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FOREWORD 
Geoffrey Hinton 
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University of Toronto 

For those entering the field of artificial neural networks, there has been an acute 
need for an authoritative textbook that explains the main ideas clearly and con­
sistently using the basic tools of linear algebra, calculus, and simple probability 
theory. There have been many attempts to provide such a text, but until now, 
none has succeeded. Some authors have failed to separate the basic ideas and 
principles from the soft and fuzzy intuitions that led to some of the models as 
well as to most of the exaggerated claims. Others have been unwilling to use the 
basic mathematical tools that are essential for a rigorous understanding of the 
material. Yet others have tried to cover too many different kinds of neural net­
work without going into enough depth on any one of them. The most successful 
attempt to date has been "Introduction to the Theory of Neural Computation" 
by Hertz, Krogh and Palmer. Unfortunately, this book started life as a graduate 
course in statistical physics and it shows. So despite its many admirable qualities 
it is not ideal as a general textbook. 

Bishop is a leading researcher who has a deep understanding of the material 
and has gone to great lengths to organize it into a sequence that makes sense. He 
has wisely avoided the temptation to try to cover everything and has therefore 
omitted interesting topics like reinforcement learning, Hopfield Networks and 
Boltzmann machines in order to focus on the types of neural network that are 
most widely used in practical applications. He assumes that the reader has the 
basic mathematical literacy required for an undergraduate science degree, and 
using these tools he explains everything from scratch. Before introducing the 
multilayer perceptron, for example, he lays a solid foundation of basic statistical 
concepts. So the crucial concept of overfitting is first introduced using easily 
visualised examples of one-dimensional polynomials and only later applied to 
neural networks. An impressive aspect of this book is that it takes the reader all 
the way from the simplest linear models to the very latest Bayesian multilayer 
neural networks without ever requiring any great intellectual leaps. 

Although Bishop has been involved in some of the most impressive applica­
tions of neural networks, the theme of the book is principles rather than applica­
tions. Nevertheless, it is much more useful than any of the applications-oriented 
texts in preparing the reader for applying this technology effectively. The crucial 
issues of how to get good generalization and rapid learning are covered in great 
depth and detail and there are also excellent discussions of how to preprocess 
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the input and how to choose a suitable error function for the output. 
It is a sign of the increasing maturity of the field that methods which were 

once justified by vague appeals to their neuron-like qualities can now be given a 
solid statistical foundation. Ultimately, we all hope that a better statistical un­
derstanding of artificial neural networks will help us understand how the brain 
actually works, but until that day comes it is reassuring to know why our cur­
rent models work and how to use them effectively to solve important practical 
problems. 



PREFACE 

I n t r o d u c t i o n 

In recent years neural computing has emerged as a practical technology, with 
successful applications in many fields. The majority of these applications are 
concerned with problems in pattern recognition, and make use of feed-forward 
network architectures such as the multi-layer perceptron and the radial basis 
function network. Also, it has also become widely acknowledged that success­
ful applications of neural computing require a principled, rather than ad hoc, 
approach. My aim in writing this book has been to provide a more focused 
treatment of neural networks than previously available, which reflects these de­
velopments. By deliberately concentrating on the pattern recognition aspects of 
neural networks, it has become possible to treat many important topics in much 
greater depth. For example, density estimation, error functions, parameter op­
timization algorithms, data pre-processing, and Bayesian methods are each the 
subject of an entire chapter. 

From the perspective of pattern recognition, neural networks can be regarded 
as an extension of the many conventional techniques which have been developed 
over several decades. Indeed, this book includes discussions of several concepts in 
conventional statistical pattern recognition which I regard as essential for a clear 
understanding of neural networks. More extensive treatments of these topics can 
be found in the many texts on statistical pattern recognition, including Duda and 
Hart (1973), Hand (1981), Devijver and Kifctler (1982), and Fiikunaga (1990). 
Recent review articles by Ripley (1994) and Cheng and Titterington (1994) have 
also emphasized the statistical underpinnings of neural networks. 

