4.101) and (4.102). An elegant aspect of this technique is that the structure of
the equations for evaluating vTH mirror closely those for standard forward and
backward propagation, and so software implementation is straightforward.

If desired, the technique can be used to evaluate the full Hessian matrix by
choosing the vector v to be given successively by a series of unit vectors of the
form (0,0,...,1,...,0) each of which picks out one column of the Hessian. This
leads to a formalism which is analytically equivalent to the back-propagation
procedure of Bishop (1992), as described in Section 4.10.5, though with some
loss of efficiency in a software implementation due to redundant calculations.
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Exercises

4.1 (%) In Section 4.4 we showed that, for networks with ‘tanh’ hidden unit acti-
vation functions, the network mapping is invariant if all of the weights and
the bias feeding into and out of a unit have their signs changed. Demon-
strate the corresponding symmetry for hidden units with logistic sigmoidal
activation functions.

4.2 (%) Consider a second-order network unit of the form (4.19). Use the sym-
metry properties of this term, together with the results of Exercises 1.7
and 1.8, to find an expression for the number of independent weight pa-
rameters and show that this is the same result as that obtained by applying
symmetry considerations to the equivalent form (4.18).

4.3 (+) Show, for a feed-forward network with ‘tanh’ hidden unit activation func-
tions, and a sum-of-squares error function, that the origin in weight space
is a stationary point of the error function.

4.4 () Consider a layered network with d inputs, M hidden units and ¢ output
units. Write down an expression for the total number of weights and biases
in the network. Consider the derivatives of the error function with respect
to the weights for one input pattern only. Using the fact that these deriva-
tives are given by equations of the form OE™/Owy; = 0x2;, write down an
expression for the number of independent derivatives.

4.5 (x) Consider a layered network having second-order units of the form (4.19)
in the first layer and conventional units in the remaining layers. Derive
a back-propagation formalism for evaluating the derivatives of the error
function with respect to any weight or bias in the network. Extend the
result to general Mth-order units in the first layer.

4.6 () In Section 4.9, a formalism was developed for evaluating the Jacobian
matrix by a process of back-propagation. Derive an alternative formalism
for obtaining the Jacobian matrix using forward propagation equations.

4.7 (*) Consider a two-layer network having 20 inputs, 10 hidden units, and 5
outputs, together with a training set of 2000 patterns. Calculate roughly
how long it would take to perform one evaluation of the Hessian matrix
using (a) central differences based on direct error function evaluations; (b)
central differences based on gradient evaluations using back-propagation;
(c) the analytic expressions given in (4.82), (4.83) and (4.84). Assume that
the workstation can perform 5 x 107 floating point operations per second,
and that the time taken to evaluate an activation function or its derivatives
can be neglected.

4.8 (%) Verify the identity (4.65) by pre- and post-multiplying both sides by
A +BC.

4.9 (x) Extend the expression (4.63) for the outer product approximation of the
Hessian to the case of ¢ > 1 output units. Hence derive a recursive ex-
pression analogous to (4.64) for incrementing the number N of patterns,

f and a similar expression for incrementing the number ¢ of outputs. Use

these results, together with the identity (4.65), to find sequential update




162 4: The Multi-layer Perceptron

expressions analogous (4.66) for finding the inverse of the Hessian by in-

crementally including both extra patterns and extra outputs.

- 4.10 (%) Verify that the results (4.82), (4.83) and (4.84) for the Hessian ma-
trix of a two-layer network follow from the general expressions for cal-
culating the Hessian matrix for a network of arbitrary topology given in
Section 4.10.5.

4.11 (* %) Derive the results (4.82), (4.83) and (4.84) for the exact evaluation of
the Hessian matrix for a two-layer network by direct differentiation of the
forward-propagation and back-propagation equations.

4,12 (x % %) Write a software implementation of the forward and backward prop-
agation equations for a two-layer network with ‘tanh’ hidden unit activation
function and linear output units. Generate a data set of random input and
target vectors, and set the network weights to random values. For the case
of a sum-of-squares error function, evaluate the derivatives of the error
with respect to the weights and biases in the network by using the cen-
tral differences expression (4.47). Compare the results with those obtained
using the back-propagation algorithm. Experiment with different values of
€, and show numerically that, for values of ¢ in an appropriate range, the
two approaches give almost identical results. Plot graphs of the logarithm
of the evaluation times for these two algorithms versus the logarithm of
the number W of weights in the network, for networks having a range of
different sizes (including networks with relatively large values of W). Hence
verify the scalings with W discussed in Section 4.8.

4.13 (x++) Extend the software implementation of the previous exercise to in-
clude the forward and backward propagation equations for the R{.} vari-
ables, described in Section 4.10.7. Use this implementation to evaluate the
complete Hessian matrix by setting the vector v in the R{-} operator to
successive unit vectors of the form (0,0,...,1,...,0) each of which picks
out one column of the Hessian. Also implement the central differences ap-
proach for evaluation of the Hessian given by (4.67). Show that the results
from the R{-} operator and central difference methods agree closely, pro-
vided € is chosen appropriately. Again, plot graphs of the logarithm of
the evaluation time versus the logarithm of the number of weights in the
network, for networks having a range of different sizes, for both of these
approaches to evaluation of the Hessian, and verify the scalings with W of
the two algorithms, as discussed in the text.

4.14 (++x) Extend further the software implementation of Exercise 4.12 by im-
plementing equations (4.82), (4.83) and (4.84) for computing the elements
of the Hessian matrix. Show that the results agree with those from the
R{-}-operator approach, and extend the graph of the previous exercise to
include the logarithm of the computation times for this algorithm.

4.15 (x*) Consider a feed-forward network which has been trained to a min-
imum of some error function E, corresponding to a set of weights {w;},
where for convenience we have labelled all of the weights and biases in the
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network with a single index j. Suppose that all of the input values =} and
target values ¢} in the training set are perturbed by small amounts Az} and
At} respectively. This causes the minimum of the error function to change
to a new set of weight values given by {w; + Aw;}. Write down the Taylor
expansion of the new error function E({w;+Aw;}, (= + Az}, {17 ALY
to second order in the A’s. By minimizing this expression with respect to
the {Aw;}, show that the new set of weights which minimizes the error
function can be calculated from the original set of weights by adding cor-
rections Aw; which are given by solutions of the following equation

> HijAw; = —-AT,, (4.103)
J

where Hy; are the elements of the Hessian matrix, and we have defined

OE”
ATy = Zz 6:1:”811) zi + Z Z w0t} Atk (4.104)



5
RADIAL BASIS FUNCTIONS

The network models discussed in Chapters 3 and 4 are based on units which
compute a non-linear function of the scalar product of the input vector and a
weight vector. Here we consider the other major class of neural network model,
in which the activation of a hidden unit is determined by the distance between
the input vector and a prototype vector.

An interesting and important property of these radial basis function networks
is that they form a unifying link between a number of disparate concepts as we
shall demonstrate in this chapter. In particular, we shall motivate the use of
radial basis functions from the point of view of function approximation, regu-
larization, noisy interpolation, density estimation, optimal classification theory,
and potential functions.

One consequence of this unifying viewpoint is that it motivates procedures
for training radial basis function networks which can be substantially faster than
the methods used to train multi-layer perceptron networks. This follows from the
interpretation which can be given to the internal representations formed by the
hidden units, and leads to a two-stage training procedure. In the first stage, the
parameters governing the basis functions (corresponding to hidden units) are
determined using relatively fast, unsupervised methods (i.e. methods which use
only the input data and not the target data). The second stage of training then
involves the determination of the final-layer weights, which requires the solution
of a linear problem, and which is therefore also fast.

5.1 Exact interpolation

Radial basis function methods have their origins in techniques for performing
exact interpolation of a set of data points in a muiti-dimensional space {Powell,
1987). The exact interpolation problem requires every input vector to be mapped
exactly onto the corresponding target vector, and forms a convenient starting
point for our discussion of radial basis function networks.

Consider a mapping from a d-dimensional input space x to a one-dimensional
target space t. The data set consists of N input vectors x®, together with corre-
sponding targets t". The goal is to find a function A(x) such that

h(x™) = t7, n=1,...,N. (5.1)
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The radial basis function approach (Powell, 1987) introduces a set of N basis
functions, one for each data point, which take the form ¢(||x — x™||) where ¢(-)
is some non-linear function whose form will be discussed shortly. Thus the nth
such function depends on the distance ||x — x™||, usually taken to be Euclidean,
between x and x™. The output of the mapping is then taken to be a linear
combination of the basis functions

h(x) =Y wag(|lx — x"|)). (5.2)

We recognize this as having the same form as the generalized linear discriminant
function considered in Section 3.3. The interpolation conditions (5.1) can then
be written in matrix form as

Pw =1t (5.3)

where t = ("), w = (wy), and the square matrix ® has elements ®,, =
#(|x™ —x™ |)). Provided the inverse matrix &~} exists we can solve (5.3) to give

w=®"1t. (5.4)

It has been shown (Micchelli, 1986) that, for a large class of functions ¢(-), the
matrix ® is indeed non-singular provided the data points are distinct. When the
weights in (5.2) are set to the values given by (5.4), the function h(x) represents
a continuous differentiable surface which passes exactly through each data point.

Both theoretical and empirical studies (Powell, 1987) show that, in the con-
text of the exact interpolation problem, many properties of the interpolating
function are relatively insensitive to the precise form of the non-linear function
#(+). Several forms of basis function have been considered, the most common
being the Gaussian

¢(z) = exp (~§;) (5.5)

where o is a parameter whose value controls the smoothness properties of the
interpolating function. The Gaussian (5.5) is a localized basis function with the
property that ¢ — 0 as |z| — oo. Another choice of basis function with the same
property is the function

p(z) = (2% +0%)77, a>0. (5.6)

It is not, however, necessary for the functions to be localized, and other possible
choices are the thin-plate spline function

—

L
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#(x) = z* In(z), (5.7)
the funiction
$(z) = (=2 + 0", 0<pf<1, (5.8)
which for 8 = 1/2 is known as the multi-quadric function, the cubic

and the ‘linear’ function

$z) ==z (5.10)

which all have the property that ¢ — oo as £ — oo. Note that (5.10) linear in
z = [|x — x"|| and so is still a non-linear function of the components of x. In one
dimension, it leads to a piecewise-linear interpolating function which represents
the simplest form of exact interpolation. As we shall see, in the context of neural
network mappings there are reasons for considering localized basis functions. We
shall focus most of our attention on Gaussian basis functions since, as well as
being localized, they have a number of useful analytical properties. The technique
of radial basis functions for exact interpolation is illustrated in Figure 5.1 for a
simple one-input, one-output mapping.

The generalization to several output variables is straightforward. Each input
vector x™ must be mapped exactly onto an output vector t” having components
% so that (5.1) becomes

he(x™) = %, n=1,...,N (5.11)

where the hi(x) are obtained by linear superposition of the same N basis func-
tions as used for the single-output case

hi(x) =D wrad(llx ~ x"|)). (5.12)
The weight parameters are obtained by analogy with (5.4) in the form

Whn = 3 (@ pnth . ’ (5.13)

Note that in (5.13) the same matrix @' is used for each of the output functions.
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Figure 5.1. A simple example of exact interpolation using radial basis func-
tions. A set of 30 data points was generated by sampling the function
y = 0.5+ 0.4sin(2nx), shown by the dashed curve, and adding Gaussian noise
with standard deviation 0.05. The solid curve shows the interpolating func-
tion which results from using Gaussian basis functions of the form (5.5) with
width parameter o = 0.067 which corresponds to roughly twice the spacing of
the data points. Values for the second-layer weights were found using matrix
inversion techniques as discussed in the text.

. 5.2 Radial basis function networks

The radial basis function mappings discussed so far provide an interpolating
function which passes exactly through every data point. As the example in Fig-
ure 5.1 illustrates, the exact interpolating function for noisy data is typically
a highly oscillatory function. Such interpolating functions are generally unde-
sirable. As discussed in Section 1.5.1, when there is noise present on the data,
the interpolating function which gives the best generalization is one which is
typically much smoother and which averages over the noise on the data. An ad-
ditional limitation of the exact interpolation procedure discussed above is that
the number of basis functions is equal to the number of patterns in the data
set, and so for large data sets the mapping function can become very costly to
evaluate.

By introducing a number of modifications to the exact interpolation proce-
dure we obtain the radial basis function neural network model (Broomhead and
Lowe, 1988; Moody and Darken, 1989). This provides a smooth interpolating
function in which the number of basis functions is determined by the complexity
of the mapping to be represented rather than by the size of the data set. The
modifications which are required are as follows:

1. The number M of basis functions need not equal the number N of data
points, and is typically much less than N.

2. The centres of the basis functions are no longer constrained to be given by
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input data vectors. Instead, the determination of suitable centres becomes
part of the training process.

3. Instead of having a common width parameter o, each basis function is
given its own width o; whose value is also determined during training.

4. Bias parameters are included in the linear sum. They compensate for the
difference between the average value over the data set of the basis function
activations and the corresponding average value of the targets, as discussed
in Section 3.4.3.

When these changes are made to the exact interpolation formula (5.12), we
arrive at the following form for the radial basis function neural network mapping

M
uk(x) = 3 wii 5 (%) + wio. (5.14)

j=1

if desired, the biases wyg can be absorbed into the summation by including an
extra basis function ¢o whose activation is set to 1. For the case of Gaussian
basis functions we have

¢j(x) = exp <~~—-—~—"x ;U’;j "2) (5.15)

where x is the d-dimensional input vectar with elements z;, and p; is the vector
determining the centre of basis function ¢; and has elemerits uji- Note that
the Gaussian basis functions in (5.15) are not normalized, as was the case for
Gaussian density models in Chapter 2 for example, since any overall factors can
be absorbed into the weights in (5.14) without loss of generality. This mapping
function can be represented as a neural network diagram as shown in Figure 5.2.
Note that more general topologies of radial basis function network (more than
one hidden layer for instance) are not normalily considered.

In discussing the representational properties of multi-layer perceptron net-
works in Section 4.3.1, we appealed to intuition to suggest that a linear super-
position of localized functions, as in (5.14) and (5.15), is capable of universal
approximation. Hartman et al. (1990) give a formal proof of this property for
networks with Gaussian basis functions in which the widths of the Gaussians are
treated as adjustable parameters. A more general result was obtained by Park
and Sandberg (1991) who show that, with only mild restrictions on the form of
the kernel functions, the universal approximation property still holds. Further
generalizations of this results are given in (Park and Sandberg, 1993). As with
the corresponding proofs for multi-layer perceptron networks, these are existence
proofs which rely on the availability of an arbitrarily large number of hidden
units, and they do not offer practical procedures for constructing the networks.
Nevertheless, these theorems are crucial in providing a theoretical foundation on
which practical applications can be based with confidence.
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outputs

basis

bias functions

inputs

Figure 5.2. Architecture of a radial basis function neural network, correspond-
ing to (5.14). Each basis function acts like a hidden unit. The lines connecting
basis function ¢; to the inputs represent the corresponding elements pj; of
the vector p;. The weights wy; are shown as lines from the basis functions
to the output units, and the biases are shown as weights from an extra ‘basis
function’ ¢¢ whose output is fixed at 1.

Girosi and Poggio (1990) have shown that radial basis function networks
possess the property of best approzimation. An approximation scheme has this
property if, in the set of approximating functions (i.e. the set of functions cor-
responding to all possible choices of the adjustable parameters) there is one
function which has minimum approximating error for any given function to be
approximated. They also showed that this property is not shared by multi-layer
perceptrons.

The Gaussian radial basis functions considered above can be generalized to
allow for arbitrary covariance matrices X;, as discussed for normal probability
density functions in Section 2.1.1. Thus we take the basis functions to have the
form

$;(x) = exp {—%(x — 1) TE  (x - u,-)} . (5.16)

Since the covariance matrices 2; are symmetric, this means that each basis func-
tion has d(d+3)/2 independent adjustable parameters (where d is the dimension-
ality of the input space), as compared with the (d + 1) independent parameters
for the basis functions (5.15). In practice there is a trade-off to be considered
between using a smaller number of basis with many adjustable parameters and
a larger number of less flexible functions.
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5.3 Network training

A key aspect of radial basis function networks is the distinction between the
roles of the first and second layers of weights. As we shall see, the basis functions
can be interpreted in a way which allows the first-layer weights (i.e. the param-
eters governing the basis functions) to be determined by unsupervised training
techniques. This leads to the following two-stage training procedure for training
radial basis function networks. In the first stage the input data set {x"} alone
is used to determine the parameters of the basis functions (e.g. p; and o for
the spherical Gaussian basis functions considered above). The basns functions
are then kept fixed while the second-layer weights are found in the second phase
of training. Techniques for optimizing the basis functions are discussed at length
in Section 5.9. Here we shall assume that the basis function parameters have
already been chosen, and we discuss the problem of optimizing the second-layer
weights. Note that, if there are fewer basis functions than dats. points, then in
general it will no longer possible to find a set of weight values for which the
mapping function fits the data points exactly.

We begin by considering the radial basis function network mapping in (5.14)
and we absorb the bias parameters into the weights to give

M
(%) =Y wijh; (%) (5.17)
j=0

where ¢g is an extra ‘basis function’ with activation value fixed at ¢9 = 1. This
can be written in matrix notation as

y(x)=W¢ (5.18)

where W = (wy;) and ¢ = (¢;). Since the basis functions are considered fixed,
the network is equivalent to a single-layer network of the kind considered in Sec-
tion 3.3 in the context of classification problems, where it is termed a generalized
linear discriminant. As discussed in earlier chapters, we can optimize the weights
by minimization of a suitable error function. It is particularly convenient, as we
shall see, to consider a sum-of-squares error function given by

= s S ) — (519)
n k

where t} is the target value for output unit k when the network is presented with
input vector x™. Since the error function is a quadratic function of the weights,
its minimum can be found in terms of the solution of a set of linear equations.
This problem was discussed in detail in Section 3.4.3, from which we see that
the weights are determined by the linear equations
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»TeWT = 37T (5.20)

where (T)ny = t} and (®)n; = ¢;(x"). The formal solution for the weights is
given by

wT = afT (5.21)

where the notation ®! denotes the pseudo-inverse of @ (Section 3.4.3). In prac-
tice, the equations (5.20) are solved using singular value decomposition, to avoid
problems due to possible ill-conditioning of the matrix ®. Thus, we see that the
second-layer weights can be found by fast, linear matrix inversion techniques.

For the most part we shall consider radial basis function networks in which the
dependence of the network function on the second-layer weights is linear, and in
which the error function is given by the sum-of-squares. It is possible to consider
the use of non-linear activation functions applied to the output units, or other
choices for the error function. However, the determination of the second-layer
weights is then no longer a linear problem, and hence a non-linear optimization of
these weights is then required. As we have indicated, one of the major advantages
of radial basis function networks is the possibility of avoiding the need for such
an optimization during network training.

As a simple illustration of the use of radial basis function networks, we return
to the data set shown in Figure 5.1 and consider the mapping obtained by using
a radial basis function network in which the number of basis functions is smaller
than the number of data points, as shown in Figure 5.3

The width parameter ¢ in Figure 5.3 was chosen to be roughly twice the
average spacing between the basis functions. Techniques for setting the basis
function parameters, including o, are discussed in detail in Section 5.9. Here we
simply note the effect of poor choices of o. Figure 5.4 shows the result of choosing
too small a value for o, while the effect of having ¢ too large is illustrated in
Figure 5.5.

5.4 Regularization theory

An alternative motivation for radial basis function expansions comes from the
theory of regularization (Poggio and Girosi, 1990a, 1990b). In Section 1.6 the
technique of regularization was introduced as a way of controlling the smoothness
properties of a mapping function. It involves adding to the error function an extra
term which is designed to penalize mappings which are not smooth. For simplicity
of notation we shall consider networks having a single output y, so that with a
sum-of-squares error, the total error function to be minimized becomes

B =500 -y [Pl (522)
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Figure 5.3. This shows the same set of 30 data points as in Figure 5.1, together
with a network mapping (solid curve) in which the number of basis functions
has been set to 5, which is significantly fewer than the number of data points.
The centres of the basis functions have been set to a random subset of the data
set input vectors, and the width parameters of the basis functions have been
set to a common value of o0 = 0.4, which again is roughly equal to twice the
average spacing between the centres. The second-layer weights are found by
minimizing a sum-of-squares error function using singular value decomposition.

1.0

0.5

0.0
0.0 0.5

Figure 5.4. As in Figure 5.3, but in which the width parameter has been set
to o = 0.08. The resulting network function is insufficiently smooth and gives
a poor representation of the underlying function which generated the data.
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Figure 5.5. As in Figure 5.3, but in which the width parameter has been set to
o = 10.0. This leads to a network function which is over-smoothed, and which
again gives a poor representation of the underlying function which generated
the data.

where P is some differential operator, and v is called a regularization parameter.
Network mapping functions y(x) which have large curvature will typically give
rise to large values of [Py|? and hence to a large penalty in the total error
function. The value of v controls the relative importance of the regularization
term, and hence the degree of smoothness of the function y(x).

We can solve the regularized least-squares problem of (5.22) by using calculus
of variations (Appendix D) as follows. Setting the functional derivative of (5.22)
with respect to y(x) to zero we obtain

> {u(x™) - t"}6(x — x") + vPPy(x) = 0 (5.23)

where P is the adjoint differential operator to P and 6(x) is the Dirac delta
function. The equations (5.23) are the Fuler-Lagrange equations corresponding
to (5.22). A formal solution to these equations can be written down in terms of
the Green’s functions of the operator PP, which are the functions G(x, x’) which
satisfy

PPG(x,x') = 6(x ~ x'). (5.24)
If the operator P is translationally and rotationally invariant, then the Green’s

functions depend only on the distance ||x — x'}}, and hence they are radial func-
tions, The formal solution to (5.23) can then be written as
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y(x) = 3 unG(lx - x") (5.25)
n

which has the form of a linear expansion in radial basis functions. Substituting
(5.25) into (5.23) and using (5.24) we obtain

DY) ~ 1" (x = XM 4 v > wnd(x — x*) =0 (5.26)

Integrating over a small region around x™ shows that the coefficients w,, satisfy
y(x™) —t" + vw, =0. (5.27)

Values for the coefficients w,, can be found by evaluating (5.25) at the values of
the training data points x™ and substituting into (5.27). This gives the values of
w, as the solutions of the linear equation

(G+vDw =t (5.28)

where (G = G(x* — x™|), (W) = Wy, (t)n = t" and I denotes the unit
matrix. i
If the operator P is chosen to-have the particular form

2 a2 2
/ Pyl =Y 7 / | D'y dx (5.20)
1=0

where D% = (V?)! and D#+! = V(V?)}, with V and V? denoting the gradient
and Laplacian operators respectively, then the Green’s functions are Gaussians
with width parameters o (Exercise 5.3).

We see that there is a very close similarity between this form of basis func-
tion expansion, and the one discussed in the context of exact interpolation in
Section 5.1. Here the Greens functions G(|{x —x"||) correspond to the basis func-
tions ¢(||x — x™||), and there is one such function centred on each data point in
the training set. Also, we see that (5.28) reduces to the exact interpolation result
(5.3) when the regularization parameter v is zero. When the regularization pa-
rameter is greater than zero, however, we no longer have an exact interpolating
function. The effect of the regularization term is to force a smoother network
mapping function, as illustrated in Figure 5.6.

In practice, regularization can also be applied to radial basis function net-
works in which the basis functions are not constrained to be centred on the data
points, and in which the number of basis functions need not equal the number
of data points. Also, regularization terms can be considered for which the basis
functions are not necessarily the Green’s functions. Provided the regularization
term is a quadratic function of the network mapping, the second-layer weights
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Figure 5.6. This shows the same data set as in Figure 5.1, again with one basis
function centred on each data point, and a width parameter o = 0.067. In this
case, however, a regularization term is used, with coefficient v = 40, leading
to a smoother mapping (shown by the solid curve) which no longer gives an
exact fit to the data, but which now gives a much better approximation to the
underlying function which generated the data (shown by the dashed curve).

can again be found by the solution of a set of linear equations which minimize a
sum-of-squares error. For example, the regularizer

%};};Z (é:jgv’)? (5.30)

penalizes mappings which have large curvature (Bishop, 1991b). This regularizer
leads to second-layer weights which are found by solution of

MW = &' (5.31)

where

3*¢m 827,
(M)jj' = Z {¢?¢?’ + UZ ( asz (?IL‘;‘ )} (5'32)

n

and ® = (¢7) as before. When v = 0 (5.31) reduces to the previous result (5.20).
The inclusion of the regularization term adds little to the computational cost,
since most of the time is spent in solving the coupled linear equations (5.31).
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5.5 Noisy interpolation theory

Yet another viewpoint on the origin of radial basis function expansions comes
from the theory of interpolation of noisy data (Webb, 1894). Consider a mapping
from a single input variable z to a single output variable y in which the target
data is generated from a smooth noise-free function A(z) but in which the input
data is corrupted by additive noise. The sum-of-squares error, in the limit of
infinite data, takes the form

£ =3 [ [t +6) - He) e ds da (5.33)

where p(z) is the probability density function of the input data, and p(£) is the
probability density function of the noise. Changing variables using z = z + £ we
have

B=1 / {0(z) — h(@) Bz - 2)plz) dz d. (5.34)

A formal expression for the minimum of the error can then be obtained using
variational techniques (Appendix D) by setting the functional derivative of F
with respect to y(z) to zero, to give

/ h(@)(z ~ 2)p(x) dz
y(z) = .
/ Bz — 2)p(x) dz

If we consider the case of a finite number of data points {z"} drawn from
the distribution p(z), we can approximate (5.35) by

S ()i — o)
ulw) = =5 S )

(5.35)

(5.36)

which we recognize as being an expansion in radial basis functions, in which
h{z™) are the expansion coefficients, and the basis functions are given by

ny_ Pz —z")
SRS ¥R}

Since the function h(z) is unknown, the coefficients h(z™) should be regarded
as parameters to be determined from the data. To do this we note that h(z) is
noise-free and so we have h(z") = t™. Thus (5.36) becomes an expansion in basis
functions in which the coefficients are given by the target values. Note that this
* form of basis function expansion differs from that introduced in (5.14) and (5.15)

(5.37)
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in that the basis functions are normalized (Moody and Darken, 1989). Strictly
speaking, the normalization in (5.36) would require lateral connections between
different hidden units in a network diagram. If the distribution of the noise is
normal, so that p(¢) o exp(—€2/20?), then we obtain an expansion in Gaussian
basis functions

_ T b exp{—(a — 2")/20%)
¥, exp{—(z - 5)/27)

The extension of this result to several output variables is straightforward and
gives

y(z)

(5.38)

S, bl exp{—( — 2)/20%)
A S S Gy R

(5.39)

Note that (5.36) will only be a good approximation to (5.35) if the integrand
is sufficiently smooth. This implies that the width of the basis functions should
be large in relation to the spacing of the data, which is a useful rule of thumb
when designing networks with good generalization properties.

5.6 Relation to kernel regression

Further motivation for the use of radial basis functions for function approxima-
tion comes from the theory of kernel regression (Scott, 1992). This is a technique
for estimating regression functions from noisy data, based on the methods of
kernel density estimation discussed in Section 2.5.3. Consider a mapping from
an input vector x to an output vector y, and suppose we are given a set of train-
ing data {x",t"} where n = 1,..., N. A complete description of the statistical
properties of the generator of the data is given by the probability density p(x, t)
in the joint input-target space. We can model this density by using a Parzen
kernel estimator constructed from the data set. If we consider Gaussian kernel
functions, this estimator takes the form

N
~ 1 1 llx —x™2 it —t*))?
n=

where d and ¢ are the dimensionalities of the input and output spaces respec-
tively. This is illustrated schematically, for the case of one input variable and
one output variable, in Figure 5.7.

As we have already seen, the goal of learning is to find a smooth mapping
from x to y which captures the underlying systematic aspects of the data, with-
out fitting the noise on the data. In Section 6.1.3 it is shown that, under many
circumstances, the optimal mapping is given by forming the regression, or condi-
tional average (t|x), of the target data, conditioned on the input variables. This
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\

Figure 5.7. Schematic illustration of the use of a kernel estimator to model the
joint probability density in the input-output space. The dots show the data
points, and the circles represent Gaussian kernel functions centred on the data
points, while the curve shows the regression function given by the conditional
average of ¢ as a function of .

can be expressed in terms of the conditional density p(t|x), and hence in terms
of the joint density p(x,t), as follows:

y(x) = {t|x)

- / tp(t]x) dt

/tp(x, t) dt
=y (5.41)

/p(x, t) dt

If we now substitute our density estimate (5.40) into (5.41) we obtain the fol-
lowing expression for the regression of the target data

S ttexp{—|x— x™||2/2h?}
Sonexp{—|lx — x||2/2h?}

y(x) = (5.42)

This is known as the Nadarayo-Watson estimator (Nadaraya, 1964; Watson,
1964), and has been re-discovered relatively recently in the context of neural
networks (Specht, 1990; Schigler and Hartmann, 1992). We see that (5.42) has
the form of a normalized expansion in Gaussian radial basis functions defined in
the input space, and should be compared with the form (5.38) obtained earlier
from the perspective of additive noise on the input data. Each basis function is
centred on a data point, and the coefficients in the expansion are given by the
target values t". Note that this construction provides vatues for the hidden-to-
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output unit weights which are just given by the target data values.

This approach can be extended by replacing the kernel estimator with an
adaptive mixture model, as discussed in Section 2.6. The parameters of the mix-
ture model can be found using, for instance, the EM (expectation-maximization)
algorithm (Section 2.6.2). For a mixture of M spherical Gaussian functions, we
can write the joint density in the form

M 2
= _ N 2 N e 2]
plx, t) = J_Zl P(])W exp {— 52 T . (5.43)

Following the same line of argument as before, we arrive at the following expres-
sion for the regression: ‘

0 = S POvs o e = s 2/207)
YO = T P exp (— % - 1, I2/2h7)

(5.44)

which can be viewed as a normalized radial basis function expansion in which
the number of basis functions is typically much smaller than the number of data
points, and in which the basis function centres are no longer constrained to
coincide with the data points. This result can be extended to Gaussian functions
with general covariance matrices (Ghahramani and Jordan, 1994b).

+

5.7 Radial basis function networks for classification

A further key insight into the nature of the radial basis function network is ob-
tained by considering the use of such networks for classification problems (Lowe,
1995). Suppose we have a data set which falls into three classes as shown in Fig-
ure 5.8, A multi-layer perceptron can separate the classes by using hidden units
which form hyperplanes in the input space, as indicated in Figure 5.8(a). An
alternative approach is to model the separate class distributions by local kernel
functions, as indicated in (b). This latter type of representation is related to the
radial basis function network.

Suppose we model the data in each class C; using a single kernel function,
which we write as p(x|Cy). In a classification problem our goal is to model the
posterior probabilities p(Ck|x) for each of the classes. These probabilities can be
obtained through Bayes’ theorem, using prior probabilities p(Cy), as follows:

P(Cilx) = ?i’ii’%);l)f(—cﬁ (5.45)
P(xIC)P(Ce) 5.45)

T e PXICPCr)
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(a) (b)

Figure 5.8. Schematic example of data points in two dimensions which fall into
three distinct classes. One way to separate the classes is to use hyperplanes,
shown in (a), as used in a multi-layer perceptron. An alternative approach,
shown in (b), is to fit each class with a kernel function, which gives the type
of representation formed by a radial basis function network.

This can be viewed as a simple form of basis function network with normalized
basis functions given by

_ p(x|C.)
Yok p(X|Crr ) P(Cre)

Pr(x) (5.47)

and second-layer connections which consist of one weight from each hidden unit
going to the corresponding output unit, with value p(Cy). The outputs of this
network represent approximations to the posterior probabilities.

In most applications a single kernel function will not give a particularly good
representation of the class-conditional distributions p(x|Cy). A better represen-
tation could be obtained by using a separate mixture model to represent each of
the conditional densities. However, a computationally more efficient approach,
and one which may help to reduce the number of adjustable parameters in the
model, is to use a common pool of M basis functions, labelled by an index j, to
represent all of the class-conditional densities. Thus, we write

M
p(x|Ck) = Y p(xlj) P(jICk). (5.48)
J=1

An expression for the unconditional density p(x) can be found from (5.48) by
summing over all classes

p(x) =Y p(x|Ck)P(Ck) (5.49)
k
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M

= > p(x|i)P(5) (5.50)

=1

where we have defined priors for the basis functions given by

P(j) =Y P(jlCk)P(Ck)- (5.51)
k

Again, the quantities we are interested in are the posterior probabilities of class
membership. These can be obtained by substituting the expressions (5.48) and
(5.50) into Bayes’ theorem (5.45) to give

YL PGIC)p(x15)P(CE) P(j)

Pl = YopxliPG) PO

(5.52)

M
= > wi;g;(x) (5.53)
J=1

where we have inserted an extra factor of 1 = P(3)/P(j) into (5.52). The expres-
sion (5.53) represents a radial basis function network, in which the normalized
basis functions are given by

p(x}j)P(J)
j = 5.54
$00) = S li) PG) (554
= P(jlx) (5.55)
and the second-layer weights are given by
W = ——-——*P(jl(}zf()ﬁ(ck) (5.56)
= P(Cklj)- (5.57)

Thus, the activations of the basis functions can be interpreted as the posterior
probabilities of the presence of corresponding features in the input space, and
the weights can similarly be interpreted as the posterior probabilities of class
membership, given the presence of the features. The activations of the hidden
units in a multi-layer perceptron (with logistic sigmoid activation functions) can
be given a similar interpretation as posterior probabilities of the presence of
features, as discussed in Section 6.7.1.

Note from (5.50) that the unconditional density of the input data is expressed
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in terms of a mixture model, in which the component densities are given by
the basis functions. This motivates the use of mixture density estimation as a
procedure for finding the basis function parameters, as discussed in Section 5.9.4.

It should be emphasized that the outputs of this network also have a precise
interpretation as the posterior probabilities of class membership. The ability to
interpret network outputs in this way is of central importance in the effective
application of neural networks, and is discussed at length in Chapter 6.

Finally, for completeness, we point out that radial basis functions are also
closely related to the method of potential functions (Aizerman et al., 1964; Ni-
ranjan et al., 1989). This is a way of finding a linear discriminant function from
a training set of data points, based on an analogy with electrostatics. Imagine
we place a unit of positive charge at each point in input space at which there is a
training vector from class Cy, and a unit of negative charge at each point where
there is a training vector from class C;. These charges give rise to an electro-
static potential field which can be treated as a discriminant function. The kernel
function which is used to compute the contribution to the potential from each
charge need not be that of conventional electrostatics, but can be some other
function of the radial distance from the data point.

5.8 Comparison with the multi-layer perceptron

Radial basis function networks and multi-layer perceptrons play very similar roles
in that they both provide techniques for approximating arbitrary non-linear func-
tional mappings between multidimensional spaces. In both cases the mappings
are expressed in terms of parametrized compositions of functions of single vari-
ables. The particular structures of the two networks are very different, however,
and so it is interesting to compare them in more detail. Some of the important
differences between the multi-layer perceptron and radial basis function networks
are as follows:

1. The hidden unit representations of the multi-layer perceptron depend on
weighted linear summations of the inputs, transformed by monotonic acti-
vation functions. Thus the activation of a hidden unit in a multi-layer per-
ceptron is constant on surfaces which consist of parallel {d —1)-dimensional
hyperplanes in d-dimensional input space. By contrast, the hidden units
in a radial basis function network use distance to a prototype vector fol-
lowed by transformation with a (usually) localized function. The activation
of a basis function is therefore constant on concentric (d — 1)-dimensional
hyperspheres (or more generally on (d — 1)-dimensional hyperellipsoids).

2. A multi-layer perceptron can be said to form a distributed representation in
the space of activation values for the hidden units since, for a given input
vector, many hidden units will typically contribute to the determination
of the output value. During training, the functions represented by the hid-
den units must be such that, when linearly combined by the final layer
of weights, they generate the correct outputs for a range of possible input
values. The interference and cross-coupling between the hidden units which
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this requires results in the network training process being highly non-linear
with problems of local minima, or nearly flat regions in the error function
arising from near cancellations in the effects of different weights. This can
lead to very slow convergence of the training procedure even with advanced
optimization strategies. By contrast, a radial basis function network with
localized basis functions forms a representation in the space of hidden units
which is local with respect to the input space because, for a given input
vector, typically only a few hidden units will have significant activations.

" 3. A multi-layer perceptron often has many layers of weights, and a com-
plex pattern of connectivity, so that not all possible weights in any given
layer are present. Also, a variety of different activation functions may be .
used within the same network. A radial basis function network, however,
generally has a simple architecture consisting of two layers of weights, in
which the first layer contains the parameters of the basis functions, and
the second layer forms linear combinations of the activations of the basis
functions to generate the outputs.

4. All of the parameters in a multi-layer perceptron are usually determined
at the same time as part of a single global training strategy involving
supervised training. A radial basis function network, however, is typically
trained in two stages, with the basis functions being determined first by
unsupervised techniques using the input data alone, and the second-layer
weights subsequently being found by fast linear supervised methods.

5.9 Basis function optimization

One of the principal advantages of radial basis function neural networks, as
compared with the multi-layer perceptron, is the possibility of choosing suitable
parameters for the hidden units without having to perform a full non-linear
optimization of the network. In this section we shall discuss several possible
strategies for selecting the parameters of the basis functions. The problem of
selecting the appropriate number of basis functions, however, is discussed in the
context of model order selection and generalization in Chapter 9.

We have motivated radial basis functions from the perspectives of function
approximation, regularization, noisy interpolation, kernel regression, and the es-
timation of posterior class probabilities for classification problems. All of these
viewpoints suggest that the basis function parameters should be chosen to form
a representation of the probability density of the input data. This leads to an
unsupervised procedure for optimizing the basis function parameters which de-
pends only on the input data from the training set, and which ignores any target
information. The basis function centres p; can then be regarded as prototypes
of the input vectors. In this section we discuss a number of possible strategies
for optimizing the basis functions which are motivated by these considerations.

There are many potential applications for neural networks where unlabelled
input data is plentiful, but where labelled data is in short supply. For instance,
it may be easy to collect examples of raw input data for the network, but the
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labelling of the data with target variables may require the time of a human expert
which therefore limits the amount of data which can be labelled in a reasonable
time. With such applications, the two-stage training process for a radial basis
function network can be particularly advantageous since the determination of
the non-linear representation given by first layer of the network can be done
using a large quantity of unlabelled data, leaving a relatively small number of
parameters in the second layer to be determined using the labelled data. At each
stage of the training process, we can ensure that the number of data points is
large compared with the number of parameters to be determined, as required for
good generalization.

One of the major potential difficulties with radial basis function networks,
however, also stems from the localized nature of the hidden unit representation.
1t concerns the way in which such a network addresses the curse of dimensionality
discussed in Section 1.4. There we saw that the number of hypercubes which are
needed to fill out a compact region of a d-dimensional space grows exponentially
with d. When the data is confined to some lower-dimensional sub-space, d is
to be interpreted as the effective dimensionality of the sub-space, known as the
intrinsic dimensionality of the data. If the basis function centres are used to fill
out the sub-space then the number of basis function centres will be an exponential
function of d (Hartman et al., 1990). As well as increasing the computation time,
a large number of basis functions leads to a requirement for large numbers of
training patterns in order to ensure that the network parameters are properly
determined.

The problem is particularly severe if there are input variables which have
significant variance but which play little role in determining the appropriate
output variables. Such irrelevant inputs are not uncommon in practical applica-
tions. When the basis function centres are chosen using the input data alone,
there is no way to distinguish relevant from irrelevant inputs. This problem is
llustrated in Figure 5.9 where we see a variable y which is a non-linear function
of an input variable ;. We wish to use radial basis function network network
to approximate this function. The basis functions are chosen to cover the region
of the z; axis where data is observed. Suppose that a second input variable x5
is introduced which is uncorrelated with z1. Then the number of basis functions
needed to cover the required region of input space increases dramatically as in-
dicated in Figure 5.10. If y is independent of z, then these extra basis functions
have no useful role in determining the value of y. Simulations using artificial data
(Hartman et al., 1990), in which 19 out of 20 input variables consisted of noise
uncorrelated with the output, showed that a multi-layer perceptron could learn
to ignore the irrelevant inputs and obtain accurate results with a small number
of hidden units, while radial basis function networks showed large error which
decreased only slowly as the number of hidden units was increased.

Problems arising from the curse of dimensionality may be much less severe if
basis functions with full covariance matrices are used, as in (5.18), rather than
spherical basis functions of the form {5.15). However, the number of parameters
per basis function is then much greater.
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Figure 5.9. A schematic example of a function y(x,) of an input variable z;
which has been modelled using a set of radial basis functions.

X,

Figure 5.10. As in Figure 5.9, but in which an extra, irrelevant variable z2
has been introduced. Note that the number of basis functions, whose locations
are determined using the input data alone, has increased dramatically, even
though z, carries no useful information for determining the output variable.

We have provided compelling reasons for using unsupervised methods to de-
termine the first-layer parameters in a radial basis function network by modelling
the density of input data. Such method have also proven to be very powerful in
practice. However, it should be emphasized that the optimal choice of basis func-
tion parameters for density estimation need not be optimal for representing the
mapping to the output variables. Figure 5.11 shows a simple example of a prob-
lem for which the use of density estimation to set the basis function parameters
clearly gives a sub-optimal solution.
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a b X

Figure 5.11. A simple example to illustrate why the use of unsupervised meth-
ods based on density estimation to determine the basis function parameters
need not be optimal for approximating the target function. Data in one di-
mension (shown by the circles) is generated from a Gaussian distribution p(z)
shown by the dashed curve. Unsupervised training of one Gaussian basis func-
tion would cause it to be centred at ¢ = a, giving a good approximation to
p(z). Target values for the input data are generated from a Gaussian function
centred at b shown by the solid curve. The basis function centred at a can only
give a very poor representation of h(z). By contrast, if the basis function were
centred at b it could represent the function h(z) exactly.

5.9.1 Subsets of data points

One simple procedure for selecting the basis function centres p; is to set them
equal to a random subset of the input vectors from the training set, as was
done for the example shown in Figure 5.3. Clearly this is not an optimal pro-
cedure so far as density estimation is concerned, and may also lead to the use
of an unnecessarily large number of basis functions in order to achieve adequate
performance on the training data. This method is often used, however, to pro-
vide a set of starting values for many of the iterative adaptive procedures to be
discussed shortly.

Another approach is to start with all data points as basis functions centres
and then selectively remove centres in such a way as to have minimum disruption
on the performance of the system. Such an approach was introduced into the
K-nearest-neighbour classification scheme by Devijver and Kittler (1982} and
applied to radial basis function networks used for classification by Kraaijveld
and Duin (1991). A procedure for selecting a subset of the basis functions so as
to preserve the best estimator of the unconditional density is given in Fukunaga
and Hayes (1989).

These techniques only set the basis function centres, and the width param-
eters o; must be chosen using some other procedure. One heuristic approach is
to choose all the o; to be equal and to be given by some multiple of the average
distance between the basis function centres. This ensures that the basis func-
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¥ tions overlap to some degree and hence give a relatively smooth representation
i of the distribution of training data. We might also recognize that the optimal
i width may be different for basis functions in different regions of input space. For
instance, the widths may be determined from the average distance of each basis
function to its L nearest neighbours, where L is typically small. Such ad hoc
procedures for choosing the basis function parameters are very fast, and allow
a radial basis function network to be set up very quickly, but are likely to be
- significantly sub-optimal.

5.9.2  Orthogonal least squares

A more principled approach to selecting a sub-set of the data points as basis
function centres is based on the technique of orthogonal least squares. To motivate
this approach consider the following procedure for selecting basis functions. We
start by considering a network with just one basis function. For each data point
in turn we set the basis function centre to the input vector for that data point,
and then set the second-layer weights by pseudo-inverse techniques using the
complete training set of N data points. The basis function centre which gives rise
© to the smallest residual error is retained. In subsequent steps of the algorithm,
" the number of basis functions is then increased incrementally. If at some point in
the algorithm [ of the data points have been selected as basis function centres,
then N —1 networks are trained in which each of the remaining N — [ data points
. in turn is selected as the centre for the additional basis function. The extra basis
. function which gives the smallest value for the residual sum-of-squares error is
then retained, and the algorithm proceeds to the next stage.
' Such an approach would be computationally intensive since at each step it
" would be necessary to obtain a complete pseudo-inverse solution for each possible
choice of basis functions. A much more efficient procedure for achieving the same
result is that of orthogonal least squares (Chen et al., 1989, 1991). In outline, the
algorithm involves the sequential addition of new basis functions, each centred
on one of the data points, as described above. This is done by constructing a
- set of orthogonal vectors in the space S spanned by the vectors of hidden unit
. activations for each pattern in the training set (Section 3.4.2). It is then possible
to calculate directly which data point should be chosen as the next basis function
: centre in order to produce the greatest reduction in residual sum-of-squares error.
i Values for the second-layer weights are also determined at the same time. If the
algorithm is continued long enough then all data points will be selected, and the
| residual error will be zero. In order to achieve good generalization, the algorithm
% must be stopped before this occurs. This is the problem of model-order selection,
and is discussed at length in Chapters 9 and 10.

5.9.3 Clustering algorithms

As an improvement on simply choosing a subset of the data points as the basis
function centres, we can use clustering techniques to find a set of centres which
more accurately reflects the distribution of the data points. Moody and Darken
(1989) use the K-means clustering algorithm, in which the number K of centres
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must be decided in advance. The algorithm involves a simple re-estimation pro-
cedure, as follows. Suppose there are N data points x™ in total, and we wish
to find a set of K representative vectors p; where j = 1,..., K. The algorithm
seeks to partition the data points {x"} into K disjoint subsets S; containing N;
data points, in such a way as to minimize the sum-of-squares clustering function
given by

K
T=3 5 I~ (5.58)

j=1n€S;

where g2, is the mean of the data points in set §; and is given by

1
B == Z x". (5.59)
N" neS;

The batch version of K-means (Lloyd, 1982) begins by assigning the points at
random to K sets and then computing the mean vectors of the points in each set.
Next, each point is re-assigned to a new set according to which is the nearest
mean vector. The means of the sets are then recomputed. This procedure is
repeated until there is no further change in the grouping of the data points. It
can be shown (Linde et al., 1980) that at each such iteration the value of J will
not increase. The calculation of the means can also be formulated as a stochastic
on-line process (MacQueen, 1967; Moody and Darken, 1989). In this case, the
initial centres are randomly chosen from the data points, and as each data point
x" is presented, the nearest p1; is updated using

Ap; =n(x" — p;) (5.60)

where 77 is the learning rate parameter. Note that this is simply the Robbins-
Monro procedure (Section 2.4.1) for finding the root of a regression function given
by the derivative of J with respect to u;. Once the centres of the basis functions
have been found in this way, the covariance matrices of the basis functions can
be set to the covariances of the points assigned to the corresponding clusters.
Another unsupervised technique which has been used for assigning basis func-
tion centres is the Kohonen topographic feature map, also called a self-organizing
feature map (Kohonen, 1982). This algorithm leads to placement of a set of pro-
totype vectors in input space, each of which corresponds to a point on a regular
grid in a (usually two-dimensional) feature-map space. When the algorithm has
converged, prototype vectors corresponding to nearby points on the feature map
grid have nearby locations in input space. This leads to a number of applications
for this algorithm including the projection of data into a two-dimensional space
for visualization purposes. However, the imposition of the topographic property,
particularly if the data is not intrinsically two-dimensional (Section 8.6.1), may
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lead to suboptimal placement of vectors.