Historically, many concepts in neural computing have been inspired by studies 
of biological networks. The perspective of statistical pattern recognition, how­
ever, offers a much more direct and principled route to many of the same con­
cepts. For example, the sum-and-threshold model of a neuron arises naturally as 
the optimal discriminant function needed to distinguish two classes whose distri­
butions are normal with equal covariance matrices. Similarly, the familiar logistic 
sigmoid is precisely the function needed to allow the output of a network to be 
interpreted as a probability, when the distribution of hidden unit activations is 
governed by a member of the exponential family. 

An important assumption which is made throughout the book is that the pro­
cesses which give rise to the data do not themselves evolve with time. Techniques 
for dealing with non-stationary sources of data are not so highly developed, nor so 
well established, as those for static problems. Furthermore, the issues addressed 
within this book remain equally important in the face of the additional compli­
cation of non-stationarity. It should be noted that this restriction does not mean 
that applications involving the prediction of time series are excluded. The key 
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consideration for time series is not the time variation of the signals themselves, 
but whether the underlying process which generates the data is itself evolving 
with time, as discussed in Section 8.4. 

Use as a course t ex t 

This book is aimed at researchers in neural computing as well as those wishing 
to apply neural networks to practical applications. It is also intended to be used 
used as the primary text for a graduate-level, or advanced undergraduate-level, 
course on neural networks. In this case the book should be used sequentially, and 
care has been taken to ensure that where possible the material in any particular 
chapter depends only on concepts developed in earlier chapters. 

Exercises are provided at the end of each chapter, and these are intended 
to reinforce concepts developed in the main text, as well as to lead the reader 
through some extensions of these concepts. Each exercise is assigned a grading 
according to its complexity and the length of time needed to solve it, ranging from 
(*) for a short, simple exercise, to (***) for a more extensive or more complex 
exercise. Some of the exercises call for analytical derivations or proofs, while 
others require varying degrees of numerical simulation. Many of the simulations 
can be carried out using numerical analysis and graphical visualization packages, 
while others specifically require the use of neural network software. Often suitable 
network simulators are available as add-on tool-kits to the numerical analysis 
packages. No particular software system has been prescribed, and the course 
tutor, or the student, is free to select an appropriate package from the many 
available. A few of the exercises require the student to develop the necessary 
code in a standard language such as C or C + + . In this case some very useful 
software modules written in C, together with background information, can be 
found in Press et al. (1992). 

Prerequis i tes 

This book is intended to be largely self-contained as far as the subject of neural 
networks is concerned, although some prior exposure to the subject may be 
helpful to the reader. A clear understanding of neural networks can only be 
achieved with the use of a certain minimum level of mathematics. It is therefore 
assumed that the reader has a good working knowledge of vector and matrix 
algebra, as well as integral and differential calculus for several variables. Some 
more specific results and techniques which are used at a number of places in the 
text are described in the appendices. 

Overview of t h e chap te r s 

The first chapter provides an introduction to the principal concepts of pattern 
recognition. By drawing an analogy with the problem of polynomial curve fit­
ting, it introduces many of the central ideas, such as parameter optimization, 
generalization and model complexity, which will be discussed at greater length in 
later chapters of the book. This chapter also gives an overview of the formalism 
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of statistical pattern recognition, including probabilities, decision criteria and 
Bayes' theorem. 

Chapter 2 deals with the problem of modelling the probability distribution of 
a set of data, and reviews conventional parametric and non-parametric methods, 
as well as discussing more recent techniques based on mixture distributions. 
Aside from being of considerable practical importance in their own right, the 
concepts of probability density estimation are relevant to many aspects of neural 
computing. 

Neural networks having a single layer of adaptive weights are introduced in 
Chapter 3. Although such networks have less flexibility than multi-layer net­
works, they can play an important role in practical applications, and they also 
serve to motivate several ideas and techniques which are applicable also to more 
general network structures. 

Chapter 4 provides a comprehensive treatment of the multi-layer perceptron, 
and describes the technique of error back-propagation and its significance as a 
general framework for evaluating derivatives in multi-layer networks. The Hessian 
matrix, which plays a central role in many parameter optimization algorithms 
as well as in Bayesian techniques, is also treated at length. 

An alternative, and complementary, approach to representing general non­
linear mappings is provided by radial basis function networks, and is discussed in 
Chapter 5. These networks are motivated from several distinct perspectives, and 
hence provide a unifying framework linking a number of different approaches. 