5.9.4 Gaussian mizture models

We have already discussed a number of heuristic procedures for setting the basis
function parameters such that the basis functions approximate the distribution of
the input data. A more principled approach, however, is to recognize that this is
essentially the mixture density estimation problem, which is discussed at length
in Section 2.6. The basis functions of the neural network can be regarded as the
components of a mixture density model, whose parameters are to be optimized
by maximum likelihood. We therefore model the density of the input data by a
mixture model of the form

M
p(x) =) P(j)¢;(x) (5.61)

j=1

where the parameters P(j) are the mixing coeflicients, and ¢;(x) are the ba-
sis functions of the network. Note that the mixing coefficients can be regarded
as prior probabilities for the data points to have been generated from the jth
component of the mixture. The likelihood function is given by

L= []px") (5.62)

and is maximized both with respect to the mixing coeflicients P(j), and with
respect to the parameters of the basis functions. This maximization can be per-
formed by computing the derivatives of £ with respect to the parameters and us-
ing these derivatives in standard non-linear optimization algorithms (Chapter 7).
Alternatively, the parameters can be found by re-estimation procedures based
on the EM (expectation-maximization) algorithm, described in Section 2.6.2.

Once the mixture model has been optimized, the mixing coefficients P(j)
can be discarded, and the basis functions then used in the radial basis function
network in which the second-layer weights are found by supervised training. By
retaining the mixing coefficients, however, the density model p(x) in (5.61) can
be used to assign error bars to the network outputs, based on the degree of
novelty of the input vectors (Bishop, 1994b).

It is interesting to note that the K-means algorithm can be seen as a par-
ticular limit of the EM optimization of a Gaussian mixture model. From Sec-
tion 2.6.2, the EM update formula for a basis function centre is given by

now _ 2n PUPC)X™
R PO ¢85

where P(j]x) is the posterior probability of basis function j, and is given in terms
of the basis functions and the mixing coefficients, using Bayes’ theorem, in the

¢
£
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form

, P(j)¢i(x)
P(jx) = ~———— 5.64
() = L% (5.:64)
where p(x)} is given by (5.61). Suppose we consider spherical Gaussian basis
functions having a common width parameter o. Then the ratio of the posterior

probabilities of two of the basis functions, for a particular data point x®, is given
hy

P(jx") it 1 P it 7 i D)
_ _ . 5.
Plrxm) ™ 52 T 22 [ k) (5.65)
If we now take the limit ¢ — 0, we see that
P(]lxn) : n 2 n 2
Py 0 i X" = gl > X =l (5.66)

Thus, the probabilities for all of the kernels is zero except for the kernel whose
centre vector pt;, is closest to x™. In this limit, therefore, the EM update formula
(5.63) reduces to the K-means update formula (5.59).

5.10 Supervised training

As we have already remarked, the use of unsupervised techniques to determine
the basis function parameters is not in general an optimal procedure so far as
the subsequent supervised training is concerned. The difficulty arises because
the setting up of the basis functions using density estimation on the input data
takes no account of the target labels associated with that data. In order to set
the parameters of the basis functions to give optimal performance in computing
the required network outputs we should include the target data in the training
procedure. That is, we should perform supervised, rather than unsupervised,
training.

The basis function parameters for regression can be found by treating the ba-
sis function centres and widths, along with the second-layer weights, as adaptive
parameters to be determined by minimization of an error function. For the case
of the sum-of-squares error (5.19), and spherical Gaussian basis functions (5.15),
we obtain the following expressions for the derivatives of the error function with
respect to the basis function parameters

i

x" — . 2 x™ — g 012
—gf =33 {ye(x") — tF} wejexp (— I 20;" I ) ! g@uj I (5.67)
J n k j
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n k 3 3 .
where 1;; denotes the ith component of #+;. These expressions for the derivatives
can then be used in conjunction with one of the standard optimization strategies
discussed in Chapter 7.
The setting of the basis function parameters by supervised learning represents
a non-linear optimization problem which will typically be computationally in-
tensive and may be prone to finding local minima of the error function. However,
provided the basis functions are reasonably well localized, any given input vector
will only generate a significant activation in a small fraction of the basis func-
tions, and so only these functions will be significantly updated in response to that
input vector. Training procedures can therefore be speeded up significantly by
identifying the relevant basis functions and thereby avoiding unnecessary compu-
tation. Techniques for finding these units efficiently are described by Omohundro
(1987). Also, one of the unsupervised techniques described above can be used
to initialize the basis function parameters, after which they can be ‘fine tuned’
using supervised procedures. However, one of the drawbacks of supervised train-
ing of the basis functions is that there is no guarantee that they will remain
localized. Indeed, in numerical simulations it is found that a subset of the basis
functions may evolve to have very broad responses (Moody and Darken, 1989).
Also, some of the main advantages of radial basis function networks, namely fast
two-stage training, and interpretability of the hidden unit representation, are
lost if supervised training is adopted.

Exercises

5.1 (x)} Consider a radial basis function network represented by (5.14) with
Gaussian basis functions having full covariance matrices of the form (5.16).
Derive expressions for the elements of the Jacobian matrix given by

Ay

Jui = 5.

(5.69)

5.2 (%) Consider a radial basis function network with spherical Gaussian basis
of the form (5.15), network outputs given by (5.17) and a sum-of-squares
error function of the form (5.19). Derive expressions for elements of the
Hessian matrix given by

0*E

"7 Bw,dw,

(5.70)

where w, and w, are any two parameters in the network. Hint: the results
can conveniently be set out as six equations, one for each possible pair of
weight types (basis function centres, basis function widths, or second-layer
weights).
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5.3 (xx) Consider the functional derivative (Appendix D) of the regularization
functional given by (5.29), with respect to the function y(x). By using
successive integration by parts, and making use of the identities

V(ab) = aVb + bVa (6.71)
V- (aVb) = aV2h + Vb - Va (6.72)

show that the operator PPis given by

0_2!

Pry=>%" W(-n' (V). (5.73)
1=0

It should be assumed that ‘boundary’ terms arising from the integration by
parts can be neglected. Now find the Green’s function G(||x — x']]) of this
operator, defined by (5.24), as follows. First introduce the multidimensional
Fourier transform of G, in the form

Glllx - x| = / Gi(s) exp {—isT(x — x')} ds. (5.74)

By substituting (5.74) into (5.73), and using the following form for the
Fourier transform of the delta function

S(x —x') = (—2—11r_)‘-f /exp {~isT(x - x")} ds (5.75)

where d is the dimensionality of x and s, show that the Fourier transform
of the Green’s function is given by

G(s) = exp {_‘-’;nsn?} . (5.76)

Now substitute this result into (5.74) and, by using the results given in
Appendix B, show that the Green’s function is given by

1 1
G =¥ = G e { ~galx - %P}, 610

5.4 (x) Consider general Gaussian basis functions of the form (5.16) and suppose
that all of the basis functions in the network share a common covariance
matrix X. Show that the mapping represented by such a network is equiv-
alent to that of a network of spherical Gaussian basis functions of the
form (5.15), with a common variance parameter ¢ = 1, provided the in-
put vector x is first transformed by an appropriate linear transformation.
By making use of the results of Appendix A, find expressions relating the
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transformed input vector X and transformed basis function centres fi; to
the corresponding original vectors x and u;.

5.5 (x) In a multi-layer perceptron a hidden unit has a constant activation for
input vectors which lie on a hyperplanar surface in input space given by
wTx + wy = const., while for a radial basis function network, with ba-
sis functions given by (5.15), a hidden unit has constant activation on a
hyperspherical surface defined by ||x — pu||? = const. Show that, for suit-
able choices of the parameters, these surfaces coincide if the input vectors
are normalized to unit length, so that {|x]| = 1. Illustrate this equivalence
geometrically for vectors in a three-dimensional input space.

5.6 (xxx) Write a numerical implementation of the K-means clustering algo-
rithm described in Section 5.9.3 using both the batch and on-line versions.
Illustrate the operation of the algorithm by generating data sets in two di-
mensions from a mixture of Gaussian distributions, and plotting the data
points together with the trajectories of the estimated means during the
course of the algorithm. Investigate how the results depend on the value
of K in relation to the number of Gaussian distributions, and how they
depend on the variances of the distributions in relation to their separation.
Study the performance of the on-line version of the algorithm for differ-
ent values of the learning rate parameter 5 in (5.60), and compare the
algorithm with the batch version.

5.7 (xx*) Implement a radial basis function network for one input variable, one
output variable and Gaussian basis functions having a common variance
parameter g2. Generate a set of data by sampling the function h(z) =
0.5 + 0.4sin(2rz) with added Gaussian noise, and with « values taken
randomly from a uniform distribution in the interval (0,1). Set the basis
function centres to a random subset of the z values, and use singular value
decomposition (Press et al., 1992) to find the network weights which min-
imize the sum-of-squares error function. Investigate the dependence of the
network function on the number of basis function centres and on the value
of the variance parameter. Plot graphs of the form shown in Figure 5.3 to
illustrate the results.

5.8 (x xx) Write down an analytic expression for the regularized matrix M in
(5.32) for the case of Gaussian basis functions given by (5.15). Extend the
software implementation of the previous exercise to include this form of
regularization. Consider the case in which the number of basis functions
equals the number of data points and in which o is equal to roughly twice
the average separation of the input values. Investigate the effect of using
different values for the regularization coefficient A, and show that, if the
value of X is either too small or too large, then the resulting network
mapping gives a poor approximation to the function h(z) from which the
data was generated.




6
ERROR FUNCTIONS

In previous chapters we have made use of the sum-of-squares error function,
which was motivated primarily by analytical stmplicity. There are many other
possible choices of error function which can also be considered, depending on
the particular application. In this chapter we shall describe a variety of different
error functions and discuss their relative merits.

For regression problems we shall see that the basic goal is to model the con-
ditional distribution of the output variables, conditioned on the input variables.
This motivates the use of a sum-of-squares error function, and several important
properties of this error function will be explored in some detail.

For classification problems the goal is to model the posterior probabilities of
class membership, again conditioned on the input variables. Although the sum-
of-squares error function can be used for classification (and can approximate
the posterior probabilities) we shall see that there are other, more appropriate,
error functions which can be considered. Generally speaking, Sections 6.1 to 6.4
are concerned with error functions for regression problems, while the remaining
sections are concerned primarily with error functions for classification.

As we have stressed several times, the central goal in network training is not
to memorize the training data, but rather to model the underlying generator of
the data, so that the best possible predictions for the output vector t can be
made when the trained network is subsequently presented with a new value for
the input vector x. The most general and complete description of the generator
of the data is in terms of the probability density p(x,t) in the joint input-target
space. For associative prediction problems of the kind we are considering, it is
convenient to decompose the joint probability density into the product of the
conditional density of the target data, conditioned on the input data, and the
unconditional density of input data, so that

p(x, t) = p(t]x)p(x) (6.1)

where p(t]x) denotes the probability density of t given that x takes a particular
value, while p(x) represents the unconditional density of x and is given by

p(x) = /p(t,x) dt. (6.2)




6.1: Sum-of-squares error 195

g The density p(x) plays an important role in several aspects of neural networks,

including procedures for choosing the basis function parameters in a radial basis
k. function network (Section 5.9). However, for the purposes of making predictions
B of t for new values of x, it is the conditional density p(t|x) which we need to
model.

Most of the error functions which will be considered in this chapter can be
motivated from the principle of maximum likelihood (Section 2.2). For a set of
training data {x™,t"}, the likelihood can be written as

L= Hp(xn,tn)
~ [Tt bty (63)

where we have assumed that each data point (x™, t") is drawn independently
from the same distribution, and hence we can multiply the probabilities. Instead
of maximizing the likelihood, it is generally more convenient to minimize the
negative logarithm of the likelihood. These are equivalent procedures, since the
negative logarithm is a monotonic function. We therefore minimize

E=-lnf=-) Inp(t"x") = ) Inp(x") (6.4)

where FE is called an error function. As we shall see, a feed-forward neural network
can be regarded as a framework for modelling the conditional probability density
p(t{x). The second term in (6.4) does not depend on the network parameters,
and so represents an additive constant which can be dropped from the error
function. We therefore have

E=-) lnp(t"|x"). (6.5)

Note that the error function takes the form of a sum over patterns of an error
term for each pattern separately. This follows from the assumed independence of
the data points under the given distribution. Different choices of error function
arise from different assumptions about the form of the conditional distribution
p(t|x). For interpolation problems, the targets t consist of continuous quantities
whose values we are trying to predict, while for classification problems they
represent labels defining class membership or, more generally, estimates of the
probabilities of class membership.

6.1 Sum-of-squares error

Consider the case of ¢ target variables £ where k = 1,...,¢, and suppose that
the distributions of the different target variables are independent, so that we can
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write
C
p(tlx) = J] pltelx)- (6.6)
k:l

We shall further assume that the distribution of the target data is Gaussian. More
specifically, we assume that the target variable ¢y is given by some deterministic
function of x with added Gaussian noise ¢, so that

th = hi(x) + €. (6.7)

We now assume that the errors ¢, have a normal distribution with zero mean,
and standard a deviation o which does not depend on x or on k. Thus, the
distribution of ¢ is given by

€2
plex) = W exp (”'2';—2) . (6.8)

We now seek to model the functions hi(x) by a neural network with outputs
yx(x; W) where w is the set of weight parameters governing the neural network
mapping. Using (6.7) and (6.8) we see that the probability distribution of target
variables is given by

1 . — 2 k
p(trlx) = -(577(;1-2-)—1,—2- exp (—ii'i(—{%)—g——t—"-}—) (6.9)

where we have replaced the unknown function hi(x) by our model yi(x;w).
Together with (6.6) and (6.5) this leads to the following expression for the error
function

N ¢
_ _1_ n, _ 2 ic
E= 2022;;{%(;( iw) = 7} + Nelno + == In(2r). (6.10)

We note that, for the purposes of error minimization, the second and third terms
on the right-hand side of (6.10) are independent of the weights w and so can
be omitted. Similarly, the overall factor of 1/02 in the first term can also be

- omitted. We then finally obtain the familiar expression for the sum-of-squares

error function

N ¢
B= 233 (mlcw) - (611)

n=1 k=1
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N
1
=52 ly(x"w) —¢")”. (6.12)
n=1

Having found a set of values w* for the weights which minimizes the error,
the optimum value for o can then by found by minimization of E in (6.10) with
respect to ¢. This minimization is easily performed analytically with the explicit,
and intuitive, result

N ¢
1 .
0% = — E {yp(x™; w*) — t2}2 (6.13)
Ne n=1k=1

which says that the optimal value of o2 is proportional to the residual value of
the sum-of-squares error function at its minimum. We shall return to this result
later.

‘We have derived the sum-of-squares error function from the principle of maxi-
mum likelihood on the assumption of Gaussian distributed target data. Of course
the use of a sum-of-squares error does not require the target data to have a Gaus-
sian distribution. Later in this chapter we shall consider the least-squares solution
for an example problem with a strongly non-Gaussian distribution. However, as
we shall see, if we use a sum-of-squares error, then the results we obtain cannot
distinguish between the true distribution and any other distribution having the
same mean and variance.

Note that it is sometimes convenient to assess the performance of networks
using a different error function from that used to train them. For instance, in
an interpolation problem the networks might be trained using a sum-of-squares
error function of the form

B =3 Y Iy w) - ¢ (614)

where the sum runs over all N patterns in the training set, whereas for network
testing it would be more convenient to use a root-mean-square (RMS) error of
the form

2
ERMS _ P lly(xmw*) —t7)
= )
e -
where w* denotes the weight vector of the trained network, and the sums now

run over the N’ patterns in the test set. Here t is defined to be the average test
set target vector

(6.15)
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1 ¥
t= o (6.16)
n=1

The RMS error (6.15) has the advantage, unlike (6.14), that its value does not
grow with the size of the data set. If it has a value of unity then the network
is predicting the test data ‘in the mean’ while a value of zero means perfect
prediction of the test data.

6.1.1 Linear outpul units

The mapping function of a multi-layer perceptron or a radial basis function
network can be written in the form

yk(x; w) = glax) (6.17)
M

ar = Zwkaj(x; w) (6.18)
3=0

~‘where g(-) denotes the activation function of the output units, {wz;} denotes the
set of weights (and biases) which connect directly to the output units, and W
denotes the set of all other weights (and biases) in the network. The derivative
of the sum-of-squares error (6.11) with respect to aix can be written as

o = Y9/ R R — ). (6.19)

If we choose the activation function for the output units to be linear, g(a) = a,
then this derivative takes a particularly simple form

OF
Par D (W -t}) (6.20)

This allows the minimization with respect to the weights {wy;} (with the weights
W held fixed) to be expressed as a linear optimization problem, which can be
solved in closed form as discussed in Section 3.4.3. Here we shall follow a similar
analysis, exceps that we shall find it convenient to make the bias parameters
explicit and deal with them separately.

We first write the network mapping in the form

M

Ye = Zwkaj + Wko- (6.21)
j=t
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Minimizing the sum-of-squares error (6.11) with respect to the biases first, we
then obtain

N c
Bwko Z Zwk, +wpo —th p =0 (6.22)

which can be solved explicitly for the biases to give
M
wro = g — Zwkﬁj (6.23)

=1

where we have defined the following average quantities:

L ) | X
n=1 n=1

The result (6.23) shows that the role of the biases is to compensate for the
difference between the averages (over the data set) of the target values, and the
weighted sums of the averages of the hidden unit outputs.

If we back-substitute the expression (6.23) into the sum-of-squares error we
obtain

N
1 - -~
E=33 3 4w ~ i (6.25)

where we have defined
=t} ~ Tk, 3P =20 - (6.26)

We can now minimize this error with respect to the output weights wy; to give

7 >N .
awa = Z Zwkj,z n ot Er=0. (6.27)

n=1

It is convenient at this point to introduce a matrix notation so that (T),k = t~,’;,

(W)k; = wi; and (Z),; = Z]*. We can then write (6.27) in the form

Z¥ZwWT —ZTT =0 (6.28)
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where ZT denotes the transpose of Z. We can write an explicit solution for the
weight matrix as

wT=zlT=0 (6.29)
where 21 is the pseudo-inverse of the matrix Z given by
ARV AY ARV A (6.30)

Here we have assumed that the matrix (ZTZ) is non-singular. A more general
discussion of the properties of the pseudo-inverse can be found in Section 3.4.3.
For a single-layer network, this represents the optimal solution for the weights,
which can therefore be calculated explicitly. In the present case, however, this
expression for the weights depends on the activations of the hidden units which
themselves depend on the weights w. Thus, as the weights w change during
learning, so the optimal values for the weights {wy;} will also change. Never-
theless, it is still possible to exploit the linear nature of the partial optimization
with respect to the output unit weights as part of an overall strategy for error
minimization, as discussed in Section 7.3.

6.1.2 Linear sum rules

The use of a sum-of-squares error function to determine the weights in a network
with linear output units implies an interesting sum rule for the.network outputs
(Lowe and Webb, 1991). Suppose that the target patterns used to train the
network satisfy an exact linear relation, so that for each pattern n we have

uTt" +up =0 (6.31)
where u and uo are constants. We now show that, if the final-layer weights
are determined by the optimal least-squares procedure outlined above, then the
outputs of the network will satisfy the same linear constraint for arbitrary input
patterns.

Summing over all patterns n in (6.31) we find that the average target vector

t satisfies the relation ug = —uTt where the components of T are given by (6.24).
Thus, the linear relation (6.31) can be written in the form

=uTt. (6.32)
The network outputs, given by (6.21), can be written in vector notation as
y = Wz + wy. (6.33)

Similarly, the solution for the optimal biases given by (6.23) can be written as




6.1: Sum-of-squares error 201

wo =t - Wz. (6.34)

Now consider the scalar product of y with the vector u, for an arbitrary input
pattern. Using the optimal weights given by (6.29), together with (6.33) and
(6.34), we have

uTy = uT(wo + Wz)
= uTE + uTTT(ZNHT(z - 7) (6.35)

where we have used the following property of matrix transposes (AB)T = BTAT.
From (6.32), however, it follows that

(uTTT), = uTt" = uT(t" -1) =0 (6.36)

where we have used the linear constraint (6.32). Combining (6.35) and (6.36) we
obtain

u'y=ut (6.37)

and so the network outputs exactly satisfy the same linear sum rule as the target
data. We shall see an application of this result in the next section. More generally,
if a set of targets satisfies several linear constraints simultaneously, then so will
the outputs of the network (Exercise 6.3).

6.1.3 Interpretation of network outputs

We next derive an important result for the interpretation of the outputs of a net-
work trained by minimizing a sum-of-squares error function. In particular, we
will show that the outputs approximate the conditional averages of the target
data. This is a central result which has several important consequences for prac-
tical applications of neural networks. An understanding of its implications can
help to avoid some common mistakes, and lead to more effective use of network
network techniques.

Consider the limit in which the size N of the training data set goes to infinity.
In this limit we can replace the finite sum over patterns in the sum-of-squares
error with an integral of the form

N
E— Jim —IIVZZ{yk(x";w)—tz}2 (6.38)
n=1 k
1 2
== {yr(x; W) =t} plty, x) dtr d {6.39)
22;// Yk kY2 p(te, x) dty dx
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where we have introduced an extra factor of 1/N into the definition of the sum-
of-squares error in order to make the limiting process meaningful. We now factor
the joint distributions p(tg,x) into the product of the unconditional density
function for the input data p(x), and the target data density conditional on the
input vector p(fx|x), as in (6.1), to give

B=3 3 [[tutxw - ) sy dtudx. (6.0)
k
Next we define the following conditional averages of the target data
(trelx) = /tkp(tklx) dity, (6.41)
(i) = [ ip(eulx) de (6.42)

We now write the term in brackets in (6.40) in the form
{oe = te}? = {yn — (telx) + (trlx) — 1) (6.43)
= {yk — (tlx)} + 2{yi — (telx)H(tklx) ~ te}
+ {{telx) — te}? (6.44)
Next we substitute (6.44) into (6.40) and make use of (6.41) and (6.42). The

second term on the right-hand side of (6.44) then vanishes as a consequence of
the integration over tx. The sum-of-squares error can then be written in the form

P15 [t - bt

+ % > / {{tR1x) — (telx)?}p(x) dx. (6.45)
k

We now note that the second term in (6.45) is independent of the network
mapping function yi(x; w) and hence is independent of the network weights w.
For the purposes of determining the network weights by error minimization, this
term can be neglected. Since the integrand in the first term in (6.45) is non-
negative, the absolute minimum of the error function occurs when this first term
vanishes, which corresponds to the following result for the network mapping

yk(x; W) = (tk]x) (6.46)
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Figure 6.1. A schematic illustration of the property (6.46) that the network
mapping which minimizes a sum-of-squares error function is given by the con-
ditional average of the target data. Here we consider a mapping from a single
input variable z to a single target variable t. At any given value zo of the input
variable, the network output y(zo) is given by the average of ¢ with respect to
the distribution p(t|zo) of the target variable, for that value of z.

where w* is the weight vector at the minimum of the error function. Equa-
tion (6.46) is a key result and says that the network mapping is given by the
conditional average of the target data, in other words by the regression of tj
conditioned on x. This result is illustrated schematically in Figure 6.1, and by a
simple example in Figure 6.2.

Before discussing the consequences of this important result we note that it is
dependent on three key assumptions. First, the data set must be sufficiently large
that it approximates an infinite data set. Second, the network function y(x;w)
must be sufficiently general that there exists a choice of parameters which makes
the first term in (6.45) sufficiently small. This second requirement implies that
the number of adaptive weights (or equivalently the number of hidden units)
must be sufficiently large. It is important that the two limits of large data set
and large number of weights must be approached in a coupled way in order to
achieve the desired result. This important issue is discussed in Section 9.1 in the
context of generalization and the trade-off between bias and variance. The third
caveat is that the optimization of the network parameters is performed in such
a way as to find the appropriate minimum of the cost function. Techniques for
parameter optimization in neural networks are discussed in Chapter 7.

Note that the derivation of the result (6.46) did not depend on the choice of
network architecture, or even whether we were using a neural network at all. It
only required that the representation for the non-linear mapping be sufficiently
general. The importance of neural networks is that they provide a practical
framework for approximating arbitrary non-linear multivariate mappings, and
can therefore in principle approximate the conditional average to arbitrary ac-
curacy.



204 6: Error Functions
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Figure 6.2. A simple example of a network mapping which approximates the
conditional average of the target data (shown by the circles) generated from
the function t = £+ 0.3 sin(27z) + ¢ where ¢ is a random variable drawn from a
uniform distribution in the range (—0.1,0.1). The solid curve shows the result
of training a multi-layer perceptron network with five hidden units using a sum-
of-squares error function. The network approximates the conditional average
of the target data, which gives a good representation of the funiction from
which the data was generated.

We can easily see why the minimum of a sum-of-squares error is given by the
average value of the target data by considering the simple error function

EQ) = (y—a)® + (y — b)? (6.47)

where a and b are constants. Differentiation of E{y) with respect to y shows that
the minimum occurs at

y™® = (a +b)/2  (6.48)

In other words, the minimum is given by the average of the target data. The
more general property (6.46) is simply the extension of this result to conditional
- averages.

We can also derive (6.46) in a more direct way as follows. If we take the sum-
of-squares error in the form (6.39) and set the functional derivative (Appendix D)
of E with respect to yx(x) to zero we obtain
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6—3;) - / {ur(%) — te}p(talx)p(x) dtx = 0. (6.49)

If we make use of (6.41) we then obtain (6.46) directly. The use of a functional
derivative here is equivalent to the earlier assumption that the class of functions
yk(x) is very general.

For many regression problems, the form of network mapping given by the
conditional average (6.46) can be regarded as optimal. If the data is generated
from a set of deterministic functions hy{x) with superimposed zero-mean noise
€x then the target data is given by

£ = hi(x™) + €F. (6.50)

The network outputs, given by the conditional averages of the target data, then
take the form

Yk (x) = (t|x) = (hi(x) + ex]x) = ha(x) (6.51)

since {¢") = 0. Thus the network has averaged over the noise on the data and
discovered the underlying deterministic function. Not all regression problems are
as simple as this, however, as we shall see later.

Note that the first integral in (6.45) is weighted by the unconditional density
p(x). We therefore see that the network function yi(x) pays a significant penalty
for departing from the conditional average (tx{x) in regions of input space where
the density p(x) of input data is high. In regions where p(x) is small, there is
little penalty if the network output is a poor approximation to the conditional
average. This forms the basis of a simple procedure for assigning error bars to
network predictions, based on an estimate of the density p(x) (Bishop, 1994b).

If we return to {6.45) we see that the second term can be written in the form

%Z/a%(x)p(x) dx (6.52)
k

where o%(x) represents the variance of the target data, as a function of x, and
is given by

o3(x) = ([x) — (talx)? (6.53)
= {(tk — (V) (6.54)
= [t = (e Pottel) (6.55)

If the network mapping function is given by the conditional average (6.46), so
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that the first term in (6.45) vanishes, then the residual error is given by (6.52).
The value of the residual error is therefore be a. measure of the average variance
of the target data. This is equivalent to the earlier result (6.13) obtained for a
finite data set. It should be emphasized, however, that these are biased estimates
of the variance, as discussed in Section 2.2, and so they should be treated with
care in practical applications.

We originally derived the sum-of-squares error function from the principle
of maximum likelihood by assuming that the distribution of the target data
could be described by a Gaussian function with an x-dependent mean, and a
single global variance parameter. As we noted earlier, the sum-of-squares error
does not require that the distribution of target variables be Gaussian. If a sum-
of-squares error is used, however, the quantities which can be determined are
the x-dependent mean of the distribution (given by the outputs of the trained
network) and a global averaged variance (given by the residual value of the
error function at its minimum). Thus, the sum-of-squares error function cannot
distinguish between the true distribution, and a Gaussian distribution having
the same x-dependent mean and average variance.

6.1.4  OQuter product approximation for the Hessian

In Section 4.10.2 we discussed a particular approximation to the Hessian matrix
(the matrix of second derivatives of the error function with respect to the network
weights) for a sum-of-squares error function. This approximation is. based on a
sum of outer products of first derivatives. Here we show that the approximation
is exact in the infinite data limit, provided we are at the global minimum of the
error function. Consider the error function in the form (6.45). Taking the second
derivatives with respect to two weights w, and w, we obtain

ucis = 5[ (s oo o
+ Ek: f {%‘%’f{s(vk - (kaX))}p(x) dx. (6.56)

Using the result {6.46) that the outputs yp{x) of the trained network represent
the conditional averages of the target data, we see that the second term in (6.56)
vanishes. The Hessian is therefore given by an integral of terms involving only
the products of first derivatives. For a finite data set, we can write this result in
the form

2 N n n
_E 1 3 Oyk vk (6.57)
P
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6.1.5 Inverse problems

The fact that a least-squares solution approximates the conditional average of
the target data has an important consequence when neural networks are used
to solve inverse problems. Many potential applications of neural networks fall
into this category. Examples include the analysis of spectral data, tomographic
reconstruction, control of industrial plant, and robot kinematics. For such prob-
lems there exists a well-defined forward problem which is characterized by a
functional (i.e. single-valued) mapping. Often this corresponds to causality in a
physical system. In the case of spectral reconstruction, for example, the forward
problem corresponds to the evaluation of the spectrum when the parameters
(locations, widths and amplitudes) of the spectral lines are prescribed. In prac-
tical applications we generally have to solve the corresponding inverse problem
in which the roles of input and output variables are interchanged. In the case
of spectral analysis, this corresponds to the determination of the spectral line
parameters from an observed spectrum. For inverse problems, the mapping can
be often be multi-valued, with values of the inputs for which there are several
valid values for the outputs. For example, there may be several choices for the
spectral line parameters which give rise to the same observed spectrum. If a
least-squares approach is applied to an inverse problem, it will approximate the
conditional average of the target data, and this will frequently lead to extremely
poor performance (since the average of several solutions is not necessarily itself
a solution). ‘

As a simple illustration of this problem, consider the data set shown earlier
in Figure 6.2 where we saw how a network which approximates the conditional
average of the target data gives a good representation of the underlying gen-
erator of the data. Suppose we now reverse the roles of the input and target,
variables. Figure 6.3 shows the result of training a network of the same type as
before on the same data set, but with input and output variables interchanged.
The network again tries to approximate the conditional average of the target
data, but this time the conditional average gives a very poor description of the -
generator of the data. The problem can be traced to the intermediate values of
2 In Figure 6.3 where the target data is multi-valued. Predictions made by the
trained network in this region can be very poor. The problem cannot be solved
by modifying the network architecture or the training algorithm, since it is a
fundamental consequence of using a sum-of-squares error function. For problems
involving many input and output variables, where visualization of the data is not
straightforward, it can be very difficult to ascertain whether there are regions
of input space for which the target data is multi-valued. One approach to such
problems is to go beyond the Gaussian description of the distribution of target
variables, and to find a more general model for the conditional density, as will
be discussed in Section 6.4.
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Figure 6.3. An illustration of the problem which can arise when a least-squares
approach is applied to an inverse problem. This shows the same data set as
in Figure 6.2 but with the roles of input and output variables interchanged.
The solid curve shows the result of training the same neural network as in
Figure 6.2, again using a sum-of-squares error. This time the network gives a
very poor fit to the data, as it again tries to represent the conditional average
of the target values. »

6.2 Minkowski error

We have derived the sum-of-squares error function from the principle of maxi-

" mum likelihood on the assumption of a Gaussian distribution of target data. We

can obtain more general error functions by considering a generalization of the
Gaussian distribution of the form

I/R

ple) = 2I‘(1 aryR) o (A) (6.58)
where I'(a) is the gamma function (defined on page 28), the parameter 8 con-
trols the variance of the distribution, and the pre-factor in (6.58) ensures that
J p(e) de = 1. For the case of R = 2 this distribution reduces to a Gaussian. We
now consider the negative log-likelihood of a data set, given by (6.5) and (6.6},
under the distribution (6.58). Omitting irrelevant constants, we obtain an error
function of the form

E=35"%" jylx™w) — t2|? (6.59)

n k=1
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Figure 6.4. Plot of the function |y — t|® against Jy — t| for various values of
R. This function forms the basis for the definition of the Minkowski-R error
measure.

called the Minkowski-R error. This reduces to the usual sum-of-squares error
when R = 2. For the case of R = 1, the distribution function (6.58) is a Laplacian,
and the corresponding Minkowski- R measure (6.59) is called the city block metric
(because the distance between two points on a plane measured by this metric is
equal to the Euclidean distance covered by moving between the two points along
segments of lines parallel to the axes, as if moving along blocks in a city). More
generally, the distance metric |y — ¢|® is known as the Ly norm. The function
ly — t|® is plotted against |y — ¢| for various values of R in Figure 6.4.

The derivatives of the Minkowski- R error function with respect to the weights
in the network are given by

OE n niR-1_; n n ay: .
o = 3 Sl w) — 1P sign(un (7 W) = ) e (6.60)
Ji n k 71

These derivatives can be evaluated using the standard back-propagation proce-
dure, discussed in Section 4.8. Examples of the application of the Minkowski-R
error to networks trained using back-propagation are given in Hanson and Burr
(1988) and Burrascano (1991).

One of the potential difficulties of the standard sum-of-squares error is that it
receives the largest contributions from the points which have the largest errors.
If there are long tails on the distributions then the solution can be dominated
by a very small number of points called outliers which have particularly large
errors. This is illustrated by a simple example in Figure 6.5.

A similarly severe problem can also arise from incorrectly labelled data. For
instance, one single data point for which the target value has been incorrectly
labelled by a large amount can completely invalidate the least-squares solution.
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(a) (b)

Figure 6.5. Example of fitting a linear polynomial through a set of noisy data
points by minimizing a sum-of-squares error. In (a) the line gives a good rep-
resentation of the systematic aspects of the data. In (b) a single extra data
point has been added which lies well away from the other data points, showing
how it dominates the fitting of the line.

Techniques which attempt to solve this problem are referred to as robust statis-
tics, and a review in the context of conventional statistical methods can be found
in Huber (1981). The use of the Minkowski error with an R value less than 2
reduces the sensitivity to outliers. For instance, with R = 1, the minimum error
solution computes the conditional median of the data, rather than the condi-
tional mean (Exercise 6.5). The reason for this can be seen by considering the
simple error

E@w) =Y ly—t"l. (6.61)
n
Minimizing E(y) with respect to y gives

) sign(y —t") =0 (6.62)

which is satisfied when y is the median of the points {t"} (i.e. the value for which
the same number of points " have values greater than y as have values less than
¥). If one of the t" is taken to some very large value, this has no effect on the
solution for y.




6.3: Input-dependent variance 211

6.3 Input-dependent variance

So far we have assumed that the variance of the target data can be described
by a single global parameter . In many practical applications, this will be a
poor assumption, and we now discuss more general models for the target data
distribution. The sum-of-squares error is easily extended to allow each output to
be described by its own variance parameter ay. More generally, we might wish to
determine how the variance of the data depends on the input vector x (Nix and
Weigend, 1994). This can be done by adopting a more general description for the
conditional distribution of the target data, and then writing down the negative
log-likelihood in order to obtain a suitable error function. Thus, we write the
conditional distribution of the target variables in the form

1 x;w) — #,}?
p(tle) = Wm exp (—M.z_a_fg_(l;)_t.,i}__) . | (6.63)

Forming the negative logarithm of the likelihood function as before, and omitting
additive constants, we obtain

N
_ Lo (™) 4 L") — 832
E = ZZ; (1 or(x") + 502057 ) (6.64)

n=1

If we now multiply by 1/N as before, and take the infinite-data limit, we obtain
the error function in the form

E= Z / / (lnok (x) + {y"(")g T ;k}z)p(tklx)p(x)dtkdx. (6.65)

The functions oy (x) can be modelled by adding further outputs to the neural
network. We shall not consider this approach further, as it is a special case of
a much more general technique for modelling the full conditional distribution,
which will be discussed shortly.

An alternative approach to determining an input-dependent variance (Satch-
well, 1994) is based on the result (6.46) that the network mapping which mini-
mizes a sum-of-squares error is given by the conditional expectation of the target
data. First a network is trained in the usual way by minimizing a sum-of-squares
error in which the t} form the targets. The outputs of this network, when pre-
sented with the training data input vectors x", correspond to the conditional
averages of the target data. These averages are subtracted from the target val-
ues and the results are then squared and used as targets for a second network
which is also trained using a sum-of-squares error function. The outputs of this
network then represent the conditional averages of {t; — (tx|x)}? and thus ap-
proximate the variances oZ(x) given by (6.55).

This procedure can be justified directly as follows. Consider the infinite data
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limit again, for which we can write the error function in the form (6.65). If we
again assume that the functions y;(x) and ox(x) have unlimited flexibility then
we can first minimize F with respect to the yi by functional differentiation to
give

B . {yk(x) — ti}
AR / oy P die (6.66)

which, after some rearrangement, gives the standard result
e (%) = (t|x) (6.67)

as before. We can similarly minimize E independently with respect to the func-
tions ok (x) to give

8F o= p(x) / ( - —{y"(")“t’“}z) pltxx) dte (6.68)

boe(x) ak(x) o (x)?

which is easily solved for of(x) to give
ar(x) = ({tx — (te|x)}?x) (6.69)

where we have used (6.67). We can then interpret (6.69) in terms of the two-stage
two-network approach described above. This technique is simﬁle and can make
use of standard neural network software. Its principal limitation is that it still
assumes a Gaussian form for the distribution function (since it makes use only
of the second-order statistics of the target data).

Since these approaches are based on maximum likelihood, they will give a
biased estimate of the variances as discussed above, and so will tend to under-
estimate the true variance. In extreme cases, such methods can discover patho-
logical solutions in which the variance goes to zero, corresponding to an infinite
likelihood, as discussed in the context of unconditional density estimation in
Section 2.5.5.

6.4 Modelling conditional distributions

We can view the basic goal in training a feed-forward neural network as that
of modelling the statistical properties of the generator of the data, expressed in
terms of a conditional distribution function p(t|x). For the sum-of-squares error
function, this corresponds to modelling the conditional distribution of the target
data in terms of a Gaussian distribution with a global variance parameter and an
x-dependent mean. However, if the data has a complex structure, as for example
in Figure 6.3, then this particular choice of distribution can lead to a very poor
representation of the data. We therefore seek a general framework for modelling
conditional probability distributions,
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input parameter conditional
vector vector probability
density
X 8 [N\ | p(tix)
neural parametric
network distribution

Figure 6.6. We can represent general conditional probability densities p(t|x)
by considering a parametric model for the distribution of t whose parameters
are determined by the outputs of a neural network which takes x as its input
vector.

In Chapter 2 we discussed a number of parametric techniques for modelling
unconditional distributions. Suppose we use one of these techniques to model the
distribution p(t|@) of target variables &, where 8 denotes the set of parameters
which govern the model distribution. 1f we allow the parameters 8 to be functions
of the input vector x, then we can model conditional distributions. We can
achieve this by letting the components of 8(x) be given by the outputs of a
feed-forward neural network which takes x as input. This leads to the combined
density model and neural network structure shown in Figure 6.6. Provided we
consider a sufficiently general density model, and a sufficiently flexible network,
we have a framework for approximating arbitrary conditional distributions.

For different choices of the parametric mode), we obtain different represen-
tations for the conditional densities. For example, a single Gaussian model for
p(t|@) corresponds to the procedure described above in Section 6.3. Another pos-
sibility is to use a linear combination of a fixed set of kernel functions. In this
case the outputs of the network represent the coefficients in the linear combina-
tion (Bishop and Legleye, 1995), and we must ensure that the coefficients are
positive and sum to one in order to preserve the positivity and normalization of
the conditional density. We do not discuss this approach further as it is a special
case of the more general technique which we consider next.

A powerful, general framework for modelling unconditional distributions,
based on the use of mizture models, was introduced in Section 2.6. Mixture
models represent a distribution in terms of a linear combination of adaptive ker-
nel functions. If we apply this technique to the problem of modelling conditional
distributions we have
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S

p(t]x) :}: (x)¢;(t]x) (6.70)

where M is the number of components, or kernels, in the mixture. The parame-
ters a;(x) are called mizing coefficients, and can be regarded as prior probabil-
ities (conditioned on x) of the target vector t having been generated from the
jth component of the mixture. Note that the mixing coefficients are taken to be
functions of the input vector x. The function ¢;(t|x) represents the conditional
density of the target vector t for the jth kernel. Various choices for the kernel
functions are possible. As in Chapter 2, however, we shall restrict attention to
kernel functions which are Gaussian of the form

#;(t]x) =

It = ;oI } 61

1
@myelras(x) O F {” 202(x)

where the vector #t;(x) represents the centre of the jth kernel, with components
Jti%, and c is the dimensionality of t. In (6.71) we have assumed that the compo-
nents of the output vector are statistically independent within each of the kernel
functions, and can be described by a common variance (TJ( x). This assumption
can be relaxed in a straightforward way by introducing full covariance matrices
for each Gaussian kernel, at the expense of a more complex formalism. In prin-
ciple, however, such a complication is not necessary, since a Gaussian mixture
model, with kernels given by (6.71), can approximate any given density function
to arbitrary accuracy, provided the mixing coefficients and the Gaussian parame-
ters (means and variances) are correctly chosen (McLachlan and Basford, 1988).
Thus, the representation given by (6.70) and (6.71) is completely general. In
particular, it does not assume that the components of t are statistically inde-
pendent, in contrast to the single-Gaussian representation used in (6.6) and (6.9)
to derive the sum-of-squares error.

For any given value of x, the mixture model (6.70) provides a general for-
malism for modelling an arbitrary conditional density function p(t|x). We now
take the various parameters of the mixture model, namely the mixing coefficients
a;(x), the means p;(x) and the variances of(x), to be governed by the outputs
of a conventional neural network which takes x as its input. This technique was
introduced in the form of the mirture-of-experts model (Jacobs et al., 1991) de-
scribed in Section 9.7, and has since been discussed by other authors (Bishop,
1994a; Liu, 1994; Neuneier et al., 1994). By choosing a mixture model with a suf-
ficient number of kernel functions, and a neural network with a sufficient number
of hidden units, this model can approximate as closely as desired any conditional
density function p(t}x). The original motivation for the mixture-of-experts model
was to provide a mechanism for partitioning the solution to a problem between
several networks. This was achieved by using a separate network to determine
the parameters of each kernel function, with a further network to determine the
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mixing coefficients. For some applications this modular approach offers a number
of advantages, and is discussed further in Section 9.7.

The neural network in Figure 6.6 can be any standard feed-forward network
structure with universal approximation capabilities. Here we consider a multi-
layer perceptron, with a single hidden layer of sigmoidal units and an output
layer of linear units. For M components in the mixture model (6.70), the network
will have M outputs denoted by 27 which determine the mixing coefficients, M
outputs denoted by z7 which determine the kernel widths ¢, and M x c outputs
denoted by 2%, which determine the components i of the kernel centres 198
The total number of network outputs is given by (c + 2) x M, as compared with
the usual ¢ outputs for a network used with a sum-of-squares error function.

In order to ensure that the mixing coeflicients aj(x) can be interpreted as
probabilities, they must satisfy the constraints

M
> ai(x) =1 (6.72)
j=1
0 < oy(x) <1 (6.73)

The first constraint also ensures that the distribution is correctly normalized,
so that [ p(t|x)dt = 1. These constraints can be satisfied by choosing c;(x) to
be related to the corresponding networks outputs by a softmax function (Bridle,
1990; Jacobs et al., 1991)

oxp(z5)
Q5 = -——M——————a—.
> =1 8xp(2fY)

We shall encounter the softmax function again in the next section when we
discuss error functions for classification problems.

The variances ¢; represent scale parameters and so it is convenient to repre-
sent them in terms of the exponentials of the corresponding network outputs

(6.74)

o; = exp(z]). (6.75)

In a2 Bayesian framework (Exercise 10.13} this would correspond to the choice
of a non-informative prior, assuming the corresponding network outputs 2¢ had
uniform probability distributions (Jacobs ef al., 1991; Nowlan and Hinton, 1992).
This representation also has the additional benefit of helping to avoid patholog-
ical configurations in which one or more of the variances goes to zero, since this
would require the corresponding z7 — -—oo. The possibility of such results is
discussed in Section 2.6.1 in the context of mixture models for unconditional
density estimation.
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The centres p; represent location parameters, and again the notion of a non-
informative prior (Exercise 10.12) suggests that these be represented directly by
the network outputs

Bik = 2hy- (6.76)

As before, we can construct an error function from the likelihood by using
(6.5) to give

M
E=-Y I ;aj(x")(ﬁj(t"\x“) (6.77)

with ¢;(t]x) given by (6.71). The minimization of this error function with respect
to the parameters of the neural network leads to a model for the conditional den-
sity of the target data. From this density function, any desired statistic involving
the output variables can in principle be computed.

In order to minimize the error function, we need to calculate the derivatives
of the error E with respect to the weights in the neural network. These can be
evaluated by using the standard back-propagation procedure, provided we obtain
suitable expressions for the derivatives of the error with respect to the outputs
of the network. Since the error function (6.77) is composed of a sum of terms
E =Y E", one for each pattern, we can consider the derivatives 6 = GE™/9zy
for a particular pattern n and then find the derivatives of £ by summing over
all patterns. Note that, since the network output units have linear activation
functions g(a) = @, the quantities 87 can also be written as E™/day, and so are
equivalent to the ‘errors’ introduced in the discussion of error back-propagation
in Section 4.8. These errors can be back-propagated through the network to find
the derivatives with respect to the network weights.