Several different error functions can be used for training neural networks, 
and these are motivated, and their properties examined, in Chapter 6. The cir­
cumstances under which network outputs can be interpreted as probabilities are 
discussed, and the corresponding interpretation of hidden unit activations is also 
considered. 

Chapter 7 reviews many of the most important algorithms for optimizing the 
values of the parameters in a network, in other words for network training. Simple 
algorithms, based on gradient descent with momentum, have serious limitations, 
and an understanding of these helps to motivate some of the more powerful 
algorithms, such as conjugate gradients and quasi-Newton methods. 

One of the most important factors in determining the success of a practical 
application of neural networks is the form of pre-processing applied to the data. 
Chapter 8 covers a range of issues associated with data pre-processing, and de­
scribes several practical techniques related to dimensionality reduction and the 
use of prior knowledge. 

Chapter 9 provides a number of insights into the problem of generalization, 
and describes methods for addressing the central issue of model order selec­
tion. The key insight of the bias-variance trade-off is introduced, and several 
techniques for optimizing this trade-off, including regularization, are treated at 
length. 

The final chapter discusses the treatment of neural networks from a Bayesian 
perspective. As well as providing a more fundamental view of learning in neural 
networks, the Bayesian approach also leads to practical procedures for assigning 
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error bars to network predictions and for optimizing the values of regularization 
coefficients. 

Some useful mathematical results are derived in the appendices, relating to 
the properties of symmetric matrices, Gaussian integration, Lagrange multipliers, 
calculus of variations, and principal component analysis. 

An extensive bibliography is included, which is intended to provide useful 
pointers to the literature rather than a complete record of the historical devel­
opment of the subject. 

N o m e n c l a t u r e 

In trying to find a notation which is internally consistent, I have adopted a 
number of general principles as follows. Lower-case bold letters, for example v, 
are used to denote vectors, while upper-case bold letters, such as M , denote 
matrices. One exception is that I have used the notation y to denote a vector 
whose elements yn represent the values of a variable corresponding to different 
patterns in a training set, to distinguish it from a vector y whose elements yk 
correspond to different variables. Related variables are indexed by lower-case 
Roman letters, and a set of such variables is denoted by enclosing braces. For 
instance, {xt} denotes a set of input variables .T;, where ?' = ! , . . . , ( / . Vectors are 
considered to be column vectors, with the corresponding row vector denoted by 
a superscript T indicating the transpose, so that, for example, x r = (xi,..., x,i)-
Similarly, M 1 denotes the transpose of a matrix M. The notation M = (A/y) 
is used to denote the fact that the matrix M has the elements My, while the 
notation (M)y is used to denote the ij element of a matrix M. The Euclidean 
length of a vector x is denoted by ||x||, while the magnitude of a scalar x is 
denoted by |.r|. The determinant of a matrix M is written as |M| . 

I typically use an upper-case P to denote a probability and a lower-case p to 
denote a probability density. Note that I use p(x) to represent the distribution 
of x and p(y) to represent the distribution of y, so that these distributions are 
denoted by the same symbol p even though they represent different functions. By 
a similar abuse of notation 1 frequently use, for example, yk to denote the outputs 
of a neural network, and at the same time use j/it(x; w) to denote the non-linear 
mapping function represented by the network. I hope these conventions will save 
more confusion than they cause. 

To denote functionals (Appendix D) I use square brackets, so that, for exam­
ple, E[f] denotes functional of the function / ( x ) . Square brackets are also used 
in the notation £ [Q] which denotes the expectation (i.e. average) of a random 
variable Q. 

I use the notation O(N) to denote that a quantity is of order N. Given two 
functions f(N) and g(N), we say that / = O(g) if f(N) < Ag(N), where A is 
a constant, for all values of N (although we are typically interested in large A^). 
Similarly, we will say that / ~ g if the ratio f(N)/g(N) -> 1 as W — > oo. 

I find it indispensable to use two distinct conventions to describe the weight 
parameters in a network. Sometimes it is convenient to refer explicitly to the 
weight which goes to a unit labelled by j from a unit (or input) labelled by i. 
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Such a weight will be denoted by Wji- In other contexts it is more convenient 
to label the weights using a single index, as in Wk, where k runs from 1 to W, 
and W is the total number of weights. The variables Wk can then be gathered 
together to make a vector w whose elements comprise all of the weights (or more 
generally all of the adaptive parameters) in the network. 

The notation r5y denotes the usual Kronecker delta symbol, in other words 
5ij — 1 if i — j and 6y = 0 otherwise. Similarly, the notation S(x) denotes the 
Dirac delta function, which has the properties 6(x) — 0 for x /= 0 and 

TOO 

/ 5(x) dx = 1. 

111 (/-dimensions the Dirac delta function is defined by 

d 

6{x) = Y[8{Xi). 
<=i 

The symbols used for the most commonly occurring quantities in the book 
are listed below: 

c number of outputs; number of classes 
Cfc fcth c lass 
d number of inputs 
E error function 
£{Q) expectation of a random variable Q 
g(-) activation function 
i input label 
j hidden unit label 
k output unit label 
M number of hidden units 
n pattern label 
N number of patterns 
P(-) probability 
p(-) probability density function 
t target value 
T time step in iterative algorithms 
W number of weights and biases in a network 
x network input variable 
y network output variable 
z activation of hidden unit 
In logarithm to base e 
!og2 logarithm to base 2 
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1 

STATISTICAL PATTERN RECOGNITION 

The term pattern recognition encompasses a wide range of information processing 
problems of great practical significance, from speech recognition and the classi­
fication of handwritten characters, to fault detection in machinery and medical 
diagnosis. Often these are problems which many humans solve in a seemingly 
effortless fashion. However, their solution using computers has, in many cases, 
proved to be immensely difficult. In order to have the best opportunity of devel­
oping effective solutions, it is important to adopt a principled approach based 
on sound theoretical concepts. 

The most general, and most natural, framework in which to formulate solu­
tions to pattern recognition problems is a statistical one, which recognizes the 
probabilistic nature both of the information we seek to process, and of the form 
in which we should express the results. Statistical pattern recognitionis a well 
established field with a long history. Throughout this book, we shall view neu­
ral networks as an extension of conventional techniques in statistical pattern 
recognition, and we shall build on, rather than ignore, the many powerful results 
which this field offers. 

In this first chapter we provide a gentle introduction to many of the key 
concepts in pattern recognition which will be central to our treatment of neural 
networks. By using a simple pattern classification example, and analogies to the 
problem of curve fitting, we introduce a number of important issues which will 
re-emerge in later chapters in the context of neural networks. This chapter also 
serves to introduce some of the basic formalism of statistical pattern recognition. 

1.1 A n example — character recognition 

We can introduce many of the fundamental concepts of statistical pattern recog­
nition by considering a simple, hypothetical, problem of distinguishing hand­
written versions of the characters 'a' and 'b' . Images of the characters might be 
captured by a television camera and fed to a compute:*, and we seek an algo­
rithm which can distinguish as reliably as possible between the two characters. 
An image is represented by an array of pixels, as illustrated in Figure 1.1, each 
of which carries an associated value which we shall denote- by a:* (where the 
index i labels the individual pixels). The value of Xi might, for instance, range 
from 0 for a completely white pixel to 1 for a completely black pixel. It is of­
ten convenient to gather the x% variables together and denote them by a single 
vector x = {x\,..., Xd)T where d is the total number of such variables, and the 
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Figure 1.1. Illustration of two hypothetical images representing handwritten 
versions of the characters 'a' and 'b'. Each image is described by an array of 
pixel values xt which range from 0 to 1 according to the fraction of the pixel 
square occupied by black ink. 

superscript T denotes the transpose. In considering this example we shall ignore 
a number of detailed practical considerations which would have to be addressed 
in a real implementation, and focus instead on the underlying issues. 

The goal in this classification problem is to develop an algorithm which will 
assign any image, represented by a vector x, to one of two classes, which we 
shall denote by C'j., where k -- 1,2, so that class C\ corresponds to the character 
'a' and class C2 corresponds to 'b ' . We shall suppose that we are provided with 
a large number of examples of images corresponding to both 'a' and '!>', which 
have already been classified by a human. Such a collection will be referred to as 
a data set. In the statistics literature it would be called a sample. 