We have already remarked that the ¢; can be regarded as conditional density
functions, with prior probabilities a;. As with the mixture models discussed in
Section 2.6, it is convenient to introduce the corresponding posterior probabili-
ties, which we obtain using Bayes’ theorem,

Ti(%,t) = —gp 2 —, (6.78)

as this leads to some simplification of the subsequent analysis. Note that, from
(6.78), the posterior probabilities sum to unity:

M
> om=1 (6.79)
j=1
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Consider first the derivatives of E™ with respect to those network outputs
which correspond to the mixing coefficients o;. Using (6.77) and (6.78) we obtain

OE™ Ty
=—-—. .80
Gak Qe (6 )

We now note that, as a result of the softmax transformation (6.74), the value
of o depends on all of the network outputs which contribute to the mixing
coefficients, and so differentiating (6.74) we have

day,

B~ Dikk g0k (6.81)
From the chain rule we have

OE" OE™ day,

7 = ; Bor 025 (6.82)

Combining (6.80), (6.81) and (6.82) we then obtain

oE™

&
sz

=y — Ty 6.83
i) J

where we have used (6.79).
For the derivatives corresponding to the o; parameters we make use of (6.77)
and (6.78), together with (6.71), to give

oE™ e —pmll* ¢
Using (6.75) we have
6a,~
gz—;— = 0j. (685)

Combining these together we then obtain

7 — 4. N2
%f" = Ty {“i;gj—“ - C} . (686)

i J

Finally, since the parameters p;; are given directly by the z;.‘k network out-
puts, we have, using (6.77) and (6.78), together with (6.71),
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Figure 6.7. Plot of the contours of the conditional probability density of the
target data obtained from a multi-layer perceptron network trained using the
same data as in Figure 6.3, but using the error function (6.77). The network has
three Gaussian kernel functions, and uses a two-layer multi-layer perceptron
with five ‘tanh’ sigmoidal units in the hidden layer, and nine outputs.

JOE™ Hik ~t
5 =7rj{ ik '“}. (6.87)
M

95

An example of the application of these techniques to the estimation of con-
ditional densities is given in Figure 6.7, which shows the contours of conditional
density corresponding to the data set shown in Figure 6.3.

The outputs of the neural network, and hence the parameters in the mixture
model, are necessarily continuous single-valued functions of the input variables.
However, the model is able to produce a conditional density which is unimodal for
some values of = and trimodal for other values, as in Figure 6.7, by modulating
the amplitudes of the mixing components, or priors, a;(x). This can be seen in
Figure 6.8 which shows plots of the three priors o,(z) as functions of z. It can
be seen that for x = 0.2 and z = 0.8 only one of the three kernels has a non-zero
prior probability. At x = 0.5, however, all three kernels have significant priors.

Once the network has been trained it can predict the conditional density
function of the target data for any given value of the input vector. This con-
ditional density represents a complete description of the generator of the data,
so far as the problem of predicting the value of the output vector is concerned.
From this density function we can calculate more specific quantities which may
be of interest in different applications. One of the simplest of these is the mean,
corresponding to the conditional average of the target data, given by
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Figure 6.8. Plot of the priors a;(x) as a function of z for the three kernel func-
tions from the network used to plot Figure 6.7. At both small and large values
of z, where the conditional probability density of the target data is unimodal,
only one of the kernels has a prior probability which differs significantly from
zero. At intermediate values of z, where the conditional density is trimodal,
the three kernels have comparable priors.

(tix) = /tp(t|x) dt (6.88)
= S as0x) [ (o)t (6.89)

ki
=) o(x)p(x) (6.90)

J

where we have used (6.70) and (6.71). This is equivalent to the function com-
puted by a standard network trained by least squares, and so this network can
reproduce the conventional least-squares result as a special case. We can likewise
evaluate the variance of the density function about the conditional average, to
give

s?(x) = (|It — (thx)]|?}x) (6.91)

2

= 3" 0(x) § 05 (%)% + [ (%) = Y an(x)p(x) (6.92)
J !

where we have used (6.70), (6.71) and (6.90). This is more general than the
corresponding least-squares result since this variance is allowed to be a general
function of x. Similar results can be obtained for other moments of the condi-
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Figure 6.9. This shows & plot of (¢|z) against  (solid curve) calculated from
the conditional density in Figure 6.7 using (6.90), together with corresponding
plots of (¢|z) & s(z) (dashed curves) obtained using (6.92).

tional distribution. Plots of the mean and variance, obtained from the conditional
distribution in Figure 6.7, are shown in Figure 6.9. .

For some applications, the distribution of the target data will consist of a lim-
ited number of distinct branches, as is the case for the data shown in Figure 6.3.
In such cases we may be interested in finding an output value corresponding to
just one of the branches (as would be the case in many control applications for
example). The most probable branch is the one which has the greatest associated
‘probability mass’. Since each component of the mixture model is normalized,
[ #;(t[x) dt = 1, the most probable branch of the solution, assuming the com-
ponents are well separated and have negligible overlap, is given by

arg max {a{x)}. (6.93)

In the mixture-of-experts model (Jacobs et al., 1891} this corresponds to selecting
the output of one of the component network modules. The required value of t is
then given by the corresponding centre p;. Figure 6.10 shows the most probable
branch of the solution, as a function of x, for the same network as used to plot
Figure 6.7.
Again, one of the limitations of using maximum likelihood techniques to
determine variance-like quantities such as the o}, is that it is biased (Section 2.2).
- In particular, it tends to underestimate the variance in regions where there is
limited data.
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Figure 6.10. Plot of the central value of the most probable kernel as a function
of £ from the network used to plot Figure 6.7. This gives a discontinuous
functional mapping from z to t which at every value of z lies well inside a
region of significant probability density. The diagram should be compared with
the corresponding continuous mapping in Figure 6.3 obtained from standard
least squares.

6.4.1 Periodic variables

So far we have considered the problem of ‘regression’ for variables which live
on the real axis (—o0,00). However, a number of applications involve angle-like
output variables which live on a finite interval, usually (0, 27) and which are in-
trinsically periodic. Due to the periodicity, the techniques described so far cannot
be applied directly. Here we show how the general framework discussed above
can be extended to estimate the conditional distribution p{#x) of a periodic
variable 8, conditional on an input vector x (Bishop and Legleye, 1995).

The approach is again based on a mixture of kernel functions , but in this case
the kernel functions themselves are periodic, thereby ensuring that the overall
density function will be periodic. To motivate this approach, consider the prob-
lem of modelling the distribution of a velocity vector v in two dimensions. Since
v lives in a Euclidean plane, we can model the density function p(v) using a
mixture of conventional spherical Gaussian kernels, where each kernel has the
form

- 2 _ 2
$(vz,vy) = 2:02 exp {— (e = =) _ (v 5 ) } (6.94)

where (vg,vy) are the Cartesian components of v, and (i, i) are the compo-
nents of the centre p of the kernel. From this we can extract the conditional
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distribution of the polar angle 6 of the vector v, given a value for v = ||v}j. This
is easily done with the transformation v, = vcos#f, v, = vsin#, and defining
6o to be the polar angle of u, so that p, = pcosfy and py, = psinby, where
1= {ip}}- This leads to a distribution which can be written in the form

¢(8) = exp {mcos(f — 6;)} (6.95)

1
27r10(m)

where the normalization coefficient has been expressed in terms of the zeroth-
order modified Bessel function of the first kind, Iy(m). The distribution (6.95)
is known as a circular normal or von Mises distribution (Mardia, 1972). The
parameter m (which depends on v in our derivation) is analogous to the (in-
verse) variance parameter in a conventional normal distribution. Since (6.95) is
periodic, we can construct a general representation for the conditional density
of a periodic variable by considering a mixture of circular normal kernels, with
parameters governed by the outputs of a neural network. The weights in the
network can again be found by maximizing the likelihood function defined over
a set of training data.

An example of the application of these techniques to the determination of
wind direction from satellite radar scatterometer data is given in Bishop and
Legleve (1995). This is an inverse problem in which the target data is multi-
valued. For problems involving periodic variables in which the target data is
effectively single-valued with respect to the input vector, then a single circular
normal kernel can be used.

An alternative approach to modelling conditional distributions of periodic
variables is discussed in Exercise 6.8.

6.5 Estimating posterior probabilities

So far in this chapter we have focused on ‘regression’ problems in which the
target variable are continuous. We now turn to a consideration of error functions
for classification problems in which the target variables represent discrete class
labels (or, more generally, the probabilities of class membership).

When we use a neural network to solve a classification problem, there are two
distinct ways in which we can view the objectives of network training. At the sim-
pler level, we can arrange for the network to represent a non-linear discriminant
function so that, when a new input vector is presented to the trained network,
the outputs provide a classification directly. The second approach, which is more
general and more powerful, is to use the network to model the posterior proba-
bilities of class membership. Typically there is one output unit for each possible
class, and the activation of each output unit represents the corresponding pos-
terior probability p(Ck[x), where Cy, is the kth class, and x is the input vector.
These probabilities can then be used in a subsequent decision-making stage to
arrive at a classification.

By arranging for the network outputs to approximate posterior probabilities,
we can exploit a number of results which are not available if the network is
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used sirhply as a non-linear discriminant (Richard and Lippmann, 1991). These
include:

Minimum error-rate decisions

From the discussion of optimal classification in Section 1.9 we know that, to
minimize the probability of misclassification, a new input vector should be
assigned to the class having the largest posterior probability. Note that the
network outputs need not be close to 0 or 1 if the class-conditional density
functions are overlapping. Heuristic procedures, such as applying extra
training using those patterns which fail to generate outputs close to the
target values, will be counterproductive, since this alters the distributions
and makes it less likely that the network will generate the correct Bayesian
probabilities.

Qutputs sum to 1

Since the network outputs approximate posterior probabilities they should
sum to unity. This can be enforced explicitly as part of the choice of network
structure as we shall see. Also, the average of each network output over
all patterns in the training set should approximate the corresponding prior
class probabilities, since

P = [ PR de= 5 S PGIK). (6.96)

These estimated priors can be compared with the sample estimates of the
priors obtained from the fractions of patterns in each class within the
training data set. Differences between these two estimates are an indication
that the network is not modelling the posterior probabilities accurately
{Richard and Lippmann, 1991).

Compensating for different prior probabilities

In some of the conventional approaches to pattern classification discussed
in Chapter 1, the posterior probabilities were expressed through Bayes’
theorem in the form

P(x|Ck)P(Ck)

PR =00

(6.97)

and the prior probabilities P(Cy) and class-conditional densities p(x|C)
were estimated separately. The neural network approach, by contrast, pro-
vides direct estimates of the posterior probabilities. Sometimes the prior
probabilities expected when the network is in use differ from those repre-
sented by the training set. It is then it is a simple matter to use Bayes’
theorem (6.97) to make the necessary corrections to the network outputs.
This is achieved simply by dividing the network outputs by the prior prob-
abilities corresponding to the training set, multiplying them by the new
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prior probabilities, and then normalizing the results. Changes in the prior
probabilities can therefore be accommodated without re-training the net-
work. The prior probabilities for the training set may be estimated simply
by evaluating the fraction of the training set data points in each class.
Prior probabilities corresponding to the network’s operating environment
can often be obtained very straightforwardly since only the class labels are
needed and no input data is required. As an example, consider the prob-
lem of classifying medical images into ‘normal’ and ‘tumour’. When used
for screening purposes, we would expect a very small prior probability of
‘tumour’. To obtain a good variety of tumour images in the training set
would therefore require huge numbers of training examples. An alternative
is to increase artificially the proportion of tumour images in the training
set, and then to compensate for the different priors on the test data as
described above. The prior probabilities for tumours in the general popu-
lation can be obtained from medical statistics, without having to collect the
corresponding images. Correction of the network outputs is then a simple
matter of multiplication and division.

Combining the outputs of several networks

Rather than using a single network to solve a complete problem, there is
often benefit in breaking the problem down into smaller parts and treating
cach part with a separate network. By dividing the network outputs by
the prior probabilities used during training, the network outputs become
likelihoods scaled by the unconditional density of the input vectors. These
scaled likelihoods can be multiplied together on the assumption that the
input vectors for the various networks are independent. Since the scaling
factor is independent of class, a classifier based on the product of scaled
likelihoods will give the same results as one based on the true likelihoods.
This approach has been successfully applied to problems in speech recog-
nition (Bourlard and Morgan, 1990; Singer and Lippmann, 1992).

Minimum risk

As discussed in Chapter 1, the goal of a classification system may not
always be to minimize the probability of misclassification. Different mis-
classifications may carry different penalties, and we may wish to minimize
the overall loss or risk (Section 1.10). Again the medical screening appli-
cation provides a good example. It may be far more serious to mis-classify
a tumour image as normal than to mis-classify a normal image as that of
a tumour. In this case, the posterior probabilities from the network can
be combined with a suitable matrix of loss coefficients to allow the mini-
muin risk decision to be made. Again, no network re-training is required to
achieve this. However, if the required loss matrix elements are known before
the network is trained, then it may be better to modify the error function
as will be discussed for the case of a sum-of-squares error in Section 6.6.2.
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Rejection thresholds

In Section 1.10.1 we introduced the concept of a rejection threshold, which
is such that if all of the posterior probabilities fall below this threshold then
no classification decision is made. Alternative classification techniques can
then be applied to the rejected cases. This reflects the costs associated
with making the wrong decisions balanced against the cost of alternative
classification procedures. In the medical image classification problem, for
instance, it may be better not to try to classify doubtful images automati-
cally, but instead to have a human expert provide a decision. Rejection of
input vectors can be achieved in a principled way, provided the network
outputs represent posterior probabilities of class membership.

In subsequent sections of this chapter we show how the outputs of a network can
be interpreted as approximations to posterior probabilities, provided the error
function used for network training is carefully chosen. We also show that some
error functions allow networks to represent non-linear discriminants, even though
the output values themselves need not correspond to probabilities.

6.6 Sum-of-squares for classification

In the previous section we showed that, for a network trained by minimizing a
sum-of-squares error function, the network outputs approximate the conditional
averages of the target data

yr(x) = (t|x) = / tip(telx) dtx. (6.98)

In the case of a classification problem, every input vector in the training set is
labelled by its class membership, represented by a set of target values t}. The
targets can be chosen according to a variety of schemes, but the most convenient
is the l-of-c coding in which, for an input vector x" from class C;, we have
T = 6x1 where §y is the Kronecker delta symbol defined on page xiii. In this
case the target values are precisely known and the density function in target
space becomes singular and can be written as

ptklx) = > 8(tk — 8ri) P(Cilx) (6.99)
=1

since P(Cy|x) is the probability that x belongs to class C;. If we now substitute
(6.99) into (6.98) we obtain

yr(x) = P(Cklx) (6.100)

so that the cutputs of the network correspond to Bayesian posterior probabilities
(White, 1989; Richard and Lippmann, 1991).
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If the network outputs represent probabilities, then they should lie in the
range (0, 1) and should sum to 1. For a network with linear output units, trained
by minimizing a sum-of-squares error function, it was shown in Section 6.1.2
that if the target values satisfy a linear constraint, then the network outputs will
satisfy the same constraint for an arbitrary input vector. In the case of a 1-of-c
coding scheme, the target values sum to unity for each pattern, and so the net-
work outputs will also always sum to unity. However, there is no guarantee that
they will lie in the range (0,1). In fact, the sum-of-squares error function is not
the most appropriate for classification problems. It was derived from maximum
likelihood on the assumption of Gaussian distributed target data. However, the
target values for a l-of-¢ coding scheme are binary, and hence far from having
a Gaussian distribution. Later we discuss error measures which are more ap-
propriate for classification problems. However, there are advantages in using a
sum-of-squares error, including the fact that the determination of the output
weights in a network represents a linear optimization problem. The significance
of this result for radial basis function networks was described in Chapter 5. We
therefore discuss the use of a sum-of-squares error for classification problems in
more detail before considering alternative choices of error function.

For a two-class problem, the 1-of-c target coding scheme described above
leads to a network with two output units, one for each class, whose activations
represent the corresponding probabilities of class membership. An alternative
approach, however; is to use a single output y and a target coding which sets
t™ = 1 if x" is from class C; and t" = 0 if X" is from class C3. In this case, the
distribution of target values is given by

p(te{x) = 6(t — 1) P(Ci|x) + 6{(t) P(Ca|x). (6.101)
Substituting this into (6.98) gives
y(x) = P(Cy]x) (6.102)

and so the network output y(x) represents the posterior probability of the input
vector x belonging to class C;. The corresponding probability for class C; is then
given by P(Cz|x) = 1 — y(x).

6.6.1 Interpretation of hidden units

In Section 6.1.1 we derived the expression (6.29) for the final-layer weights which
minimizes a sum-of-squares error, for networks with linear output units. By sub-
stituting this result back into the error function we obtain an expression in which
the only adaptive parameters are those associated with hidden units, which we
denote by w. This expression sheds light on the nature of the hidden unit rep-
resentation which a network learns, and indicates why multi-layer non-Yinear

neural networks can be cffective as pattern classification systems (Webb and
Lowe, 1990).
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Writing (6.25) in matrix notation we obtain
E= %’I‘r{(ZWT -TYZWT —1)T} (6.103)

where Z, W and T are defined on page 199. We now substitute the solution
(6.29) for the optimal weights into (6.103) to give

E= —;—’I‘r{(ZZTT —1)(zZtT - T)T). (6.104)
By using some matrix manipulation (Exercise 6.9) we can write this in the form
E= %’H{TTT ~8pS7'} (6.105)

Here Sy is given by .

Sr=2"2=> (2" —2)(z" - 2)T (6.106)

and the components of 7 are defined by (6.24). We see that this can be interpreted
as the total covariance matrix for the activations at the output of the final layer
of hidden units with respect to the training data set. Similarly, Sg in (6.105) is
given by

Sp =2ZTTTTZ (6.107)

which can be interpreted (as we shall see) as a form of between-class covariance
matrix.

Since the first term in the curly brackets in (6.105) depends only on the
target data it is independent of the remaining weights w in the network. Thus,
minimizing the sum-of-squares error is equivalent to maximizing a particular
discriminant function defined with respect to the activations of the final-layer
hidden units given by

J= %ﬁ{sgs;‘}. (6.108)

Note that, if the matrix Sy is ill-conditioned, then the inverse matrix S;.l should

be replaced by the pseudo-inverse S;fﬂ. The criterion (6.108) has a clear similarity
to the Fisher discriminant function which is discussed in Section 3.6. Nothing
here is specific to the multi-layer perceptron, or indeed to neural networks. The
same result is obtained regardless of the functions z;(x; W) and applies to any
generalized linear discriminant in which the basis functions contain adaptive
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parameters.

The role played by the hidden units can now be stated as follows. The weights
in the final layer are adjusted to produce an optimum discrimination of the
classes of input vectors by means of a linear transformation. Minimizing the
error of this linear discriminant requires that the input data undergo a non-
linear transformation into the space spanned by the activations of the hidden
units in such a way as to maximize the discriminant function given by (6.108).

Further insight into the nature of the matrix Sp is obtained by considering
a particular target coding scheme. For the 1-of-¢ target coding scheme we can
write (6.107) in the form (Exercise 6.10)

Sp =) N (Z* -z)@@ -7)" (6.109)
k

where Ny is the number of patterns in class Cy and 7* is the mean activation
vector of the hidden units for all training patterns in class C, and is defined by

= L Y am (6.110)

Nk n€Cy

Note that Sp in (6.109) differs from the conventional between-class covariance
matrix introduced in Section 3.6 by baving factors of N instead of Ny, in the sum
over classes. This represents a strong weighting of the feature extraction criterion
in favour of classes with larger numbers of patterns. If there is a significant
difference between the prior probabilities for the training and test data sets,
then this effect may be undesirable, and we shall shortly see how to correct for it
by modifying the sum-of-squares error measure. As discussed in Section 3.6, there
are several ways to generalize Fisher’s original two-class discriminant criterion to
several classes, all of which reduce to the original Fisher result as a special case.
In general, there is no way to decide which of these will yield the best results. For
a two-class problem, the between-class covariance matrix given in (6.109) differs
from the conventional one only by a multiplicative constant, so in this case the
network criterion is equivalent to the original Fisher expression.

In earlier work, Gallinari et al. (1988, 1991) showed that, for a network of
linear processing units with a 1-of-c target coding, the minimization of a sum-of-
squares error gave a set of input-to-hidden weights which maximized a criterion
which tock the form of a ratio of determinants of between-class and total covari-
ance matrices defined at the outputs of the hidden units. The results of Webb
and Lowe {1990) contain this result as a special case.

6.6.2 Weighted sum-of-squares

We have seen that, for networks with linear output units, minimization of a
sum-of-squares error at the network outputs maximizes a particular non-linear
feature extraction criterion
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J= %’I\'{SBS;‘} (6.111)

at the hidden units. For the 1-of-c coding scheme, the corresponding between-
class covariance matrix, given by (6.109), contains coefficients which depend on
Ny, the number of patterns in class C. Thus, the hidden unit representation
obtained by maximizing this discriminant function will only be optimal for a
particular set of prior probabilities Ni /N. If the prior probabilities differ between
training and test sets, then the feature extraction need not be optimal.

A related difficulty arises if there are different costs associated with different
misclassifications, so that a general loss matrix needs to be considered. It has
been suggested (Lowe and Webb, 1990, 1991) that modifications to the form of
the sum-of-squares error to take account of the loss matrix can lead to improved
feature extraction by the hidden layer, and hence to improved classification per-
formance.

To deal with different prior probabilities between the training set and the
test set, Lowe and Webb (1990) modify the sum-of-squares error by introducing
a weighting factor &, for each pattern n so that the error function becomes

1
=3 Z Z kn{yr(x™) —t"}? (6.112)
n k
where the weighting factors are given by
K = ngck) for pattern n in class Cy, (6.113)
k

where IB(Ck) is the prior probability of class Cy, for the test data, and P, = Ni/N
is the corresponding (sample estimate of the) prior probability for the training
data. It is straightforward to show (Exercise 6.12) that the total covariance
matrix St then becomes

ZP(C“ S (@ ~B)(z" -7)" (6.114)
neCy

which is the sample-based estimate of the total covariance matrix for data with
prior class probabilities P(Cy). In (6.114) the Z are given by

7= Z P(Ck) S g (6.115)
n€Cy

which again is the sample-based estimate of the value which Z would take for
data having the prior probabilities P(Ck) Similarly, assuming a 1-of-c target
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coding scheme, the between-class covariance matrix is modified to become

Sp =Y N?P(C) @ - 7)(z" -2)T (6.116)
k

which is the sample-based estimate of the between-class covariance matrix for
data with prior probabilities P(Cy).

The effects of an arbitrary loss matrix can similarly be taken into account
by modifying the target coding scheme so that, for a pattern n which is labelled
as belonging to class C;, the target vector has components tf = 1 — Ly, where
Lj,. represents the loss in assigning a pattern from class C; to class Cp. The
total covariance matrix is unaltered, while the between-class covariance matrix
becomes (Exercise 6.13)

Sp=3_ {Z(l - L) Ni(z —E)} {Z(l ~ Lyk)Nu(Zr — Z)T} (6.117)
7

k 1

which reduces to the usual expression when Ly, = 1 — &j. Examples of the
application of these technigues to a problem in medical prognosis are given in
Lowe and Webb (1990).

6.7 Cross-entropy for two classes

We have seen that, for a 1-of-c target coding scheme, the outputs of a network
trained by minimizing a sum-of-squares error function approximate the posterior
probabilities of class membership, conditioned on the input vector. However, the
sum-of-squares error was obtained from the maximum likelihood principle by
assuming the target data was generated from a smooth deterministic function
with added Gaussian noise. This is clearly a sensible starting point for regression
problems. For classification problems, however, the targets are binary variables,
and the Gaussian noise model does not provide a good description of their dis-
tribution. We therefore seek more appropriate choices of error function.

To start with, we consider problems involving two classes. One approach to
such problems would be to use a network with two output units, one for each
class. This type of representation is discussed in Section 6.9. Here we discuss an
alternative approach in which we consider a network with a single output y. We
would like the value of y to represent the posterior probability P(C;}x) for class
C;. The posterior probability of class C; will then by given by P(Calx) = 1 —y.
This can be achieved if we consider a target coding scheme for which t = 1 if
the input vector belongs to class C; and t = 0 if it belongs to class C3. We can
combine these into a single expression, so that the probability of observing either
target value is

pltlx) = ' (1 —y)' (6.118)
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which is a particular case of the binomial distribution called the Bernoulli dis-
tribution. With this interpretation of the output unit activations, the likelihood
of observing the training data set, assuming the data points are drawn indepen-
dently from this distribution, is then given by

[Ty a-ym-. (6.119)

As usual, it is more convenient to minimize the negative logarithm of the like-
lihood. This leads to the cross-entropy error function (Hopfield, 1987; Baum
and Wilczek, 1988; Solla et al., 1988; Hinton, 1989; Hampshire and Pearlmutter,
1990) in the form

E==) {"lny" + (1 - ") In(1 - y™)}. (6.120)

We shall discuss the meaning of the term ‘entropy’ in Section 6.10. For the
moment let us consider some elementary properties of this error function.
Differentiating the error function with respect to y™ we obtain

OF LT Al
9E _ (" -t") (6.121)
oy yr(1-y")
The absolute minimum of the error function occurs when
Yyt =t for all n. (6.122)

In Section 3.1.3 we showed that, for a network with a single output y = g(a)
whose value is to be interpreted as a probability, it is appropriate to consider
the logistic activation function

1

1 + exp(—a) (6:123)

g(a) =
which has the property

g'(a) = g(a)(1 - g(a)). (6.124)

Combining (6.121) and (6.124) we see that the derivative of the error with respect
to a takes the simple form

"= — =y - t". (6.125)
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Here &" is the ‘error’ quantity which is back-propagated through the network in
order to compute the derivatives of the error function with respect to the network
weights (Section 4.8). Note that (6.125) has the same form as obtained for the
sum-of-squares error function and linear output units. We see that there is a
" natural pairing of error function and output unit activation function which gives
rise to this simple form for the derivative. Use of the logistic form of activation
function also leads to corresponding simplifications when evaluating the Hessian
matrix (the matrix of second derivatives of the error function).

From (6.120) and (6.122), the value of the cross-entropy error function at its
minimumnm is given by

Emin=—Y_ {t"Int" + (1~ ") In(1 - £")}. (6.126)

For the 1-of-c coding scheme this vanishes. However, the error function {6.120)
is also the correct one to use when ¢™ is a continuous variable in the range (0,1)
representing the probability of the input vector x™ belonging to class C; (see
Section 6.10 and Exercise 6.15). In this case the minimum value (6.126) of the
error need not vanish, and so it is convenient to subtract off this value from the
original error function to give a modified error of the form

==Y {t"ln% +(~tYn %:——Z:—;} . (6.127)

n

Since (6.126) is independent of the network outputs this does not affect the
location of the minimum and so has no effect on network training. The modified
error (6.127) always has its minimum at 0, irrespective of the particular training
set.

As a simple illustration of the interpretation of network outputs as probabili-
ties, we consider a simple two-class problem with one input variable in which the
class-conditional densities are given by the Gaussian mixture functions shown
in Figure 6.11. A multi-layer perceptron with five hidden units having ‘tanh’
‘activation functions, and one output unit having a logistic sigmoid activation
function, was trained by minimizing a cross-entropy error using 100 cycles of
the BFGS quasi-Newton algorithm (Section 7.10). The resulting network map-
ping function is shown, along with the true posterior probability calculated using
Bayes’ theorem, in Figure 6.12.

6.7.1 Sigmoid activation functions

In Section 3.1.3, the logistic sigmoid activation function was motivated for a
single-layer network by the goal of ensuring that the network outputs represent
posterior probabilities, with the assumption that the class-conditional densities
can be approximated by normal distributions. We can apply a similar argument
to the network outputs in the case of multi-layered networks {(Rumelhart et
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Figure 6.11. Plots of the class-conditional densities used to generate a data set
to demonstrate the interpretation of network outputs as posterior probabilities.
A total of 2000 data points were generated from these densities, using equal
prior probabilities.

al., 1995). In this case we need to consider the distributions of the outputs of
the hidden units, represented here by the vector z for the two classes. We can
generalize the discussion by assuming that these class-conditional densities are
described by

p(2|Cr) = exp {A(Bk) + B2, ¢) + 6]z} (6.128)

which is a member of the exponential fomily of distributions (which includes
many of the common distributions as special cases such as Gaussian, binomial,
Bernoulli, Poisson, and so on). The parameters 8), and ¢ control the form of the
distribution. In writing (6.128) we are implicitly assuming that the distributions
differ only in the parameters 8, and not in ¢. An example would be two Gaussian
distributions with different means, but with common covariance matrices.

Using Bayes’ theorem, we can write the posterior probability for class C; in
the form

p(z{C1) P(C1)

P(Cil|z) = p(2|C1)P(Cy) + p(2|C2) P(Ca)

1

= el (6.129)

which is a logistic sigmoid function, in which
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Figure 6.12. The result of training a multi-layer perceptron on data generated
from the density functions in Figure 6.11. The solid curve shows the output
of the trained network as a function of the input variable z, while the dashed
curve shows the true posterior probability P(C1]z) calculated from the class-
conditional densities using Bayes’ theorem.

_ 1, P(ZIC1)P(Cy)
a=1In m (6.130)

Using (6.128) we can write this in the form
a=wTz+wpy (6.131)
where we have defined
w=0) -6, (6.132)

P(C1)

Wy = A(B]) — A(02) +In P(Cg)

(6.133)

Thus the network output is given by a logistic sigmoid activation function acting
on a weighted linear combination of the outputs of those hidden units which send
connections to the output unit.

It is clear that we can apply the above arguments to the activations of hidden
units in a network. Provided such units use logistic sigmoid activation functions,
we can interpret their outputs as probabilities of the presence of corresponding
‘features’ conditioned on the inputs to the units.
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6.7.2 Properties of the cross-entropy error

Suppose we write the network cutput, for a particular pattern n, in the form
y™ =t" + €™ Then the cross-entropy error function (6.127) can be written as

E ==Y {t"In(1+€"/t") + (1 —t")In(1 — €*/(1 — "))} (6.134)

so that the error function depends on the relative errors of the network outputs.
This should be compared with the sum-of-squares error function which depends
on the (squares of the) absolute errors. Minimization of the cross-entropy error
function will therefore tend to result in similar relative errors on both small
and large target values. By contrast, the sum-of-squares error function tends to
give similar absolute errors for each pattern, and will therefore give large relative
errors for small output values. This suggests that the cross-entropy error function
is likely to perform better than sum-of-squares at estimating small probabilities.

For binary targets, with t* = 1 for an input vector x™ from class C; and
t" = 0 for inputs from class Ca, we can write the cross-entropy error function
(6.134) in the form

E=-) mlA+e) - > In(l-e€) (6.135)

neC; n€eC;

where we have used zInz — 0 for 2 — 0. If we suppose that €” is small, then
the error function becomes

Exy | (6.136)

where we have expanded the logarithms using In(1 + 2) ~ 2 and noted that if
y € (0,1) then €* < 0 for inputs from class C; and €* > 0 for inputs from class
Cs. The result (6.136) has the form of the Minkowski-R error function for R = 1,
discussed earlier. Compared to the sum-of-squares error function, this gives much
stronger weight to smaller errors.

We have obtained the cross-entropy function by requiring that the network
output y represents the probability of an input vector x belonging to class Cy. We
can now confirm the consistency of this requirement by considering the minimum
of the error function for an infinitely large data set, for which we can write (6.120)
in the form

E=- / {tlny(x) + (1 = t) In(1 — y(x))} p(t|x)p(x) dt dx. (6.137)

Since the network function y(x) is independent of the target velue t we can write
(6.137) in the form
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E=— [ (om0 + (- )t - ()} p)ax  (6138)

where, as before, we have defined the conditional average of the target data as

(£]x) = / tp(t)x) dt. (6.139)

If we now set the functional derivative (Appendix D) of (6.138) with respect
to y(x) to zero we see that the minimum of the ervor function occurs when

y(x) = (t|x) (6.140)

so that, as for the sum-of-squares error, the output of the network approximates
the conditional average of the target data for the given input vector. For the
target coding scheme which we have adopted we have

p(t]x) = 6(t — 1) P(Ca|x) + 8(t) P(Calx). (6.141)
Substituting (6.141) into (6.139) we find
y(x) = P(C1}x) (6.142)
as required.

6.8 Multiple independent attributes

In all of the classification problems which we have considered so far, the aim has
been to assign new vectors to one of ¢ mutually exclusive classes. However, in
some applications we may wish to use a network to determine the probabilities
of the presence or absence of a number of attributes which need not be mutually
exclusive. In this case the network has multiple outputs, and the value of the
output variable yx represents the probability that the kth attribute is present.
“If we treat the attributes as independent, then the distribution of target values
will satisfy

[+4
p(tix) = [ o(telx). (6.143)
k=1
We can now use (6.118) for each of the conditional distributions to give

ptlx) = [ w1~ we)ts. (6.144)
k=1
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If we now construct the likelihood function and take the negative logarithm in
the usual way, we obtain the error function in the form

E=-%"% {tilngt+ (1 — )1 -yp)}. (6.145)

n k=1

With this choice of error function, the network outputs should each have a lo-
gistic sigmoidal activation function of the form (6.123). Again, for binary target
variables t}, this error function vanishes at its minimum. If the t} are probabil-
ities in the range (0,1), the minimum of the error will depend on the particular
data set, and so it is convenient to subtract off this minimum value to give

E= —Zi {tg In (%) + (=) C—Ef—é)} (6.146)

n k=1
which always has an absolute minimum value with respect to the {y}} of zero.

6.9 Cross-entropy for multiple classes

We now return to the conventional classification problem involving mutually
exclusive classes, and consider the form which the error function should take
when the number of classes is greater than two. Consider a network with one
output yi for each class, and target data which has a 1-of-¢c coding scheme, so
that t§ = &y for a pattern n from class C;. The probability of observing the set
of target values t} = 8, given an input vector X, is just p(Ci|x) = ;. The value
of the conditional distribution for this pattern can therefore be written as

p(t”x™) = [[i*. (6.147)
k=1

If we form the likelihood function, and take the negative logarithm as before, we
obtain an error function of the form

E= —Zitf,;lnyg. (6.148)

n k=1

The absolute minimum of this error function with respect to the {y}} occurs
when y§ = t% for all values of £ and n. At the minimum the error function takes
the value

Emin=~Y_ Z 2 Int}. (6.149)

n k=1
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For a 1-of-c coding scheme this minimum value is 0. However, the error function
(6.148) is still valid, as we shall see, when t} is a continuous variable in the
range (0,1) representing the probability that input x™ belongs to class Ci. In
this case the minimum of the error function need not vanish (it represents the
entropy of the distribution of target variables, as will be discussed shortly). It is
then convenient to subtract off this minimum value, and hence obtain the error
function in the form

E= _Zit;; In (%g) (6.150)
k

n k=1

which is non-negative, and which equals zero when yj = 7 for all k and n.

We now consider the corresponding activation function which should be used
for the network output units. If the output values are to be interpreted as prob-
abilities they must lie in the range (0, 1), and they must sum to unity. This can
be achieved by using a generalization of the logistic sigmoid activation function
which takes the form

exp(ax)

%= T explar) (6.151)
which is known as the normalized exponential, or softmaz activation function
(Bridle, 1990). The term softmax is used because this activation function rep-
resents a smooth version of the winner-takes-all activation model in which the
unit with the largest input has output +1 while all other units have output 0.
If the exponentials in (6.151) are modified to have the form exp(Bax), then the
winner-takes-all activation is recovered in the limit # — oo. The softmax activa-
tion function can be regarded as a generalization of the logistic function, since
it can be written in the form

1
_ _ 6.152
Yk = TF oxp(—Ar) (6.152)
where Ay, is given by
A =ar - In Z exp(ag} p . (6.153)
k'

As with the logistic sigmoid, we can give a very general motivation for the
softmax activation function by considering the posterior probability that a hid-
den unit activation vector z belongs to class Cg, in which the class-conditional
densities are assumed to belong to the family of exponential distributions of the
general form
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p(2|Ck) = exp {A(Bk) + B(z,¢) + o’,fz} . (6.154)

From Bayes’ theorem, the posterior probability of class Cy, is given by

Substituting (6.154) into (6.155) and re-arranging we obtain

p(Cklz) = —plor) (6.156)

2k exp(ax)
where
ar = w}fz -+ wio (6.157)

and we have defined

wi = 0y (6.158)

wio = A(0) + In P(Cy). ' (6.159)

The result (6.156) represents the final layer of a network with softmax activation
functions, and shows that (provided the distribution (6.154) is appropriate) the
outputs can be interpreted as probabilities of class membership, conditioned on
the outputs of the hidden units.

In evaluating the derivatives of the softmax error function we need to consider
the inputs to all cutput units, and so we have (for pattern n)

OE™ OE™ dyy
ax = 2 By Bay” (6-100)
From (6.151) we have
Oyw
2 = Y Orr — Yk 6.161
Bag Uk Okk — Yk (6.161)
while from (6.150) we have
OE™ trr
= ——, 6.162
OYrr Y ( )

Substituting (6.161) and (6.162) into (6.160) we find
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gE™
Bar Y — Uk (6.163)

which is the same result as found for both the sum-of-squares error (with a

linear activation function) and the two-class cross-entropy error (with a logistic
activation function). Again, we see that there is a natural pairing of error function
and activation function.

6.10 Entropy

The concept of entropy was originally developed by physicists in the context of
equilibrium thermodynamics and later extended through the developinent of sta-
tistical mechanics. It was introduced into information theory by Shannon (1948).
An understanding of basic information theory leads to further insights into the
entropy-based error measures discussed in this section. It also paves the way for
an introduction to the minimum description length framework in Section 10.10.
Here we consider two distinct but related interpretations of entropy, the first
based on degree of disorder and the second based on information content.

Consider a probability density function p(z) for a single random variable z.
It is convenient to represent the density function as a histogram in which the
z-axis has been divided into bins labelled by the integer i. Imagine constructing
the histogram by putting a total of NV identical discrete objects into the bins,
such that the ith bin contains N; objects. We wish to count the number of
distinct ways in which objects can be arranged, while still giving rise to the
same histogram. Since there are N ways of choosing the first object, (N — 1)
ways of choosing the second object, and so on, there a total of N! ways to select
the NV objects. However, we do not wish to count rearrangements of objects
within a single bin. For the ith bin there are N;! such rearrangements and so the
total number of distinct ways to arrange the objects, known as the multiplicity,
is given by

Nt

W= -————Hi NI

(6.164)

The entropy is defined as (a constant times) the negative logarithm of the mul-
tiplicity

1 1
= - InW = —— ] — N
S Nln N{lnN. Ei In N;!}. {6.165)

We now consider the limit N — oo, and make use of Stirling’s approximation
InN!~ NInN — N together with the relation ), N; = N, to give

. N; N;
§ =~ A}POOZ (——1\7’) In (7\7—) = —;pi In p; (6.166)

i
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Figure 6.13. Examples of two histograms, together with their entropy values
defined by (6.166). The histograms were generated by sampling two Gaussian
functions with variance parameters ¢ = 0.4 and o = 0.08, and each contain
1000 points. Note that the more compact distribution has a lower entropy.

where p; = N; /N (as N — 00) represents the probability corresponding to the ith
bin. The entropy therefore gives a measure of the number of different microstates
(arrangements of objects in the bins) which can give rise to a given macrostate
(i.e. a given set of probabilities p;). A very sharply peaked distribution has a very
low entropy, whereas if the objects are spread out over many bins the entropy is
much higher. The smallest value for the entropy is 0 and occurs when all of the
probability mass is concentrated in one bin (so that one of the p; is 1 and all
the rest are 0). Conversely the largest entropy arises when all of the bins contain
equal probability mass, so that p; = 1/M where M is the total number of bins.
This is easily seen by maximizing (6.166) subject to the constraint ), p; = 1
using a Lagrange multiplier (Appendix C). An example of two histograms, with
their respective entropies, is shown in Figure 6.13.

For continuous distributions (rather than histograms) we can take the limit
in which the number M of bins goes to infinity. If A is the width of each bin,
then the probability mass in the ith bin is p; = p(z;)A, and so the entropy can
be written in the form

M
§= lim_ ; plz) A In {p(z;) A} (6.167)

= /p(m) Inp(z)dz + A}im InA (6.168)
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where we have used [p(zr)dx = 1. The second term on the right-hand side
diverges in the limit M — oo. In order to define a meaningful entropy measure
for continuous distributions we discard this term, since it is independent of p(z}),
and simply use the first term on the right-hand side of (6.168), which is called
the differential entropy. This is reasonable, since if we measure the difference in
entropy between two distributions, the second term in (6.168) would cancel. For
distributions which are functions of several variables, we define the entropy to
be

S=- /p(x) In p(x) dx (6.169)

where x = (z1,...,z4)T.

It is interesting to consider the form of distribution which gives rise to the
maximum of the entropy function. In order to find a meaningful maximum it is
necessary to constrain the variance of the distribution. For the case of a single
variable z on the infinite axis (—o0,00), we maximize

S = _/oo p(x)Inp(z) dx (6.170)

— 00

subject to the constraints that the distribution be normalized and that the mean
and variance of the distribution have specified values

/oo p(z)dz =1 (6.171)

/oo zp(z)dr = p (6.172)
/_00 (z — 1)’p(z) dz = o2 (6.173)

Introducing Lagrange multipliers A1, A2 and A3 (Appendix C) for each of the
constraints, we can use calculus of variations (Appendix D) to maximize the
functional

/ plz) {Inp(x) + Ay + Xox + Aa(z — 1)?} dx — Ay = Agp — Azo?  (6.174)

— 00

which leads to

p(z) =exp {—1 — Ay — daz — Aa(z — u)z} . (6.175)
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We can solve for the Lagrange multipliers by back-substituting this expression
into the constraint equations. This finally gives the expression for the maximizing
distribution in the form

T — 2
p(z) = (2,,012)1/2 exp{—( 20;‘) } (6.176)

Thus we see that the distribution having maximum entropy, for given mean and
variance, is the Gaussian.

As a second viewpoint on the interpretation of entropy, let us consider the
amount of information, or equivalently the ‘degree of surprise’, which is obtained
when we learn that a particular event has occurred. We expect that the informa-
tion will depend on the probability p of the event, since if p = 1 then the event is
certain to occur, and there is no surprise when the event is found to occur (and
so no information is received). Conversely, if the probability is low, then there
is a large degree of surprise in learning that it has occurred. We are therefore
looking for a measure of information s(p) which is a continuous, monotonically
increasing function of p and which is such that s(1) = 0. An appropriate ex-
pression can be obtained as follows. Consider two independent events A and B,
with probabilities ps and pg. If we know that both events have occurred then
the total information is s(papg). If, however, we are first told that A has oc-
curred, then the residual information on learning that B has occurred must be
s(papp) — s(pa), which must equal s(pp) since knowledge that A has occurred
should not affect the information resulting from learning that B occurred (since
the events are independent). This leads to the following condition

s(papB) = s(pa) + s(pB)- (6.177)

From this we can deduce that s(p?) = 2s(p) and by induction that s(p") =
Ns(p) for integer N. Similarly, s(p) = s([p'/V]¥) = Ns(p'/") and by extension
s(pM/N) = (M/N)s(p). This implies that

s(p”) = zs(p) (6.178)
for rational z and hence, by continuity, for real z. If we define z = —log, p, so
that p = (1/2)?, then

s(p) = s((1/2)%) = zs(1/2) = —s(1/2) logy(p). (6.179)

It is conventional to choose s(1/2) = 1. The information is then expressed in
bits {binary digits). From now on we shall consider logarithms to base e (natural
logarithms) in which case the information is expressed in nats. We see that the
amount of information is proportional to the logarithm of the probability. This
arises essentially because, for independent events, probabilities are multiplicative,
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while information is additive.

Consider a random variable o which can take values oy with probabilities
p{a). If a sender wishes to transmit the value of « to a receiver, then the amount
of information (in bits) which this requires is — In p(ay) if the variable takes the
value ay. Thus, the expected (average) information needed to transmit the value
of « is given by

S{a) == p(aw) In (o) (6.180)
k

which is the entropy of the random variable . Thus S() as the average amount
of information received when the value of « is observed. The average length of
a binary message (in nats) needed to transmit the value of « is at least equal to
the entropy of a. This is known as the noiseless coding theorem (Shannon, 1948;
Viterbi and Omura, 1979).

Returning to the case of continuous variables, denoted by the vector x, we
note that in practice we do not know the true distribution p(x). If we encode the
value of x for transmission to a receiver, then we must (implicitly or explicitly)
choose a distribution g(x) from which to construct the coding. The information
needed to encode a value of x under this distribution is just —Ing(x). If the
variable x is drawn from a true distribution p(x) then the average information
needed to encode x is given by

- [ 6 ng(x) ax ) (6.181)

which is the cross-entropy between the distributions ¢(x) and p(x). Comparison
with (2.68) shows that this equals the negative log likelihood under the model
distribution ¢(x) when the true distribution is p(x). It is also equal to the sum of
the Kullback-Leibler distance between p(x) and ¢(x), given by (2.70), and the
entropy of p(x) since

—/p(x) Ing(x)dx = —/p(x) lngg—)}%dx— /p(x) Inp(x) dx. (6.182)

We can easily show that, of all possible distributions g(x), the choice which
gives the smallest average information, i.e. the smallest value for the cross-
entropy, is the true distribution p(x) (Exercise 6.21). Since the entropy of p(x)
is independent of the distribution g(x), we see from (6.182) that minimization of
the cross-entropy is equivalent to minimization of the Kullback-Leibler distance.

We can apply the concept of cross-entropy to the training of neural networks.
For a variable o which takes a discrete set of values o, we can write (6.181) in
the form
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=" P(ak) In Q(ox). (6.183)
k

Consider first a network with ¢ outputs yx(x) representing the model probabili-
ties for x to belong to the corresponding classes Ci,. We shall suppose that we also
have a set of target variables t;, representing the corresponding true probabilities.
Then the cross-entropy becomes

c
=Ytk Inyi(x). (6.184)
k=1

For a set of N data points which are assumed to be drawn independently from
a common distribution, the information is additive and hence the total cross-
entropy is given by

N ¢

- Z th In y(x™) (6.185)

n=1k=1

which can be used as an error function for network training. We see that this
form of error function is valid not only when the targets ¢} have a one-of-c coding
(representing precise knowledge of the true classes of the data) but also when
they lie anywhere in the range 0 < ¢f < 1, subject to the constraint Y, 7 =1,
corresponding to probabilities of class membership.

For two classes, we can consider a network with a single output y represent-
ing the model probability for membership of class Cy, with corresponding true
probability ¢. The model probability for membership of class C, is then 1y, and
the corresponding true probability is 1 — ¢. Following the same line of argument
as above we then arrive at the cross-entropy error function for two classes and
N data points in the form

N
=3 {t lny(x™) + (L~ ) In(1 — y(x™))} . {6.186)

n=1

6.11 General conditions for outputs to be probabilities

So far, we have considered three different error measures (sum-of-squares, cross-
entropy for a single output, and cross-entropy for softmax networks) all of which
allow the network outputs to be interpreted as probabilities. We may therefore
wonder what conditions an error measure should satisfy in order that the net-
work outputs have this property. The discussion given here is based on that of
Hampshire and Pearlmutter (1990).
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All of the error measures we are considering take the form of a sum over
patterns of an error term for each pattern E = ) E™. We shall also take the
error to be a sum over terms for each output unit separately. This corresponds
to the assumption that the distributions of different target variables are statis-
tically independent (which is not satisfied by the Gaussian mixture based error
considered earlier, or by the softmax error, for instance). Thus we write

E" =" f(uR, 1)) (6.187)
k=1

where f(-,-) is some function to be determined. We shall also assume that f
depends only on the magnitude of the difference between yy and ty, so that
Flup t8) = f(lyg — t2]). In the limit of an infinite data set, we can write the
average (or expected) per-pattern error in the form

=3 [ [ 0ue - tehp(eipt) deax. (6.188)
k=1

1f we use a 1-of-c target coding scheme, then from (6.99) we can write the con-
ditional distribution of the target variables in the form

p(tix) = [ {}i5(tk - <5kz)P(C't‘X)} : (6.189)

k=1 \ =1

We now substitute (6.189) into (6.188) and evaluate the integrals over the ty
variables (which simply involves integrals of é-functions) to give

B) =3 [0 - wP(Clx) + fw) 1L - PN PO dx (6.190)
k=1

where we have used 3, P(Cklx) = 1, and assumed that 0 < y, < 1 so that
the modulus signs can be omitted. The condition that the average per-pattern
error in (6.190) be minimized with respect to the yi(x) is given by setting the
functional derivative of (E) (Appendix D) to zero

LB p1 - )Pl + £ L~ PCx)] =0 (6.191)
dyr(x)
which gives

FL=w) _ 1= PClx)
) PG

(6.192)
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If the outputs of the network are to represent probabilities, so that Ye(x) =
P(Ci|x), then the function f must satisfy the condition

ffl-y) 1-yg
OB (6.193)

A class of functions f which satisfies this condition is given by

fly) = /yr(l —y) " dy. (6.194)

This includes two important error functions which we have encountered already.
For r = 1 we obtain f(y) = y?/2 which gives the sum-of-squares error function.
Similarly, for » = 0 we obtain f(y) = —In(1 —y) = —In(1 - |y|)} which gives rise
to the cross-entropy error function. To see this, consider a single output and note
that f(y,¢) = —In(1 —ly—t]) = —In(y) if t =1 and f(y,t) = ~In(1 - |y - t|) =
—In(1 — y) if t = 0. These can be combined into a single expression of the form

—{tlny + (1 - £) In(1 —»)}. (6.195)

Summing over all outputs, as in (6.187), and then over all patterns gives the
cross-entropy error for multiple independent attributes in the form (6.145).

As an example of an error function which does not satisfy (6.193), consider
the Minkowski-R error measure which is given by f(y) = y®. Substituting this
into (6.193) gives

y* = (1-y)"? (6.196)

which is only satisfied if R = 2, corresponding to the sum-of-squares error. For
R # 2, the outputs of the network do not correspond to posterior probabilities.
They do, however, represent non-linear discriminant functions, so that the min-
imum probability of mis-classification is obtained by assigning patterns to the
class for which the corresponding network output is largest. To see this, substi-
tute f(y) = y® into the condition (6.192) satisfied by the network outputs at
the minimum of the error function, to give

P(Cyfx) /D)

yr(x) = PCeIx)VE-D 1 [1 = P(Calx)) /R-1)° (6.197)

We see that the y;. only represent the posterior probabilities when R = 2, cor-
responding to the sum-of-squares error. However, the decision boundaries cor-
respond to the minimum mis-classification rate discriminant for all values of R
since the y; are monotonic functions of the posterior probabilities P(Ci|x).
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Exercises

6.1 (x) Throughout this chapter we have considered data in which the input
vectors x are known exactly, but the target vectors t are noisy. Consider
instead the situation in which the target data is generated from a smooth
function h(x) but where the input data is corrupted by additive noise
(Webb, 1994). Show that the sum-of-squares error, in the infinite data
limit, can be written as

B=j [[ivict & -hpolPpx axde.  (0198)

By changing variables to z = x + £, and using functional differentiation
(Appendix D), show that the least squares solution is given by

y(z) = / h(z — £)p(€]2) d€ (6.199)

so that the optimum solution is again given by the conditional expectation
of the target data.
6.2 (x) Consider a model in which the target data is taken to have the form

t" = y(x™;w) + € (6.200)

where €” is drawn from a zero mean Gaussian distribution having a fixed
covariance matrix X. Derive the likelihood function for a data set drawn
from this distribution, and hence write down the error function. The use
of such an error function is called generalized least squares, and the usual
sumn-of-squares error function corresponds to the special case 3} = ¢2I
where I is the identity matrix.

6.3 () Consider a network with linear output units whose final-layer weights
are obtained by minimization of a sum-of-squares error function using the
pseudo-inverse matrix. Show that, if the target values for each training
pattern satisfy several linear constraints of the form (6.31) simultaneously,
then the outputs of the trained network will satisfy the same constraints
exactly for an arbitrary input vector.

6.4 (%) Verify the normalization of the probability density function in (6.58).
Use the result I'(1/2) = /7 to show that the Gaussian distribution is a
special case corresponding to R = 2.

6.5 (x) Write down an expression for the Minkowski- R error function (6.59) with
R =1 in infinite data limit, and hence show that the network mapping
which minimizes the error is given by the conditional median of the target
data.

6.6 (% x) Write down an expression for the conditional mixture density error
function (6.77) in the limit of an infinite data set. Hence, by using functional
differentiation (Appendix D), find expressions satisfied by the quantities
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a;j(x), p;(x) and 03(x), in terms of conditional averages, at the minimum
of this error. Note that the constraint 3. «; = 1 should be enforced by
using a Lagrange multiplier (Appendix C). Discuss the interpretation of
these expressions.

6.7 (x) Consider the circular normal distribution given by (6.95) and show that,
for 8 — 8y < 1, the shape of the distribution is approximately Gaussian.

6.8 (x %) In Section 6.4.1 we discussed a technique for modelling the conditional
density p(8|x) of a periodic variable 8 based on a mixture of circular normal
distributions. Here we investigate an alternative approach which involves
finding a transformation from the periodic variable 8 € (0,27) to a Eu-
clidean variable x € (—o00,00), and then applying the Gaussian mixture
technique of Section 6.4 to the estimation of the conditional density p(¢}x)
in x-space (Bishop and Legleye, 1995). Consider the density function de-
fined by the transformation

[e9]

p(Olx) = > B0+ L2n|x) (6.201)

L=—o0

where p(x|x) is a density function in x-space. Show that (6.201) satisfies
the periodicity requirement p(8 + 27|x) = p(8|x). Also, show that, if the
density function p(x|x) is normalized on the interval (—o0,c0), then the
density p(8]x) will be normalized on (0,27). The density function p(x|x)
can now be modelled using a mixture of Gaussians ¢;(x|x) of the form

M
Plxlx) = > a;(x)¢ (xIx). (6.202)

Jj=1

Write down the error function given by the negative logarithm of the like-
lihood of a set of data points {x™, 8"}, and find expressions for the deriva-
tives of the error function with respect to the means and variances of the
Gaussian components. Assuming that the mixing coefficients o; are deter-
mined by a softmax function of the form (6.74), find the derivatives of the
error function with respect to the corresponding network output variables
z5. Note that, in a practical implementation, it is necessary to restrict
the summation over L to a limited range. Since the Gaussian functions
¢;(x]x) have exponentially decaying tails, this can represent an extremely
good approximation in almost all cases.
6.9 (x) Using the definition of the pseudo-inverse matrix given by (6.30), verify
that the result (6.105) follows from the pseudo-inverse formula (6.104).
6.10 (%) Verify that, for a 1-of-c target coding scheme, the between-class covari-
ance matrix given by (6.107) reduces to the form (6.109).
6.11 (x) The result (6.108) shows that minimizing a sum-of-squares error func-
tion for a network with linear output units, maximizes a particular non-
linear discriminant function defined over the space of activations of the
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hidden units. Show that if, instead of using 0 and 1 as the network targets,
the values 0 and 1/+/N;, are used, where Ny is the number of patterns in
class Cp, then the between-class covariance matrix, given by (6.107) be-
comes

Sp=Y M@ -5)@ -7)" (6.203)
k

where Z* is defined by (6.110). This is now the standard between-class
covariance matrix as introduced in Section 3.6.

6.12 (x+) Consider a weighted sum-of-squares error function of the form (6.112)

in which the network outputs y;, are given by (6.21). Show that the solution
for the biases which minimizes the error function is given by

M

Wwro =ty — Zwkﬁj (6.204)
=1

where we have introduced the following weighted averages
N N n
Zn=1 Kty = Zn:l Kn 25
N Z] =N
Zn:l Kn Zn:l Kn

Use this result to show that the error function, with the biases set to their
optimal values, can be written in the form

T = (6.205)

E-= %m(sz ~TY'KTK(ZWT - T)} (6.206)

where K = diag(rw'”), (T)nk = 12, (W)k; = wij and (Z)n; = 27, and we
have defined ~
=t — 1, 7= 2" (6.207)

Show that (6.206) has the same form as the error function in {6.103) but
with Z and T pre-multiplied by XK. Hence show that the value of W which
minimizes this error function is given by

wT = (Kz)' KT (6.208)

Hence show that minimization of the error (6.206) is equivalent to maxi-
mization of a criterion of the form

J = %'IY{SBS,;I} (6.209)
in which

Sp = Z'KTTTKZ (6.210)
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Sy =Z"KZ. (6.211)

Show that, for a 1-of-c target coding scheme, and for weighting factors x,
given by (6.113), the total covariance matrix St is given by (6.114) and
the between-class covariance matrix Sg is given by (6.116).

6.13 (+) Suppose that, in Exercise 6.11, the target values had been set to 7 =
1 — Ly, for a pattern n belonging class C;, where L represents the loss
associated with assigning such a pattern to class Cy (loss matrices are
introduced in Section 1.10). Show that the between-class covariance matrix
given by (6.107) takes the form (6.117). Verify that this reduces to the form
(6.109) when le =1- 5lk-

6.14 (*) Consider the Hessian matrix for the cross-entropy error function (6.120)
for two classes and a single network output. Show that, in the limit of an
infinite data set, the terms involving second derivatives of the network
outputs, as well as some of the terms involving first derivatives, vanish
at the minimum of the error function as a consequence of the fact that
the network outputs equal the conditional averages of the target data. Ex-
tend this result to the cross-entropy error (6.145) corresponding to several
independent attributes.

6.15 (x) Show that the entropy measure in (6.145), which was derived for targets
tr = 0,1, applies also in the case where the targets are probabilities with
values in the range (0,1). Do this by considering an extended data set in
which each pattern ¢} is replaced by a set of M patterns of which a fraction
Mt} are set to 1 and the remainder are set to 0, and then applying (6.145)
to this extended data set.

6.16 (x) Consider the error function (6.148), together with a network whose
outputs are given by a softmax activation function (6.151), in the limit of
an infinite data set. Show that the network output functions yi(x) which
minimize the error are given by the conditional averages of the target data
{tr|x). Hint: since the {yx} are not independent, as a result of the constraint
> i Uk = 1, consider the functional derivative (Appendix D) with respect
to ag(x) instead.

6.17 (*) Consider the Hessian matrix for the error function (6.148) and a net-
work with a softmax output activation function (6.151) so that 3, ye(x) =
1. Show that the terms involving second derivatives of the network outputs
vanish in the limit of infinite data, provided the network has been trained
to a minimum of the error function. Hint: make use of the result of Exer-
cise 6.16.

6.18 (x) Consider a classification network in which the targets for training are
given by tf = 1 — Ly for an input vector x™ from class C;, where Ly
are the elements of a loss matrix, as discussed in Section 1.10. Use the
general result yi(x) = (tx|{x) for the network outputs at the minimum of
the error function to show that the outputs are given by weighted posterior
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probabilities such that selection of the largest output corresponds to the
minimum-risk classification.

6.19 (*x) Generate histograms of the kind shown in Figure 6.13 for a dis-
crete variable by sampling from a distribution consisting of a mixture of
two Gaussians. Evaluate numerically the entropy of the histograms using
(6.166) and explore the dependence of the entropy on the parameters of
the mixture model.

6.20 (x) Using the technique of functional differentiation (Appendix D), to-
gether with Lagrange multipliers (Appendix C), show that the probability
density function p(z) which maximizes the entropy

S = / ) Inp(z) d (6.212)
subject to the constraints
/ p(z)dr =1 (6.213)
/a:p(:l:) dx = p - (6:214)
/l:r: — ulBp(z)dz = o . (6.215)
is given by
Rl 1/R lx - ”IR

where I'(a) is the gamma function defined on page 28.

6.21 (*) Show that the choice of distribution ¢(x) which minimizes the cross-
entropy (6.181) is given by ¢(x) = p(x). To do this, consider the functional
derivative (Appendix D) of (6.181) with respect to ¢(x). This derivative
needs to be evaluated subject to the constraint

/ g(x)dx =1 (6.217)

which can be imposed by using a Lagrange multiplier (Appendix C).
6.22 (x) By substituting (6.189) into (6.188) and evaluating the integral over t,
derive the result (6.190).




7
PARAMETER OPTIMIZATION ALGORITHMS

In previous chapters, the problem of learning in neural networks has been for-
mulated in terms of the minimization of an error function E. This error is a
function of the adaptive parameters (weights and biases) in the network, which
we can conveniently group together into a single W-dimensional weight vector
w with components w; ... ww.

In Chapter 4 it was shown that, for a multi-layer perceptron, the derivatives

of an error function with respect to the network parameters can be obtained in a

“computationally efficient way using back-propagation. We shall see that the use

of such gradient information is of central importance in finding algorithms for
network training which are sufficiently fast to be of practical use for large-scale
applications.

The problem of minimizing continuous, differentiable functions of many vari-
ables is one which has been widely studied, and many of the conventional ap-
proaches to this problem are directly applicable to the training of neural net-
works. In this chapter we shall review several of the most important practical
algorithms. One of the simplest of these is gradient descent, which has been de-
scribed briefly in earlier chapters. Here we investigate gradient descent in more
detail, and discuss its limitations. We then describe a number of heuristic modifi-
cations to gradient descent which aim to improve its performance. Next we review
an important class of conventional optimization algorithms based on the con-
cept of conjugate gradients, including a relatively recent variation called scaled
conjugate gradients. We then describe the other major class of conventional op-
timization algorithms known as quasi-Newton methods. Finally, we discuss the
powerful Levenberg-Marquardt algorithm which is applicable specifically to a
sum-of-squares error function. There are many standard textbooks which cover
non-linear optimization techniques, including Polak (1971), Gill et al. (1981),
Dennis and Schnabel (1983), Luenberger (1984), and Fletcher (1987).

It is sometimes argued that learning algorithms for neural networks should
be local (in the sense of the network diagram) so that the computations needed
to update each weight can be performed using information available locally to
that weight. This requirement may be motivated by interest in modelling biolog-
ical neural systems or by the desire to implement network algorithms in parallel
hardware. Although the locality issue is relevant both to biological plausibility
and to hardware implementation, it represents only one facet of these issues,
and much more careful analyses are required. Since our goal is to find the most
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Figure 7.1. Geometrical picture of the error function E(w) as a surface sitting
above weight space. Points A and B represent minima of the error function.
At any point C, the local gradient of the error surface is given by the vector
VE.

effective techniques for pattern recognition, there is little point in introducing un-
necessary restrictions. We shall therefore regard the issue of locality as irrelevant
in the present context.

Most of the algorithms which are described in this chapter are ones which have
been found to have good performance in a wide range of applications. However,
different algorithms will perform best on different problems and it is therefore
not possible to recommend a single universal optimization algorithm. Instead,
we highlight the relative advantages and limitations of different algorithms as
they are discussed.

7.1 Error surfaces

The problem addressed in this chapter is to find a weight vector w which min-
imizes an error function E(w). It is useful to have a simple geometrical picture
of the error minimization process, which can be obtained by viewing E(w) as
an error surface sitting above weight space, as shown in Figure 7.1. For net-
works having a. single layer of weights, linear output-unit activation functions,
and a sum-of-squares error, the error function will be a quadratic function of
the weights. In this case the error surface will have a general multidimensional
parabolic form. There is then a single minimum (or possibly a single continuum
of degenerate minima}, which can be located by solution of a set of coupled linear
equations, as discussed in detail in Section 3.4.3.

However, for more general networks, in particular those with more than one
layer of adaptive weights, the error function will typically be a highly non-linear
function of the weights, and there may exist many minima all of which satisfy

VE=0 (7.1)
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Figure 7.2. A schematic error function for a single parameter w, showing four
stationary points at which the local gradient of the error function vanishes.
Point A is a local minimum, point B is a local maximum, point C is a saddle-
point, and point D is the global minimum.

where VE denotes the gradient of F in weight space. The minimum for which
the value of the error function is smallest is called the global minimum while
other minima are called local minima. There may also be other points which
satisfy the condition (7.1) such as local maxima or saddlepoints. Any vector w
for which this condition is satisfied is called a stationary point, and the different
kinds of stationary point are illustrated schematically in Figure 7.2.

As a consequence of the non-linearity of the error function, it is not in general
possible to find closed-form solutions for the minima. Instead, we consider algo-
rithms which involve a search through weight space consisting of a succession of
steps of the form

wrt) = w4 Aw(D (7.2)

where 7 labels the iteration step. Different algorithms involve different choices
for the weight vector increment Aw{™), For some algorithms, such as conjugate
gradients and the quasi-Newton algorithms discussed later, the error function is
guaranteed not to increase as a result of a change to the weights (and hopefully
will decrease). One potential disadvantage of such algorithms is that if they reach
a local minimum they will remain there forever, as there is no mechanism for
them to escape (as this would require a temporary increase in the error function).
The choice of initial weights for the algorithm then determines which minimum
the algorithm will converge to. Also, the presence of saddlepoints, or regions
where the error function is very flat, can cause some iterative algorithms to
become ‘stuck’ for extensive periods of time, thercby mimicking local minima.

Different algorithms can exhibit different behaviour in the neighbourhood
of a minimum. If (™ denotes the distance to the minimum at step 7, then
convergence often has the general form
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T o (el (7.3)

where L governs the order of convergence. Values of L = 1 and L = 2 are known
respectively as linear and quadratic convergence.

In Section 4.4 we discussed the high degree of symmetry which exists in
the weight space of a multi-layered neural network. For instance, a two-layer
network with A hidden units exhibits a symmetry factor of M12*. Thus, for
any point in weight space, there will be M12M equivalent points which generate
the same network mapping, and which therefore give rise to the same value for the
error function. Any local or global minimum will therefore be replicated a large
munber of times throughout weight space. Of course, in a practical application it
is irrelevant which of these many equivalent solutions we use. Furthermore, the
algorithms we shall be discussing make use of a local stepwise search through
weight space, and will be completely unaffected by the presence of the numerous
equivalent points elsewhere in weight space.

In Section 6.1.3 we showed that the sum-of-squares error function, in the
limit of an infinite data set, can be written as the sum of two terms

E= %z}; / {wa (3 W) — (telx)}2p(x) dx

+ % Y. / {(ER1x) — (tulx)?}p(x) dx (7.4)
k .

where yi(x;w) denotes the activation of output unit & when the network is
presented with input vector x, and (£[x) denotes the conditional average of the
corresponding target variable given by

(trfx) = /tkp(tklx)dtk- (7.5)

Since only the first term in (7.4) depends on the network weights, the global
minimum of the error is obtained when yg(x; w) = (tx|x). This can be regarded
as the optimal solution, as discussed in Section 6.1.3. In practice we must deal
with finite data sets, however. 1f the network is relatively complex (for instance
if it has a large number of adaptive parameters) then the best generalization per-
formance might be obtained from a local minimum, or from some other point in
weight space which is not a minimum of the error. This leads to a consideration
of techniques in which the generalization performance is monitored as a func-
tion of time during the training, snd the training is halted when the optimum
generalization is achieved. Such methods are discussed briefly in Section 9.2.4.
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7.2 Local quadratic approximation

A considerable degree of insight into the optimization problem, and into the
various techniques for solving it, can be obtained by considering a local quadratic
approximation to the error function. Consider the Taylor expansion of E(w)
around some point W in weight space

B(w) = E(®) + (w— )b + —;—(w — ) TH(w — W) (7.6)
where b is defined to be the gradient of E evaluated at W
b= VE|; (7.7)

and the Hessian matrix H is defined by

OF

Bwiawj w

From (7.6), the corresponding local approximation for the gradient is given by
VE =b + H{w — W). (7.9)
For points w which are close to W, these expressions will give reasonable approx-
imations for the error and its gradient, and they form the basis for much of the
subsequent discussion of optimization algorithms.
Consider the particular case of a local quadratic approximation around a

point w* which is a minimum of the error function. In this case there is no linear
term, since VE = 0 at w*, and (7.6) becomes
b 1

B(w) = E(w") + %(w — w*)TH(w — w") (7.10)

where the Hessian is evaluated at w*. In order to interpret this geometrically,
consider the eigenvalue equation for the Hessian matrix

Hui = /\iui (7.11)

where the eigenvectors u; form a complete orthonormal set (Appendix A) so
that

u;Puj = (5,] (712)

We now expand (w —w*) as a linear combination of the eigenvectors in the form
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W w* = Zaiui. (7.13)
i

Substituting (7.13) into (7.10), and using (7.11) and (7.12), allows the error
function to be written in the form

E(w) = E(w") + % Z Nia?. (7.14)

Equation (7.13) can be regarded as a transformation of the coordinate system
in which the origin is translated to the point w*, and the axes are rotated to
align with the eigenvectors (through the orthogonal matrix whose columns are
the u;). This transformation is discussed in more detail in Appendix A.

A matrix H is said to be positive definite if

vIHv >0 for all v. (7.15)

Since the eigenvectors {u;} form a complete set, an arbitrary vector v can be
written

v = Zﬂiui (716)
From (7.11) and (7.12) we then have

vIHY =Y B2 (7.17)

and so H will be positive definite if all of its eigenvalues are positive. In the new
coordinate system whose basis vectors are given by the eigenvectors {u;}, the
contotirs of constant F are ellipses centred on the origin, whose axes are aligned
with the eigenvectors and whose lengths are inversely proportional to the square
roots of the eigenvalues, as indicated in Figure 7.3. For a one-dimensional weight
space, a stationary point w* will be a minimum if

OE /3wl > 0. (7.18)

The corresponding result in d-dimensions is that the Hessian matrix, evaluated
at w*, should be positive definite (Exercise 7.1).

7.2.1  Use of graodient information

For most of the network models and error functions which are discussed in earlier
chapters, it is possible to evaluate the gradient of the error function relatively
efficiently, for instance by means of the back-propagation procedure. The use of
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v

Figure 7.3. In the neighbourhood of a minimum w*, the error function can
be approximated by a quadratic function. Contours of constant error are then
ellipses whose axes are aligned with the eigenvectors u; of the Hessian ma-
trix, with lengths that are inversely proportional to the square roots of the
corresponding eigenvectors M.

this gradient information can lead to significant improvements in the speed with
which the minima of the error function can be located. We can easily see why
this is so, as follows.

In the quadratic approximation to the error function, given in (7.6), the
error surface is specified by the quantities b and H, which contain a total of
W (W + 3)/2 independent terms (since the matrix H is symmetric), where W
is the dimensionality of w (i.e. the total number of adaptive parameters in the
network). The location of the minimum of this quadratic approximation therefore
depends on O(W?) parameters, and we should not expect to be able to locate the
minimum until we have gathered O(W?) independent pieces of information. If
we do not make use of gradient information, we would expect to have to perform
at least O(W?) function evaluations, each of which would require O(W) steps.
Thus, the computational effort needed to find the minimum would scale like
ow?).

Now compare this with an algorithm which makes use of the gradient infor-
mation. Since each evaluation of VE brings W items of information, we might
hope to find the minimum of the function in O(W) gradient evaluations. Using
back-propagation, each such evaluation takes only O{W) steps and so the min-
imum could now be found in @(W?) steps. This dramatically improved scaling
with W strongly suggests that gradient information should be exploited, as is
the case for the optimization algorithms discussed in this chapter.

7.3 Linear output units

As discussed at length in Section 3.4.3, if a sum-of-squares error function is used,
and the network mapping depends linearly on the weights, then the minimization




260 7: Parameter Oplimization Algorithms

of the error function represents a linear problem, which can be solved exactly in
a single step using singular value decomposition (SVD). If we consider a more
general multi-layer network with linear output units, then the dependence of the
network mapping on the final-layer weights will again be linear. This means that
the partial optimization of a sum-of-squares error function with respect to these
weights (with all other parameters held fixed) can again be performed by linear
methods, as discussed in Section 3.4.3. The computational effort involved in SVD
is often very much less than that required for general non-linear optimization,
which suggests that it may be worthwhile to use linear methods for the final-
layer weights, and non-linear methods for all other parameters. This leads to the
following hybrid procedure for optimizing the weights in such networks (Webb
and Lowe, 1988).

Suppose the final-layer weights are collected together into a vector wy,, with
the remaining weights forming a vector w. The error function can then be ex-
pressed as E(wy,w), which is a quadratic function of wy. For any given value
of w we can perform a one-step exact minimization with respect to the wy, using
SVD, in which W is held fixed. We denote the optimum wp by wp(w). A con-
ventional non-linear optimization method (such as conjugate gradients, or the
quasi-Newton methods to be described later) is used to minimize F with respect
to w. Every time the value of W is changed, the weights wy, are recomputed. We
can therefore regard the final layer weights wy as evolving on a fast time-scale
compared to the remaining weights w. Effectively, the non-linear optimization is
attenipting to minimize a function E(wy (W), w) with respect to w. An obvious
advantage of this method is that the dimensionality of the effective search space
for the non-linear algorithm is reduced, and we might hope that this would re-
duce the number of training iterations which is required to find a good solution.
However, this is offset to some extent by the greater computational effort re-
quired at each such step. Webb and Lowe (1988) show that, for some problems,
this hybrid approach can yield better solutions, or can require less computational
effort, than full non-linear optimization of the complete network.

7.4 Optimization in practice
In order to apply the algorithms described in this chapter to real problems,
we need to address a variety of practical issues. Here we discuss procedures for
initializing the weights in a network, criteria used to terminate training, and
normalized error functions for assessing the performance of trained networks.
All of the training algorithms which we consider in this chapter begin by
initializing the weights in the network to some randomly chosen values. We have
already seen that optimization algorithms which proceed by a steady monotonic
reduction in the error function can become stuck in local minima. A suitable
choice of initial weights is therefore potentially important in allowing the train-
ing algorithm to produce a good set of weights, and in addition may lead to
improvements in the speed of training. Even stochastic algorithms such as gradi-
ent descent, which have the possibility of escaping from local minima, can show
strong sensitivity to the initial conditions. The initialization of weights for radial
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basis function networks has already been dealt with in Chapter 6. Here we shall
concern ourselves with multi-layer perceptrons having sigmoidal hidden-unit ac-
tivation functions.

The majority of initialization procedures in current use involve setting the
weights to randomly chosen small values. Random values are used in order to
avoid problems due to symmetries in the network. The initial weight values are
chosen to be small so that sigmoidal activation functions are not driven into
the saturation regions where g'(a) is very small (which would lead to small
VE, and consequently a very flat error surface). If the weights are too small,
however, all of the sigmoidal activation functions will be approximately linear,
which can again lead to slow training. This suggests that the summed inputs
to the sigmoidal functions should be of order unity. A random initialization of
the weights requires that some choice be made for the distribution function from
which the weights are generated. We now examine the choice of this distribution
in a little more detail.

We shall suppose that the input values to the network ml, . z4 have been
rescaled so as to have zero mean (x;) = 0 and unit variance (z ) = 1, where the
notation (-} will be used to denote an average both over the training data set and
over all the choices of initial network weights. The pre-processing of input data
prior to network training, in order to achieve this normalization, is discussed
in more detail in Section 8.2. The weights are usually generated from a simple
distribution, such as a spherically symmetric Gaussian, for convenience, and this
is generally taken to have zero mean, since there is no reason to prefer any other
specific point in weight space. The choice of variance o2 for the distribution can
be important, however. For a unit in the first hidden layer, the activation is given
by y = g(a) where

d
a= Zwimi. (7.19)

=0

Since the choice of weight values is uncorrelated with the inputs, the average of
a is zero

d d
(@) =) (wizs) = (wi)(x;) =0 (7.20)
i=0 i=0
since (z;) = 0. Next consider the variance of a
d d
= <(Z wiwi> ija;j > Z(w 2) = o?d (7.21)
i=0 j=0

where o2 is the variance of the distribution of weights, and we have used the fact
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that the weight values are uncorrelated and hence (w;w;) = §;;02, together with
{(x?) = 1. As we have discussed already, we would like a to be of order unity so
that the activations of the hidden units are determined by the non-linear part
of the sigmoids, without saturating. From (7.21) this suggests that the standard
deviation of the distribution used to generate the initial weights should scale like
o o« d~2. A similar argument can be applied to the weights feeding into any
other unit in the network, if we assume that the outputs of hidden units are
appropriately distributed.

Since a particular training run is sensitive to the initial conditions for the
weights, it is common practice to train a particular network many times using
different weight initializations. This leads to a set of different networks whose
generalization performance can be compared by making use of independent data.
In this case it is possible to keep the best network and simply discard the remain-
der. However, improved prediction capability can often be achieved by forming
a committee of networks from amongst the better ones found during the training
process, as discussed in Section 9.6. The use of multiple training runs also plays
a related role in building a mixture model for the distribution of weight values
in the Bayesian framework, as discussed in Section 10.7.

When using non-linear optimization algorithms, some choice must be made of
when to stop the training process. Some of the possible choices are listed below:

1. Stop after a fixed number of iterations. The problem with this approach
is that it is difficult to know in advance how many iterations would be
appropriate, although an approximate idea can be obtained from some
preliminary tests. If several networks are being trained (e.g. with various
numbers of hidden units) then the appropriate number of iterations may
be different for different networks.

2. Stop when a predetermined amount of CPU (central processing unit) time
has been used. Again, it is difficult to know what constitutes a suitable
time unless some preliminary tests are performed first. Some adjustment
for different architectures may again be necessary.

3. Stop when the error function falls below some specified value. This suffers
from the problem that the specified value may never be reached, so some
limit on CPU time may also be required.

4. Stop when the relative change in error function falls below some speci-
fied value. This may lead to premature termination if the error function
decreases relatively slowly during some part of the training run.

5. Stop training when the error measured using an independent validation
set starts to increase. This approach is generally used as part of a strategy
to optimize the generalization performance of the network, and will be
discussed further in Section 9.2.4.

In practice some combination of the above methods may be employed as part of
a largely empirical process of parameter optimization.

Since the value of the error function depends on the number of patterns, it is
useful to consider a normalized error function for the purposes of assessing the
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performance of a trained network. For a sum-of-squares error, an appropriate
choice would be the normalized error function given by

B | Salyte) ool
Zn ”t - tn”

(7.22)

where t is the mean of the target data over the test set (Webb et al., 1988).
This error function equals unity when the model is as good a predictor of the
target data as the simple model y = %, and equals zero if the model predicts
the data values exactly. A value of E of 0.1 will often prove adequate for simple
classification problems, while for regression applications a significantly smaller
value may be needed. For reasons introduced in Chapter 1, and discussed at
greater length in Chapter 9, the performance of the trained network should be
assessed using a data set which is independent of the training data.

For classification problems, it is appropriate to test the performance of the
trained network by assessing the number of misclassifications, or more generally
the value of the total loss (Section 1.10).

7.5 Gradient descent

One of the simplest network training algorithms, and one which we have already
encountered several times in previous chapters, is gradient descent, sometimes
also known as steepest descent. In the batch version of gradient descent, we start
with some initial guess for the weight vector (which is often chosen at random)
denoted by w(®. We then iteratively update the weight vector such that, at step
7, we move a short distance in the direction of the greatest rate of decrease of
the error, i.e. in the direction of the negative gradient, evaluated at w7):

AW(T) = -1 VEIw(") . (723)

Note that the gradient is re-evaluated at each step. In the sequential, or pattern-
based, version of gradient descent, the error function gradient is evaluated for
just one pattern at a time, and the weights updated using

Aw) = —n VE (7.24)

where the different patterns n in the training set can be considered in sequence, or
selected at random. The parameter 7 is called the learning rate, and, provided its
value is sufficiently small, we expect that, in the batch version (7.23) of gradient
descent, the value of E will decrease at each successive step, eventually leading
to a weight vector at which the condition (7.1) is satisfied.

For the sequential update (7.24) we might also hope for a steady reduction
in error since, for sufficiently small 7, the average direction of motion in weight
space should approximate the negative of the local gradient. In order to study this
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more carefully, we note that sequential gradient descent (7.24) is reminiscent of
the Robbins-Monro procedure (Section 2.4.1) for finding the zero of a regression
function (in this case the error function gradient). The analogy becomes precise,
and we are assured of convergence, if the learning rate parameter 7 is made to
decrease at each step of the algorithm in accordance with the requirements of the
theorem (Luo, 1991). These can be satisfied by choosing (™ o 1/7, although
such a choice leads to very slow convergence. In practice, a constant value of 1 is
often used as this generally leads to better results even though the guarantee of
convergence is lost. There is still a serious difficulty with this approach, however.
If 7 is too large, the algorithm may overshoot leading to an increase in E and
possibly to divergent oscillations resulting in a complete breakdown in the algo-
rithm. Conversely, if 7 is chosen to be too small the search can proceed extremely
slowly, leading to very long computation times. Furthermore, the optimum value
for n will typically change during the course of the minimization.

An important advantage of the sequential approach over batch methods arises
if there is a high degree of redundant information in the data set. As a simple ex-
ample, suppose that we create a larger training set from the original one simply
by replicating the original data set ten times. Every evaluation of F then takes
ten times as long, and so a batch algorithm will take ten times as long to find a
given solution. By contrast, the sequential algorithm updates the weights after
each pattern presentation, and so will be unaffected by the replication of data.
Later in this chapter we describe a number of powerful optimization algorithms
(such as conjugate gradients and quasi-Newton methods) which are intrinsically
batch techniques. For such algorithms it is still possible to gain some of the
advantages of sequential techniques by grouping the data into blocks and pre-
senting the blocks sequentially as if each of them was representative of the whole
data set. Some experimentation may be needed to determine a suitable size for
the blocks.

Another potential advantage of the sequential approach is that, since it is a
stochastic algorithm, it has the possibility of escape from local minima. Later
in this chapter we shall discuss a number of algorithms which have the property
that each step of the algorithm is guaranteed not to produce an increase in the
error function. If such an algorithm finds its way into a local minimum it will
typically remain there indefinitely.

7.5.1 Convergence

As we have already indicated, one of the limitations of the gradient descent
technique is the need to choose a suitable value for the learning rate parameter
7. The problems with gradient descent do not stop there, however, Figure 7.4
depicts the contours of E, for a hypothetical two-dimensional weight space, in
which the curvature of E varies significantly with direction. At most points on the
error surface, the local gradient does not point directly towards the minimum.
Gradient descent then takes many small steps to reach the minimum, and is
clearly a very inefficient procedure.

We can gain deeper insight into the nature of this problem by considering
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-VE

Figure 7.4. Schematic illustration of fixed-step gradient descent for an error
function which has substantially different curvatures along different directions.
Ellipses depict contours of constant £, so that the error surface has the form of
a long valley. The vectors u; and u; represent the eigenvectors of the Hessian
matrix. Note that, for most points in weight space, the local negative gradient
vector —~V E does not point towards the minimum of the error function. Suc-
cessive steps of gradient descent can oscillate across the valley, with very slow
progress along the valley towards the minimum.

the quadratic approximation to the error function in the neighbourhood of the

minimum, discussed earlier in Section 7.2. From (7.10), (7.11) and (7.13), the
gradient of the error function in this approximation can be written as

VE = Z ai)\z-u,-. (725)
i

From (7.13) we also have

Aw = Z Aaju;. (7.26)

Combining (7.25) with (7.26) and the gradient descent formula (7.23), and using
the orthonormality relation (7.12) for the eigenvectors of the Hessian, we obtain
the following expression for the change in «; at each step of the gradient descent
algorithm

Aai = ——n)\iai (7.27)
from which it follows that
af™ = (1 - nA)adM (7.28)

where ‘old’ and ‘new’ denote values before and after a weight update. Using the
orthonormality relation (7.12) for the eigenvectors, together with (7.13), we have
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uf (w—w*) = oy (7.29)

and so o; can be interpreted as the distance to the minimum along the direction
u;. From (7.28) we see that these distances evolve independently such that, at
each step, the distance along the direction of u; is multiplied by a factor (1—-7A;).
After a total of T steps we have

ot = (1 = )T (7.30)

and so, provided |1 — n)\;] < 1, the limit T" — oo leads to a; = 0, which from
(7.29) shows that w = w* and so the weight vector has reached the minimum
of the error. Note that (7.30) demonstrates that gradient descent leads to linear
convergence in the neighbourhood of a minimum. Also, convergence to the sta-
tionary point requires that all of the X; be positive, which in turn implies that
the stationary point is indeed a minimum (Exercise 7.1).

By making n larger we can make the factor (1 — nA;) smaller and hence
improve the speed of convergence. There is a limit to how large 7 can be made,
however. We can permit (1—7);) to go negative (which gives oscillating values of
;) but we must ensure that |1—n;| < 1 otherwise the o; values will diverge. This
limits the value of 1 to 171 < 2/ Amax Where Apay is the largest of the eigenvalues.
The rate of convergence, however, is dominated by the smallest eigenvalue, so
with 7. set to its largest permitted value, the convergence along the direction
corresponding to the smallest eigenvalue (the long axis of the ellipse in Figure 7.4)
will be governed by

(1 _ Qw) (7.31)

A“’\B‘X

where Ay, is the smallest eigenvalue. If the ratio Apin/Amax (Whose reciprocal
is known as the condition number of the Hessian) is very small, corresponding to
highly elongated elliptical error contours as in Figure 7.4, then progress towards
the minimum will be extremely slow. From our earlier discussion of quadratic
error surfaces, we might expect to be able to find the minimum exactly using as
few as W(W -+ 3)/2 error function evaluations. Gradient descent is an extremely
inefficient algorithm for error function minimization, since the number of function
evaluations can easily be very much greater than this. Later we shall encounter
algorithms which are guaranteed to find the minimum of a quadratic error surface
exactly in a small, fixed number of steps which is O(W?).

The gradient descent procedure we have described so far involves taking a
succession of finite steps through weight space. We can instead imagine the evolu-
tion of the weight vector taking place continuously as a function of time 7. The
gradient descent rule is then replaced by a set of coupled non-linear ordinary
differential equations of the form
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dwi oF

—d? = ——175171‘ (732)
where w; represents any weight parameter in the network. These equations cor-
respond to the motion of a massless particle with position vector w moving in a
potential field E(w) subject to viscous drag with viscosity coefficient n~!. They
represent a set of stiff differential equations (ones characterized by several widely
differing time-scales) as a consequence of the fact that the Hessian matrix of-
ten has widely differing eigenvalues. The simple gradient descent formula (7.23)
represents a ‘fixed-step forward Euler’ technique for solving (7.32), which is a
particularly inefficient approach for stiff equations. Application of specialized
techniques for solving stiff ordinary differential equations (Gear, 1971) to the

system in (7.32) can give significant improvements in convergence time (Owens
and Filkin, 1989).

7.5.2 Momentum

One very simple technique for dealing with the problem of widely differing eigen-
values is to add a momentum term to the gradient descent formula (Plaut et al.,
1986). This effectively adds inertia to the motion through weight space (Exer-
cise 7.3) and smoothes out the oscillations depicted in Figure 7.4. The modified
gradient descent formula is given by

Aw = g VE| o + pAw(D (7.33)

where g is called the momentum parameter.

To understand the effect of the momentum term, consider first the motion
through a region of weight space for which the error surface has relatively low
curvature, as indicated in Figure 7.5. If we make the approximation that the
gradient is unchanging, then we can apply (7.33) iteratively to a long series of
weight updates, and then sum the resulting arithmetic series to give

Aw = —nVE{1+p+p2+...} (7.34)

— ‘ v 7.3

and we see that the result of the momentum term is to increase the effective
learning rate from 7 to /(1 — ).

By contrast, in a region of high curvature in which the gradient descent is
oscillatory, as indicated in Figure 7.6, successive contributions from the momen-
tum term will tend to cancel, and the effective learning rate will be close to .
Thus, the momentum term can lead to faster convergence towards the minimum
without causing divergent oscillations. A schematic illustration of the effect of
a momentum term is shown in Figure 7.7. From (7.35) we see that p must lie
between in the range 0 < 1 < 1.
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Figure 7.5. With a fixed learning rate parameter, gradient descent down a
surface with low curvature leads to successively smaller steps (linear conver-
gence). In such a situation, the effect of a momentum term is similar to an
increase in the effective learning rate parameter.
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Figure 7.6. For a situation in which successive steps of gradient descent are
oscillatory, a momentum term has little influence on the effective value of the
learning rate parameter.

The inclusion of momentum generally leads to a significant improvement in
the performance of gradient descent. Nevertheless, the algorithm remains rela-
tively inefficient. The inclusion of momentum also introduces a second parameter
¢ whose value needs to be chosen, in addition to that of the learning rate pa-
rameter 7.

7.5.3 Enhanced gradient descent

As we have seen, gradient descent, even with a momentum term included, is not a
particularly efficient algorithm for error function minimization. There have been
numerous attempts in recent years to improve the performance of basic gradient
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Figure 7.7. Illustration of the effect of adding a momentum term to the gradient
descent algorithm, showing the more rapid progress along the valley of the error
function, compared with the unmodified gradient descent shown in Figure 7.4.

descent for neural network training by making various ad hoc modifications.
We shall not attempt to review them all here as the literature is much too
extensive, and we will shortly be considering several robust, theoretically well-
founded optimization algorithms. Instead we consider a few illustrative examples
of such techniques which attempt to address various deficiencies of the basic
gradient descent procedure.

One obvious problem with simple gradient descent plus momentum is that
it contains two parameters, 17 and g, whose values must be selected by trial and
error. The optimum values for these parameters will depend on the particular
problem, and will typically vary during training. We might therefore seek some
procedure for setting these automatically as part of the training algorithm. One
such approach is the bold driver technique (Vogl et al., 1988; Battiti, 1989).
Consider the situation without a momentum term first. The idea is to check
whether the error function has actually decreased after each step of the gradient
descent. If it has increased then the algorithm must have overshot the minimum
(i.e. the minimum along the direction of the weight change) and so the learning
rate parameter must have been too large. In this case the weight change is
undone, and the learning rate is decreased. This process is repeated until a
decrease in error is found. If, however, the error decreased at a given step, then
the new weight values are accepted. However, the learning rate might have been
too small, and so its value is increased. This leads to the following prescription
for updating the learning rate parameter:

_fonoa HAE<O
Thhew = {anold £ AE> 0. (7.36)

The parameter p is chosen to be slightly larger than unity (a typical value might
be p = 1.1) in order to avoid frequent occurrences of an error increase, since
in such cases the error evaluation is wasted. The parameter o is taken to be
significantly less than unity (o = 0.5 is typical) so that the algorithm quickly
reverts to finding a step which decreases the error, again to minimize wasted
computation. Many variations of this heuristic are possible, such as increasing 7
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linearly (by a fixed increment) rather than exponentially (by a fixed factor). If we
include momentum in the bold driver algorithm, the momentum coefficient can
be set to some fixed value (selected in an ad hoc fashion), but the weight update
is usually reset along the negative gradient direction after every occurrence of an
error function increase, which is equivalent to setting the momentum coefficient
temporarily to zero (Vogl et al., 1988).

A more principled approach to setting the optimal! learning rate parameter
was introduced by Le Cun et al. (1993). In Section 7.5.1 we showed that the
largest value which can be used for the learning rate parameter was given by
Nmax = 2/Amax, where Amax is the largest eigenvalue of the Hessian matrix. It is
easily shown (Exercise 7.5) that if an arbitrary vector is alternately normalized
and then multiplied by the Hessian, it eventually converges to Amax times the
corresponding eigenvector. The length of this vector then gives Apayx itself. Eval-
uation of the product of the Hessian with a vector can be performed efficiently by
using the R{-}-operator technique discussed in Section 4.10.7. Once a suitable
value for the learning rate has been determined, the standard gradient descent
technique is applied.

We have already noted that the (negative) gradient vector need not point
towards the error function minimum, even for a quadratic error surface, as in-
dicated in Figure 7.4. In addition, we have seen that long narrow valleys in the
error function, characterized by a Hessian matrix with widely differing eigenval-
ues, can lead to very slow progress down the valley, as a consequence of the need
to keep the learning rate small in order to avoid divergent oscillations across
the valley. One approach that has been suggested for dealing with this problem
{Jacobs, 1988) is to introduce a separate learning rate for each weight in the
network, with procedures for updating these learning rates during the training
process. The gradient descent rule then becomes

oF
aw(f) ’

i

Aw(™ = - (7.37)

Heuristically, we might wish to increase a particular learning rate when the
derivative of E with respect to the corresponding parameter has the same sign
on consecutive steps since this weight is moving steadily in the downhill direction.
Conversely, if the sign of the gradient changes on consecutive steps, this signals
oscillation, and the learning rate parameter should be decreased.

One way to implement this is to take

A = yg{ g (7.38)

where

) _ JF

(7.39)
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and v > 0 is a step-size parameter. This prescription is called the delta-delta
rule (since, in Jacobs (1988) the notation §; was used instead of g; to denote
the components of the local gradient vector). For the case of a quadratic error
surface, it can be derived by minimizing the error with respect to the learning
rate parameters (Exercise 7.6). This rule does not work well in practice since it
can lead to negative values for the learning rate, which results in uphill steps,
unless the value of v is set very small, in which case the algorithm exhibits
little improvement over conventional gradient descent. A modification to the
algorithm, known as the delta-bar-delta rule is to take

~(T 1) (T)

(™ _ if g >0

An; RN (r) (7.40)
¢n if g; <0

where
7 = (1 -0 + 5V (7.41)

so that g is an exponentially weighted average of the current and previous val-
ues of g. This algorithm appears to work moderately well in practice, at least
for some problems. One of its obvious drawbacks, however, is that it now con-
tains four parameters (8, ¢, k and p) if we include momentum. A more serious
difficulty is that the algorithm rests on the assumption that we can regard the
weight parameters as being relatively independent. This would be the case for a
quadratic error function if the Hessian matrix were diagonal (so that the major
axes of the ellipse in Figure 7.3 were aligned with the weight axes). In practice,
the weights in a typical neural network are strongly coupled, leading to a Hessian
matrix which is often far from diagonal. The solution to this problem lies in a
number of standard optimization algorithms which we shall discuss shortly.