One obvious problem which we face stems from the high dimensionality of 
the data which we arc collecting. For a typical image size of 256 x 256 pixels, 
each image can be represented as a point in a c/-dimcnsiona] space, where d = 
65 536. The axes of this space represent the grey-level values of the corresponding 
pixels, which in this example might be represented by 8-bit numbers. In principle 
we might think of storing every possible image together with its corresponding 
class label. In practice, of course, this is completely impractical due to the very 
large number of possible images: for a 256 x 250 image with 8-bit pixel values 
there would be 2 8 x 2 5 B x 2 5 C ~ l0 l r , s o o ° different images. By contrast, we might 
typically have a few thousand examples in our training set. It is clear then that, 
the classifier system must be designed so as to be able to classify correctly a 
previously unseen image vector. This is the problem of generalization, which is 
discussed at length in Chapters 9 and 10. 

As we shall see in Section 1.4, the presence of a large number of input variables 
can present some severe problems for pattern recognition systems. One technique 
to help alleviate such problems is to combine input variables together to make a 
smaller number of new variables called features. These might be constructed 'by 
hand' based on some understanding of the particular problem being tackled, or 
they might be derived from the data by automated procedures. In the present 
example, we could, for instance, evaluate the ratio of the height of the character 
to its width, which we shall denote by .TJ, since we might expect that characters 
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Figure 1.2. Schematic plot of the histograms of the feature variable x,\ given 
by the ratio of the height of a character to its width, for a. data set of images 
containing examples from classes C\ = 'a' and Ci = 'b'. Notice that characters 
from class Ci tend to have larger values of ,ri than characters from class C\, 
but that there is a significant overlap between the. two histograms. If a new 
image is observed which has a value of xj given by A, we might expect the 
image is more likely to belong to class C\ than C%. 

from class C'2 (corresponding to 'b') will typically have larger values of X\ than 
characters from class C\ (corresponding to 'a'). We might then hope that the 
value of x\ alone will allow new images to be assigned to the correct class. 
Suppose we measure the value of x\ for each of the images in our data set, and 
plot their values as histograms for each of the two classes. Figure 1.2 shows the 
form which these histograms might take. We see that typically examples of the 
character 'b ' have larger values of x,\ than examples of the character 'a', but we 
also see that the two histograms overlap, so that occasionally we might encounter 
an example of 'b ' which has a smaller value of x,\ than some example of 'a'. We 
therefore cannot distinguish the two classes perfectly using the value of x\ alone. 

If we suppose for the moment that the only information available is the 
value of x\, we may wish to know how to make best use of it to classify a new 
imago so as to minimize the number of misclassifications. For a new image which 
has a value of .TI given by A as indicated in Figure 1.2, we might expect that, 
the image is more likely to belong to class C\ than to class Ci- One approach 
would therefore be to build a classifier system which simply uses a threshold for 
the value of x\ and which classifies as C2 any image for which x.\ exceeds the 
threshold, and which classifies all other images as Ci. We might expect that the 
number of misclassifications in this approach would be minimized if we choose 
the threshold to be at the point where the two histograms cross. This intuition 
turns out to be essentially correct, as we shall see in Section 1.9. 

The classification procedure we have described so far is based on the evalu­
ation of xj followed by its comparison with a threshold. While we would expect 
this to give some degree of discrimination between the two classes, it suffers 
from the problem, indicated in Figure 1.2, that there is still significant overlap 
of the histograms, and hence we must expect that many of the new characteis 
on which we might test it will he iiiisclassifiee?. One way to try to improve the 
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figure 1.3. A hypothetical classification problem involving two feature vari­
ables xi and X2- Circles denote patterns from class Ci and crosses denote 
patterns from class C2. The decision boundary (shown by the line) is able to 
provide good separation of the two classes, although there are still a few pat­
terns which would be incorrectly classified by this boundary. Note that if the 
value of either of the two features were considered separately (corresponding 
to a projection of the data onto one or other of the axes), then there would be 
substantially greater overlap of the two classes. 

situation is to consider a second feature %i (whose actual definition we need not 
consider) and to try to classify new images on the basis of the values of x\ and 
x-2 considered together. The reason why this might be beneficial is indicated in 
Figure 1.3. Here we see examples of patterns from two classes plotted in the 
(£1,2:2) space. It is possible to draw a line in this space, known as a decision 
boundary, which gives good separation of the two classes. New patterns which lie 
above the decision boundary are classified as belonging to class C\ while patterns 
falling below the decision boundary are classified as Ci- A few examples are still 
incorrectly classified, but the separation of the patterns is much better than if 
either feature had been considered individually, as can be seen by considering all 
of the data points projected as histograms onto one or other of the two axes. 