Another heuristic scheme, known as quickprop (Fahlman, 1988), also treats
the weights as if they were quasi-independent. The idea is to approximate the
error surface, as a function of each of the weights, by a quadratic polynomial (i.e.
a parabola), and then to use two successive evaluations of the error function, and
an evaluation of its gradient, to determine the coefficients of the polynomial. At
the next step of the iteration, the weight parameter is moved to the minimum of
the parabola. This leads to an expression for the weight update at step 7 given
by (Exercise 7.7)

( )

(T+1) (T)

The algorithm can be started using a single step of gradient descent. This assumes
that the result of the local quadratic fit is to give a parabola with a minimum.
If instead it leads to a parabola with a maximum, the algorithm can take an
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uphill step. Also, some bound on the maximuin size of step needs to be imposed
to deal with the problem of a nearly flat parabola, and several other fixes are
needed in order to get the algorithm to work in practice.

7.6 Line search

The algorithms which are described in this chapter involve taking a sequence of
steps through weight space. It is convenient to consider each of these steps in
two parts. First we must decide the direction in which to move, and second, we
must decide how far to move in that direction. With simple gradient descent, the
direction of each step is given by the local negative gradient of the error func-
tion, and the step size is determined by an arbitrary learning rate parameter.
We might expect that a better procedure would be to move along the direction
of the negative gradient to find the point at which the error is minimized. More
generally we can consider some search direction in weight space, and then find
the minimum of the error function along that direction. This procedure is re-
ferred to as a line search, and it forms the basis for several algorithms which
are considerably more powerful than gradient descent. We first consider how line
searches can be implemented in practice.

Suppose that at step 7 in some algorithm the current weight vector is w(™),
and we wish to consider a particular search direction d™) through weight space.
The minimum along the search direction then gives the next value for the weight
vector:

w(r ) = win) 4 AN ; (7.43)
where the parameter A\(7) is chosen to minimize
EQ\) = E(w™ 4+ xd™), (7.44)

This gives us an automatic procedure for setting the step length, once we have
chosen the search direction.

The line search represents a one-dimensional minimization problem. A simple
approach would be to proceed along the search direction in small steps, evalu-
ating the error function at each new position, and stop when the error starts to
increase (Hush and Salas, 1988). It is possible, however, to find very much more
efficient approaches (Press et al., 1992). Consider first the issue of whether to
make use of gradient information in performing a line search. We have already
argued that there is generally a substantial advantage to be gained from using
gradient information for the general problem of seeking the minimum of the er-
ror function F in the W-dimensional weight space. For the sub-problem of line
search, however, the argument is somewhat different. Since this is now a one-
dimensional problem, both the value of the error function and the gradient of the
error function each represent just one piece of information. An error function cal-
culation requires one forward propagation and hence needs ~ 2NW operations,
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.
>

A

Figure 7.8. An example of an error function which depends on a parameter A
governing distance along the search direction, showing a minimum which has
been bracketed. The three points a < b < ¢ are such that E{a) > E(b) and
E(c) > E(b). This ensures that the minimum lies somewhere in the interval

(a,0).

where N is the number of patterns in the data set. An error function gradient
evaluation, however, requires a forward propagation, a backward propagation,
and a set of multiplications to form the derivatives. It therefore needs ~ 5SNW
operations, although it does allow the error function itself to be evaluated as
well. On balance, the line search is slightly more efficient if it makes use of error
function evaluations only.

Each line search proceeds in two stages. The first stage is to bracket the
minimum by finding three points a < b < ¢ along the search direction such that
E(a) > E(b) and E(c) > E(b), as shown in Figure 7.8. Since the error function
is continuous, this ensures that there is a minimum somewhere in the interval
(a,c) (Press et al., 1992). The second stage is to locate the minimum itself. Since
the error function is smooth and continuous, this can be achieved by a process of
parabolic interpolation. This involves fitting a quadratic polynomial to the error
function evaluated at three successive points, and then moving to the minimum
of the parabola, as illustrated in Figure 7.9. The process can be repeated by
evaluating the error function at the new point, and then fitting a new parabola
to this point and two of the previous points. In practice, several refinements are
also included, leading to the very robust Brent’s algorithm (Brent, 1973). Line-
search algorithms, and termination criteria, are reviewed in Luenberger (1984).

An important issue concerns the accuracy with which the line searches are
performed. Depending on the particular algorithm in which the line search is to
be used, it may be wasteful to invest too much computational time in evaluating
the minimur along each search direction to high accuracy. We shall return to
this point later. For the moment, we make one comment regarding the limit of
accuracy which can be achieved in a line search. Near a minimum at ), the
error function along the search direction can be approximated by
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A\

A

Figure 7.9. An illustration of the process of parabolic interpolation used to
perform line-search minimization. The solid curve depicts the error as a func-
tion of distance A along the search direction, and the error is evaluated at
three points a < b < ¢ which are such that E(e) > E(b) and E{(c) > E(b).
A parabola (shown dotted) is fitted to the three points a,b,c. The minimum
of the parabola, at d, gives an approximation to the minimum of E(})). The
process can be repeated by fitting another parabola through three points given
by d and whichever of two of the previous points have the smallest error values
(b and ¢ in this example).

B\ = E(o) + %E”(/\o)(,\ ~ o). (7.45)

Thus A — XAg must typically be at least of the order of the square root of the
machine precision before the difference between E()) and E()g) is significant.
This limits the accuracy with which the minimum can be found. For double-
precision arithmetic this implies that the minimum can only be found to a relative
accuracy of approximately 3 x 1078, In practice is may be better to settle for
much lower accuracy than this.

7.7 Conjugate gradients

In the previous section we considered procedures for line-search minimization
along a specified search direction. To apply line search to the problem of error
function minimization we need to choose a suitable search direction at each stage
of the algorithm. Suppose we have already minimized along a search direction
given by the local negative gradient vector. We might suppose that the search
direction at the next iteration should be given by the negative gradient vector
at the new position. However, the use of successive gradient vectors turns out in
general not to represent the best choice of search direction. To see why, we note
that at the minimum of the line search we have, from (7.44)

d
(r) (r) .
-—8/\E(W + A4y =0 (7.46)
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Figure 7.10. After a line minimization, the new gradient is orthogonal to the
line-search direction. Thus, if the search directions are always chosen to co-
incide with the negative gradients of the error function, as indicated here,
then successive search directions will be orthogonal, and the error function
minimization will typically proceed very slowly.

which gives
gmTa() = ¢ (7.47)

where g = VE. Thus, the gradient at the new minimum is orthogonal to the
previous search direction, as illustrated geometrically in Figure 7.10. Choosing
successive search directions to be the local (negative) gradient directions can
lead to the problem already indicated in Figure 7.4 in which the search point
oscillates on successive steps while making little progress towards the minimum.
The algorithm can then take many steps to converge, even for a quadratic error
function.

The solution to this problem lies in choosing the successive search directions
d™) such that, at each step of the algorithm, the component of the gradient
parallel to the previous search direction, which has just been made zero, is un-
altered (to lowest order). This is illustrated in Figure 7.11. Suppose we have
already performed a line minimization along the direction d(7), starting from
the point w(7), to give the new point w{™*1)_ Then at the point w{™*1) we have

g(wr)Ta) = o (7.48)
We now choose the next search direction d(7+1) such that, along this new direc-
tion, we retain the property that the component of the gradient parallel to the

previous search direction remains zero (to lowest order). Thus we require that

g(w) £ AdT+N T = ¢ (7.49)
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av
g’d”=0
_ \ w?
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\

Figure 7.11. This diagram illustrates the concept of conjugate directions. Sup-
pose a line search has been performed along the direction d*™) starting from
the point w'™, to give an error minimum along the search path at the point
w1 The direction d\"*V js said to be conjugate to the direction &7 if
the component of the gradient parallel to the direction d\™}, which has just

be made zero, remains zero (to lowest order) as we move along the direction
glr+1),

as shown in Figure 7.11. If we now expand (7.49) to first order in X, and note
that the zeroth-order term vanishes as a consequence of (7.48), we obtain

dHUTHAM =0 N (7.50)

where H is the Hessian matrix evaluated at the point w7+, If the error surface
is quadratic, this relation holds for arbitrary values of A in (7.49) since the
Hessian matrix is constant, and higher-order terms in the expansion of (7.49)
in powers of A vanish. Search directions which satisfy (7.50) are said to be non-
interfering or conjugate. In fact, we shall see that it is possible to construct a
sequence of successive search directions d'™ such that each direction is conjugate
to all previous directions, up to the dimensionality W of the search space. This
leads naturally to the conjugate gradient optimization algorithm.

7.7.1 Quadratic error function

In order to introduce the conjugate gradient algorithm, we follow Johansson et
al. (1992) and consider first the case of a quadratic error function of the form

E(w)=Ey+blw+ ;;—WTHW (7.51)

in which the parameters b and H are constant, and H is assumed to be positive
definite. The local gradient of this error function is given by

g(w) =b+Hw (7.52)
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and the error function (7.51) is minimized at the point w* given, from (7.52), by
b+ Hw* =0. (7.53)

Suppose we can find a set of W vectors (where W is the dimensionality of
the weight space) which are mutually conjugate with respect to H so that

dTHd; =0  j#i (7.54)

then it is easily shown that these vectors will be linearly independent if H is
positive definite (Exercise 7.8). Such vectors therefore form a complete, but non-
orthogonal, basis set in weight space. Suppose we are starting from some point
wi, and we wish to get to the minimum w* of the error function. The difference
between the vectors w; and w* can be written as a linear combination of the
conjugate direction vectors in the form

w
w* —~ W) = Zaidi. (755)
i=1
Note that, if we define
i-1
W, = Wi + 2 Oéidi (756)
i=1

then (7.55) can be written as an iterative equation in the form
Witl = Wj +ajdj. (757)

This represents a succession of steps parallel the conjugate directions, with step
lengths controlled by the parameters ;.

In order to find expressions for the o’s we multiply (7.55) by d'}‘H and make
use of (7.53) to give '

w
~df(b+Hw) =Y od]Hd,. (7.58)

i=1

We now see the significance of using mutually conjugate directions, since (7.54)
shows that the terms on the right-hand side of (7.58) decouple, allowing an
explicit solution for the a’s in the form

dT(b + Hw:)

(7.59)
dTHd;

ay = -
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Figure 7.12. Schematic illustration of the application of the conjugate gradient
algorithm to the minimization of a two-dimensional quadratic error function.
The algorithm moves to the minimum of the error after two steps. This should
be compared with Figures 7.4 and 7.7.

Without this property, (7.58) would represent a set of coupled equations for the
5.

We can write (7.59) in a more convenient form as follows. From (7.56) we
have

djHw; = d Hw, (7.60)

where we have again used the conjugacy condition (7.54). This allows the nu-
merator on the right-hand side of (7.59) to be written in the form

dj (b + Hw,) = dJ (b + Hw;) = d] g; (7.61)

where g; = g(w;), and we have made use of {7.52). Thus, ¢; can be written in
the form

dlg;

(241 :~d;er]

(7.62)

We now give a simple-inductive argument to show that, if the weights are
incremented using (7.57) with the a; given by (7.62) then the gradient vector
g; at the jth step is orthogonal to all previous conjugate directions. It therefore
follows that after W steps the components of the gradient along all directions
have been made zero, and so we will have arrived at the minimum of the quadratic
form. This is illustrated schematically for a two-dimensional space in Figure 7.12.
To derive the orthogonality property, we note from (7.52) that

gi+1 — & = H(wj11 — w;) = a;Hd; (7.63)

where we have used (7.57). We now take the scalar product of this equation with
d;, and use the definition of &; given by (7.62), to give




7.7: Conjugate gradients 279
d?gj+1 = 0. (764)

Similarly, from (7.63), we have
d’,{‘(g]’_‘.l — gJ) = ajdEde =0 for all k& <j< w. (765)

Applying the technique of induction to (7.64) and (7.65) we obtain the result
that

dfg; =0 forallk<j<W 7.66
kbj

as required.

The next problem is how to construct a set of mutually conjugate directions.
This can be achieved by selecting the first direction to be the negative gradient
d; = —g1, and then choosing each successive direction to be a linear combination
of the current gradient and the previous search direction

dj+1 = —gj+1 + ﬁjdj. ‘ (767)

The coefficients ; can be found by imposing the conjugacy condition (7.54)
which gives

T Hd;

JRg iR inic § (7.68)
d; Hd;

In fact, it is easily shown by induction (Exercise 7.9) that successive use of the
construction given by (7.67) and (7.68) generates a set of W mutually conjugate
directions.

From (7.67) it follows that dy, is given by a linear combination of all previous
gradient vectors

k-1 ‘
dp =g+ gt (7.69)
=1
Using (7.66) we then have
k-1
grg; =Y welg; forallk<j<W (7.70)
=1
Since the initial search direction is just d; = —gy, we can use (7.66) to show that

glg; = 0, so that the gradient at step j is orthogonal to the initial gradient. If
we apply induction to (7.70) we find that the current gradient is orthogonal to
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all previous gradients
gle; =0 forallk<j<W (7.71)

We have now developed an algorithm for finding the minimum of a general
quadratic error function in at most W steps. Starting from a randomly chosen
point wy, successive conjugate directions are constructed using (7.67) in which
the parameters (; are given by (7.68). At each step the weight vector is incre-
mented along the corresponding direction using (7.57) in which the parameter
oy is given by (7.62).

7.7.2 The conjugate gradient algorithm

So far our discussion of conjugate gradients has been limited to quadratic error
functions. For a general non-quadratic error function, the error in the neighbour-
hood of a given point will be approximately quadratic, and so we may hope that
repeated application of the above procedure will lead to effective convergence
to a minimum of the error. The step length in this procedure is governed by
the coefficient «; given by (7.62), and the search direction is determined by the
coefficient 3; given by (7.68). These expressions depend on the Hessian matrix
H. For a non-quadratic error function, the Hessian matrix wiil depend on the
current weight vector, and so will need to be re-evaluated at each step of the
algorithm. Since the evaluation of H is computationally costly for non-linear
neural networks, and since its evaluation would have to be done repeatedly, we
would like to avoid having to use the Hessian. In fact, it turns out that the co-
efficients a; and J; can be found without explicit knowledge of H. This leads to
the conjugate gradient algorithm (Hestenes and Stiefel, 1952; Press et al., 1992).

Consider first the coefficient ;. If we substitute (7.63) into (7.68) we obtain

T

g;+1(8i+1 — &;)

g, = Bix1\8it1 " 8i) (7.72)
T df (g - g))

which is known as the Hestenes-Stiefel expression. From (7.66) and (7.67) we
have

dlg; = g, g (7.73)

which, together with a further use of (7.66), allows (7.72) to be written in the
Polak-Ribiere form

_ g, 1(8+1 — &)

ﬂ .
! g'e;

. (7.74)

Similarly, we can use the orthogonality property (7.71) for the gradients to sim-
plify (7.74) further, resulting in the Fletcher—Reeves form
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T
Ei+185+1
B = 21200 7.75
A (7.75)

Note that these three expressions for 8; are equivalent provided the error function
is exactly quadratic. In practice, the error function will not be quadratic, and
these different expressions for 3; can give different results. The Polak-Ribiere
form is generally found to give slightly better results than the other expressions.
This is probably due to the fact that, if the algorithm is making little progress,
so that successive gradient vectors are very similar, the Polak—Ribiere form gives
a small value for §; so that the search direction in (7.67) tends to be reset to
the negative gradient direction, which is equivalent to restarting the conjugate
gradient procedure.

We also wish to avoid the use of the Hessian matrix to evaluate «;. In fact,
in the case of a quadratic error function, the correct value of a; can be found by
performing a line minimization along the search direction. To see this, consider a
quadratic error (7.51) as a function of the parameter « along the search direction
d;, starting at the point w;, given by

1
E(w; + ad;) = Eo + bT(w; + ad;) + 5 (w; + ad;)"H(w; +ad;).  (7.76)

If we set the derivative of this expression with respect to a equal to zero we
obtain
T
_ dj 124}
T
d; Hd;

Q= (777)

where we have used the expression in (7.52) for the local gradient in the quadratic
approximation. We see that the result in (7.77) is equivalent to that found in
(7.62). Thus, we can replace the explicit evaluation of ¢; by a numerical proce-
dure involving a line minimization along the search direction d;.

We have seen that, for a quadratic error function, the conjugate gradient
algorithm finds the minimum after at most W line minimizations, without cal-
culating the Hessian matrix. This clearly represents a significant improvement
on the simple gradient descent approach which could take a very large number of
steps to minimize even a quadratic error function. In practice, the error function
may be far from quadratic. The algorithm therefore generally needs to be run
for many iterations until a sufficiently small error is obtained or until some other
termination criterion is reached. During the running of the algorithm, the conju-
gacy of the search directions tends to deteriorate, and so it is common practice
to restart the algorithm after every W steps by resetting the search vector to the
negative gradient direction. More sophisticated restart procedures are described
in Powell (1977).

The conjugate gradient algorithm has been derived on the assumption of a
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quadratic error function with a positive-definite Hessian matrix. For general non-
linear error functions, the local Hessian matrix need not be positive definite. The
search directions defined by the conjugate gradient algorithm need not then be
descent directions (Shanno, 1978). In practice, the use of robust line minimiza-
tion techniques ensures that the error can not increase at any step, and such
algorithms are generally found to have good performance in real applications.
As we have seen, the conjugate gradient algorithm provides a minimization
technique which requires only the evaluation of the error function and its deriva-
tives, and which, for a quadratic error function, is guaranteed to find the mini-
mum in at most W steps. Since the derivation has been relatively complex, we
now summarize the key steps of the algorithm:
1. Choose an initial weight vector wy.
2. Evaluate the gradient vector g, and set the initial search direction dy =
—g1-
3. At step j, minimize E(w; + ad;) with respect to o to give w;yy = w; +
amind]‘.
4. Test to see if the stopping criterion is satisfied.
5. Evaluate the new gradient vector g;.1.

" 6. Evaluate the new search direction using (7.67) in which B; is given by the
Hestenes—Stiefel formula (7.72), the Polak-Ribiere formula (7.74) or the
Fletcher-Reeves formula (7.75).

7. Set j = 7+ 1 and go to 3.

Empirical results from the training of multi-layer perceptron networks using
conjugate gradients can be found in Watrous (1987), Webb et al. (1988), Kramer
and Sangiovanni-Vincentelli (1989), Makram-Ebeid et al. (1989), Barnard (1992)
and Johansson et al. (1992).

The batch form of gradient descent with momentum, discussed in Section 7.5,
involves two arbitrary parameters A and p, where X\ determines the step length,
and p controls the momentum, i.e. the fraction of the previous step to be included
in the current step. A major problem with gradient descent is how to determine
values for A and p, particularly since the optimum values will typically vary
from one iteration to the next. The conjugate gradient method can be regarded
as a form of gradient descent with momentum, in which the parameters A and
1 are determined automatically at each iteration. The effective learning rate is
determined by line minimization, while the momentum is determined by the
parameter §; in (7.72), (7.74) or (7.75) since this controls the search direction
through (7.67).

7.8 Scaled conjugate gradients

We have seen how the use of a line search allows the step size in the conjugate
gradient algorithm to be chosen without having to evaluate the Hessian matrix.
However, the line search itself introduces some problems. In particular, every line
minimization involves several error function evaluations, each of which is com-
putationally expensive. Also, the line-search procedure itself necessarily involves
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some parameter whose value determines the termination criterion for each line
search. The overall performance of the algorithm can be sensitive to the value
of this parameter since a line search which is insufficiently accurate implies that
the value of «; is not being determined correctly, while, an excessively accurate
line search can represent a good deal of wasted computation.

Mgller (1993b) introduced the scaled conjugate gradient algorithm as a way
of avoiding the line-search procedure of conventional conjugate gredients. First,
note that the Hessian matrix enters the formula (7.62) for o; only in the form
of the Hessian multiplied by a vector d;. We saw in Section 4.10.7 that, for the
multi-layer perceptron, and indeed for more general networks, the product of the
Hessian with an arbitrary vector could be computed efficiently, in O(W) steps
(per training pattern), by using central differences or, more accurately, by using
the R{-}-operator technique.

This suggests that, instead of using line minimization, which typically in-
volves several error function evaluations, each of which takes O(W) operations,
we simply evaluate Hd; using the methods of Section 4.10.7. This simple ap-
proach fails, however, because, in the case of a non-quadratic error function, the
Hessian matrix need not be positive definite. In this case, the denominator in
(7.62) can become negative, and the weight update can lead to an increase in
the value of the error function. The problem can be overcome by modifying the
Hessian matrix to ensure that it is positive definite. This is achieved by adding
to the Hessian some multiple of the unit matrix, so that the Hessian becomes

H+ A (7.78)

where 1 is the unit matrix, and A > 0 is a scaling coefficient. Provided X is
sufficiently large, this modified Hessian is guaranteed to be positive definite. The
formula for the step length is then given by

Y
dj Hyd; + Ajlid, |2

;= (7.79)

where the suffix j on A; reflects the fact that the optimum value for this param-
eter can vary from one iteration to the next. For large values of A; the step size
becomes small. Techniques such as this are well known in standard optimization
theory, where they are called model trust region methods, because the model is
effectively only trusted in a small region around the current search point. The
size of the trust region is governed by the parameter );, so that for large A;
the trust region is small. The model-trust-region technique is considered in more
detail in the context of the Levenberg—Marquardt algorithm later in this chapter.

We now have to find a way to choose an appropriate value for A;. From the
discussion in Section 7.7.2 we know that the expression (7.79) with A; = 0 will
move the weight vector to the minimum along the search direction provided (i)
the error function can be represented by a quadratic form, and (ii) the denomi-
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nator is positive (corresponding to a positive-definite Hessian). If either of these
conditions is not satisfied then the value of A; needs to be increased accordingly.

Consider first the problem of a Hessian which is not positive definite. The
denominator in the expression (7.79) for the a; can be written as

6; = d] Hyd; + A;]d; 1% (7.80)

For a positive-definite Hessian we have §; > 0. If, however, §; < 0 then we can
increase the value of A; in order to make 6; > 0. Let the raised value of A; be
called A;. Then the corresponding raised value of é; is given by

8 =65+ (A — A)lld, > (7.81)

This will be positive if X; > ); — §;/|/d;]|2. Mgller (1993b) chooses to set

X =2 (,\j - H—d%l—"’) . (7.82)

Substituting (7.82) into (7.81) gives
8; = —6; + Mifid | = —dTH;d; (7.83)

which is therefore now positive. This value is used as the denominator in (7.79)
to compute the value of the step-size parameter o;.

We now consider the effects of the local quadratic assumption. In regions
where the quadratic approximation is good, the value of A; should be reduced,
while if the quadratic approximation is poor, A; should be increased, so that the
size of the trust region reflects the accuracy of the local quadratic approxima-
tion. This can be achieved by considering the comparison parameter defined by
(Fletcher, 1987)

(7.84)

A, o Ewy) = B(w; +ayd;)
1T B(wj) - Eg(w; + a;d;)

where Fg(w) is the local quadratic approximation to the error function in the
neighbourhood of the point w;, given by

1
§a§.d}‘de,.. (7.85)

Eq(wj +a;d;) = B(w;) + a;d; g; +
From (7.84) we see that A; gives a measure of the accuracy of the quadratic
approximation. If A; is close to 1 then the approximation is a good one and the
value of A; can be decreased. Conversely a small value of A; is an indication that
A; should be increased. Substituting (7.85) into (7.84), and using the definition
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{7.62) for ay, we obtain

o HEW;) — E(w; + a;d;)}

A X
! o;d]g;

(7.86)

The value of A; can then be adjusted using the following prescription (Fletcher,
1987):

if A, > 0.75 then )41 = X;/2 (7.87)
if Aj < 0.25 then >\j+1 = 4Aj (788)

otherwise set A;; = A;. Note that, if A; < 0 so that the step would actually
lead to an increase in the error, then the weights are not updated, but instead
the value of A; is increased in accordance with (7.88), and A; is re-evaluated.
Eventually an error decrease will be obtained since, for sufficiently large A;, the
algorithm will be taking a small step in the direction of the negative gradient.
The two stages of increasing A; (if necessary) to ensure that 3]- is positive, and
adjusting A; according to the validity of the local quadratic approximation, are
applied in succession after each weight update.

Detailed step-by-step descriptions of the algorithm can be found in Mgller
(1993b) and Williams (1991). Results from software simulations indicate that
this algorithm can sometimes offer a significant improvement in speed compared
to conventional conjugate gradient algorithms.

7.9 Newton’s method

In the conjugate gradient algorithm, implicit use was made of second-order in-
formation about the error surface, represented by the local Hessian matrix. We
now turn to a class of algorithms which make explicit use of the Hessian.

Using the local quadratic approximation, we can obtain directly an expression
for the location of the minimum (or more generally the stationary point) of the
error function. From (7.10) the gradient at any point w is given by

g=VE =H((w—-w") (7.89)

and so the weight vector w* corresponding to the minimum of the error function
satisfies

w*=w-H g (7.90)

The vector —H™'g is known as the Newton direction or the Newton step, and
forms the basis for a variety of optimization strategies. Unlike the local gradient
vector, the Newton direction for a quadratic error surface, evaluated at any w,
points directly at the minimum of the error function, as illustrated in Figure 7.13.
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Figure 7.13. Illustration of the Newton direction for a quadratic error surface.
The local negative gradient vector —g{w) does not in general point towards
the minimum of the error function, whereas the Newton direction —H ™ 'g(w)
does.

Since the quadratic approximation used to obtain (7.90) is not exact it would
be necessary to apply (7.90) iteratively, with the Hessian being re-evaluated at
each new search point. From (7.90), we see that the gradient descent procedure
{7.23) corresponds to one step of the Newton formula (7.90), with the inverse
Hessian approximated by the unit matrix times n, where 7 is the learning rate
parameter,

There are several difficulties with such an approach, however. First, the exact
evaluation of the Hessian for non-linear networks is computationally demanding,
since it requires O(NW?) steps, where W is the number of weights in the net-
work and N is the number of patterns in the data set. This evaluation would be
prohibitively expensive if done at each stage of an iterative algorithm. Second,
the Hessian must be inverted, which requires O(W3) steps, and so is also com-
putationally demanding. Third, the Newton step in (7.90) may move towards a
maximum or a saddlepoint rather than a minimum. This occurs if the Hessian is
not positive definite, so that there exist directions of negative curvature. Thus,
the error is not guaranteed to be reduced at each iteration. Finally, the step size
predicted by (7.90) may be sufficiently large that it takes us outside the range of
validity of the quadratic approximation. In this case the algorithm could become
unstable.

Nevertheless, by making various modifications to the full Newton rule it can
be turned into a practical optimization method. Note first that, if the Hessian is
positive definite (as is the case close to a minimum), then the Newton direction
always represents a descent direction, as can be seen by considering the local
directional derivative of the error function in the Newton direction evaluated at
some point w

—?——E(w + Ad) =dTg=-g™H g <0 (7.91)
ax =D
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where we have used the Newton step formula d = —H™!g.

Away from the neighbourhood of a minimum, the Hessian matrix need not
be positive definite. The problem can be resolved by adopting the model trust
region approach, discussed earlier in Section 7.8, and described in more detail in
Section 7.11. This involves adding to the Hessian a positive-definite symmetric
matrix which comprises the unit matrix I times a constant factor A. Provided X
is sufficiently large, the new matrix

H + A (7.92)

will be positive definite. The corresponding step direction is a compromise be-
tween the Newton direction and the negative gradient direction. For very small
values of A we recover the Newton direction, while for large values of A the
direction approximates the negative gradient

1
—(H+ ) g~ ~38 (7.93)

This still leaves the problem of computing and inverting the Hessian matrix.
One approach is to approximate the Hessian by neglecting the off-diagonal terms
(Becker and Le Cun, 1989; Ricotti et al., 1988). This has the advantages that the
inverse of the Hessian is trivial to compute, and the Newton update equations
(7.90) decouple into separate equations for each weight. The problem of negative
curvatures is dealt with by the simple heuristic of taking the modulus of the
second derivative. This gives a Newton update for a weight w; in the form

Aw; = — ( + /\)—l 0F (7.94)

awi
where ) is treated as a small positive constant. For the multi-layer perceptron, the
diagonal terms in the Hessian matrix can be computed by a back-propagation
procedure as discussed in Section 4.10.1. A major drawback of this approach,
however, is that the Hessian matrix for many neural network problems is typically
far from diagonal.

o5
Sw?

7.10 Quasi-Newton methods

We have already argued that a direct application of the Newton method, as given
by (7.90), would be computationally prohibitive since it would require O(NW?)
operations to evaluate the Hessian matrix and O(W?3) operations to compute
its inverse. Alternative approaches, known as quasi-Newton or variable metric
methods, are based on (7.90), but instead of calculating the Hessian directly,
and then evaluating its inverse, they build up an approximation to the inverse
Hessian over a number of steps. As with conjugate gradients, these methods can
find the minimum of a quadratic form in at most W steps, giving an overall
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computational cost which is O(NW?2).

The quasi-Newton approach involves generating a sequence of matrices G(7)
which represent increasingly accurate approximations to the inverse Hessian
H™!, using only information on the first derivatives of the error function. The
problems arising from Hessian matrices which are not positive definite are solved
by starting from a positive-definite matrix (such as the unit matrix) and ensuring
that the update procedure is such that the approximation to the inverse Hessian
is guaranteed to remain positive definite.

From the Newton formula {7.90) we see that the weight vectors at steps 7
and 7 + 1 are related to the corresponding gradients by

wiTH) _ o) = (gD _ g7 (7.95)

which is known as the quasi-Newton condition. The approximation G of the
inverse Hessian is constructed so as to satisfy this condition also.

The two most commonly used update formulae are the Davidson-Fletcher—
Powell (DFP) and the Broyden—Fletcher—Goldfarb-Shanno (BFGS) procedures.
Here we give only the BFGS expression, since this is generally regarded as being
superior:

ppT _ (Gv)vTGM

GUth = gD 4 Ty raee — (vIGMv)uuT (7.96)
where we have defined the following vectors:
p = wlr+) _ (@) (7.97)
v = gl _ g (7.98)
we-B GOV (7.99)

pTv  vIGMy'

Derivations of this expression can be found in many standard texts on optimiza-
tion methods such as Polak (1971), or Luenberger (1984). It is straightforward
to verify by direct substitution that (7.96) does indeed satisfy the quasi-Newton
condition (7.95).

Initializing the procedure using the identity matrix corresponds to taking the
first step in the direction of the negative gradient. At each step of the algorithm,
the direction —Gg is guaranteed to be a descent direction, since the matrix G
is positive definite. However, the full Newton step given by (7.90) may take the
search outside the range of validity of the quadratic approximation. The solution
is to use a line-search algorithm (Section 7.6), as used with conjugate gradients,
to find the minimum of the error function along the search direction. Thus, the
weight vector is updated using
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WD) — () 4 4G g™ (7.100)

where (") is found by line minimization.

A significant advantage of the quasi-Newton approach over the conjugate
gradient method is that the line search does not need to be performed with
such great accuracy since it does not form a critical factor in the algorithm. For
conjugate gradients, the line minimizations need to be performed accurately in
order to ensure that the system of conjugate directions and orthogonal gradients
is set up correctly.

A potential disadvantage of the quasi-Newton method is that it requires the
storage and update of a matrix G of size W x W. For small networks this is of
little consequence, but for networks with more than a few thousand weights it
could lead to prohibitive memory requirements. In such cases, techniques such
as conjugate gradients, which require only O(W) storage, have a significant ad-
vantage.

For an W-dimensional quadratic form, the sequence of matrices G() is guar-
anteed to converge exactly to the true Hessian after W steps, and the quasi-
Newton algorithm would find the exact minimum of the quadratic form after W
steps, assuming the line minimizations were performed exactly. Results from the
application of quasi-Newton methods to the training of neural networks can be
found in Watrous (1987), Webb et al. (1988), and Barnard (1992).

7.10.1 Limited memory quasi-Newton methods

Shanno (1978) investigated the accuracy needed for line searches in both conju-
gate gradient and quasi-Newton algorithms, and concluded that conjugate gra-
dient algorithms require relatively accurate line searches, while quasi-Newton
methods remain robust even if the line searches are only performed to relatively
low accuracy. This implies that, for conjugate gradient methods, significant com-
putational effort needs to be expended on each line minimization.

The advantage of conjugate gradient algorithms, however, is that they require -
O(W) storage rather than the O(W?) storage needed by quasi-Newton methods.
The question therefore arises as to whether we can find an algorithm which uses
O(W) storage but which does not require accurate line searches (Shanno, 1978).
One way to reduce the storage requirement of quasi-Newton methods is to replace
the approximate inverse Hessian matrix G at each step by the unit matrix. If
we make this substitution into the BFGS formula in (7.96), and multiply the
resulting approximate inverse Hessian by the current gradient g(7t1), we obtain
the following expression for the search direction

dt) = g™+t 4 Ap 4+ By (7.101)

where the scalars A and B are defined by
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vy pTg(T+l) ng(T+1)
- _ 102
A (1 + pTv> pTv + Ty (7.102)
T (r+1)
Pg
B 7.103
5 (7.103)

and the vectors p and v are defined in (7.97) and (7.98). If exact line searches are
performed, then (7.101) produces search directions which are mutually conjugate
(Shanno, 1978). The difference compared with standard conjugate gradients is
that if approximate line searches are used, the algorithm remains well behaved.
As with conjugate gradients, the algorithm is restarted in the direction of the
negative gradient every W steps. This is known as the limited memory BFGS
algorithm, and has been applied to the problem of neural network training by
Battiti (1989). :

7.11 The Levenberg—Marquardt algorithm
Many of the optimization algorithms we have discussed up to now have been
general-purpose methods designed to work with a wide range of error functions.
We now describe an algorithm designed specifically for minimizing a sum-of-
squares error.

Consider the sum-of-squares error function in the form

B2 Y = sllel? (7.104)

N =

where €™ is the error for the nth pattern, and € is a vector with elements €.
Suppose we are currently at a point wqyq in weight space and we move to a point
Whew- 1f the displacement wyeo — Wolq is small then we can expand the error
vector € to first order in a Taylor series

E(vvnew) = E(VV()ld) + Z(Wnew - Wold) (7105)
where we have defined the matrix Z with elements
Oe™

(Z)ns = S (7.106)

The error function (7.104) can then be written as
1
E= 5 He(wo]d) + Z(Wnew - "Vold)"2 . (7.107)

If we minimize this error with respect to the new weights wyey we obtain
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Wnew = Wold — (Z¥Z) " ZTe(wo1q). (7.108)

Note that this has the same structure as the pseudo-inverse formula for linear
networks introduced in Section 3.4.3, as we would expect, since we are indeed
minimizing a sum-of-squares error function for a linear model.

For the sum-of-squares error function (7.104), the elements of the Hessian
matrix take the form

o’E O dem D%
(H)i, = Fwidwn zn: {5111—15;}; +e€ 3w,~6wk} . (7.109)

If we neglect the second term, then the Hessian can be written in the form
H=72"Z. (7.110)

For a linear network (7.110) is exact. We therefore see that (7.108) involves the
inverse Hessian, as we might expect since it corresponds to the Newton step
applied to the linearized model in (7.105). For non-linear networks it represents
an approximation, although we note that in the limit of an infinite data set
the expression (7.110) is exact at the global minimum of the error function,
as discussed in Section 6.1.4. Recall that in this approximation the Hessian ig
relatively easy to compute, since first derivatives with respect to network weights
can be obtained very efficiently using back-propagation as shown in Section 4.8.3.

In principle, the update formula (7.108) could be applied iteratively in order
to try to minimize the error function. The problem with such an approach is that
the step size which is given by (7.108) could turn out to be relatively large, in
which case the linear approximation (7.107) on which it is based would no longer
be valid. In the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt,
1963), this problem is addressed by seeking to minimize the error function while
at the same time trying to keep the step size small so as to ensure that the linear
approximation remains valid. This is achieved by considering a modified error
function of the form

E = ﬂﬁ(wold) + Z(Wnew - Wold)”2 -+ ’\”wnew — Wold ”2 (7‘111)

DO -

where the parameter A governs the step size. For large values of A the value of
Wnew — Wotall? will tend to be small. If we minimize the modified error (7.111)
with respect to0 Wyew, we obtain

Wrew = Wotd — (ZTZ + M) 12T e(wq4) (7.112)

where ¥ is the unit matrix. For very small values of the parameter A we recover
the Newton formula, while for large values of A we recover standard gradient
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descent. In this latter case the step length is determined by A™!, so that it is
clear that, for sufficiently large values of A, the error will necessarily decrease
since (7.112) then generates a very small step in the direction of the negative
gradient. The Levenberg-Marquardt algorithm is an example of a model trust
region approach in which the model (in this case the linearized approximation
for the error function) is trusted only within some region around the current
search point. The size of this region is governed by the value of A.

In practice a value must be chosen for A and this value should vary appropri-
ately during the minimization process. One common approach for setting A is to
begin with some arbitrary value such as A = 0.1, and at each step monitor the
change in error E. If the error decreases after taking the step predicted by (7.112)
the new weight vector is retained, the value of A is decreased by a factor of 10,
and the process repeated. If, however, the error increases, then A is increased
by a factor of 10, the old weight vector is restored, and a new weight update
computed. This is repeated until a decrease in E is obtained. Comparisons of
the Levenberg—Marquardt algorithm with other methods for training multi-layer
perceptrons are given in Webb et al. (1988).

Exercises

7.1 (%) Show that the stationary point w* of quadratic error surface of the form
(7.10) is a unique global minimum if, and only if, the Hessian matrix is
positive definite, so that all of its eigenvalues are positive.

7.2 (xx) Consider a quadratic error error function in two-dimensions of the form

E = %Alwf -+ %Azw% (7.113)

Verify that A; and Xq are the eigenvalues of the Hessian matrix. Write a
numerical implementation of the gradient descent algorithm, and apply it
to the minimization of this error function for the case where the ratio of the
eigenvalues Ay /A is large (say 10:1). Explore the convergence properties
of the algorithm for various values of the learning rate parameter, and
verify that the largest value of 57 which still leads to a reduction in E is
determined by the ratio of the two eigenvalues, as discussed in Section 7.5.1.
Now include a momentum term and explore the convergence behaviour as
a function of both the learning rate and momentum parameters. For each
experiment, plot trajectories of the evolution of the weight vector in the
two-dimensional weight space, superimposed on contours of constant error.

7.3 (*) Take the continuous-time limit of (7.33) and show that leads to the
following equation of motion

d*w  dw
ma-ﬁ + Vs = ~-VE (7.114)

where
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2

i‘;Az—, v = (—1-—ni‘—)é (1.115)
and 7 is the continuous time variable. The equation of motion (7.114)
corresponds to the motion of a massive particle (i.e. one having inertia)
with mass m moving downhill under a force —V E, subject to viscous drag
with viscosity coeflicient v. This is the origin of the term ‘momentum’ in
(7.33).

7.4 (*) In (7.35) we considered the effect of a momentum term on gradient de-
scent through a region of weight space in which the error function gradient
could be taken to be approximately constant. This was based on summing
an arithmetic series after an infinite number of steps. Repeat this analysis
more carefully for a finite number L of steps, by expressing the resulting
finite series as the difference of two infinite series. Hence obtain an expres-
sion for the weight vector w{&) in terms of the initial weight vector w(®,
the error gradient VFE (assumed constant) and the parameters n and u.
Show that (7.35) is obtained in the limit L — oo.

7.5 () Consider an arbitrary vector v and suppose that we first normalize v so
that {{v{l = 1 and then multiply the resulting vector by a real symmetric
matrix H. Show that, if this process of normalization and multiplication
by H is repeated many times, the resulting vector will converge towards
AmaxUmax Where Aq.x is the largest eigenvalue of H and u,,,x is the corre-
sponding eigenvector. (Assume that the initial vector v is not orthogonal
t0 Upax).

7.6 (x) Consider a single-layer network having a mapping function given by

m =

Yk = Zwkixi (7.116)
i
and a sum-of-squares error function of the form

B=3 S 0k - ) (7.117)
n k

with n labels the patterns, and k labels the output units. Suppose the
weights are updated by a gradient descent rule in which each weight wy;
has its own learning rate parameter ny;, so that the value of wy; at time
step 7 is given by

_ oF
w,(c? = wg D _pin_ 22 (7.118)

ki (r-1)°

By,
Use the above equations to find an expression for the error at step 7 in
terms of the weight values at step 7 — 1 and the learning rate parameters

77,(:?. Show that the derivative of the error function with respect to m(;) is
given by the delta-delta expression
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o8 .
o = —g{D g1 (7.119)
Oy
where oE
o = —- (7.120)
dwy;

7.7 (*) Derive the quickprop weight update formula (7.42) by following the dis-
cussion given in the text.

7.8 (x) Consider a symmetric, positive-definite W x W matrix H, and suppose
there exists a set of W mutually conjugate directions d; satisfying

dTHd; =0, j#i. (7.121)
Show that the vectors d; must be linearly independent (i.e. that d; cannot
be expressed as a linear combination of {d;} where 7 = 1,...,W with
i#0).

7.9 (x) The purpose of this exercise is to show by induction that if successive
search directions are constructed from (7.67) using the conjugacy condition
{7.68), that the first W such directions will all be mutually conjugate. We
know by construction that dj Hdy = 0. Now suppose that d]THdi =0 for
some given j < W and for all i satisfying i < j. Since d},,Hd; = 0 by
construction, we need to show that d'erHdi =0 for all 1 < j + 1. Using
(7.67) we have

d7,,Hd; = —gJ,Hd; + 8;d] Hd,. (7.122)

The second term in (7.122) vanishes by assumption. Show that the first
term also vanishes, by making use of (7.63) and (7.71). This completes the
proof.

7.10(x) Verify by direct substitution that the BFGS update formula (7.96)
satisfies the Newton condition (7.95).

7.11 (x) Verify that replacement of the approximate inverse Hessian matrix G(7)
by the unit matrix I in the BFGS formula (7.96) leads to a Newton step
—G(™+g given by the limited memory BFGS expression (7.101).




8
PRE-PROCESSING AND FEATURE EXTRACTION

Since neural networks can perform essentially arbitrary non-linear functional
mappings between sets of variables, a single neural network could, in principle,
be used to map the raw input data directly onto the required final output values.
In practice, for all but the simplest problems, such an approach will generally
give poor results for a number of reasons which we shall discuss below. For most
applications it is necessary first to transform the data into some new represen-
tation before training a neural network. To some extent, the general-purpose
nature of a neural network mapping means that less emphasis has to be placed
on careful optimization of this pre-processing than would be the case with simple
linear techniques, for instance. Nevertheless, in many practical applications the
choice of pre-processing will be one of the most significant factors in determining
the performance of the final system.

In the simplest case, pre-processing may take the form of a linear transforma-
tion of the input data, and possibly also of the output data (where it is sometimes
termed post-processing). More complex pre-processing may involve reduction of
the dimensionality of the input data. The fact that such dimensionality reduction
can lead to improved performance may at first appear somewhat paradoxical,
since it cannot increase the information content of the input data, and in most
cases will reduce it. The resolution is related to the curse of dimensionality dis-
cussed in Section 1.4.

Another important way in which network performance can be improved,
sometimes dramatically, is through the incorporation of prior knowledge, which
refers to relevant information which might be used to develop a solution and
which is additional to that provided by the training data. Prior knowledge can
either be incorporated into the network structure itself or into the pre-processing
and post-processing stages. It can also be used to modify the training process
through the use of regularization, as discussed in Sections 9.2 and 10.1.2.

A final aspect of data preparation arises from the fact that real data often
suffers from a number of deficiencies such as missing input values or incorrect
target values.

In this chapter we shall focus primarily on classification problems. It should
be emphasized, however, that most of the same general principles apply equally
to regression problems.
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Figure 8.1. Schematic illustration of the use of data pre-processing and post-
processing in conjunction with a neural network mapping.

8.1 Pre-processing and post-processing

In Chapter 1 we formulated the problem of pattern recognition in terms of a
non-linear mapping from a set of input variables to a set of output variables. We
have already seen that a feed-forward neural network can in principle represent an
arbitrary functional mapping between spaces of many dimensions, and so it would
appear that we could use a single network to map the raw input data directly
onto the required output variables. In practice it is nearly always advantageous
to apply pre-processing transformations to the input data before it is presented
to a network. Similarly, the outputs of the network are often post-processed to
give the required output values. These steps are indicated in Figure 8.1. The pre-
processing and post-processing steps may consist of simple fixed transformations
determined by hand, or they may themselves involve some adaptive processes
which are driven by the data. For practical applications, data pre-processing is
often one of the most important stages in the development of solution, and the
choice of pre-processing steps can often have a significant effect on generalization
performance.

Since the training of the neural network may involve an iterative algorithm,
it will generally be convenient to process the whole training set using the pre-
processing transformations, and then use this transformed data set to train the
network. With applications involving on-line learning, each new data point must
first be pre-processed before it is passed to the network. If post-processing of
the network outputs is used, then the target data must be transformed using
the inverse of the post-processing transformation in order to generate the target
values for the network outputs. When subsequent data is processed by the trained
network, it must first be passed through the pre-processing stage, then through
the network, and finally through the post-processing transformation.
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One of the most important forms of pre-processing involves a reduction in
the dimensionality of the input data. At the simplest level this could involve
discarding a subset of the original inputs. Other approaches involve forming
linear or non-linear combinations of the original variables to generate inputs for
the network. Such combinations of inputs are sometimes called features, and the
process of generating them is called feature extraction. The principal motivation
for dimensionality reduction is that it can help to alleviate the worst effects
of the curse of dimensionality (Section 1.4). A network with fewer inputs has
fewer adaptive parameters to be determined, and these are more likely to be
properly constrained by a data set of limited size, leading to a network with
better generalization properties. In addition, a network with fewer weights may
be faster to train.

As arather extreme example, consider the hypothetical character recognition
problem discussed in Section 1.1. A 256 x 256 image has a total of 65536 pixels.
In the most direct approach we could take each pixel as the input to a single large
neural network, which would give 65537 adaptive weights (including the bias)
for every unit in the first hidden layer. This implies that a very large training
set would be needed to ensure that the weights were well determined, and this
in turn implies that huge computational resources would be needed in order to
find a suitable minimum of the error function. In practice such an approach is
clearly impractical. One technique for dimensionality reduction in this case is
pizel averaging which involves grouping blocks of pixels together and replacing
each of them with a single effective pixel whose grey-scale value is given by the
average of the grey-scale values of the original pixels in the block. It is clear that
information is discarded by this process, and that if the blocks of pixels are too
large, then there will be insufficient information remaining in the pixel averaged
image for effective classification. These averaged pixels are examples of features,
that is modified inputs formed from collections of the criginal inputs which might
be combined in linear or non-linear ways. For an image interpretation problem
it will often be possible to identify more appropriate features which retain more
of the relevant information in the original image. For a medical classification
problem, such features might include various measures of textures, while for a
problem involving detecting objects in images, it might be more appropriate to
extract features involving geometrical parameters such as the lengths of edges
or the areas of contiguous regions.

Clearly in most situations a reduction in the dimensionality of the input vec-
tor will result in loss of information. One of the main goals in designing a good
pre-processing strategy is to ensure that as much of the relevant information as
possible is retained. If too much information is lost in the pre-processing stage
then the resulting reduction in performance more than offsets any improvement
arising from a reduction in dimensionality. Consider a classification problem in
which an input vector x is to be assigned to one of ¢ classes C, where k = 1,..., ¢
The minimum probability of misclassification is obtained by assigning each input
vector x to the class C;, having the Jargest posterior probability P(Cx|x). We can
regard these probabilities as examples of features. Since there are ¢ such features,
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and since they satisfy the relation }_, P(Cxlx) = 1, we see that in principle ¢~ 1
independent features are sufficient to give the optimal classifier. In practice, of
course, we will not be able to obtain these probabilities easily, otherwise we would
already have solved the problem. We may therefore need to retain a much larger
number of features in order to ensure that we do not discard too much useful in-
formation. This discussion highlights the rather artificial distinction between the
pre-processing stage and the classification or regression stage. If we can perform
sufficiently clever pre-processing then the remaining operations become trivial,
Clearly there is a balance to be found in the extent to which data processing is
performed in the pre-processing and post-processing stages, and the extent to
which it is performed by the network itself.

8.2 Input normalization and encoding

One of the most common forms of pre-processing consists of a simple linear
rescaling of the input variables. This is often useful if different variables have
typical values which differ significantly. In a system monitoring a chemical plant,
for instance, two of the inputs might represent a temperature and a pressure
respectively. Depending on the units in which each of these is expressed, they
may have values which differ by several orders of magnitude. Furthermore, the
typical sizes of the inputs may not reflect their relative importance in determining
the required outputs.

By applying a linear transformation we can arrange for all of the inputs to
have similar values. To do this, we treat each of the input variables independently,
and for each variable z; we calculate its mean F; and variance ¢? with respect
to the training set; using

]

N
- 1 Z n
I; T;
n=1

N
T
U? = ———-——N =1 Z(I? “‘_fi)2 (8'1)
n=1

wheren = 1,..., N labels the patterns. We then define a set, of re-scaled variables
given by

~ Ty — T4

= 8.2
7= T (52)

It is easy to see that the transformed variables given by the T7 have zero mean
and unit standard deviation over the transformed training set. In the case of
regression problems it is often appropriate to apply a similar linear rescaling to
the target values.
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Note that the transformation in (8.2) is linear and so, for the case of a multi-
layer perceptron, it is in principle redundant since it could be combined with
the linear transformation in the first layer of the network. In practice, however,
input normalization ensures that all of the input and target variables are of order
unity, in which case we expect that the network weights should also be of order
unity. The weights can then be given a suitable random initialization prior to
network training. Without the linear rescaling, we would need to find a solution
for the weights in which some weight values had markedly different values from
others.

Note that, in the case of a radial basis function network with spherically-
symmetric basis functions, it is particularly important to normalize the input
variables so that they span similar ranges. This is a consequence of the fact
that the activation of a basis function is determined by the Euclidean distance {
between the input vector x and the basis function centre p; given by

d

P=x = pl? = {z - i) (8.3)

i=1

where d is the dimensionality of the input space. If one of the input variables
has a much smaller range of values than the others, the value of 12 will be very
insensitive to this variable. In principle, an alternative to normalization of the
input data is to use basis functions with more general covariance matrices.

The simple linear rescaling in (8.2) treats the variables as independent. We
can perform a more sophisticated linear rescaling, known as whitening, which
allows also for correlations amongst the variables (Fukunaga, 1990). For conve-
nience we group the input variables z; into a vector x = (zy,...,z4)T, which has
sample mean vector and covariance matrix with respect to the N data points of
the training set given by

o1 ZN n
X = 'I'V— X
n=1
1 N
. E: n__ g _3\T
Y= "N‘—;—ln=l(x —-x)(xn X) . (84)

If we introduce the eigenvalue equation for the covariance matrix
2\1_7' = /\jUj (85)
then we can define a vector of linearly transformed input variables given by

3 = A"V2UT(x" - X) (8.6)
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Figure 8.2. Schematic illustration of the use of the eigenvectors u; (together
with their corresponding eigenvalues \A;) of the covariance matrix of a distri-
bution to whiten the distribution so that its covariance matrix becomes the
unit matrix.

where we have defined
U = (uy,...,uq) ‘ (8.7)
A = diag(Ay,. .., ). (8.8)

Then it is easy to verify that, in the transformed coordinates, the data set has
zero mean and a covariance matrix which is given by the unit matrix. This is
illustrated schematically in Figure 8.2.

8.2.1 Discrete data

So far we have discussed data which takes the form of continuous variables. We
may also have to deal with data taking on discrete values. In such cases it is con-
venient to distinguish between ordinal variables which have a natural ordering,
and categorical variables which do not. An example of an ordinal variable would
be a person’s age in years. Such data can simply be transformed directly into
the corresponding values of a continuous variable. An example of a categorical
variable would be a measurement which could take one of the values red, green
or blue. If these were to be represented as, for instance, the values 0.0, 0.5 and
1.0 of a single continuous input variable, this would impose an artificial ordering
on the data. One way around this is to use a 1-of-¢ coding for the input data,
similar to that discussed for target data in classification problems in Section 6.6.
In the above example this requires three input variables, with the three colours
represented by input values of (1,0,0), (0,1,0) and (0,0, 1).
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8.3 Missing data

In practical applications it sometimes happens that the data suffers from defi-
ciencies which should be remedied before the data is used for network training.
A common problem is that some of the input values may be missing from the
data set for some of the pattern vectors (Little and Rubin, 1987; Little, 1992). If
the quantity of data available is sufficiently large, and the proportion of patierns
affected is small, then the simplest solution is to discard those patterns from
the data set. Note that this approach is implicitly assuming that the mechanism
which is responsible for the omission of data values is independent of the data
itself. If the values which are missing depend on the data, then this approach
will modify the effective data distribution. An example would be a sensor which
always fails to produce an output signal when the signal value exceeds some
threshold.

When there is too little data to discard the deficient examples, or when the
proportion of deficient points is too high, it becomes important to make full use
of the information which is potentially available from the incomplete patterns.
Consider first the problem of unconditional density estimation, for the case of a
parametric model based on a single Gaussian distribution. A common heuristic
for estimating the model parameters would be the following. The components y;
of the mean vector u are estimated from the values of z; for all of the data points
for which this value is available, irrespective of whether other input values are
present. Similarly, the (i, ) element of the covariance matrix X is found using
all pairs of data points for which values of both z; and z; are available. Such an
approach, however, can lead to poor results (Ghahramani and Jordan, 1994b),
as indicated in Figure 8.3.

Various heuristics have also been proposed for dealing with missing input
data in regression and classification problems. For example, it is common to ‘fill
in' the missing input values first (Hand, 1981), and then train a feed-forward
network using some standard method. For example, each missing value might
be replaced by the mean of the corresponding variable over those patterns for
which its value is available. This is prone to serious problems as discussed above.
A more elaborate approach is to express any variable which has missing values in
terms of a regression over the other variables using the available data, and then
to use the regression function to fill in the missing values. Again, thig approach
tends to cause problems as it underestimates the covariance in the data since
the regression function is noise-free.

Missing data in density estimation problems can be dealt with in a princi-
pled way by seeking a maximum likelihood solution, and using the expectation—
maximization, or EM, algorithm to deal with missing data. In Section 2.6.2, the
EM algorithm was introduced as a technique for finding maximum likelihood
solutions for mixture models, in which hypothetical variables describing which
component was responsible for generating each data point were introduced and
treated as ‘missing data’. The EM algorithm can similarly be applied to the prob-
lem of variables missing from the data itself (Ghahramani and Jordan, 1994b).
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Figure 8.3. Schematic illustration of a set of data points in two dimensions.
For some of the data points (shown by the crosses) the values of both variables
are present, while for others (shown by the vertical lines) only the values of
1 are known. If the mean vector of the distribution is estimated using the
available values of each variable separately, then the result is a poor estimate,
as indicated by the square.

In fact the two problems can be tackled together, so that the parameters of a
mixture model can be estimated, even when there is missing data. Such tech-
niques can be applied to the determination of the basis function parameters in
a radial basis function network, as discussed in Section 5.9.4. They can also be
used to determine the density p(x,t) in the joint input-target space. From this
density, the conditional density p(t|x) can be evaluated, as can the regression
function (t|x).

In general, missing values should be treated by integration over the cor-
responding variables (Ahmad and Tresp, 1993), weighted by the appropriate
distribution {Exercise 8.4). This requires that the input distribution itself be
modelled. A related approach is to fill in the missing data points with values
drawn at random from this distribution (Lowe and Webb, 1990). It is then pos-
sible to generate many different ‘completions’ of a given input pattern which has
missing variables. This can be regarded as a simple Monte Carlo approximation
to the required integration over the input distribution (Section 10.9).

8.4 'Time series prediction

Many potential applications of neural networks involve data x = x{(r) which
varies as a function of time 7. The goal is often to predict the value of x a short
time into the future. Techniques based on feed-forward networks, of the kind
described in earlier chapters, can be applied directly to such problems provided
the data is appropriately pre-processed first. Consider for simplicity a single
variable z(7). One common approach is to sample z(7) at regular intervals to
generate a series of discrete values x,_y,Z,,T,41 and so on. We can take a set
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Figure 8.4. Sampling of a time series at discrete steps can be used to generate
a set of training data for a feed-forward network. Successive values of the
time-dependent variable z(7), given by z,-441,...,T-, form the inputs to a
feed-forward network, and the corresponding target value is given by zr41.

of d such values ©,_g441,..., T, to be the inputs to a feed-forward network, and
use the next value z,41 as the target for the output of the network, as indicated
in Figure 8.4. By stepping along the time axis, we can create a training data set
consisting of many 'sets of input values with corresponding target values. Once
the network has been trained, it can be presented with a set of observed values
Tri_d4ity--., 2 and used to make a prediction for x,. 4. This is called one step
ahead prediction. If the predictions themselves are cycled around to the inputs
of the network, then predictions can be made at further points x4 and so on.
This is called multi-step ahead prediction, and is typically characterized by a
rapidly increasing divergence between the predicted and observed values as the
number of steps ahead is increased due to the accumulation of errors. The above
approach is easily generalized to deal with several time-dependent variables in
the form of a time-dependent vector x(7).

One drawback with this technique is the need to choose the time increment
between successive inputs, and this may require some empirical optimization.
Another problem is that the time series may show an underlying trend, such as
a steadily increasing value, with more complex structure superimposed. This can
be removed by fitting a simple (e.g. linear) function of time to the data, and then
subtracting off the predictions of this simple model. Such pre-processing is called
de-trending, and without it, a trained network would be forced to extrapolate
when presented with new data, and would therefore have poor performance.

There is a key assumption which is implicit in this approach to time series
prediction, which is that the statistical properties of the generator of the data
(after de-trending) are time-independent. Provided this is the case, then the pre-
processing described above has mapped the time series problem onto a static
function approximation problem, to which a feed-forward network can be applied.
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If, however, the generator of the data itself evolves with time, then this approach
is inappropriate and it becomes necessary for the network model to adapt to the
data continuously so that it can ‘track’ the time variation. This requires on-line
learning techniques, and raises a number of important issues, many of which are
at present largely unresolved and lie outside the scope of this book.

8.5 Feature selection

One of the simplest techniques for dimensionality reduction is to select a subset
of the inputs, and to discard the remainder. This approach can be useful if
there are inputs which carry little useful information for the solution of the
problem, or if there are very strong correlations between sets of inputs so that
the same information is repeated in several variables. It can be applied not only
to the original data, but also to a set of candidate features constructed by some
other means. For convenience we shall talk of feature selection, even though the
features might simply be the original input variables. Many of the ideas are
equally applicable to conventional approaches to pattern recognition, and are
covered in a number of the standard books in this area including Hand (1981),
Devijver and Kittler (1982) and Fukunaga (1990), and are reviewed in Siedlecki
and Sklansky (1988).

Any procedure for feature selection must be based on two components. First,
a criterion must be defined by which it is possible to judge whether one subset of
features is better than another. Second, a systematic procedure must be found
for searching through candidate subsets of features. In principle the selection
criterion should be the same as will be used to assess the complete system (such
as misclassification rate for a classification problem or sum-of-squares error for
a regression problem). Similarly, the search procedure could simply consist of
an exhaustive search of all possible subsets of features since this is in general
the only approach which is guaranteed to find the optimal subset. In a practical
application, however, we are often forced to consider simplified selection criteria
as well as non-exhaustive search procedures in order to limit the computational
complexity of the search process. We begin with a discussion of possible selection
criteria.

8.5.1 Selection criteria

It is clear that the optimal subset of features selected from a given starting set
will depend, among other things, on the particular form of model (neural network
or otherwise) with which they are to be used. Ideally the selection criterion would
be obtained by training the network on the given subset of features, and then
evaluating its performance on an independent set of test data. If the network
training procedure involves non-linear optimization, such an approach is likely
to be impractical since the training and testing process would have to be repeated
for each new choice of feature subset, and the computational requirements would
become too great. It is therefore common to use a simpler model, such as a linear
mapping, in order to select the features, and then use these features with the
more sophisticated non-linear model. The simplified model is chosen so that it can
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be trained relatively quickly (using linear matrix methods for instance) thereby
permitting a relatively large number of feature combinations to be explored. It
should be emphasized, however, that the feature selection and the classification
(or regression) stages should be ideally be optimized together, and that it is
only because of practical constraints that we are often forced to treat them
independently.

For regression problems, we can take the simple model to be a linear mapping
given by a single-layer network with linear output units, which is equivalent to
matrix multiplication with the addition of a bias vector. If the error function
for network training is given by a sum-of-squares, we can use this same mea-
sure for feature selection. In this case, the optimal values for the weights and
biases in the linear mapping can be expressed in terms of a set of linear equa-
tions whose solution can be found quickly by using singular value decomposition
(Section 3.4.3).

For classification problems, the selection criterion should ideally be taken to
be the probability of misclassification, or more generally as the expected total
loss or risk. This could in principle be calculated by using either parametric or
non-parametric techniques to estimate the posterior probabilities for each class
(Hand, 1981). In practice, evaluation of this criterion directly is generally too
complex, and we have to resort instead to simpler criteria such as those based
on class separability. We expect that a set of variables in which the classes are
best separated will be a good set of variables for input to a neural network or
-other classifier. Appropriate criteria for class separability, based on covariance
matrices, were discussed in Section 3.6 in the context of the Fisher discriminant
and its generalizations.

If we were able to use the full criterion of misclassification rate, we would
expect that, as we reduce the number of features which are retained, the gener-
alization performance of the system would improve (a consequence of the curse
of dimensionality) until some optimal subset of features is reached, and that if
fewer features are retained the performance will degrade. One of the limitations
of many simple selection criteria, such as those based on class separability, is
that they are incapable of modelling this phenomenon. For example, the Maha-
lanobis distance A2 (Section 2.1.1) always increases as extra variables are added.
In general such measures J satisfy a monotonicity property such that

J(XH) 2 J(X) (89)

where X denotes a set of features, and X+ denotes a larger set of features which
contains the set X as a subset. This property is shared by criteria based on
covariance matrices. The inequality simply says that deleting features cannot
reduce the error rate. As a consequence, criteria which satisfy the monotonicity
constraint cannot be used to determine the optimum size for a set of variables
and so cannot be used to compare sets of different sizes. However, they do offer a
useful way to compare sets of variables having the same number of elements. In
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practice the removal of features can improve the error rate when we take account
of the effects of a finite size data set. One approach to the set size problem is to
use conventional statistical tests to measure the significance of the improvement
in discrimination resulting from inclusion of extra variables (Hand, 1981). An-
other approach is to apply cross-validation techniques (Section 9.8.1) to compare
models trained using different numbers of features, where the particular feature
subset used for each model is determined by one of the approaches discussed
here.

852 Search procedures

If we have a total of d possible features, then since each feature can be present
or absent, there are a total of 2¢ possible feature subsets which could be consid-
ered. For a relatively small number of features we might consider simply using
exhaustive search. With 10 input variables, for example, there are 1024 possible
subsets which it might be computationally feasible to consider. For large numbers
of input variables, however, exhaustive search becomes prohibitively expensive.
Thus with 100 inputs there are over 1030 possible subsets, and exhaustive search
is impossible. If we have already decided that we want to extract precisely d
features then the number of combinations of features is given by

d!
e (8.10)
(d — d)d! ‘
which can be significantly smaller than 2%, but which may still be impractically
large in many applications.

In principle it may be necessary to consider all possible subsets of features,
since combinations of variables can provide significant information which is not
available in any of the individual variables separately. This is illustrated for two
classes, and two features x; and x5, in Figure 8.5, Either feature taken alone gives
strong overlap between the two classes, while if the two features are considered
together then the classes form well-separated clusters. A similar effect can occur
with an arbitrary number of features so that, in the most general case, the only
way to find the optimum subset is to perform exhaustive search.

If we are using a criterion which satisfies the monotonicity relation in (8.9)
then there exists an accelerated search procedure known as branch and bound
(Narendra and Fukunaga, 1977). This method can also be applied in many other
areas such as cluster analysis and searching for nearest neighbours. In the present
context it will guarantee to find the best subset of given size, without needing
to evaluate all possible subsets. To understand this technique, we begin by dis-
cussing the exhaustive search procedure, which we set out as a tree structure.
Consider an original set of d features x; where i = 1,...,d, and denote the
indices of the M = d — d features which have been discarded by zy,..., 2ar,
where each z;, can take the value 1,...,d. However, no two z; should take the
same value, since that would represent a single feature being eliminated twice.
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Figure 8.5. Example of data from two classes (represented by the crosses and
the circles respectively) as described by two feature variables z3 and z5. If the
data was described by either feature alone then there would be strong overlap
of the two classes, while with if both features are used, as shown here, then
the classes are well separated.

Also, the order of the z;’s is irrelevant in defining the feature subset. A sufficient
condition for satisfying these constraints is that the zx should satisfy

1<z <...<zm. (8.11)

This allows us to construct a search tree, as shown in Figure 8.6 for the case of
five original features from which we wish to select a subset of two. The features
are indexed by the labels 1, 2, 3, 4, 5, and the number next to each node denotes
the feature which is eliminated at that node. Each possible subset of two features
selected from a total of five is represented by one of the nodes at the bottom of
the tree. At the first level down from the top of the tree, the highest value of 2
which is considered is 3, since any higher value would not allow the constraint
(8.11) to be satisfied. Similar arguments are used to construct the rest of the
tree. Now suppose that we wish to maximize a criterion J ((?) and that the value
of J corresponding to the node shown at A is recorded as a threshold. If at any
point in the search an intermediate node is encountered, such as that shown
at B, for which the value of J is smaller than the threshold, then there is no
need to evaluate any of the sets which lie below this node on the tree, since,
as a consequence of the monotonicity relation (8.9), such nodes necessarily have
values of the criterion which are smaller than the threshold. Thus, the nodes
shown as solid circles in Figure 8.6 need not be evaluated. If at any point in the
search a final-layer node is encountered which has a larger value for the criterion,
then this value becomes the new threshold. The algorithm terminates when every
final-layer node has either been evaluated or excluded using the monotonicity
relation. Note that, unlike exhaustive search applied to all possible subsets of d
variables, this method requires evaluation of some of the intermediate sub-sets
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Figure 8.6. A search tree for feature subset selection, for the case of a set of
five feature variables from which we wish to pick out the optimum subset of
two variables. If a strictly monotonic selection criterion is being used, and a
node such as that at B is found which has a lower value for the criterion than
some final-level node such as that at A, then all nodes below B (shown as solid
black nodes) can be eliminated from the search.

which contain more than d variables. However, this is more than offset by the
savings in not having to evaluate final-layer subsets which are excluded using the
monotonicity property. The basic branch and bound algorithm can be modified
to generate a tree in which nodes with smaller values of the selection criterion
tend to have larger numbers of successive branches (Fukunaga, 1990). This can
lead to improvements in computational efficiency since nodes with smaller values
of the criterion are more likely to be eliminated from the search tree.

8.5.3 Sequential search techniques

The branch and bound algorithm for monotonic selection criteria is generally
faster than exhaustive search but is still guaranteed to find the feature sub-
set (of given size) which maximizes the criterion. In some applications, such an
approach is still computationally too expensive, and we are then forced to con-
sider techniques which are significantly faster but which may give suboptimal
solutions. The simplest method would be to select those d features which are
individually the best (obtained by evaluating the selection criterion using one
feature at a time). This method, however, is likely to be highly unreliable, and
would only be optimal for selection criteria which can be expressed as the sum, or
the product, of the criterion evaluated for each feature individually, and it would
therefore only be appropriate if the features were completely independent.

A better approach, known as sequential forward selection, is illustrated in
Figure 8.7. The procedure begins by considering each of the variables individually
and selecting the one which gives the largest value for the selection criterion. At
each successive stage of the algorithm, one additional feature is added to the set,
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Figure 8.7. Sequential forward selection illustrated for a set of four input fea-
tures, denoted by 1, 2, 3 and 4. The single best feature variable is chosen first,
and then features are added one at a time such that at each stage the variable
chosen is the one which produces the greatest increase in the criterion function.

again chosen on the basis of which of the possible candidates at that stage gives
rise to the largest increase in the value of the selection criterion. One obvious
difficulty with this approach is that, if there are two feature variables of the kind
shown in Figure 8.5, such that either feature alone provides little discrimination,
but where both features together are very effective, then the forward selection
procedure may never find this combination since either feature alone would never
be selected.

An alternative is to start with the full set of d features and to eliminate them
one at a time. This gives rise to the technique of sequential backward elimination
illustrated in Figure 8.8. At each stage of the algorithm, one feature is deleted
from the set, chosen from amongst all available candidates as the one which gives
the smallest reduction in the value of the selection criterion. This overcomes the
problem with the forward selection approach highlighted above, but is still not
guaranteed to be optimal. The backward elimination algorithm requires a greater
number of evaluations, however, since it considers numbers of features greater
than or equal to d while the forward selection procedure considers numbers of
features less than or equal to d.

These algorithms can be generalized in various ways in order to allow small
subsets of features which are collectively useful to be selected (Devijver and
Kittler, 1982). For example, at the kth stage of the algorithm, we can add [
features using the sequential forward algorithm and then eliminate r features
using the sequential backwards algorithm. Clearly there are many variations on
this theme giving a range of algorithms which search a larger range of feature
subsets at the price of increased computation.
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Figure 8.8. Sequential backward elimination of variables, again iltustrated for
the case of four features. Starting with the complete set, features are eliminated
one at a time, such that at each stage the feature chosen for elimination is
the one corresponding to the smallest reduction in the value of the selection
criterion.

8.6 Principal component analysis

We have already discussed the problems which can arise in attempts to perform
pattern recognition in high-dimensional spaces, and the potential improvements
which can be achieved by first mapping the data into a space of lower dimen-
sionality. In general, a reduction in the dimensionality of the input space will be
accompanied by a loss of some of the information which discriminates between
different classes (or, more generally, which determines the target values). The
goal in dimensionality reduction is therefore to preserve as much of the relevant
information as possible. We have already discussed one approach to dimension-
ality reduction based on the selection of a subset of a given set of features or
inputs. Here we consider techniques for combining inputs together to make a
(generally smaller) set of features. The procedures we shall discuss in this sec-
tion rely entirely on the input data itself without reference to the corresponding
target data, and can be regarded as a form of unsupervised learning. While they
are of great practical significance, the neglect of the target data information
implies they can also be significantly sub-optimal, as we discuss in Section 8.6.3.

We begin our discussion of unsupervised techniques for dimensionality re-
duction by restricting our attention to linear transformations. Qur goal is to
map vectors X" in a d-dimensional space (z1,...,zq4) onto vectors 2" in an M-
dimensional space (21,...,2a), where M < d. We first note that the vector x
can be represented, without loss of generality, as a linear combination of a set of
d orthonormal vectors u;

d
X == Zzilli (812)
=1
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where the vectors u; satisfy the orthonormality relation
ulu; = 6;; (8.13)

in which é;; is the Kronecker delta symbol defined on page xiii. Explicit expres-
sions for the coefficients z; in (8.12) can be found by using (8.13) to give

z =u;x (8.14)

which can be regarded as a simple rotation of the coordinate system from the
original ©’s to a new set of coordinates given by the 2’s (Appendix A). Now
suppose that we retain only a subset M < d of the basis vectors u;, so that
we use only M coefficients z;. The remaining coefficients will be replaced by
constants b; so that each vector x is approximated by an expression of the form

T Ty T T I
R T R R R T

M d
R=Y zu;+ Y bus (8.15)
- i=1 i=M+1

This represents a form of dimensionality reduction since the original vector x
which contained d degrees of freedom must now be approximated by a new
vector z which has M < d degrees of freedom. Now consider a whole data set of
N vectors x™ where n = 1,..., N. We wish to choose the basis vectors u; and
the coeflicients b; such that the approximation given by (8.15), with the values
of z; determined by (8.14), gives the best approximation to the original vector x
on average for the whole data set. The error in the vector x™ introduced by the
dimensionality reduction is given by

X" =X = 3 (2 - by)us. (8.16)

We can then define the best approximation to be that which minimizes the sum
of the squares of the errors over the whole data set. Thus, we minimize

N d
Z Z (8.17)
n=1i=M4+

NHH

L &
_ n __gn|2 _
EM——E:L:_,IHX X' =

where we have used the orthonormality relation (8.13). If we set the derivative
of Epr with respect to b; to zero we find

N
1 —
b; = N E 2 =ulx (8.18)

n=1

&
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where we have defined the mean vector X to be

wl

1 N
==Y x" (8.19)
N n=1

Using (8.14) and (8.18) we can write the sum-of-squares error (8.17) as

1< N 2
R
1 d

=M1

where 3 is the covariance matrix of the set of vectors {x"} and is given by
N=) x"-%)x"-%)T (8.21)
n

There now remains the task of minimizing Eps with respect to the choice of basis
vectors u;. It is shown in Appendix E that the minimum occurs when the basis
vectors satisfy

211,' = )\iui (822)

so that they are the eigenvectors of the covariance matrix. Note that, since the
covariance matrix is real and symmetric, its eigenvectors can indeed be chosen
to be orthonormal as assumed. Substituting (8.22) into (8.20), and making use
of the orthonormality relation (8.13), we obtain the value of the error criterion
at the minimum in the form

d

1
Eyv=35 > (8.23)
i=M+41

Thus, the minimum error is obtained by choosing the d— M smallest eigenvalues,
and their corresponding eigenvectors, as the ones to discard.

The linear dimensionality reduction procedure derived above is called the
Karhunen—Loéve transformation or principal component analysis and is discussed
at length in Jollife (1986). Each of the eigenvectors u; is called a principal com-
ponent. The technique is illustrated schematically in Figure 8.9 for the case of
data points in two dimensions.

In practice, the algorithm proceeds by first computing the mean of the vectors
x™ and then subtracting off this mean. Then the covariance matrix is calculated




8.6: Principal component analysis 313

\ 4

Figure 8.9. Schematic illustration of principal component analysis applied to
data in two dimensions. In a linear projection down to one dimension, the
optimum choice of projection, in the sense of minimizing the sum-of-squares
error, is obtained by first subtracting off the mean X of the data set, and then
projecting onto the first eigenvector u; of the covariance matrix.

and its eigenvectors and eigenvalues are found. The eigenvectors corresponding
to the M largest eigenvalues are retained and the input vectors x™ are projected
onto the eigenvectors to give the components of the transformed vectors 2" in
the M-dimensional space. Thus, in Figure 8.9, each two-dimensional data point
is transformed to a single variable z; representing the projection of the data
point onto the eigenvector u;. '

The error introduced by a dimensionality reduction using principal compo-
nent analysis can be evaluated using (8.23). In some applications the original data
has a very high dimensionality and we wish only to retain the first few principal
components. In such cases use can be made of efficient algorithms which allow
only the required eigenvectors, corresponding to the largest few eigenvalues, to
be evaluated (Press et al., 1992).

We have considered linear dimensionality reduction based on the sum-of-
squares error criterion. It is possible to consider other criteria including data
covariance measures and population entropy. These give rise to the same re-
sult for the optimal dimensionality reduction in terms of projections onto the
eigenvectors of ¥ corresponding to the largest eigenvalues (Fukunaga, 1990).

8.6.1 Intrinsic dimensionality

Suppose we are given a set of data vectors in a d-dimensional space, and we
apply principal component analysis and discover that the first d’ eigenvalues have
significantly larger values than the remaining d—d’ eigenvalues. This tells us that
the data can be represented to a relatively high accuracy by projection onto the
first d’ eigenvectors. We therefore discover that the effective dimensionality of
the data is less than the apparent dimensionality d, as a result of correlations
within the data. However, principal component analysis is limited by virtue of
being a linear technique. It may therefore be unable to capture more complex
non-linear correlations, and may therefore overestimate the true dimensionality
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Figure 8.10. Example of a data set in two dimensions which has an intrinsic
dimensionality d’ = 1. The data can be specified not only in terms of the two
variables x1 and w2, but also in terms of the single parameter 7. However, a lin-
ear dimensionality reduction technique, such as principal component analysis,
is unable to detect the lower dimensionality.

of the data. This is illustrated schematically in Figure 8.10, for data points which
lie around the perimeter of a circle. Principal component analysis would give two
eigenvectors with equal eigenvalues (as a result of the symmetry of the data). In
fact, however, the data could be described equally well by a single parameter 7
as shown. More generally, a data set in d dimensions is said to have an intrinsic
dimensionality equal to d' if the data lies entirely within a d’-dimensional sub-
space (Fukunaga, 1982).

Note that if the data is slightly noisy, then the intrinsic dimensionality may
be increased. Figure 8.11 shows some data in two dimensions which is corrupted
by a small level of noise. Strictly the data now lives in a two-dimensional space,
but can nevertheless by represented to high accuracy by a single parameter.

8.6.2 Neural networks for dimensionality reduction

Multi-layer neural networks can themselves be used to perform non-linear dimen-
sionality reduction, thereby overcoming some of the limitations of linear principal
component analysis. Consider first a multi-layer perceptron of the form shown
in Figure 8.12, having d inputs, d output units and M hidden units, with M < d
(Rumelhart et al., 1986). The targets used to train the network are simply the
input vectors themselves, so that the network is attempting to map each input
vector onto itself. Due to the reduced number of units in the first layer, a perfect
reconstruction of all input vectors is not in general possible. The network can be
trained by minimizing a sum-of-squares error of the form

1 N d
E=33% % {u(x") - a3} (8.24)

n=1k=1
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Figure 8.11. Addition of a small leve! of noise to data in two dimensions having
an intrinsic dimensionality of 1 can increase its intrinsic dimensionality to 2.
Nevertheless, the data can be represented to a good approximation by a single
variable 7 and for practical purposes can be regarded as having an intrinsic
dimensionality of 1.

outputs

X . Xy
inputs

Figure 8.12. An auto-associative multi-layer perceptron having two layers of
weights. Such a network is trained to map input vectors onto themselves by
minimijzation of a sum-of-squares error. Even with non-linear units in the hid-
den layer, such a network is equivalent to linear principal component analysis.
Biases have been omitted for clarity.
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Figure 8.13. Addition of extra hidden layers of non-linear units to the network
of Figure 8.12 gives an auto-associative network which can perform a general
non-linear dimensionality reduction. Biases have been omitted for clarity.

Such a network is said to form an auto-associative mapping. Error minimization
in this case represents a form of unsupervised training, since no independent
target data is provided. If the hidden units have linear activations functions,
then it can be shown that the error function has a unique global minimum, and
that at this minimum the network performs a projection onto the M-dimensional
sub-space which is spanned by the first M principal components of the data
(Bourlard and Kamp, 1988; Baldi and Hornik, 1989). Thus, the vectors of weights
which lead into the hidden units in Figure 8.12 form a basis set which spans the
principal sub-space. (Note, however, that these vectors need not be orthogonal
or normalized.) This result is not surprising, since both principal component
analysis and the neural network are using linear dimensionality reduction and
are minimizing the same sum-of-squares error function.

It might be thought that the limitations of a linear dimensionality reduction
could be overcome by using non-linear (sigmoidal) activation functions for the
hidden units in the network in Figure 8.12. However, it was shown by Bourlard
and Kamp (1988) that such non-linearities make no difference, and that the mini-
mum error solution is again given by the projection onto the principal component
sub-space. There is therefore no advantage in using two-layer neural networks to
perform dimensionality reduction. Standard techniques for principal component
analysis {based on singular value decomposition) are guaranteed to give the cor-
rect solution in finite time, and also generate an ordered set of eigenvalues with
corresponding orthonormal eigenvectors.

The situation is different, however, if additional hidden layers are permit-
ted in the network. Consider the four-layer auto-associative network shown in
Figure 8.13. Again the output units are linear, and the M units in the second
hidden layer can also be linear. However, the first and third hidden layers have
sigmoidal non-linear activation functions. The network is again trained by min-
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Figure 8.14. Geometrical interpretation of the mappings performed by the
network in Figure 8.13.

imization of the error in (8.24). We can view this network as two successive
functional mappings ¥; and Fj. The first mapping ¥, projects the original d-
dimensional data onto an M-dimensional sub-space S defined by the activations
of the units in the second hidden layer. Because of the presence of the first hidden
layer of non-linear units, this mapping is essentially arbitrary, and in particular
is not restricted to being linear. Similarly the second half of the network defines
an arbitrary functional mapping from the M-dimensional space back into the
original d-dimensional space. This has a simple geometrical interpretation, as
indicated for the case d = 3 and M = 2 in Figure 8.14. The function ¥'; maps
from an M-dimensional space S into a d-dimensional space and therefore defines
the way in which the space S is embedded within the original x-space. Since the
mapping F2 can be non-linear, the sub-space S can be non-planar, as indicated
in the figure. The mapping F; then defines a projection of points in the original
d-dimensional space into the M-dimensional sub-space S.

Such a network effectively performs a non-linear principal component analy-
sis. It has the advantage of not being limited to linear transformations, although
it contains standard principal component analysis as a special case. However,
the minimization of the error function is now a non-linear optimization problem,
since the error function in (8.24) is no longer a quadratic function of the network
parameters. Computationally intensive non-linear optimization techniques must
be used (Chapter 7), and there is the risk of finding a sub-optimal local minimum
of the error function. Also, the dimensionality of the sub-space must be specified
in advance of training the network, so that in practice it may be necessary to
train and compare several networks having different values of M. An example of
the application of this approach is given in Kramer (1991).
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Figure 8.15. An example of a simple classification problem for which princi-
pal component analysis would discard the discriminatory information. Two-
dimensional data is taken from two Gaussian classes C; and Ca depicted by the
two ellipses. Dimensionality reduction to one dimension using principal com-
ponent analysis would give a projection of the data onto the vector uy which
would remove all ability to discriminate the two classes. The full discrimina-
tory capability can be preserved if instead the data is projected onto the vector
uz, which is the direction which would be obtained from linear discriminant
analysis.

8.6.3 Limitations of unsupervised techniques

We have described both linear and non-linear unsupervised techniques for di-
mensionality reduction. These can lead to significant improvements in the per-
formance of subsequent regression or classification systems. It should be empha-
sized, however, that methods based on unsupervised techniques take no account
of the target data, and can therefore give results which are substantially less
than optimal. A reduction in dimensionality generally involves the loss of some
information, and it may happen that this information is very important for the
subsequent regression or classification phase, even though it is of relatively little
importance for representation of the input data itself.

As a simple example, consider a classification problem involving input data
in two dimensions taken from two Gaussian-distributed classes as shown in Fig-
ure 8.15. Principal component analysis applied to this data would give the eigen-
vectors u; and uy as shown. If the dimensionality of the data were to be reduced
to one dimension using principal component analysis, then the data would be
projected onto the vector u, since this has the larger eigenvalue. However, this
would lead to a complete loss of all discriminatory information, and the classes
would have identical distributions in the one-dimensional space. By contrast, a
projection onto the vector uz would give optimal class separation with no loss of
discriminatory information. Clearly this is an extreme example, and in practice
dimensionality reduction by unsupervised techniques can prove useful in many
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applications.

Note that in the example of Figure 8.15, a reduction of dimensionality us-
ing Fisher’s linear discriminant (Section 3.6) would yield the optimal projection
vector up. This is a consequence of the fact that it takes account of the class
information in selecting the projection vector. However, as we saw in Section 3.6,
for a problem with c classes, Fisher’s linear technique can only find ¢ — 1 inde-
pendent directions. For problems with few classes and high input dimensionality
this may result in too drastic a reduction of dimensionality. Techniques such
as principal component analysis do not suffer from this limitation and are able
to extract any number of orthogonal directions up to the dimensionality of the
original space.

It is worth noting that there is an additional link between principal com-
ponent analysis and a class of linear neural network models which make use of
modifications of the Hebb learning rule (Hebb, 1949). This form of learning in-
volves making changes to the value of a weight parameter in proportion to the
activation values of the two units which are linked by that weight. Such net-
works can be made to perform principal component analysis of the data (Oja,
1982, 1989; Linsker, 1988; Sanger, 1989), and furthermore it can be arranged
that the weights converge to orthonormal vectors along the principal component
directions. For practical applications, however, there would appear to be little
advantage in using such approaches compared with standard numerical analysis
techniques such as those described earlier.

8.7 Invariances and prior knowledge

Throughout this book we are considering the problem of setting up a multivariate
mapping (for regression or classification) on the basis of a set of training data.
In many practical situations we have, in addition to the data itself, some general
information about the form which the mapping should take or some constraints
which it should satisfy. This is referred to as prior knowledge, and its inclusion
in the network design process can often lead to substantial improvements in
performance.

We have already encountered one form of prior knowledge expressed as prior
probabilities of class membership in a classification problem (Section 1.8). These
can be taken into account in an optimal way by direct use of Bayes’ theorem, or by
introducing weighting factors in a sum-of-squares error function (Section 6.6.2).
Here we concentrate on forms of prior knowledge concerned with various kinds of
invariance. As we shall see, the required invariance properties can be built into
the pre-processing stage, or they can be included in the network structure itself.
While the latter option does not strictly constitute part of the pre-processing, it
is discussed in this chapter for convenience.

8.7.1 Invariances

In many practical applications it is known that the outputs in a classification or
regression problem should be unchanged, or invariant, when the input is subject
to various transformations. An important example is the classification of objects
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in two-dimensional images. A particular object should be assigned the same
classification even if it is rotated or translated within the image or if it is linearly
scaled (corresponding to the object moving towards or away from the camera).
Such transformations produce significant changes in the raw data (expressed in
terms of the intensities at each of the pixels in the image) and yet should give
rise to the same output from the classification system. We shall use this object
recognition example to illustrate the use of invariances in neural networks. It
should be borne in mind, however, that the same general principles apply to any
problem for which it is desired to incorporate invariance with respect to a set of
transformations.

Broadly we can identify three basic approaches to the construction of invari-
ant classification (or regression) systems based on neural networks {Barnard and
Casasent, 1991):

1. The first approach is to train a network by example. This involves includ-
ing within the training set a sufficiently large number of examples of the
effects of the various transformations. Thus, for translation invariance, the
training set should include examples of objects at many different positions.
If suitable training data is not readily available then it can be generated by
applying the transformations to the existing data, for example by translat-
ing a single image to generate several images of the same object at different
locations. :

2. The second approach involves making a choice of pre-processing which in-
corporates the required invariance properties. If features are extracted from
the raw data which are themselves invariant, then any subsequent regres-
sion or classification system will necessarily also respect these invariances.

3. The final option is to build the invariance properties into the network struc-
ture itself. One way to achieve this is through the use of shared weights,
and we shall consider two specific examples involving local receptive fields
and higher-order networks.

While approach 1 is relatively straightforward, it suffers from the disadvantage
of being inefficient in requiring a substantially expanded data set. It will also
result in a network which only approximately respects the invariance. Further-
more, the network will be unable to deal with new inputs in which the range of
the transformation exceeds that encountered during training, as this represents
an extrapolation of the network inputs. Methods 2 and 3 achieve the required
invariance properties without needing unnecessarily large data sets. In the con-
text of translation invariance, for instance, a network which has been trained
to recognize an object correctly at one position within an image can recognize
the same object correctly at any position. In contrast to a network trained by
method 1, such a network is able to extrapolate to new inputs if they differ from
the training data primarily by virtue of one of the transformations.

An alternative approach which also involves incorporating invariances through
training, but which does not require artificial expansion of the data set, is the
technique of tangent prop (Simard et al., 1992). Consider the effect of a trans-
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Figure 8.16. Illustration of a two-dimensional input space showing the ef-
fect of a continuous transformation on a particular input vector x". A one-
dimensional transformation, parametrized by the continuous variable «, ap-
plied to x™ causes it to sweep out a one-dimensional manifold M. Locally, the
effect of the transformation can be approximated by the tangent vector 7.

formation on a particular input pattern vector x". Provided the transformation
is continuous (such as translation or rotation, but not mirror reflection for in-
stance) then the transformed pattern will sweep out a manifold M within the
d-dimensional input space. This is illustrated in Figure 8.16, for the case of d = 2
for simplicity. Suppose the transformation is governed by a single parameter «
{which might be rotation angle for instance). Then the sub-space M swept out
by x™ will be one-dimensional, and will be parametrized by a. Let the vector
which results from acting on x™ by this transformation be denoted by s(a, x™)
which is defined so that s(0,x™) = x™. Then the tangent to the curve M is given
by the directional derivative 7 = 8s/0q, and the tangent vector at the point x™
is given by

o = 28Xt

A (8.25)

a=0

Under a transformation of the input vector, the network output vector will, in
general, change. The derivative of the activation of output unit k with respect
to a is given by

d d
Oy _ Y Oy 0z; _ 3 T (8.26)

i=1

where Ji; is the (k,i) element of the Jacobian matrix J, as discussed in Sec-
- tion 4.9. The result (8.26) can be used to modify the standard error function, so
' as to encourage local invariance in the neighbourhood of the data points, by the
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addition to the usual error function E of a regularization function € to give a
total error function of the form

E=E+u (8.27)

where v is a regularization coeflicient (Section 9.2) and

d 2
Q= %sz: (Zl J,'J,-r{‘) . (8.28)

The regularization function will be zero when the network mapping function is
invariant under the transformation in the neighbourhood of each pattern vector,
and the value of the parameter v determines the balance between the network
fitting the training data and the network learning the invariance property.

In a practical implementation, the tangent vector 7™ can be approximated by
finite differences, by subtracting the original vector x™ from the corresponding
vector after transformation using a small value of o, and dividing by a. Some
smoothing of the data may also be required. The regularization function depends
on the network weights through the Jacobian J. A back-propagation formalism
for computing the derivatives of the regularizer with respect to the network
weights is easily obtained (Exercise 8.6) by extension of the techniques introduced
in Chapter 4.

If the gggnsformation is governed by L parameters (e.g. L = 2 for the case
of translzi% in a two-dimensional image) then: the space M will have dimen-
stonality L,"and the corresponding regularizer is given by the sum of terms of
the form (8.28), one for each transformation. If several transformations are con-
sidered at the same time, and the network mapping is made invariant to each
separately, then it will be (locally) invariant to combinations of the transforma-
tions (Simard et al., 1992). A related technique, called tangent distance, can be
used to build invariance properties into distance-based methods such as neares-
neighbour classifiers (Simard et ol., 1993).

8.7.2 Invariance through pre-processing

The second approach which we shall consider for incorporating invariance prop-
erties into neural network mappings is by a suitable choice of pre-processing.
One such technique involves the extraction of features from the original input
data which are invariant under the required transformations. Such features are
often based on moments of the original data. For inputs which consist of a two-
dimensional image, the moments are defined by

// z(u, v} K (u,v) dudv (8.29)
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where (u,v) are Cartesian coordinates describing locations within the image,
z(u, v) represents the intensity of the image at location (u,v), and K(u,v) is
called a kernel and is a fixed function whose form determines the particular
moments under consideration. In practice, an image is specified in terms of a
finite array of pixels, and so the integrals in (8.29) are replaced by discrete sums

SO w(us, v) K (s, v5) AuiAv;. (8.30)
i g

When the kernel function takes the form of simple powers we have regular mo-
ments which, in continuous notation, can be written

M =// z(u, v)u'v™ du dv (8.31)

where | and m are non-negative integers. We can define a corresponding set of
translation-invariant features, called central moments, by first subtracting off the
means of 4 and v

My, = // o(u, v)(u - T (v — )™ dudy , (8.32)

where T = Mjo/Mgo and T = Mp;/Moo. Under a translation of the image
z(u,v) — z(u + Au,v + Av), and it is easy to verify that the moments de-
fined in (8.32) are invariant. Note that this neglects edge effects and assumes
that the integrals in (8.32) run over {(—o00,00). In practice, the use of moments
in the discrete form (8.30) will give only approximate invariance under such
transformations.

Similarly, under a change of scale we have z(u,v) — z(au, ov). We can make
the central moments invariant to scale by normalizing them to give

Mlm

fim = = (8.33)
m Mol(;l-(l+m)/2

and again it is easy to verify that the normalized moments in (8.33) are simulta-
neously invariant to translations and scaling. Similarly, we can use the momeénts
in {8.33) in turn to construct moments which are simultaneously invariant to
translation, scale and rotation (Exercise 8.7). For instance, the quantity

20 T o2 {8.34)

has this property (Schalkoff, 1989). Other forms of moments can also be consid-
ered which are based on different forms for the kernel function K (u,v) (Khotan-
zad and Hong, 1990).
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Figure 8.17. Illustration of a three-dimensional input space showing trajecto-
ries, such as M, which patterns sweep out under the action of transformations
to which the network outputs should be invariant. A suitably chosen set of
constraints will define a sub-space T which intersects each trajectory precisely
once. If new inputs are mapped onto this surface using the transformations
then invariance is guaranteed.

One problem with the use of moments as input features is that considerable
computational effort may be required for their evaluation, and this computation
must be repeated for each new input image. A second problem is that a lot
of information is discarded in evaluating any particular moment, and so many
moments may be required in order to give good discrimination.

An alternative, related approach to invariant pre-processing is to transform
any new inputs so as to satisfy some appropriately chosen set of constraints
{(Barnard and Casasent, 1991). This is illustrated schematically in Figure 8.17
for a set of one-parameter transformations. Under the action of the transforma-
tions, each input vector sweeps out a trajectory M as discussed earlier. Those
patterns which satisfy the constraints live on a sub-space 7 which intersects the
trajectories. Note that the constraints must be chosen so that each trajectory
intersects the constraint surface at precisely one point. Any new input vector
is first transformed (thus moving it along its trajectory) until it reaches the
constraint surface. This transformed vector is then used as the input to the net-
work. As an example, suppose we wish to impose invariance to translations and
changes of scale. The constraints might then take the form that the zeroth and
first moments Myp, Mig and My, given by (8.31), should have specified values.
Every image (for the training set or test set) is first transformed by translation
and scaling until the constraints are satisfied.