We could continue to consider ever larger numbers of (independent) features 
in the hope of improving the performance indefinitely. In fact, as we shall see in 
Section 1.4, adding too many features can, paradoxically, lead to a worsening of 
performance. Furthermore, for many real pattern recognition applications, it is 
the case that some overlap between the distributions of the classes is inevitable. 
This highlights the intrinsically probabilistic nature of the pattern classification 
problem. With handwritten characters, for example, there is considerable vari­
ability in the way the characters are drawn. We are forced to treat the measured 
variables as random quantities, and to accept that perfect classification of new 
examples may not always be possible. Instead we could aim to build a classifier 
which has the smallest probability of making a mistake. 
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1.2 Classification a n d regression 

The system considered above for classifying handwritten characters was designed 
to take an image and to assign it to one of the two classes C\ or C^- We can 
represent the outcome of the classification in terms of a variable y which takes 
the value 1 if the image is classified as C\, and the value 0 if it is classified as 
Ci. Thus, the overall system can be viewed as a mapping from a set of input 
variables xi,...,Xd, representing the pixel intensities, to an output variable y 
representing the class label. In more complex problems there may be several 
output variables, which we shall denote by y^ where A; = 1 , . . . ,c . Thus, if we 
wanted to classify all 26 letters of the alphabet, we might consider 26 output 
variables each of which corresponds to one of the possible letters. 

In general it will not be possible to determine a suitable form for the required 
mapping, except with the help of a data set of examples. The mapping is therefore 
modelled in terms of some mathematical function which contains a number of 
adjustable parameters, whose values are determined with the help of the data. 
We can write such functions in the form 

yfe=yfc(x;w) (1.1) 

where w denotes the vector of parameters. A neural network model, of the kind 
considered in this book, can be regarded simply as a particular choice for the 
set of functions y/t(x;w). In this case, the parameters comprising w are often 
called weights. For the character classification example considered above, the 
threshold on x was an example of a parameter whose value was found from 
the data by plotting histograms as in Figure 1.2. The use of a simple threshold 
function, however, corresponds to a very limited form for y(x;w), and for most 
practical applications we need to consider much more flexible functions. The 
importance of neural networks in this context is that they offer a very powerful 
and very general framework for representing non-linear mappings from several 
input variables to several output variables, where the form of the mapping is 
governed by a number of adjustable parameters. The process of determining the 
values for these parameters on the basis of the data set is called learning or 
training, and for this reason the data set of examples is generally referred to as a 
training set. Neural network models, as well as many conventional approaches to 
statistical pattern recognition, can be viewed as specific choices for the functional 
forms used to represent the mapping (1.1), together with particular procedures 
for optimizing the parameters in the mapping. In fact, neural network models 
often contain conventional approaches as special cases, as discussed in subsequent 
chapters. 

In classification problems the task is to assign new inputs to one of a number 
of discrete classes or categories. However, there are many other pattern recogni­
tion tasks, which we shall refer to as regression problems, in which the outputs 
represent the values of continuous variables. Examples include the determina­
tion of the fraction of oil in a pipeline from measurements of the attenuation 
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of gamma beams passing through the pipe, and the prediction of the value of 
a currency exchange rate at the some future time, given its values at a num­
ber of recent times. In fact, as discussed in Section 2.4, the term 'regression' 
refers to a specific kind of function defined in terms of an average over a random 
quantity. Both iegression and classification problems can be seen as particular 
cases of junction approximation. Jn the case of regression problems it is the re­
gression function (defined in Section G.1.3) which we wish to approximate, while 
for classif. Nation problems the functions which we seek to approximate arc the 
probabilities of men^crs'iip of the different classes expressed as functions of the 
input variables. Mcny of the key issues which need to be addressed in tackling 
pattern recognition problems are common both to classification and regression. 

1.3 Pre-processing and feature extraction 

Rather than represent the entire transformation from the set of input variables 
x i , . . . , x,]. to the set of or.("put variables i.q,. . . , yc by a single neural network func­
tion, there is often great benefit in breaking down the mapping into an initial 
pre-processing stage, followed by the parametrized neural network model itself. 
This is illustrated schematically in Figure 1.4. For many applications, the outputs 
from the network also undergo post-processing to convcit them to the requited 
form. In our character recognition example, the original input variables, given 
by the pixel values x,, were first transformed to a single variable xi. This is an 
example of a form of pre-processing which is generally called feature extraction. 
The distinction between the pre-processing stage and the neural network is not 
always clear cut, but often the pre-processing can be regarded as a fixed trans­
formation of the variables, while the network itself contains adaptive parameters 
whose values are set as part of the training process. The use of pre-processing 
can often greatly improve the performance of a pattern recognition system, and 
there are several reasons why this may be so, as we now discuss. 

In our character recognition example, we know l'..at the decision on whether 
to classify a character as 'a' or lb' should not, depend on where in the image that 
character is located. A classification system whose decisions are insensitive to 
the location of an object within an image is said to exhibit translation invari-
ance. The simple approach to character recognition considered above satisfies 
this property because the feature Xi (the ratio of height to width of the charac­
ter) does not depend on the character's position. Note that this feature variable 
also exhibits scale invariance, since it is unchanged if the size of the character is 
uniformly re-scaled. Such invariance properties are examples of prior knowledge, 
that is, information which we possess about the desired form of the solution 
which is additional to the information provided by the training data. The in­
clusion of prior knowledge into the desigir of a pattern recognition system can 
improve its performance dramatically, and the use of pre-processing is one im­
portant way of achieving this. Since pre-processing and feature extraction can 
have such a significant impact on the final performance of a pattern recognition 
system, we have devoted the whole of Chapter 8 to a detailed discussion of these 
topics. 
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neural 1 
j n e t w o f k j 

pre­
processing 

x, T-----T xd 
Figure 1.4. The majority of neural network applications require the original 
input variables x\,...,Xi to be transformed by some form of pre-processing 
to give a new set of variables xi,. . •, x# • These are then treated as the inputs 
to the neural netwoik, whose outputs are denoted by y\,... ,yc . 

1.4 T h e curse of d imensional i ty 
There is another important reason why pre-processing can have a profound ef­
fect on the performance of a pattern recognition system. To see this let us return 
again to the character recognition problem, where we saw that increasing the 
number of features from 1 to 2 could lead to an improvement in performance. 
This suggests that we might use an ever larger number of such features, or even 
dispense with feature extraction altogether and simply use all 65 536 pixel values 
directly as inputs to our neural network. In practice, however, we often find that, 
beyond a certain point, adding new features can actually lead to a reduction in 
the performance of the classification system. In order to understand this impor­
tant effect, consider the following very simple technique (not recommended in 
practice) for modelling non-linear mappings from a set of input variables x% to 
an output variable y on the basis of a set of training data. 

We begin by dividing each of the input variables into a number of intervals, 
so that the value of a vaiiable can be specified approximately by saying in which 
interval it lies. This leads to a division of the whole input space into a large 
number of boxes or cells as indicated in Figure 1.5. Each of the training examples 
corresponds to a point in one of the cells, and carries an associated value of 
the output variable y. If we arc given a new point in the input space, we can 
determine a corresponding value for y by finding which cell the point falls in, and 
then returning the average, value of y for all of the training points which lie in 
that cell. By increasing the number of divisions along each axis we could increase 
the precision with which the input variables can be specified. There is, however, a 
major problem. If each input variable is divided into M divisions, then the total 
number of cells is Md and this grows exponentially with the dimensionality of 
the input space. Since each cell must contain at least one data point, this implies 
that the quantity of (raining data needed to specify the mapping also grows 
exponentially. This phenomenon lias been termed the curse of dimensionalUy 
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Figure 1.5. One way to specify a mapping from a d-dimensional space x\,..., x£ 
to an output variable y is to divide the input space into a number of cells, as 
indicated here for the case of d = 3, and to specify the value of y for each of 
the cells. The major problem with this approach is that the number of cells, 
and hence the number of example data points required, grows exponentially 
with d, a phenomenon known as the 'curse of dimensionality'. 