8.7.3 Shared weights

The third approach to dealing with invariances, discussed above, involves struc-
turing the network itself in such a way that the network mapping respects the
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Figure 8.18. Schematic architecture of a network for translation-invariant ob-
ject recognition in two-dimensional images. In a practical system there may
be more than two layers between the input image and the outputs.

invariances. While, strictly, this is not a form of pre-processing, it is treated here
for convenience. Again, we introduce this concept in the context of networks
designed for object recognition in two-dimensional images.

Consider the network structure shown in Figure 8.18. The inputs to the net-
work are given by the intensities at each of the pixels in a two-dimensional airay.
Units in the first and second layers are similarly arranged in two-dimensional
sheets to reflect the geometrical structure of the problem. Instead of having full
interconnections between adjacent layers, each hidden unit receives inputs only
from units in a small region in the previous layer, known as a receptive field.
This reflects the results of experiments in conventional image processing which
have demonstrated the advantage of extracting local features from an image and
then combining them together to form higher-order features. Note that it also
imitates some aspects of the mammalian visual processing system. The network
architecture is typically chosen so that there is some overlap between adjacent
receptive fields.

The technique of shared weights can then be used to build in some degree
of translation invariance into the response of the network (Rumelhart et al.,
1986; Le Cun et al., 1989; Lang et al., 1990). In the simplest case this involves
constraining the weights from each receptive field to be equal to the correspond-
ing weights from all of the receptive fields of the other units in the same layer.
Consider an object which falls within receptive field shown at A4 in Figure 8.18,
corresponding to a unit in hidden layer 1, and which produces some activation
level in that unit. If the same object falls at the corresponding position in re-
ceptive field B, then, as a consequence of the shared weights, the corresponding
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unit in hidden layer 1 will have the same activation level. The units in the second
layer have fixed weights chosen so that each unit computes a simple average of
the activations of the units that fall within its receptive field. This allows units
in the second layer to be relatively insensitive to moderate translations within
the input image. However, it does preserve some positional information thereby
allowing units in higher layers to detect more complex composite features. Typi-
cally each successive layer has fewer units than previous layers, as information on
the spatial location of objects is gradually eliminated. This corresponds to the
use of a relatively high resolution to detect the presence of a feature in an earlier
layer, while using a lower resolution to represent the location of that feature in
a subsequent layer.

In a practical network there may be several pairs of layers, with alternate
layers having fixed and adaptive weights. These gradually build up increasing
tolerance to shifts in the input image, so that the final output layer has a response
which is almost entirely independent of the position of an object in the input
field.

As described so far, this network architecture has only one kind of receptive
field in each layer. In order to be able to extract several different kinds of feature
is necessary to provide several ‘planes’ of units in each hidden layer, with all
umts ina glven plane sharmg the same welghts ‘Weight sharing can be enforced

and then averagmg the weight changes for all of the weights in one group and
updating all of the corresponding weights by the same amount using the averaged
weight change.

Network architectures of this form have been used in the zip code recogni-
tion system of Le Cun et al. (1989), and in the neocognitron of Fukushima et al.
(1983) and Fukushima (1988), for translation-invariant recognition of handwrit-
ten digits.

i The use of receptive fields can dramatically reduce the number of weights

' present in the network compared with a fully connected architecture. This makes

\ it practical to treat pixel values in an image directly as inputs to a network.

| In addition, the use of shared weights means that the number of independent

i parameters in the network is much less than the number of weights, which allows
much smaller data sets to be used than would otherwise be necessary.

8.7.4 Higher-order networks for encoding invariances

In Section 4.5 we introduced the concept of a higher-order network based on
units whose outputs are given by

zj=g <w] + Z W, Tiy + Z Z WiiyinTiy Tip + - ) (8.35)
iy=1 i3=11ip=1

where z; is an input, g(-) is a non-linear activation function and the w's rep-
resent the weights. We have already remarked that such networks can have a
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Figure 8.19. We can impose translation invariance on a second-order network
if we ensure that, for each hidden unit separately, weights from any pair of
points i; and iy are constrained to equal those from any other pair i} and i3,
where the line ij—i5 can be obtained from the line i;—i2 by translation.

proliferation of weight parameters and are therefore impractical for many appli-
cations. (The number of independent parameters per unit is the same as for the
corresponding multivariate polynomial, and is discussed in Exercises 1.6-1.8.)
However, we can exploit the structure of a higher-order network to impose in-
variances, and at thie same time reduce significantly the number of independent
weights in the network, by using a form of weight sharing (Giles and Maxwell,
1987; Perantonis and Lisboa, 1992). Consider the problem of incorporating trans-
lation invariance into a higher-order network. This can be achieved by using a
second-order network of the form

Zj =g (Z ijﬁizxilwiz) . (836)

i1 g

Under a translation, the value of the intensity in pixel i; will go from its original
value z;, to a new value zj given by x = =z where the translation can
be described by a vector from pixel 41’ to pixel 4;. Thus the argument of the
activation function g(-) in (8.36) will be invariant if, for each unit j in the first
hidden layer, we have

Wiiyip = Wyifif- (8.37)

This has a simple geometrical interpretation as indicated in Figure 8.19. Each
unit in the first hidden layer takes inputs from two pixels in the image, such
as those labelled i; and i, in the figure. The constraint in (8.37) requires that,
for each unit in the first hidden layer, and for each possible pair of points in the
image, the weights from any other pair of points, such as those at i} and 5 which
can be obtained from 4; and i, by translation, must be equal. Note that such
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an approach would not work with a first-order network, since the constraint on
the weights would force all weights into any given unit to be equal. Each unit
would therefore take as input something proportional to the average of all of the
input pixel values and, while this would be transiation invariant, there would be
no freedom left for the units to detect any structure in the image. Edge effects,
as well as the discrete nature of the pixels, have been neglected here, and in
practice the invariance properties will be only approximately realized.

Higher-order networks can be made invariant to more complex transforma-
tions. Consider a general Kth-order unit

Z"-Zwﬁh.‘.,“{xi“”-,.’EiK. (838)
i1 iK

Under a particular geometrical transformation, x;, — zj, = Ty where the pixel
at 4 is replaced by the pixel at ¢}. It follows that the expression in (8.38) will be
invariant provided

Wil sty = Wigy, g (8.39)

As well as allowing invariances to be built into the network structure, the imposi-
tion of the constraints in (8.39) can greatly reduce the number of free parameters
in the network, and thereby dramatically reduce the size of data set needed to
determine those weights.

Simultaneous translation and scale invariance can be built into a second-order
network by demanding that, for each unit in the first hidden layer, and for each
pair of inputs ¢, and i3, the weights from i; and iy are constrained to equal those
from any other pair ¢} and i where the pair i{—i} can be obtained from i;-is
by a combination of translation and scaling. This selects all pairs of points such
that the line ¢{—i} is parallel to the line ¢1—i3. There is a slight complication in
the case of scaling arising from the fact that the input image consists of discrete
pixels. If a given geometrical object is scaled by a factor A then the number of
pixels which it occupies is scaled by a factor A\2. If the image consists of black
pixels (value +1) on a white background (value 0) for instance, then the number
of active pixels will be scaled by A%, which would spoil the scale invariance. The
problem can be avoided by normalizing the image, e.g. to a vector of unit length.
Note that this then gives fractional values for the inputs.

If we consider simultaneous translation, rotation and scale invariance, we see
that any pair of points can be mapped to any other pair by a combination of such
transformations. Thus a second-order network would be constrained to have all
weights to any hidden unit equal, which would again cause the activation of each
unit to be simply proportional to the average of the input values. We therefore
need to go to a third-order network. In this case, each unit takes inputs from
three pixels in the image, and the weights must satisfy the constraint that, for
every triplet of pixels, and for every hidden unit, the weights must equal those
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(a) (b) b

k . i p
i i i

Figure 8.20. Simultaneous translation, rotation and scale invariance can be
built into a third-order network provided weights from triplets of points which
correspond to similar triangles, such as those shown in (a) and (b), are con-
strained to be equal.

emanating from any other triplet which can be obtained by any combination of
translations, rotations and scalings (Reid et al., 1989). This means that corre-
sponding triplets lie at the vertices of similar triangles, in other words triangles
which have the same values of the angles encountered in the same order when
traversing the triangle in, say, a clockwise direction. This is illustrated in Fig-
ure 8.20. Although the incorporation of constraints greatly reduces the number

jof free parameters in higher-order networks, the use of such networks is not
widespread.

‘Exercises

8.1 (x) Verify that the whitened input vector, given by (8.6}, has zero mean and
a covariance matrix given by the identity matrix.

8.2 (#) Consider a radial basis function network with spherical Gaussian basis
functions in which the jth basis function is governed by a mean p; and a
variance parameter 0]2 {Section 5.2). Show that the effect of applying the
whitening transformation (8.6) to the original input data is equivalent to a
special case of the same network with general Gaussian basis functions gov-
erned by a general covariance matrix 32; in which the original un-whitened
data is used. Obtain an expression for the corresponding mean fi; and

covariance matrix 3; in terms of the parameters of the original basis func-
tions and of the whitening transformation.

8.3 (x x) Generate sets of data points in two dimensions using a variety of distri-
butions including Gaussian (with general covariance matrix) and mixtures
of Gaussians. For each data set, apply the whitening transformation (Sec-
tion 8.2) and produce scatter plots of the data points before and after
transformation.

8.4 (¥} Consider a trained classifier which can produce the posterior probabil-
ities P(Cy|x) for a new input vector x. Suppose that some of the values
of the input vector are missing, so that x can be partitioned into a sub-
vector X,, of components whose values are missing, and a remaining vector
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X whose values are present. Show that posterior probabilities, given only
the data X, are given by

P(CulR) = ;J—(% / PCHIR, %o )P(R, Xom) Ao (8.40)

8.5 {x) Consider the problem of selecting M feature variables from a total of d
candidate variables. Find expressions for the number of criterion function
evaluations which must be performed for (i) exhaustive search, (ii) sequen-
tial forward selection, and (iii) sequential backward elimination. Consider
the case of choosing 10 features out of a set of 50 candidates, and evaluate
the corresponding expressions for the number of evaluations by these three
methods.

8.6 (xx) Consider a multi-layer perceptron with arbitrary feed-forward topol-
ogy, which is to be trained by minimizing the ‘tangent prop’ error function
{8.27) in which the regularizing function is given by (8.28). Show that the
regularization term  can be written as a sum over patterns of terms of
the form

Q= % %: (Dye) (8.41)

where D is a differential operator defined by
D=Y T,.-?—. (8.42)
: oz;
By acting on the forward propagation equations
zj = g(a;), aj = Zwﬁzi (8.43)
i

with the operator D, show that 2" can be evaluated by forward propaga-
tion using the following equations:

51- = g’(aj)aj, oy = ijif,:. (844)

where we have defined the new variables
6_1' = DZj, oy = Daj. (845)

Now show that the derivatives of ™ with respect to a weight w,, in the
network can be written in the form

onn
Owy

=D & ¢k, + 686} (8.46)
k
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where we have defined

6k — ayk

"= e k = DéE. (8.47)

Write down the back-propagation equations for 6%, and hence derive a set
of back-propagation equations for the evaluation of the ¢¥.

8.7 (x¥) We have seen that the normalized moments p,, defined by (8.33) are
simultaneously invariant to translation and scaling. It follows that any
combination of such moments will also satisfy the same invariances. Show
that the moment defined in (8.34) is, additionally, invariant under rotation
8 — 6 + AG. Hint: this is most easily done by representing the moments
using polar coordinates centred on the point (%,7), so that the central
moments become

My, = // z(r, 0)(r cos 8)} (r sin 8)™r dr db, (8.48)

and then making use of the relation sin®6 + cos?6 = 1. Which of the
following moments are rotation invariant?

() (120 — po2)® + 4p?, (8.49)

(b) (1120 + 202)* — 4phy (8.50)
(<) (#130 + 3p12)® — (Bpar + pos)® (8.51)

(d) (130 — 3p12) + (Buar — t03)*. (8.52)



9
LEARNING AND GENERALIZATION

As we have emphasized in several other chapters, the goal of network training
is not to learn an exact representation of the training data itself, but rather
to build a statistical model of the process which generates the data. This is
important if the network is to exhibit good generalization, that is, to make good
predictions for new inputs. In Section 1.5, we introduced the simple analogy
of curve fitting using polynomials, and showed that a polynomial with too few
coeflicients gives poor predictions for new data, i.e. poor generalization, since
the polynomial function has too little flexibility. Conversely, a polynomial with
too many coefficients also gives poor generalization since it fits too much of the
noise on the training data. The number of coefficients in the polynomial controls
the effective flexibility, or complexity, of the model.

This highlights the need to optimize the complexity of the model in order to
achieve the best generalization. Considerable insight into this phenomenon can
be obtained by introducing the concept of the bias—variance trade-off, in which
the generalization error is decomposed into the sum of the bias squared plus the
variance. A model which is too simple, or too inflexible, will have a large bias,
while one which has too much flexibility in relation to the particular data set
will have a large variance. Bias and variance are complementary quantities, and
the best generalization is obtained when we have the best compromise between
the conflicting requirements of small bias and small variance.

In order to find the optimum balance between bias and variance we need
to have a way of controlling the effective complexity of the model. In the case
of neural networks, the complexity can be varied by changing the number of
adaptive parameters in the network. This is called structural stabilization. One
way to implement this in practice is to compare a range of models having different
different numbers of hidden units. Alternatively, we can start with a relatively
large network and prune out the least significant connections, either by removing
individual weights or by removing complete units. Similarly, we can start with
a small network, and add units during the learning process, with the goal of
arriving at an optimal network structure. Yet another way to reduce variance is
to combine the outputs of several networks together to form a committee.

The second principal approach to controlling the complexity of a model is
through the use of regularization which involves the addition of a penalty term
to the error function. We can control the degree of regularization, and hence
the effective complexity of the model, by scaling the regularization term by an
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adjustable multiplicative parameter.

In a practical application, we have to optimize the model complexity for the
given training data set. One of the most important techniques for doing this is
called cross-validation.

In Chapter 10 we discuss the Bayesian framework which provides a com-
plimentary viewpoint to the one presented in this chapter. The bias-variance
trade-off is then no longer relevant, and we can in principle consider networks of
arbitrarily high complexity without encountering over-fitting.

9.1 Bias and variance

In Section 1.5 we discussed the problem of curve fitting using polynomial func-
tions, and we showed that there is an optimal number of coefficients for the
polynomial, for a given training set, in order to obtain the best represertation
of the underlying systematic properties of the data, and hence to obtain the
best generalization on new data. This represents a trade-off between achieving a
good fit to the training data, and obtaining a reasonably smooth function which
is not over-fitted to the data. Similar considerations apply to the problem of
density estimation, discussed in Chapter 2, where various smoothing parameters
arise which control the trade-off between smoothing the model density function
and fitting the data set. The same issues also arise in the supervised training of
neural networks. '

A key insight into this trade-off comes from the decomposition of error into
bias and variance components (Geman et al., 1992). We begin with a mathemat-
ical treatment of the bias—variance decomposition, and then discuss its implica-
tions.

It is convenient to consider the particular case of a model trained using a sum-
of-squares error function, although our conclusions will be much more general.
Also, for notational simplicity, we shall consider a network having a single output
y, although again this is not a significant limitation. We showed in Section 6.1.3
that the sum-of-squares error, in the limit of an infinite data set, can be written
in the form

B = [0 - (thx)Pp(x) dx

45 [ 10 - )00 dx (91)

in which p(x) is the unconditional density of the input data, and (t{x) denotes
the conditional average, or regression, of the target data given by

{t) = / tp(t]x) dt (9.2)
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where p(t{x) is the conditional density of the target variable t conditioned on the
input vector x. Similarly

(%) = /ﬁp(t[x) dt. (9.3)

Note that the second term in (9.1) is independent of the network function
y(x) and hence is independent of the network weights. The optimal network
function y(x), in the sense of minimizing the sum-of-squares error, is the one
which makes the first term in (9.1) vanish, and is given by y(x) = (t|x). The
second term represents the intrinsic noise in the data and sets a lower limit on
the error which can be achieved.

In a practical situation we must deal with the problems arising from a finite-
size data set. Suppose we consider a training set D consisting of N patterns which
we use to determine our network model y(x). Now consider a whole ensemble of
possible data sets, each containing N patterns, and each taken from the same
fixed joint distribution p(x,t). We have already argued that the optimal network
mapping is given by the conditional average (f[x}. A measure of how close the
actual mapping function y(x) is to the desired one is given by the integrand of
the first term in (9.1):

{y(x) ~ (thx)}?. (9:4)

The value of this quantity will depend on the particular data set D on which it
is trained. We can eliminate this dependence by considering an average over the
complete ensemble of data sets, which we write as

Epl{y(x) ~ (tIx)}’] (9.5)

where Epl-] denotes the expectation, or ensemble average, and we recall that the
function y(x) depends on the particular data set D which is used for training.
Note that this expression is itself a function of x.

If the network function were always a perfect predictor of the regression func-
tion (t|x) then this error would be zero. As we shall see, a non-zero error can
arise for essentially two distinct reasons. It may be that the network function
is on average different from the regression function. This is called bins. Alter-
natively, it may be that the network function is very sensitive to the particular
data set D, so that, at a given x, it is larger than the required value for some
data sets, and smaller for other data sets. This is called variance. We can make
the decomposition into bias and variance explicit by writing (9.5) in somewhat
different, but mathematically equivalent, form. First we expand the term in curly
brackets in (9.5) to give

{y(x) — (t1x)}* = {y(x) - Eply(x)) + Eply(x)) — (tx)}?
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= {y(x) - Eply(x)N? + {Eply(x)] — (tIx)}
+2{y(x) - Eply()IHEply(x)] — (tIx)}. (9.6)
In order to compute the expression in {9.5) we take the expectation of both sides

of (9.6) over the ensemble of data sets D. We see that the third term on the
right-hand side of (9.6) vanishes, and we are left with

Epl{y(x) - (tix)}?}

= {Eply(x)] - (tIx)}* + Epl{y(x) — Eply(x))}’]- (9.7)

v

(bias)” variance

It is worth studying the expressions in (9.7) closely. The bias measures the extent
to which the average (over all data sets) of the network function differs from the
desired function (t|x). Conversely the variance measures the extent to which the
network function y(x) is sensitive to the particular choice of data set. Note that
the expressions for bias and variance are functions of the input vector x. We can
also introduce corresponding average values for bias and variance by integrating
over all x. By referring back to (9.1) we see that the appropriate weighting for
this integration is given by the unconditional density p(x), so that

(bies)? = 5 [{Eply(] - (Hx))plx) dx (98)
variance = % /gp[{y(x) ~ Eply(x)]FIp(x) dx. (9.9)

The meaning of the bias and variance terms can be illustrated by considering
two extreme limits for the choice of functional form for y(x). We shall suppose
that the target data for network training is generated from a smooth function
h(x) to which zero mean random noise € is added, so that

£ = h(x™) + €™ (9.10)

Note that the optimal mapping function in this case is given by (t|x) = h(x). One
choice of model for y(x) would be some fixed function g(x) which is completely
independent of the data set D, as indicated in Figure 9.1. It is clear that the
variance term in (9.7} will vanish, since £p[y(x)] = g(x) = y(x). However, the
bias term will typically be high since no attention at all was paid to the data, and
so unless we have some prior knowledge which helps us to choose the function
g(x) we are making a wild guess.
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»
»
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Figure 9.1. A schematic illustration of the meaning of bias and variance. Circles
denote a set of data points which have been generated from an underlying
function h(z) (dashed curve) with the addition of noise. The goal is to try to
approximate h(z) as closely as possible. If we try to model the data by a fixed
function g(x), then the bias will generally be high while the variance will be
zero.

Figure 9.2. As in Figure 9.1, but in which a model is used which is a simple
exact interpolant of the data points. In this case the bias is low but the variance
is high.

The opposite extreme is to take a function which fits the training data per-

fectly, such as the simple exact interpolant indicated in Figure 9.2. In this case
the bias term vanishes at the data points themselves since

Eply()] = Eplh(x) +d = h(x) = (t}x) (9.11)

and the bias will typically be small in the neighbourhood of the data points. The
variance, however, will be significant since
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Epl{y(x) - Enly(x)]}*] = Epl{y(x) ~ h(x)}?] = €plé’] (9.12)

which is just the variance of the noise on the data, which could be substantial.

We see that there is a natural trade-off between bias and variance. A function
which is closely fitted to the data set will tend to have a large variance and
hence give a large expected error. We can decrease the variance by smoothing
the function, but if this is taken too far then the bias becomes large and the
expected error is again large. This trade-off between bias and variance plays a
crucial role in the application of neural network techniques to practical problems.
We shall give a simple example of the dependence of bias and variance on the
effective model complexity in Section 9.8.1.

9.1.1 Minimizing bias and variance

We have seen that, for any given size of data set, there is some optimal balance
between bias and variance which gives the smallest average generalization error.
In order to improve the performance of the network further we need to be able
to reduce the bias while at the same time also reducing the variance. One way
to achieve this is to use more data points. As we increase the number of data
points we can afford to use more complex models, and therefore reduce bias,
while at the same time ensuring that each model is more heavily constrained
by the data, thereby also reducing variance. If we increase the number of data
points sufficiently rapidly in relation to the model complexity we can find a
sequence of models such that both bias and variance decrease. Models such as
feed-forward neural networks can in principle provide consistent estimators of
the regression function, meaning that they can approximate the regression to
arbitrary accuracy in the limit as the number of data points goes to infinity.
This limit requires a subtle balance of network complexity against number of
data points to ensure that at each step both bias and variance are decreased.
Consistency has been widely studied in the context of conventional techniques
for statistical pattern recognition. For feed-forward networks, White (1990) has
shown how the complexity of a two-layer network must grow in relation to the
size of the data set in order to be consistent. This does not, however, tell us the
complexity required for any given number of data points. It also requires that the
parameter optimization algorithms are capable of finding the global minimum of
the error function. Note that, even if both bias and variance can be reduced to
zero, the error on new data will still be non-zero as a result of the intrinsic noise
on the data given by the second term in (9.1).

In practice we are often limited in the number of training patterns available,
and in many applications this may indeed be a severe limitation. An alternative
approach to reducing both bias and variance becomes possible if we have some
prior knowledge concerning the unknown function h(x). Such knowledge can be
used to constrain the model function y(x) in a way which is consistent with h(x)
and which therefore does not give rise to increased bias. Note that the bias-
variance problem implies that, for example, a simple linear model (single-layer
network) might, in some applications involving relatively small data sets, give
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superior performance to a more general non-linear model (such as a multi-layer
network) even though the latter contains the linear model as a special case.

9.2 Regularization

In Section 1.5 we saw that a polynomial with an excess of free coeflicients tends
to generate mappings which have a lot of curvature and structure, as a result of
over-fitting to the noise on the training data. Similar behaviour also arises with
more complex non-linear neural network models. The technique of regulariza-
tion encourages smoother network mappings by adding a penalty Q to the error
function to give

E=E+10. (9.13)

Here E is one of the standard error functions as discussed in Chapter 6, and
the parameter v controls the extent to which the penalty term 0 influences
the form of the solution. Training is performed by minimizing the total error
function E, which requires that the derivatives of 2 with respect to the network
weights can be computed efficiently. A function y(x) which provides a good fit
to the training data will give a small value for F, while one which is very smooth
will give a small value for Q. The resulting network mapping is a compromise
between fitting the data and minimizing Q. Regularization is discussed in the
context of radial basis function networks in Section 5.4, and is given a Bayesian
interpretation in Section 10.1.

In this section we shall consider various forms for the regularization term €.
Regularization techniques have been extensively studied in the context of linear
models for y(x). For the case of one input variable z and one output variable y,
the class of Tikhonov regularizers takes the form

Q= -;-}j:o/: ho(z) (3—;%)2@ (9.14)

where h. > 0 for r = 0,...,R -1, and hr > 0 (Tikhonov and Arsenin, 1977).
Regularization has also been widely studied in the context of vision systems
(Poggio et al., 1985).
9.2.1 Weight decay

One of the simplest forms of regularizer is called weight decay and consists of the
sum of the squares of the adaptive parameters in the network

1
Q=3 zi:wf (9.15)

where the sum runs over all weights and biases. In conventional curve fitting,
the use of this form of regularizer is called ridge regression. It has been found
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empirically that a regularizer of this form can lead to significant improvements
in network generalization (Hinton, 1987). Some heuristic justification for the
weight-decay regularizer can be given as follows. We know that to produce an
over-fitted mapping with regions of large curvature requires relatively large values
for the weights. For small values of the weights the network mapping represented
by a multi-layer perceptron is approximately linear, since the central region of a
sigmoidal activation function can be approximated by a linear transformation.
By using a regularizer of the form (9.15), the weights are encouraged to be small.

Many network training algorithms make use of the derivatives of the total
error function with respect to the network weights, which from (9.13) and (9.15)
are given by

VE =VE +vw. (9.16)
Suppose that the data term E is absent and we consider training by simple gra-
dient descent in the continuous-time limit. The weight vector w(7) then evolves

with time T according to

%g =—nVE = —nw {9.17)

where 7 is the learning rate parameter. This equation has solution
w(r) = w(0)exp(—nvT) (9.18)
and so all of the weights decay exponentially to zero, which is the reason for the
use of the term ‘weight decay’.
We can gain some further insight into the behaviour of the weight-decay

regularizer by considering the particular case of a quadratic error function. A
general quadratic error can be written in the form

E(w) = Eg+bTw + %WTHW (9.19)

where the Hessian H and the vector b are constants. The minimum of this error
function occurs at the point w* which, by differentiating (9.19), satisfies

b+ Hw* =0. (9.20)

In the presence of the regularization term, the minimum moves to a point W
which, from (9.13), satisfies

b+H¥ + &% =0. (9.21)
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We can better interpret the effect of the weight-decay term if we rotate the axes
in weight space so as to diagonalize the Hessian matrix H (Appendix A). This
is done by considering the eigenvector equation for the Hessian given by

Hu; = Mju;. 9.22
¥ iy

We can now expand w* and w in terms of the eigenvectors to give
wh = Zw;uj, W= Zﬁjuj. (9.23)
J J

Combining (9.20), (9.21) and (9.23), and using the orthonormality of the {u;},
we obtain the following relation between the minima of the original and the
regularized error functions

(9.24)

The eigenvectors u; represent the principal directions of the quadratic error
surface. Along those directions for which the corresponding eigenvalues are rela-
tively large, so that A; >> v, (9.24) shows that W; ~ w}, and so the minimum of
the error function is shlfted very little. Conversely, a.long directions for which the
eigenvalues are relatively small, so that A; < v, (9.24) shows that ;| < |wj],

and so the corresponding components of the minimum weight vector are sup-
pressed. This effect is illustrated in Figure 9.3.

9.2.2 Consistency of weight decay

One of the limitations of simple weight decay in the form (9.15) is that is incon-
sistent with certain scaling properties of network mappings. To illustrate this,
consider a multi-layer perceptron network having a single hidden layer and linear
output units, which performs a mapping from a set of input variables z; to a set
of output variables yi. The activation of a hidden unit in the first hidden layer
is given by

Zj=g (Z Wy Ti + ’wjo) (925)
i
while the activations of the output units are given by

Yk =) Wk;zj + Wko- (9.26)
J

Suppose we perform a linear transformation on the input data of the form
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W,

N

Figure 9.3. Tllustration of the effect of a simple weight-decay regularizer on
a quadratic error function. The circle represents a contour along which the
weight-decay term is constant, and the ellipse represents a contour of constant
unregularized error. Note that the axes in weight space have been rotated to be
parallel with the principal axes of the original error surface, determined by the
eigenvectors of the corresponding Hessian matrix. The effect of the regularizer
is to shift the minimum of the error function from w* to w. This reduces the
value of w; at the minimum significantly since this corresponds to a small
eigenvalue, while the value of w2, which corresponds to a large eigenvalue, is
hardly affected.

T; — T; = az; + b. (9.27)

Then we can arrange for the mapping performed by the network to be unchanged
by making a corresponding linear transformation of the weights and biases from
the inputs to the units in the hidden layer of the formn

- 1
Wy = Wy = a’wj,' (9.28)
s b
wWig — Wi = Wje — ; Z Wyi. (929)
i

Similarly, a linear transformation of the output variables of the network of the
form

Yk — Yk = cyp +d (9.30)
can be achieved by making a transformation of the second-layer weights using
Wg; — Wy = CWk;y (9.31)

Weg — ’wko = cwio + d. (9.32)
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If we train one network using the original data and one network using data for
which the input and/or target variables are transformed by one of the above lin-
ear transformations, then consistency requires that we should obtain equivalent
networks which differ only by the linear transformation of the weights as given.
Any regularizer should be consistent with this property, otherwise it arbitrarily
favours one solution over another, equivalent one. Clearly, simple weight decay
(9.15) which treats all weights and biases on an equal footing does not satisfy
this property.

We therefore look for a regularizer which is invariant under the linear trans-
formations (9.28), (9.29), (9.31) and (9.32). In particular, the weights should
be scale-invariant and the biases should be shift-invariant. Such a regularizer is
given by

"—2’ Y w2+—”§2- 3 W’ (9.33)

weW, weEW,

where W, denotes the set of weights in the first layer, W, denotes the set of
weights in the second layer, and biases are excluded from the summations. Under
the linear transformations of the weights given by (9.28), (9.29), (9.31) and
(9.32), the regularizer will remain unchanged provided the parameters v4 and vy
are suitably rescaled.

In Section 3.4.3 we showed that the role of the biases in the final layer of
a network with linear outputs, trained by minimizing a sum-of-squares error
function, is to compensate for the difference between the mean (over the data
set) of the output vector from the network and the corresponding mean of the
target values. It is therefore reasonable to exclude the biases from the regularizer
as we do not wish systematically to distort the mean network output. The output
is then equal to the sample mean of the target data, and provides an unbiased
estimate of the true target mean.

Weight-decay regularizers can be motivated in the context of linear models by
considering the sensitivity of the model predictions to noise on the input vectors.
Minimization of this sensitivity leads naturally to a weight-decay regularizer, in
which the biases are excluded from the sum over weights (Exercise 9.2). The more
general case of non-linear networks is covered in detail later, when we consider
the training of networks with additive noise on the inputs.

9.2.3 A simple illustration of weight decay

As an illustration of the use of weight decay, we return to the example used
in Section 5.1 of modelling a noisy sine function using a radial basis function
network. In Figure 9.4 we show an example of a data set together with the
network function obtained by minimizing a sum-of-squares error. Here data was
generated by sampling the function h(z) given by

hz) = 0.5 + 0.4sin(27x) (9.34)
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Figure 9.4. Example of data generated by sampling the function h(z), defined
by (9.34), and adding Gaussian distributed random noise with standard devi-
ation of 0.05. The dashed curve shows the function h{z) and the solid curve
shows the result of fitting a radial basis function network without regulariza-
tion. There is one Gaussian basis function for each of the 30 data points, and
the resuit is a strongly over-fitted network mapping. (This figure is identical
to Figure 5.1, and is reproduced here for ease of comparison.)

and adding Gaussian distributed random noise with zero mean and standard
deviation ¢ = 0.05. There is one basis function centred on each data point, and
consequently the network gives a strongly over-fitted solution.

We now include a weight-decay regularizer of the form (9.15) with the bias
parameter excluded from the summation, for reasons discussed above. Figure 9.5
shows the effect of using a regularization coefficient of v = 40. The network
mapping is now much smoother and gives a much closer representation of the
underlying function from which the data was generated (shown by the dashed
curve). The degree of smoothing is controlled by the regularization coefficient v,
and too large a value of v leads to over-smoothing, as illustrated for ¥ = 1000 in
Figure 9.6.

9.2.4 FEarly stopping

An alternative to regularization as a way of controlling the effective complexity of
a network is the procedure of early stopping. The training of non-linear network
models corresponds to an iterative reduction of the error function defined with
respect to a set of training data. During a typical training session, this error
generally decreases as a function of the number of iterations in the algorithm.
For many of the algorithms described in Chapter 7 (such as conjugate gradients)
the error is a monotonically decreasing function of the iteration index. However,
the error measured with respect to independent data, generally called a validation
set, often shows a decrease at first, followed by an increase as the network starts
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Figure 9.5. As in Figure 9.4 but with a weight-decay regularizer and a reg-
ularization coefficient v = 40, showing the much smoother network mapping
and the correspondingly closer agreement with the underlying generator of the
data, shown by the dashed curve.
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Figure 9.6. As in Figure 9.5 but with v = 1000, showing the effect of having
too large a value for the regularization coefficient.

to over-fit. Training can therefore be stopped at the point of smallest error with
respect to new data, as indicated in Figure 9.7, since this gives a network which
is expected to have the best generalization performance.

The behaviour of the network in this case is sometimes explained qualita-
tively in terms of the effective number of degrees of freedom in the network.
This number is suppose to start out small and then to grow during the train-
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Figure 9.7. A schematic illustration of the behaviour of training and validation
set errors during a typical training session, as a function of the iteration step
7. The goal of achieving the best generalization performance suggests that
training should be stopped at the point 7 corresponding to the minimum of
the validation set error.

ing process, corresponding to a steady increase in the effective complexity of the
model. Halting training before a minimum of the training error has been reached
then represents a way of limiting the effective network complexity.

In the case of a quadratic error function, early stopping should give rise to
similar behaviour to regularization using a simple weight-decay term. This can
be understood from Figure 9.8. The axes in weight space have been rotated to
be parallel to the eigenvectors of the Hessian matrix. If, in the absence of weight
decay, the weight vector starts at the origin and proceeds during training along
a path which follows the local negative gradient vector, then the weight vector
will move initially parallel to the ws axis to a point corresponding roughly to
w and then move towards the minimum of the error function w*, This follows
from the shape of the error surface and the widely differing eigenvalues of the
Hessian. Stopping at a point near W is therefore similar to weight decay. The
reationship between early stopping and weight decay can be made quantitative,
as discussed in Exercise 9.1, thereby showing that the quantity 75 (where 7 is
the iteration index, and 7 is the learning rate parameter) plays the role of the
reciprocal of the regularization parameter v. This exercise also shows that the
effective number of parameters in the network (i.e. the number of weights whose
values differ significantly from zero) grows during the course of training.

9.2.5 Curvature-driven smoothing

We have seen that over-fitted solutions are generally characterized by mappings
which have a lot of structure and relatively high curvature. This provided some
indirect motivation for weight-decay regularizers as a way of reducing the curva-
ture of the network function. A more direct approach is to consider a regularizer
which penalizes curvature explicitly. Since the curvature is governed by the sec-
ond derivatives of the network function, we can consider a regularizer of the
form
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Figure 9.8. A schematic illustration of why early stopping can give similar
results to weight decay in the case of a quadratic error function. The ellipse
shows a contour of constant error, and w* denotes the minimum of the error
function. If the weight vector starts at the origin and moves according to
the local negative gradient direction, then it will follow the path shown by
the curve. By stopping training early, a weight vector w is found which is
qualitatively similar to that obtained with a simple weight-decay regularizer
and training to the new minimum of the error, as can be seen by comparing
with Figure 9.3. A precise quantitative relationship between early stopping
and weight-decay regularization can be demonstrated formally for the case of
quadratic error surfaces (Exercise 9.1).

N d ¢ 2 nN\ 2
0= %ZZZ;(%;’;) . (9.35)

Note that this regularizer is a discrete version of the Tikhonov form (9.14).
Regularizers involving second derivatives also form the basis of the conventional
interpolation technique of cubic splines (Wahba and Wold, 1975; De Boor, 1978).
The derivatives of (9.35) with respect to the weights for a multi-layer perceptron
can be obtained by an extension of the back-propagation procedure (Bishop,
1993).

9.3 Training with noise

We have discussed two approaches to controlling the effective complexity of a
network mapping, based respectively on limiting the number of adaptive param-
eters and on regularization. A third approach is the technique of training with
noise, which involves the addition of noise to the input vectors during the train-
ing process. For sequential training algorithms, this can be done by adding a new
random vector to each input pattern before it is presented to the network, so
that, if the patterns are being recycled, a different random vector is added each
time. For batch methods, a similar effect can be achieved by replicating each
data point a number of times and adding new random vectors onto each copy.




9.9: Training with noise 347

Heuristically, we might expect that the noise will ‘smear out’ each data point
and make it difficult for the network to fit individual data points precisely, and
hence will reduce over-fitting. In practice, it has been demonstrated that training
with noise can indeed lead to improvements in network generalization (Sietsma
and Dow, 1991). We now show that training with noise is closely related to the
technique of regularization (Bishop, 1995).

Suppose we describe the noise on the inputs by the random vector &, governed
by some probability distribution p(£). If we consider the limit of an infinite
number of data points, we can write the error function, in the absence of noise,
in the form

B= > [ [0 - t)7pieubiptx) (9.36)

as discussed in Section 6.1.3. If we now consider an infinite number of copies of
each data point, each of which is perturbed by the addition of a noise vector,
then the mean error function defined over this expanded data set can be written
as

Be b [ twetoc+ & ~ 6 pteatonope) dxdsede. (037

We now assume that the noise amplitude is small, and expand the network
function as a Taylor series in powers of £ to give

1 *yx
£=0 + 5 ; ; gi&” 6:1:,~8:1:j

The noise distribution is generally chosen to have zero mean, and to be uncor-
related between different inputs. Thus we have

D E) = U+ Y6 L

oy

+0O(£%). (9.38)
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where the parameter v represents the variance of the noise distribution. Sub-
stituting the Taylor series expansion {9.38) into the error function (9.37), and
making use of (9.39) to integrate over the noise distribution, we obtain

E=E+uv8 (9.40)

where E is the standard sum-of-squares error given by (9.36), and the extra term
Q is given by
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(9.41)
This has the form of a regularization term added to the usual sum-of-squares
error, with the coefficient of the regularizer determined by’ the noise variance v
(Webb, 1994).

Provided the noise amplitude is small, so that the neglect of higher-order
terms in the Taylor expansion is valid, the minimization of the sum-of-squares
error with noise added to the input data is equivalent to the minimization of
the regularized sum-of-squares error (9.40), with a regularization term given
by (9.41), without the addition of noise. It should be noted, however, that the
second term in the regularization function (9.41) involves second derivatives of
the network function, and so evaluation of the gradients of this error with respect
to network weights will be computationally demanding. Furthermore, this term
is not positive definite, and so the error function is not a priori bounded below,
and is therefore unsuitable for use as the basis of a training algorithm.

We now consider the minimization of the regularized error {9.40) with respect
to the network function y(x), which allows us to show that the second deriva-
tive terms can be neglected. This result is analogous to the one obtained for the
outer product approximation for the Hessian matrix in Section 6.1.4, in which
we showed that similar second-derivative terms also vanish. Thus, we will see
that the use of the regularization function (9.41) for network training is equiv-
alent, for small values of the noise amplitude, to the use of a positive-definite
regularization function which is of standard Tikhonov form and which involves
only first derivatives of the network function (Bishop, 1995).

As discussed at length in Section 6.1.3, the network function which minimizes
the sum-of-squares error is given by the conditional average (tx|x) of the target
values tg. From (9.40) we see that, in the presence of the regularization term,
the network function which minimizes the total error will have the form

yk(x) = (t|x) + O(v). (9.42)

Now consider the second term in equation (9.41) which depends on the second
derivatives of the network function. Making use of the definition of the condi-
tional average of the target data, given in equation (9.2), we can rewrite this
term in the form

SO A (FEROMES JEOr (0.49

Using (9.42) we see that, to lowest order in v, this term vanishes at the minimum
of the total error function. Thus, only the first term in equation (9.41) needs to
be retained. It should be emphasized that this result is a consequence of the
average over the target data, and so it does not require the individual terms
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Yx — tx to be small, only that their (conditional) average over t; be small.

The minimization of the sum-of-squares error with noise is therefore equiv-
alent (to first order in v) to the minimization of a regularized sum-of-squares
error without noise, where the regularizer, given by the first term in equation
(9.41), has the form -

0= %Xk: Z/ (—g—yx—k{)zp(x) dx (9.44)

where we have integrated out the ¢ variables. Note that the regularization func-
tion in equation (9.44) is not in general equivalent to that given in equation
(9.41). However, the total regularized error in each case is minimized by the
same network function y(x), and hence by the same set of network weight val-
ues. Thus, for the purposes of network training, we can replace the regularization
term in equation (9.41) with the one in equation (9.44). In practice, we approx-
imate (9.44) by a sum over a finite set of N data points of the form

g Ly o)’ 9.45
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Derivatives of this regularizer with respect to the network weights can be found
using an extended back-propagation algorithm (Bishop, 1993).

This regularizer involves first derivatives of the network mapping function.
A related approach has been proposed by Drucker and Le Cun (1992) based
on a sum of derivatives of the error function itself with respect to the network
inputs. This choice of regularizer leads to a computationally efficient algorithm
for evaluating the gradients of the regularization function with respect to the
network weights. The algorithm is equivalent to forward and backward propa-
gation through an extended network architecture, and is termed double back-
propagation.

9.4 Soft weight sharing

One way to reduce the effective complexity of a network with a large number
of weights is to constrain weights within certain groups to be equal. This is
the technique of weight sharing which was discussed in Section 8.7.3 as a way
of building translation invariance into networks used for image interpretation.
It is only applicable, however, to particular problems in which the form of the
constraints can be specified in advance. Here we consider a form of soft weight
sharing (Nowlan and Hinton, 1992) in which the hard constraint of equal weights
is replaced by a form of regularization in which groups of weights are encouraged
to have similar values. Furthermore, the division of weights into groups, the mean
weight value for each group, and the spread of values within the groups, are all
determined as part of the learning process.
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As discussed at length in Chapter 6, an error function can be regarded as
the negative logarithm of a likelihood function. Thus, the simple weight-decay
regularizer (9.15) represents the negative logarithm of the likelihood of the given
set of weight values under a Gaussian distribution centred on the origin. To see
this, consider a Gaussian of the form

2 .

Then the likelihood of the set of weight values under this distribution is given
by

L= SOV I 9.47
I:Ilp(w,) (2W)W/2exp 2Zwl (9.47)

where W is the total number of weights. Taking the negative logarithm then
gives the weight-decay regularizer, up to an irrelevant additive constant. As we
have seen, the weight-decay term has the effect of encouraging the weight values
to form a cluster with values close to zero.

We can encourage the weight values to form several groups, rather than just
one group, by considering a probability distribution which is a mizture of Gaus-
sians. An introduction to Gaussian mixture models and their basic properties is
given in Section 2.6. The centres and variances of the Gaussian components, as
well as the mixing coefficients, will be considered as adjustable parameters to be
determined as part of the learning process. Thus, we have a probability density
of the form

M
plw) =Y ojd;(w) (9.48)

=1

where o; are the mixing coefficients, and the component densities ¢;(w) are
Gaussians of the form

1 2
$;(w) = @ro?)1/E exp {— (w 20?) } . (9.49)

Forming the likelihood function in the usual way, and then taking the negative
logarithm, leads to a regularizing function of the form

M
szz—Zm ‘_Zlaquj(wi) . (9.50)
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The total error function is then given by
E=FE+uQ (9.51)

where v is the regularization coefficient. This error is minimized both with respect
to the weights w; and with respect to the parameters oj, p; and o; of the
mixture model. If the weights were constant, then the parameters of the mixture
model could be determined by using the EM re-estimation procedure discussed
in Section 2.6.2. However, the distribution of weights is itself evolving during
the learning process, and so to avoid numerical instability a joint optimization is
performed simultaneously over the weights and the mixture model parameters.
This can be done using one of the standard algorithms, such as the conjugate
gradient or quasi-Newton methods, described in Chapter 7. The parameter v,
however, cannot be optimized in this way, since this would give v — 0 and an
over-fitted solution, but must be found using techniques such as cross-validation
to be discussed later.

In order to minimize the total error function it is necessary to be able to
evaluate its derivatives with respect to the various adjustable parameters. To do
this it is convenient to regard the a;’s as prior probabilities, and to introduce
the corresponding posterior probabilities given by Bayes’ theorem in the form

a;6;(w)

S cndn(w)” (0.52)

7r]-(w) =

The derivatives of the total error function with respect to the weights are then
given by

E (w, - u,)
By 6w, + VZﬁJ(w, j (9.53)

The effect of the regularization term is thus to pull each weight towards the
centre of the jth Gaussian, with a force proportional to the posterior probability
of that Gaussian for the given weight. This is precisely the kind of effect which
we are seeking.

Derivatives of the error with respect to the centres of the Gaussians are also
easily computed to give

o _ () s = 5)
o 1/275 (w;) e (9.54)

which has a simple intuitive interpretation, since it drives p; towards an average
of the weight values, weighted by the posterior probabilities that the respective
weights were generated by component j. Similarly, the derivatives with respect
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to the variances are given by

OE U (wi—py)®
5o, u;m(w,) (a,- 3 ) (9.55)
which drives o; towards the weighted average of the squared deviations of the
weights around the corresponding centre pu;, where the weighting coefficients
are again given by the posterior probability that each weight is generated by
component j. Note that, in a practical implementation, new variables 77; defined
by

o? = exp() (9.56)

are introduced, and the minimization is performed with respect to the n;. This
ensures that the parameters o; remain positive. It also has the effect of dis-
couraging pathological solutions in which one or more of the o; goes to zero,
corresponding to a Gaussian component collapsing onto one of the weight pa-
rameter values. Such solutions are discussed in more detail in the context of
Gaussian mixture models in Section 2.6. From a Bayesian perspective, the use
of a transformation of the form (9.56) can be motivated by a consideration of
non-informative priors (Section 10.4 and Exercise 10.13).

For the derivatives with respect to the mixing coefficients a;, we need to take
account of the constraints .

o =1, 0<a; <1 (9.57)
J

which follow from the interpretation of the a; as prior probabilities. This can be
done by expressing the mixing coefficients in terms of a set of auxiliary variables
{7;} using the softmaz function given by

. exp(’)']-) (958)

aj = M .
> k=1 €Xp(7k)

We can now minimize the error function with respect to the {v;}. To find the
derivatives of E with respect to y; we make use of

Oa
# = Ok — Q) (959)
2

which follows from (9.58). Using the chain rule in the form
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together with (9.50), (9.52) and (9.59), we then obtain the required derivatives
in the form

oE

oy > {ay —mi(wi)} (9.61)
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where we have made use of 37, a; = 1. We see that «; is therefore driven towards
the average posterior probability for component j.

In practice it is necessary to take some care over the initialization of the
weights in order to ensure that good solutions are found. One approach is to
choose the initial weights from a uniform distribution over a finite interval, and
then initialize the components ¢;{w) to have means which are equally spaced over
this interval, with equal priors, and variances equal to the spacing between the
adjacent means. This ensures that, for most of the weights, there is little initial
contribution to the error gradient from the regularization term, and so the initial
evolution of the weights is primarily data-driven. Also, the posterior probabilities
have roughly equal contributions over the complete set of weights, which helps
to avoid problems due to priors going to zero early in the optimization. Results
on several test problems (Nowlan and Hinton, 1992) show that this method can
lead to significantly better generalization than simple weight decay.