(Bellman, 1961). If we are forced to work with a limited quantity of data, as we 
are in practice, then increasing the dimensionality of the space rapidly leads to 
the point where the data is very sparse, in which case it provides a very poor 
representation of the mapping. 

Of course, the technique of dividing up the input space into cells is a par­
ticularly inefficient way to represent a multivariate non-linear function. In sub­
sequent chapters we shall consider other approaches to this problem, based on 
feed-forward neural networks, which are much less susceptible to the curse of 
dimensionality. These techniques are able to exploit two important properties of 
real data. First, the input variables are generally correlated in some way, so that 
the data points do not fill out the entire input space but tend to be restricted to 
a sub-space of lower dimensionality. This leads to the concept of intrinsic dimen­
sionality which is discussed further in Section 8.6.1. Second, for most mappings 
of practical interest, the value of the output variables will not change arbitrarily 
from one region of input space to another, but will typically vary smoothly as 
a function of the input variables. Thus, it is possible to infer the values of the 
output variables at intermediate points, where no data is available, by a process 
similar to interpolation. 

Although the effects of dimensionality are generally not as severe as the exam­
ple of Figure 1.5 might suggest, it remains true that, in many problems, reducing 
the number of input variables can sometimes lead to improved performance for 
a given data set, even though information is being discarded. The fixed quantity 
of data is better able to specify the mapping in the lower-dimensional space, and 
this more than compensates for the loss of information. In our simple character 
recognition problem we could have considered all 65 536 pixel values as inputs 
to our non-linear model. Such an approach, however, would be expected to give 
extremely poor results as a consequence of the effects of dimensionality coupled 
with a limited size of data set. As we shall discuss in Chapter 8, one of the impor­
tant roles of pre-processing in many applications is to reduce the dimensionality 
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of the data before using it to train a neural network or other pattern recognition 
system. 

1.5 Polynomial curve fitting 

Many of the important issues concerning the application of neural networks 
can be introduced in the simpler context of polynomial curve fitting. Here the 
problem is to fit a polynomial to a set of N data points by the technique of 
minimizing an error function. Consider the Mth-order polynomial given by 

M 

y(x) = WQ+ wix H \- WMXM = 2 ^ WjX*'. (1.2) 
j=o 

This can be regarded as a non-linear mapping which takes x as input and pro­
duces y as output. The precise form of the function y(x) is determined by the 
values of the parameters woi • • • % , which are analogous to the weights in a 
neural network. It is convenient to denote the set of parameters (WQ, ..., WM) by 
the vector w. The polynomial can then be written as a functional mapping in 
the form y = y(x; w) as was done for more general non-linear mapping^^i (1.1). 

We shall label the data with the index n = 1 , . . . , N, so that each dAte point 
consists of a value of a;, denoted by a;", and a corresponding desired*<|$ilue for 
the output y, which we shall denote by tn. These desired outputs ajce called 
target values in the neural network context. In order to find suitable .yalues for 
the coefficients in the polynomial, it is convenient to consider the error between 
the desired output tn, for a particular input xn, and the corresponding value 
predicted by the polynomial function given by y(xn;w). Standard curj^e-fitting 
procedures involve minimizing the square of this error, summed over all data 
points, given by 

1 N 

E = -Y,{y(xn;v)-n2- .(i.3) 
7 1 = 1 

We can regard E as being a function of w, and so the polynomial can be fitted 
to the data by choosing a value for w, which we denote by w*, which minimizes 
E. Note that the polynomial (1.2) is a linear function of the parameters w 
and so (1.3) is a quadratic function of w. This means that the minimum of 
E can be found in terms of the solution of a set of linear algebraic equations 
(Exercise 1.5). Functions which depend linearly on the adaptive parameters are 
called linear models, even though they may be non-linear functions of the original 
input variables. Many concepts which arise in the study of such models are also 
of direct relevance to the more complex non-linear neural networks considered in 
Chapters 4 and 5. We therefore present an extended discussion of linear models 
(in the guise of 'single-layer networks') in Chapter 3. 