9.5 Growing and pruning algorithms

The architecture of a neural network (number of units and topology of connec-
tions) can have a significant impact on its performance in any particular ap-
plication. Various techniques have therefore been developed for optimizing the
architecture, in some cases as part of the network training process itself. It is
important to distinguish between two distinct aspects of the architecture selec-
tion problem. First, we need a systematic procedure for exploring some space of
possible architectures, and this forms the subject of this section. Second, we need
some way of deciding which of the architectures considered should be selected.
This is usually determined by the requirement of achieving the best possible
generalization, and is discussed at length in Section 9.8.

The simplest approach to network structure optimization involves exhaustive
search through a restricted class of network architectures. We might for instance
consider the class of multi-layer perceptrons having two layers of weights with
full connectivity between adjacent layers and no direct input-output connections.
The only aspect of the architecture which remains to be specified is the number
M of hidden units, and so we train a set of networks having a range of values
of M, and select the one which gives the best value for our performance crite-
rion. This approach can require significant computational effort and yet it only
searches a very restricted class of network models. If we expand the range of
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models (by having multiple hidden layers and partial connectivity for example)
we quickly reach the point of having insufficient computational resources for a
complete search. Note, however, that this is the approach which is most widely
adopted in practice. Some justification can be found in the fact that, for the two-
layer architecture, we know that we can approximate any continuous functional
mapping to arbitrary accuracy (Section 4.3) provided M is sufficiently large.

An obvious drawback of such an approach is that many different networks
have to be trained. This can in principle be avoided by considering a network
which is initially relatively small and allowing new units and connections to be
added during training. A simple example of this would be to consider the class of
networks having two layers of weights with full connections in each layer, and to
start with a few hidden units and then add one unit at a time. Such an approach
was considered by Bello (1992) who used the weights from one network as the
initial guess for training the next network (with the extra weights initialized
randomly). Techniques of this form are called growing algorithms and we shall
consider some examples for networks of threshold units, and then discuss the
cascade correlation algorithm which uses sigmoidal units.

An alternative approach is to start with a relatively large network and grad-
nally remove either connections or complete units. These are known as pruning
algorithms and we shall consider several specific examples. Note that, if weight
sharing is used, then several weights may be controlled by a single parameter,
and if the parameter is set to zero then all the corresponding weights are deleted.

A further possible approach to the design of network topology is to construct
a complex network from several simpler network modules. We consider two im-
portant examples of this, called network committees and miztures of experts.
The latter allows a problem to be decomposed automatically into a number of
sub-problems, each of which is tackled by a separate network.

9.5.1 Exact Boolean classification

As we emphasize at several points in this book, the goal in training a neural
network is usually to achieve the best generalization on new data rather than to
learn the training set accurately. However, for completeness we give here a brief
review of two approaches to network construction algorithms which can learn
a finite set of Boolean patterns exactly. We consider networks having threshold
units and a single output, for binary input patterns belonging to two classes.
Before discussing these algorithms in detail, we need first to consider a modi-
fication to the usual perceptron learning algorithm known as the pocket algorithm
(Gallant, 1986b) designed to deal with data sets which are not linearly separable.
The simple perceptron learning algorithm (Section 3.5) is guaranteed to find an
exact classification of the training data set if it is linearly separable. If the data
set is not linearly separable, then the algorithm does not converge. The pocket
algorithm involves retaining a copy (‘in one’s pocket’) of the set of weights which
has so far survived unchanged for the longest number of pattern presentations. It
can bhe shown that, for a sufficiently long training time, this gives, with probabil-
ity arbitrarily close to unity, the set of weight values which produces the smallest
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Figure 9.9. The tiling algorithm builds a network in successive layers. In each
layer, the first unit added is the master unit (shown as the heavier circle)
which plays a special role. Successive layers are fully connected, and there are
no other interconnections in the network.

possible number of misclassifications. Note, however, that no upper bound on the
training time needed for this to occur is known.

The tiling algorithm (Mezard and Nadal, 1989) builds a network in successive
layers with each layer having fewer units than the previous layer, as indicated
in Figure 9.9. Note that the only interconnections in the network are between
adjacent layers. When a new layer is constructed, a single unit, called the master
unit, is added and trained using the pocket algorithm. One requirement for the
network is that each layer must form a ‘faithful’ representation of the data set,
in other words two input patterns which belong to different classes must not
be mapped onto the same pattern of activations in any layer, otherwise it will
be impossible for successive layers to separate them. This is achieved by adding
further ancillary units to the layer, one at a time, leaving the weights to the
master unit and any other ancillary units in that layer fixed. The geometrical
interpretation of this procedure is indicated in Figure 9.10. If the representation
at any stage is not faithful then there must exist patterns from different classes
which give rise to the same set of activations in that layer. The group of all
input patterns which give rise to those activations are identified and an extra
ancillary unit is added and trained (again using the pocket algorithm) on that
group. The process of searching for ambiguities, and adding ancillary units, is
repeated until the representation is faithful. The whole process is repeated with
the next layer. It can be shown that at each layer the master unit produces fewer
misclassifications than the master unit in the previous layer. Thus, eventually
one of the master units produces correct classification of all of the patterns, and
so the algorithm converges with a network of finite size.

We next consider the upstart algorithm (Frean, 1990) which is also guaranteed
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Figure 9.10. Illustration of the role of the ancillary units in the tiling algo-
rithm. The circles and crosses represent the patterns of activations of units in
a particular layer when the network is presented with input patterns from two
different classes. The master unit in the next layer (whose decision boundary is
represented by the solid line) is trained to find the best linear separator of the
classes, and then ancillary units (with decision boundaries given by the dashed
lines) are added so as to separate those patterns which are misclassified.

to find a finite network which gives complete classification of a finite data set.
However, it builds the network by adding extra units between existing units
and the inputs, as indicated in Figure 9.11. All units take their inputs directly
from the inputs to the network, and have binary threshold activation functions.
The algorithm begins by training a single unit using the pocket algorithm. This
‘parent’ unit will typically mis-classify some of the patterns, and so two ‘offspring’
units are added, one to deal with the patterns for which the parent is incorrectly
off, and the other to deal with the patterns for which the parent is incorrectly
on. These units are connected to their parent with sufficiently large negative and
positive weights respectively that they can reverse the output of the parent when
they are activated. The weights to the parent are frozen and the offspring are
trained to produce the correct output for the corresponding incorrect patterns,
while at the same time not spoiling the classification of the patterns which were
correct. The algorithm is called upstart because the oftspring correct the mistakes
of their parents! We can always choose the weights and bias of an offspring unit
such that it only generates a non-zero output for one particular pattern, and so it
will then reduce the number of errors of the parent by one. In practice, the units
are trained by the pocket algorithm and may do much better than just correct
one pattern. Once trained, the offspring weights are frozen, and they become
parents for another layer of offspring, and so on.

Since the addition of each offspring unit reduces the number of errors of
its parent by at least one, it is clear that the network must eventually classify
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Figure 9.11. The upstart algorithin adds new offspring units, at A and B,
to correct the mistakes made by the parent unit. The offspring themselves
generate offspring units, leading eventually to a network having a binary tree
structure.

all patterns correctly using a finite number of units. This occurs because the
number of mistakes which successive offspring have to correct diminishes until
eventually an offspring gets all of its patterns correct, which implies that its
parent produces the correct patterns, and so on all the way back up the network
to the output unit. The final network has the form of a binary tree, although
some branches might be missing if they are not needed. However, this architecture
can be reorganized into a two-layer network by removing the output connections
from the units and moving all units into a single hidden layer (leaving their input
connections unchanged). A new output unit is then created, and new hidden-to-
output connections added. These connections can be learned with the perceptron
algorithm or found by explicit construction in a way which guarantees correct
classification of all patterns (Frean, 1990). In simulations it is found that the
upstart algorithm produces networks having fewer units than those found with
the tiling algorithm. Other algorithms for tackling the Boolean classification
problem have been described by Galiant (1986a), Nadal (1989) and Marchand
et al. (1990).

9.5.2 Cascade correlation

A different approach to network construction, applicable to problems with con-
tinuous output variables, is known as cascade-correlation (Fahlman and Lebiere,
1990) and is based on networks of sigmoidal hidden units. The form of the net-
work architecture is shown in Figure 9.12. To begin with there are no hidden
units, and every input is connected to every output unit by adjustable con-
nections (the crosses in Figure 9.12). The output units may be linear or may
have sigmoidal non-linearities depending on the application. At this stage the
network has a single layer of weights and can be trained by a number of dif-

ferent algorithms, as discussed in Chapters 3 and 7. Fahlman and Lebiere use

the quickprop algorithm (Section 7.5.3). The network is trained for a period of
time governed by some user-defined parameter (whose value is set empirically)
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Figure 9.12. Architecture of the cascade-correlation network. Large circles de-
note processing units, small circles denote inputs, and the bias input is shown
in black. Squares represent weights which are trained and then frozen, while
the crosses show weights which are retrained after the addition of each hidden
unit. Hidden unit H; is added first, and then hidden unit Hs, and so on.

and then a sigmoidal hidden unit is added to the network. This is followed by
further network training, alternating with the addition of hidden units, until a
sufficiently small error is achieved. The addition of hidden units is done in such
a way that, at each stage of the algorithm, only a single-layer system is being
trained. Each new hidden unit takes inputs from all of the inputs to the network
plus the outputs of all existing hidden units, leading to the cascade structure of
Figure 9.12. The hidden unit weights are first determined, and then the unit is
added to the network. These weights are found by maximizing the correlation
between the output of the unit and the residual error of the network outputs
prior to the addition of that unit. This correlation (actually the covariance) is
defined by

N
(2" —2) (e — &)
n=1

5=3

k

(9.62)

where e, = (yi — tx) is the error of network output &, and z denotes the output
of the unit given by

z=g (}: w,-z,-) (9.63)
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where the sum runs over all inputs and all existing hidden units. In (9.62) the .
following average quantities are defined over the whole training set

1 & 1 &
7= N Zzn, € = I nz::l€z (9.64)

n=1

The derivative of S with respect to the weights of the new hidden unit are easily
found in the form

R ) DGR P, (9.65)
Wi E n

where the sign corresponds to the sign of the covariance inside the modulus bars
in (9.62). These derivatives can then be used with the quickprop algorithm to
optimize the weights for the new hidden unit. Once this has been done the unit
is added to the network and is connected to all output units by adaptive weights.
All output-layer weights are now retrained (with all hidden unit weights fixed).
Again, this corresponds to a single-layer training problem, and is performed us-
ing quickprop. These single-layer training problems can be expected to converge
very rapidly. For linear output units, the output-layer weights, which minimize
a sum-of-squares error, can be found quickly by pseudo-inverse techniques (Sec-
tion 3.4.3). Note that, because the hidden unit weights are never changed, the
activations of the hidden units {for each of the input vectors from the train-
ing set) can be evaluated once for the whole of the training set, and these values
re-used repeatedly in the remainder of the algorithm, saving considerable compu-
tational effort. Benchmark results from this algorithm can be found in Fahlman
and Lebiere (1990).

9.5.3 Saliency of weights

We turn now to pruning algorithms which start with a relatively large network
and then remove connections in order to arrive at a suitable network architec-
ture. Several of the approaches to network pruning are based on the following
general procedure. First, a relatively large network is trained using one of the
standard training algorithms. This network might for instance have a high degree
of connectivity. Then the network is examined to assess the relative importance
of the weights, and the least important are deleted. Typically this is followed by
some further training of the pruned network, and the procedure of pruning and
training may be repeated for several cycles. Clearly, there are various choices to
be made concerning how much training is applied at each stage, what fraction
of the weights are pruned and so on. Usually these choices are made on a heuris-
tic basis. The most important consideration, however, is how to decide which
weights should be removed.

In the case of simple models it may be clear in which order the parameters
should be deleted. With a polynomial, for instance, the higher-order coefficients
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would generally be deleted first since we expect the function we are trying to
represent to be relatively smooth. In the case of a neural network it is not obvious
a priori which weights will be the least significant. We therefore need some
measure of the relative importance, or saliency, of different weights.

The simplest concept of saliency is to suppose that small weights are less
important than large weights, and to use the magnitude jw| of a weight value as
a measure of its importance. Such an approach clearly requires that the input
and output variables are normalized appropriately (Section 8.2). However, it
has little theoretical motivation, and performs poorly in practice. We consider
instead how to find a measure of saliency with a more principled justification.

Since network training is defined in terms of the minimization of an error func-
tion, it is natural to use the same error function to find a definition of saliency.
In particular, we could define the saliency of a weight as the change in the error
function which results from deletion (setting to zero) of that weight. This could
be implemented by direct evaluation, so that, for each weight in the (trained)
network in turn, the weight is temporarily set to zero and the error function
re-evaluated. However, such an approach would be computationally demanding
(Exercise 9.7).

Consider instead the change in the error function due to small changes in
the values of the weights (Le Cun et al., 1990). If the weight w; is changed to
w; + 6w; then the corresponding change in the error function E is given by

oF 1 3
5E = z; T 0wt 3 21: ; Hyj6w;6w; + O(6uw®) (9-66)

where the H;; are the elements of the Hessian matrix

o 0*E
e a’wia’wj.

(9.67)

If we assume that the training process has converged, then the first term in
(9.66) will vanish. Le Cun et al. (1990) approximate the Hessian by discarding
the non-diagonal terms. Techniques for calculating the diagonal terms of the
Hessian for a multi-layer perceptron were described in Section 4.10.1. Neglecting
the higher-order terms in the expansion then reduces (9.66) to the form

1
6E =3 Z Hyibw?. (9.68)

If a weight having an initial value w; is set to zero, then the increase in error
will be given approximately by (9.68) with éw; = w;, and so the saliency values
of the weights are given approximately by the quantities H;w?/2. A practical
implementation would typically consist of the following steps:
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1. Choose a relatively large initial network architecture.

2. Train the network in the usual way until some stopping criterion is satisfied.

3. Compute the second derivatives H;; for each of the weights, and hence
evaluate the saliencies H;w?/2.

4. Sort the weights by saliency and delete some of the low-saliency weights.

5. Go to 2 and repeat until some overall stopping criterion is reached.

This approach to weight elimination has been termed optimal brain damage
(Le Cun et al., 1990). In an application to the problem of recognition of hand-
written zip codes, the technique allowed the number of free parameters in a
network to be reduced by about a factor of 4 (from a network initially hav-
ing over 10000 free parameters) while giving a small increase in generalization
performance and a substantial increase in the speed of the trained network.

The assumption that the Hessian for a network is diagonal, however, is fre-
quently a poor one. A procedure for determining the saliency of weights, known
as optimal brain surgeon, which does not make the assumption of a diagonal Hes-
sian, was introduced by Hassibi and Stork (1993). This method also computes
carrections to the remaining weights after deletion of a particular weight and
so reduces the need for network retraining during the pruning phase. Suppose
a weight w; is to be set to zero. The remaining weights are then adjusted so as
to minimize the increase in error resulting from the deletion. We can write the
total change in the weight vector in the form dw. Again, assuming the network
is already trained to a minimum of the error function, and neglecting third-order
terrns, the change in the error resulting from this change to the weight vector
can be written

0E = -;-5WTH6W. (9.69)
The change in the weight vector must satisfy
elow 4+ w; =0 (9.70)

where e; is a unit vector in weight space parallel to the w; axis. We need to
find the 6w which minimizes 6E in (9.69), subject to the constraint (9.70).
This is most easily done by introducing a Lagrange multiplier (Exercise 9.8 and
Appendix C), giving the following result for the optimal change in the weight
vector

Wy

bw = -—{ﬁ:TFH_lei (971)
i

and the corresponding value for the increase in the error in the form

2
L _wi (9.72)

6E; = 5 »——[H_llz'i .
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A w,

Figure 9.13. A schematic illustration of the error contours for a network having
a non-diagonal Hessian matrix, for two of the weights w; and w,. The network
is initially trained to the error minimum at w*. Weight pruning based on the
magnitude of the weights would take the weight vector to the point A by
elimination of the smaller weight w3. Conversely, optimal brain damage leads
to removal of wy and maves the weight vector to B. Finally, optimal brain
surgeon removes wy and also computes a correction to the remaining weight
w2 and hence moves the weight vector to C.

Note that, if the Hessian is in fact diagonal, then these results reduce to the
corresponding results for the optimal brain damage technique discussed above.
The inverse Hessian is evaluated using the sequential technique discussed in
Section 4.10.3 which is itself based on the outer product approximation for the
Hessian, discussed in Section 4.10.2. In a practical implementation, the optimal
brain surgeon algorithm proceeds by the following steps:

1. Train a relatively large network to a minimum of the error function.

2. Evaluate the inverse Hessian H™1,

3. BEvaluate 6 E; for each value of 7 using (9.72) and select the value of i which
gives the smallest increase in error.

4. Update all of the weights in the network using the weight change evaluated
from (9.71).

5. Go to 3 and repeat until some stopping criterion is reached.

A comparison of pruning by weight magnitude, optimal brain damage and opti-
mal brain surgeon is shown schematically in Figure 9.13. Note that the weight
changes are evaluated in the quadratic approximation. Since the true error func-
tion will be non-quadratic, it will be necessary to retrain the network after a
period of weight pruning. Simulation results confirm that the optimal brain sur-
geon technique is superior to optimal brain damage which is in turn superior to
magnitude-based pruning (Le Cun et al., 1990; Hassibi and Stork, 1993).
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9.5.4 Weight elimination

In Section 9.2.1 we discussed the use of a simple weight-decay term as a form of
regularization, to give a total error function of the form

~_ v 2
E_E+§;w,-. (9.73)

This regularization term favours small weights, and so network training based on
minimization of (9.73) will tend to reduce the magnitude of those weights which
are not contributing significantly to a reduction in the error £. One procedure for
pruning weights from a network would therefore be to train the network using
the regularized error (9.73), and then remove weights whose values fall below
some threshold.

One of the difficulties of the simple penalty term in (9.73), from the point of
view of network pruning, is that it tends to favour many small weights rather
than a few large ones. To see this, consider two weights w; and wy feeding
into a unit from identical inputs, so that the weights are performing redundant
tasks. The unregularized error E will be identical if we have two equal weights
w1 = wy = w/2, or if we have one larger weight w; = w, and one zero weight

= 0. In the first case, the weight-decay term 5, w? = w?/2 while in the
second case Y, wi = w?.

This problem can be overcome by using a modified decay term of the form

(Hanson and Pratt, 1989; Lang and Hinton, 1990; Weigend et al., 1990)

+VZ = +w2 (9.74)

where @ is a parameter which sets a scale and is usually chosen to be of order
unity. Use of this form of regularizer has been called weight elimination. As shown
in Exercise 9.9, for weight values somewhat larger than @ this penalty term will
tend favour a few large weights rather than many small ones, and so is more
likely to eliminate weights from the network than is the simple weight-decay
term in (9.73). This leads to a form of network pruning which is combined with
the training process itself, rather than alternating with it. In practice weight
values will typically not be reduced to zero, but it would be possible to remove
weights completely if their values fell below some small threshold. Note that this
algorithm involves the scale parameter @ whose value must be chosen by hand.

9.5.5 Node pruning

Instead of pruning individual weights from a network we can prune complete
units, and several techniques for achieving this have been suggested. Mozer and
Smolensky (1989) adopt an algorithm based on alternate phases of training and
removal of units. This requires a measure of the saliency s; of a unit, of which
the most natural definition would be the increase in the error function (measured
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with respect to the training set) as a result of deleting a unit j
s; = E(without unit j) — E(with unit j). (9.75)

As with individual weights, such a measure is relatively slow to evaluate since it
requires a complete pass through the data set for each unit, although it is clearly
less computationally expensive to repeat the error measurement for each unit
than it is for each weight. To find a convenient approximation, we can introduce
a factor a; which multiplies the summed input to each unit (except the output
units), so that the forward propagation equations become

z=g (aj Zuw) (9.76)

where the activation function g(-) is defined such that g(0) = 0, as would be the
case for g{a) = tanha, for example. Then with o; = 0 the unit is absent, and
with o = 1 the unit is present. Then (9.75) can be written as

Sj = E(a,- == 1) - E(a]- = 0) (977)
which can then be approximated by the derivative with respect to a;:

): :
5= o, = (9.78)

These derivatives are easily evaluated using an extension of the back-propagation
algorithm {Exercise 9.10). Note that the «; do not actually appear in the forward
propagation equations, but are introduced simply as a convenient way to define,
and evaluate, the s;. In order to make this approach work in practice, Mozer
and Smolensky (1989) found they had to use a Minkowski-R error with R = 1
(Section 6.2), together with an exponentially weighted running average estimate
of s; to smooth out fluctuations. Other forms of node-pruning algorithm have
been considered by Hanson and Pratt (1989), Chauvin (1989) and Ji et al. (1990).

9.6 Committees of networks

It is common practice in the application of neural networks to train many differ-
ent candidate networks and then to select the best, on the basis of performance
on an independent validation set for instance, and to keep only this network and
to discard the rest. There are two disadvantages with such an approach. First,
all of the effort involved in training the remaining networks is wasted. Second,
the generalization performance on the validation set has a random component
due to the noise on the data, and so the network which had best performance on
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the validation set might not be the one with the best performance on new test
data.

These drawbacks can be overcome by combining the networks together to
form a committee (Perrone and Cooper, 1993; Perrone, 1994). The importance of
such an approach is that it can lead to significant improvements in the predictions
on new data, while involving little additional computational effort. In fact the
performance of a committee can be better than the performance of the best single
network used in isolation. For notational convenience we consider networks with a
single output y, although the generalization to several outputs is straightforward.
Suppose we have a set of L trained network models y;(x) where i = 1,..., L.
This set might contain networks having different numbers of hidden units, or
networks with the same architecture but trained to different local minima of
the error function. It might even include different kinds of network models or
a mixture of network and conventional models. We denote the true regression
function which we are seeking to approximate by h(x). Then we can write the
mapping function of each network as the desired function plus an error:

yi(x) = h(x) + €;(x). (9.79)
The average sum-of-squares error for model y;(x) can be written as
E; = E[{yi(x) — h(x)}?] = £[e}] (9.80)

where £[] denotes the expectation, and corresponds to an integration over x
weighted by the unconditional density of x so that

Eled) = /e?(x)p(x) dx. (9.81)

From (9.80) the average error made by the networks acting individually is given
by

L L
1 1 )
==Y E =2 2. 9.82
EAV L 2+ Ez L 24 8[61] ( )

We now introduce a simple form of committee. This involves taking the out-
put of the committee to be the average of the outputs of the L networks which
comprise the committee. Thus, we write the committee prediction in the form

L
yoou () = 7 3" uilx). (9:83)
i=1

The error due to the committee can then be written as
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1< ? 1 Loy
Ecom=¢ (E;yi(x)—h(x)> =¢£ (E;Ei) . (9.84)

If we now make the assumption that the errors €;(x) have zero mean and are
uncorrelated, so that

5[6;] = 0, E[Giej] =0 lf] 7é i (985)

then, using (9.82), we can relate the committee error (9.84) to the average error
of the networks acting separately as follows:

L
1
Ecom = 35 )€ [€f] = 3 Eav. (9.86)
i=1

This represents the apparently rather dramatic result that the sum-of-squares
error can be reduced by a factor of L simply by averaging the predictions of
L networks. In practice, the reduction in error is generally much smaller than
this, because the errors ¢;(x) of different models are typically highly correlated,
and so assumption (9.85) does not hold. However, we can easily show that the
committee averaging process cannot produce an increase in the expected error
by making use of Cauchy’s inequality in the form

L 2 L
(Z e,-) <Ly ¢ (9.87)
i=1 i=1
which gives the result

Ecom < Exv. {9.88)

Typically, some useful reduction in error is generally obtained, and the method
has the advantage of being trivial to implement. There is a significant reduction
in processing speed for new data, but in many applications this will be irrelevant.

The reduction in error can be viewed as arising from reduced variance due
to the averaging over many solutions. This suggests that the members of the
committee should not individually be chosen to have optimal trade-off between
bias and variance, but should have relatively smaller bias, since the extra variance
can be removed by averaging.

The simple committee discussed so far involves averaging the predictions of
the individual networks. However, we might expect that some members of the
committee will typically make better predictions than other members. We would
therefore expect to be able to reduce the error still further if we give greater
weight to some committee members than to others. Thus, we consider a gener-
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alized committee prediction given by a weighted combination of the predictions
of the members of the form

YGEN(X) = Zaiyi(x) (9.89)
L

= h(x) + Z a;ei(x) (9.90)
=1

where the parameters o; will be determined shortly. We now introduce the error
correlation matrix C with elements given by

Cz'j = 8[ez-(x)ej(x)], (991)
This allows the error due to the generalized committee to be written as

Egen =€ [{yGEN(x) - h(x)}z] (9.92)

L L
(Z aiei) Zajej (993)
i=1 Jj=1

L L
Z Z OziCtjCij. (9‘94)

i=1 j=1

We can now determine optimal values for the o; by minimization of Eqgn. In
order to find a non-trivial minimum (i.e. a solution other than a; = 0 for all i)
we need to constrain the ;. This is most naturally done by requiring

L
D=1 (9.95)
i=1

The motivation for the form of this form of constraint will be discussed shortly.
Using a Lagrange multiplier A (Appendix C) to enforce this constraint, we see
that the minimum of (9.94) occurs when

23 a;jCij +A=0 (9.96)
j=1 :

which has the solution



368 9: Learntng and Generalization

;= _2 > (€™ Ny (9.97)

We can find the value of A by substituting (9.97) into the constraint equation
(9.95), which gives the solution for the «; in the form

;= Z’ (G 1)” ) (9.98)

Y1 S (C Y

Substituting (9.98) into (9.94) we find that the value of the error at the minimum
is given by

-1

L L .
Egen= > ) (CHy| - (9.99)

i=1 j=1
In summary, to set up this generalized committee, we train L network modeis,

and then compute the correlation matrix C using a finite-sample approximation
to (9.91) given by

N
Cyj = -117 Z(yi(X") =)y (x") — %) -, (9.100)

where t™ is the target value corresponding to input vector x™. We then find C~1,
evaluate the o; using (9.98), and then use (9.89) to make new predictions.

Since the generalized committee (9.89) is a special case of the simple average
committee (9.83) we have the inequality

Egen < EcoMm. (9.101)

The generalization error of a committee can be decomposed into the sum of
two terms (Exercise 9.11) to give (Krogh and Vedelsby, 1995)

£ [{yGEN(X) h(x ZC“I {yz(x h(x)} ]

- 3@ [ - vaen()Y?]  (9102)

which is somewhat analogous to the bias—variance decomposition discussed in
Section 9.1. The first term depends only on the errors of individual networks,
while the second term depends on the spread of predictions of the committee
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members relative to the committee prediction itself. As a result of the minus
sign in front of the second term on the right-hand side of (9.102) we see that,
if we can increase the spread of predictions of the committee members without
increasing the errors of the individual members themselves, then the committee
error will decrease. Furthermore, since this term is strictly negative, we can use
(9.80), (9.82) and (9.102), together with oy = 1/L, to give

Egen < Eav (9.103)

in keeping with (9.88) and (9.101).

One problem with the constraint (9.95) is that it does not prevent the weight-
ing coefficients in the committee from adopting large negative and positive values
and hence giving extreme predictions from the committee even when each mem-
ber of the committee might be making sensible predictions. We might therefore
seek to constrain the coeflicients further by insisting that, for each value of x, we
have Ymin(%x) < YoEN(X) < Ymax(x). This condition can be satisfied in general
by requiring that a; > 0 and D, oy = 1 (Exercise 9.12). The minimization of the
committee error subject to these two constraints is now a more difficult problem,
and can be tackled using techniques of linear programming (Press et al., 1992).

The usefulness of committee averaging is not limited to the sum-of-squares
error, but applies to any error function which is conver (Exercise 9.13). Sec-
tion 10.7 shows how the concept of a committee arises naturally in a Bayesian
framework.

9.7 Mixtures of experts

Consider the problem of learning a mapping in which the form of the mapping is
different for different regions of the input space. Although a single homogeneous
network could be applied to this problem, we might expect that the task would
be made easier if we assigned different ‘expert’ networks to tackle each of the
different regions, and then used an extra ‘gating’ network, which also sees the
input vector, to decide which of the experts should be used to determine the
output.

If the problem has an obvious decomposition of this form, then it may be
possible to design the network architecture by hand. However, a more powerful
and more general approach would be to discover a suitable decomposition as
part of the learning process. This is achieved by the mizture-of-ezperts model
(Jacobs et al., 1991), whose architecture is shown in Figure 9.14. All of the
expert networks, as well as the gating network, are trained together. The goal
of the training procedure is to have the gating network learn an appropriate
decomposition of the input space into different regions, with one of the expert
networks responsible for generating the outputs for input vectors falling within
each region.

The key is in the definition of the error function, which has a similar form
to that discussed in Section 6.4 in the context of the problem of modelling con-
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Figure 9.14. Architecture of the mixture-of-experts modular network. The gat-
ing network acts as a switch and, for any given input vector, decides which of
the expert networks will be used to determine the output.

ditional distributions, and it will be assumed that the reader is already familiar
with this material. The error function is given by the negative logarithm of the
likelihood with respect to a probability distribution given by a mixture of M
Gaussians of the form

M
E=-)In {Zai(xn)m(t”lxn)} (9.104)
n i=1
where the ¢;(t|x) are Gaussian functions given by

exp {_ﬂﬁl—"'(—x)'f} . (9.105)

¢i(t]x) = 5

1
(2m)e/?

These Gaussian functions have means p;{x) which are functions of the input
vector x, and are taken to have unit covariance matrices. There is one expert
network for each Gaussian, and the output of the ith expert network is a vector
representing the corresponding mean p,(x) where x is the input vector. The
mixing coefficients a;(x) are determined by the outputs ; of the gating network
through a softmax activation function

exp(Vi)

p(y:) 9.106
S exp(y;) (9:106)

P —

Thus, the gating network has one output for each of the expert networks, as
indicated in Figure 9.14. This model differs from that discussed in Section 6.4 in
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two minor respects. First, the variance parameters of the Gaussians here are set
to unity, whereas they were taken to be general functions of the input vector x
in Section 6.4, although is it clearly straightforward to incorporate more general
Gaussian functions into the present model. Second, different networks are used
to model the p;(x) and a;(x) here, whereas a single network was considered in
Section 6.4.

The mixture-of-experts network is trained by minimizing the error function
(9.104) simultaneously with respect to the weights in all of the expert networks
and in the gating network. When the trained network is used to make predictions
for new inputs, the input vector is presented to the gating network and the largest
output is used to select one of the expert networks. The input vector is then
presented to this expert network whose output p;(x) represents the prediction
of the complete system for this input. This corresponds to the selection of the
most probable branch of the conditional distribution on the assumption of weakly
overlapping Gaussians, as discussed on page 220.

It was also shown in Section 6.4 that the use of an error function based on a
mixture of Gaussians leads to an automatic soft clustering of the target vectors
into groups associated with the Gaussian components. In the context of the
mixture-of-experts architecture it therefore leads to an automatic decomposition
of the problem into distinct sub-tasks, each of which is effectively assigned to
one of the network modules.

Jacobs et al. (1991) demonstrate the performance of this algorithm on a
vowel recognition problem and show that it discovers a sensible decomposition
of the mapping. Jordan and Jacobs (1994) extend the mixture-of-experts model
by considering a hierarchical system in which each expert network can itself
consist of a mixture-of-experts model complete with its own gating network.
This can be repeated at any number of levels, leading to a tree structure. The
hierarchical architecture then allows simple linear networks to be used for the
experts at the leaves of the tree, while still allowing the overall system to have
flexible modelling capabilities. Jordan and Jacobs (1994) have shown that the
EM algorithm (Section 2.6.2) can be extended to provide an effective training
mechanism for such networks.

9.8 Model order selection

In this book, we have focused on the minimization of an error function as the
basic technique for determining values for the free parameters (the weights and
biases) in a neural network. Such an approach, however, is unable to determine
the optimum number of such parameters (or equivalently the optimum size of
network), because an increase in the number of parameters in a network will
generally allow a smaller value of the error to be found. Our goal is to find a
network which gives good predictions for new data, and this is typically not
the network which gives the smallest error with respect to the training data. In
the trade-off between bias and variance discussed in Section 9.1, we saw that
there is an optimal degree of complexity in a network model for a given data
set. Networks with too little flexibility will smooth out some of the underlying
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structure in the data (corresponding to high bias), while networks which are too
complex will over-fit the data (corresponding to high variance). In either case,
the performance of the network on new data will be poor.

Similar considerations apply to the problem of determining the values of
continuous parameters such as the regularization coefficient v in a regularized
error function of the form

E=FE+19. (9.107)

Too large a value for v leads to a network with large bias (unless the regulariza-
tion function happens to be completely consistent with the underlying structure
of the data) while too small a value allows the network solution to have too
high a variance. This was illustrated in Figures 9.4, 9.5 and 9.6. Again, direct
minimization of E cannot be used to find the optimum value for v, since this
gives ¥ = 0 and an over-fitted solution.

We shall assume that the goal is to find a network having the best general-
ization performance. This is usually the most difficult part of any pattern recog-
nition problem, and is the one which typically limits the practical application of
neural networks. In some cases, however, other criteria might also be important.
For instance, speed of operation on a serial computer will be governed by the
size of the network, and we might be prepared to trade some generalization ca-
pability in return for a smaller network. We shall not discuss these possibilities
further, but instead focus exclusively on the problem of generalization.

9.8.1 Cross-validation

Since our goal is to find the network having the best performance on new data,
the simplest approach to the comparison of different networks is to evaluate the
error function using data which is independent of that used for training. Various
networks are trained by minimization of an appropriate error function defined
with respect to a training data set. The performance of the networks is then
compared by evaluating the error function using an independent validation set,
and the network having the smallest error with respect to the validation set
is selected. This approach is called the hold out method. Since this procedure
can itself lead to some over-fitting to the validation set, the performance of the
selected network should be confirmed by measuring its performance on a third
independent set of data called a test set.

The application of this technique is illustrated in Figure 9.15 using the same
radial basis function example as used in plotting Figures 9.4, 9.5 and 9.6. Here
we have plotted the error on the training set, as well as the generalization error
measured with respect to an independent validation set, as functions of the
logarithm of the regularization coefficient v. As expected, the training error
decreases steadily with decreasing v while the validation error shows a minimum
at a value of Inv ~ 3.7, and thereafter increases with decreasing v. Figure 9.5
was plotted using this optimum value of v, and confirms the expectation that the
mapping with the best generalization is one which is closest to the underlying
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Figure 9.15. Plot of training and validation set errors versus the logarithm
of the regularization coefficient, for the example used to plot Figure 9.4. A
validation set of 1000 points was used to obtain a good estimate of the gen-
eralization error. The validation error shows a minimum at Inv =~ 3.7, which
was the value used to plot Figure 9.5.

function from which the data was generated (shown by the dashed curve in
Figure 9.5).

This example also provides a convenient opportunity to demonstrate the de-
pendence of bias and variance on the effective network complexity. The values of
the average bias and variance were estimated using knowledge of the true under-
lying generator of the data, given by the sine function h(z) in (9.34). For each
value of Inv, 100 data sets, each containing 30 points, were generated by sam-
pling h{z) and adding noise. A radial basis function network (with 30 Gaussian
basis functions, one centred on each data point as before) was then trained on
each of the data sets to give a mapping y;(x) where i = 1,...,100. The average
response of the networks is given by

1 100
U(z) = 755 D_vil@). (9.108)
i=1

Estimates of the integrated (bias)? and variance are then given by

(bias)® = D _{g(a") — h(z")}? (9.109)
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Figure 9.16. Plots of estimated (bias)? and variance as functions of the log-
arithm of the regularization coefficient v for the radial basis function model
used to plot Figure 9.15. Also shown is the sum of (bias)? and variance which

shows a minimum at a value close to the minimum of the validation error in
Figure 9.15.

100
1
variance = Z 160 Z{yi(m") ~ g™} (9.110)
n i=1

Figure 9.16 shows the (bias)? and the variance of the radial basis function model
as functions of In». The minimum of the sum of (bias)? and variance occurs at
a value of Inv close to that at which the minimum validation error occurs in
Figure 9.15 as expected.

In practice, the availability of labelled data may be severely limited and
we may not be able to afford the luxury of keeping aside part of the data set
for model comparison purposes. In such cases we can adopt the procedure of
cross-validation (Stone, 1974, 1978; Wahba and Wold, 1975). Here we divide the
training set at random into S distinct segments. We then train a network using
data from S — 1 of the segments and test its performance, by evaluating the error
function, using the remaining segment. This process is repeated for each of the
S possible choices for the seginent which is omitted from the training process,
and the test errors averaged over all S results. The partitioning of the data set is
illustrated in Figure 9.17. Such a procedure allows us to use a high proportion of
the available data (a fraction 1 — 1/S) to train the networks, while also making
use of all data points in evaluating the cross-validation error. The disadvantage
of such an approach is that it requires the training process to be repeated S times
which in some circumstances could lead to a requirement for large amounts of
processing time. A typical choice for S might be S = 10, although if data is very
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Figure 9.17. Schematic illustration of the partitioning of a data set into S seg-
ments for use in cross-validation. A network is trained S times, each time using
a version of the data set in which one of the segments (shown shaded) is omit-
ted. Each trained network is then tested on the data from the segment which
was omitted during training, and the results averaged over all S networks.

scarce we could go to the extreme limit of S = N for a data set with N data
points, which involves N separate training runs per network, each using (N — 1)
data points. This limit is known as the leave-one-out method.

9.8.2 Stacked generalization

In Section 9.6 we discussed the use of committees as a way of combining the pre-
dictions of several trained networks, and we saw how this could lead to reduced
errors. The committee techniques are based only on the training data, however,
and so do not directly address the issue of model complexity optimization. Con-
versely, techniques such as cross-validation represent s winner-takes-all strategy
in which only the best network is retained. The method of stacked generulization
(Walpert, 1992) provides a way of combining trained networks together which
uses partitioning of the data set (in a similar way to cross-validation) to find an
overall system with usually improved generalization performance.

Consider the modular network system shown in Figure 9.18. Here we see a set
of M ‘level-0’ networks NP to NV, whose outputs are combined using a ‘level-1"
network A/, The idea is to train the level-0 networks first and then examine their
behaviour when generalizing. This provides a new training set which is used to
train the level-1 network.

The specific procedure for setting up the stacked generalization system is as
follows. Let the complete set of available data be denoted by D. We first leave
aside a single data point from D as a validation point, and treat the remainder
of D as a training set. All level-0 networks are then trained using the training
partition and their cutputs are measured using the validation data point. This
generates a single pattern for a new data set which will be used to train the
level-1 network N1, The inputs of this pattern consist of the outputs of all the
level-0 networks, and the target value is the corresponding target value from the
original full data set. This process is now repeated with a different choice for
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Figure 9.18. Stacked generalization combines the outputs of several ‘level-0’
networks A?,...,N¥ using a ‘level-1’ network N to give the final output.
The level-1 network corrects for the biases exhibited by the level-0 networks.

X

the data point which is kept aside. After cycling through the full data set of
N points we have N patterns in the new data set, which is now used to train
NI Finally, all of the level-0 networks are re-trained using the full data set D.
Predictions on new data can now be made by presenting new input vectors to the
level-0 networks and taking their outputs as the inputs to the level-1 network,
whose output constitutes the predicted output. Wolpert (1992) gives arguments
to suggest that the level-0 networks should contain a wide variety of different
models, while the level-1 network should provide a relatively smooth function
and hence should have a relatively simple structure.

There are many possible variations of stacked generalization. For instance, if
the data set is large, or if the level-0 networks are computationally intensive to
train, we might leave aside a larger fraction of D than just a single data point
when training the level-0 networks. Stacking can also be applied in a slightly
modified form to improve the generalization of a single network, and it can also
be extended to more than two levels of networks (Wolpert, 1992).

9.8.3 Complexity criteria

In conventional statistics, various criteria have been developed, often in the con-
text of linear models, for assessing the generalization performance of trained
models without the use of validation data. These include the Cp-statistic (Mal-
lows, 1973), the final prediction error (Akaike, 1969), the Akaike information
criterion (Akaike, 1973) and the predicted squared error (Barron, 1984). Such
criteria take the general form of a prediction error (PE) which consists of the
sum of two terms

PE = training error + complexity term (9.111)
where the complexity term represents a penalty which grows as the number of

free parameters in the model grows. Thus, if the model is too simple it will give
a large value for the criterion because the residual training error is large, while a
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model which is too complex will have a large value for the criterion because the
complexity term is large. The minimum value for the criterion then represents
a trade-off between these two competing effects. For a sum-of-squares error a
typical form for such a criterion would be

2E 2w
PE = ~ —1702 (9.112)
where FE is the value of the sum-of-squares error with respect to the training set
after training is complete, IV is the total number of data points in the training
set, W is the number of adjustable parameters (weights) in the model, and o2 is
the variance of the noise on the data (which must be estimated).

Moody (1992) has generalized such criteria to deal with non-linear models
and to allow for the presence of a regularization term. By performing a local
linearization of the network mapping function he obtains a criterion, called the
generalized prediction error, of the form

2E 2y ,
E=—r+ — .
GPE = 7=+ SJo (9.113)

where 7 is the effective number of parameters in the network, which for linear
networks is given by

7_2Ai+u (9.114)

i=1
where \; are the eigenvalues of the Hessian matrix of the unregularized error
evaluated at the error minimum, and v is the regularization coefficient. The
form of v in (9.114) should be compared to the expression for the minimum of
the regularized error given by (9.24). The reason that v is the effective number
of parameters is that eigenvalues which satisfy A; > v contribute 1 to the sum
in (9.114), while eigenvalues which satisfy A\; <« v contribute 0 to the sum. We
shall not discuss the origin of this criterion here, since we give a more general
discussion from the Bayesian perspective in Chapter 10.

9.9 Vapnik—Chervonenkis dimension

Some useful insight into generalization is obtained by considering the worst-
case performance for a particular trained network. The theory of this has been
developed mainly in the context of networks with binary inputs (Baum and
Haussler, 1989; Abu-Mostafa, 1989; Hertz et al., 1991). For simplicity we consider
networks having a single binary output.

Suppose that the input vectors are generated from some probability distri-
bution P(x) and that the target data is given by a (noiseless) function h(x). For
any given model y{x), we can define the average generalization ability g(y) to
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be the probability that y(x) = h(x) for the given distribution P(x). This says
that, if we pick an input vector x at random from the distribution P(x), then
the probability that the two functions will agree is given by g(y).

In practice, we cannot calculate g(y) directly because we do not know the
true probability distribution P(x), nor do we know the function h(x). What we
typically do instead is to train a network using a set of N training patterns to
give a network function y(x;w), and then measure the fraction of the training
set which the network correctly classifies, which we shall denote by gn(y). In
the limit of an infinite data set N — oo we would expect to find gy (y) — g{(¥),
by definition of g(y). However, for a finite-size training set the network func-
tion y(x; w) will be partly tuned to the particular training set (the problem of
over-fitting) and so we would expect gn(y) > g(y). For instance, the network
might learn the training set perfectly, so that gy (y) = 1, and yet the predictive
performance on new data drawn from the same distribution might be poor so
that g(y) <« 1. We say that gn(y) is a biased estimate of g(y), since it is system-
atically different from the true value. 1t gives an over-optimistic estimate of the
generalization performance of the network.

If we now consider the set of all functions {y} which the network can im-
plement, we can study the maximum discrepancy which can occur betwcen the
generalization performance estimated from the sample of size N and the true
generalization g(y), given by

mex lgn(¥) — gl (9.115)

as this gives a worst-case measure of generalization performance. Given a small
quantity €, a theorem due to Vapnik and Chervonenkis (1971) gives an upper
bound on the probability of the difference in (9.115) exceeding e, given by

Pr (maxlow(s) ~ 9] > €) < 4A(EN)oxp(~¢*N /) (9.116)
{v}

where A(N) is known as the growth function and will be discussed shortly.
Since this result applies to any of the functions y which can be implemented
by the network, we can apply it to the particular function y{x; w) obtained from
training the network on the given data set. Then (9.116) gives an upper bound
on the discrepancy between our estimate gy (y) of the prediction error and the
true generalization performance g(y). Our aim is to make this bound as small as
possible (i.e. make the right-hand side of (9.116) as small as possible), and we
can seek to do this by increasing the number N of training patterns. Suppose
for instance that we obtained perfect results (zero residual error) on the training
data, so that gn(y) = 1. Then, for a given value of ¢ if we could reduce the right-
hand side of (9.116) to a small value § = 0.05, say, we would be 95% certain that

gly) >1—e
The function A(N) in (9.116) gives the number of distinct binary functions
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Figure 9.19. General form of the growth function A(N) shown as a plot of
log, A versus N. The function initially grows like 2" up to some critical num-
ber of patterns, given by N = dvc, at which point the growth slows to become
a power law. The value dvc is called the Vapnik—Chervonenkis dimension.

(dichotomies) which can be implemented by the network on a set of N input
vectors x™, where n = 1,..., N. The number of potential different patterns is
2N and if our network could represent all of these then A(N) = 2V. In this
case, it is clear that we cannot make the right-hand side of (9.116) smaller by
increasing N. In practice, our network will have a finite capacity, and so for
large enough N it will not be capable of representing all possible 2V patterns.
The general form of the function A(N) is shown in Figure 9.19. For small N it
grows like 2V, which says that the network can store exactly all of the training
patterns. Beyond some critical number of patterns, however, the growth starts to
slow down. This critical number of patterns, denoted dyg, is called the Vapnik—
Chervonenkis dimension, or VC dimension (Blumer et al., 1989; Abu-Mostafa,
1989) and is a property of the particular network. In fact, it can be shown
{Cover, 1965; Vapnik and Chervonenkis, 1971) that the function A(N) is either
identically equal to 2V for all N, or is bounded above by the relation

A(N) < N¥ve 41, (9.117)

Since this now has only polynomial growth, it is clear that we can make the
right-hand side of (9.116) arbitrarily small by making N sufficiently large. This
is an intuitively reasonable result. If there are so few patterns that the network
can store them all perfectly, we cannot expect it to generalize. Only when the
network has successfully learned a number of patterns which is much larger than
its intrinsic storage capacity for random patterns (as measured by dy¢) will the
network have captured some of the structure in the data, and only then can
we expect it to generalize to new data. Consider a set of data points which are
generated at random. The only way to learn all of the patterns in such a data
set is for the network to store the training patterns individually, which requires
a network with dygc > N. For such data sets we cannot expect to find a network
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which generalizes.

The above results give us some idea of how many patterns we need to use to
train a network in order to get good generalization performance in terms of the
VC dimension of the network. Baum and Haussler (1989) considered multi-layer
feed-forward networks of 