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FOREWORD 
Geoffrey Hinton 
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University of Toronto 

For those entering the field of artificial neural networks, there has been an acute 
need for an authoritative textbook that explains the main ideas clearly and con­
sistently using the basic tools of linear algebra, calculus, and simple probability 
theory. There have been many attempts to provide such a text, but until now, 
none has succeeded. Some authors have failed to separate the basic ideas and 
principles from the soft and fuzzy intuitions that led to some of the models as 
well as to most of the exaggerated claims. Others have been unwilling to use the 
basic mathematical tools that are essential for a rigorous understanding of the 
material. Yet others have tried to cover too many different kinds of neural net­
work without going into enough depth on any one of them. The most successful 
attempt to date has been "Introduction to the Theory of Neural Computation" 
by Hertz, Krogh and Palmer. Unfortunately, this book started life as a graduate 
course in statistical physics and it shows. So despite its many admirable qualities 
it is not ideal as a general textbook. 

Bishop is a leading researcher who has a deep understanding of the material 
and has gone to great lengths to organize it into a sequence that makes sense. He 
has wisely avoided the temptation to try to cover everything and has therefore 
omitted interesting topics like reinforcement learning, Hopfield Networks and 
Boltzmann machines in order to focus on the types of neural network that are 
most widely used in practical applications. He assumes that the reader has the 
basic mathematical literacy required for an undergraduate science degree, and 
using these tools he explains everything from scratch. Before introducing the 
multilayer perceptron, for example, he lays a solid foundation of basic statistical 
concepts. So the crucial concept of overfitting is first introduced using easily 
visualised examples of one-dimensional polynomials and only later applied to 
neural networks. An impressive aspect of this book is that it takes the reader all 
the way from the simplest linear models to the very latest Bayesian multilayer 
neural networks without ever requiring any great intellectual leaps. 

Although Bishop has been involved in some of the most impressive applica­
tions of neural networks, the theme of the book is principles rather than applica­
tions. Nevertheless, it is much more useful than any of the applications-oriented 
texts in preparing the reader for applying this technology effectively. The crucial 
issues of how to get good generalization and rapid learning are covered in great 
depth and detail and there are also excellent discussions of how to preprocess 
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the input and how to choose a suitable error function for the output. 
It is a sign of the increasing maturity of the field that methods which were 

once justified by vague appeals to their neuron-like qualities can now be given a 
solid statistical foundation. Ultimately, we all hope that a better statistical un­
derstanding of artificial neural networks will help us understand how the brain 
actually works, but until that day comes it is reassuring to know why our cur­
rent models work and how to use them effectively to solve important practical 
problems. 



PREFACE 

I n t r o d u c t i o n 

In recent years neural computing has emerged as a practical technology, with 
successful applications in many fields. The majority of these applications are 
concerned with problems in pattern recognition, and make use of feed-forward 
network architectures such as the multi-layer perceptron and the radial basis 
function network. Also, it has also become widely acknowledged that success­
ful applications of neural computing require a principled, rather than ad hoc, 
approach. My aim in writing this book has been to provide a more focused 
treatment of neural networks than previously available, which reflects these de­
velopments. By deliberately concentrating on the pattern recognition aspects of 
neural networks, it has become possible to treat many important topics in much 
greater depth. For example, density estimation, error functions, parameter op­
timization algorithms, data pre-processing, and Bayesian methods are each the 
subject of an entire chapter. 

From the perspective of pattern recognition, neural networks can be regarded 
as an extension of the many conventional techniques which have been developed 
over several decades. Indeed, this book includes discussions of several concepts in 
conventional statistical pattern recognition which I regard as essential for a clear 
understanding of neural networks. More extensive treatments of these topics can 
be found in the many texts on statistical pattern recognition, including Duda and 
Hart (1973), Hand (1981), Devijver and Kifctler (1982), and Fiikunaga (1990). 
Recent review articles by Ripley (1994) and Cheng and Titterington (1994) have 
also emphasized the statistical underpinnings of neural networks. 

Historically, many concepts in neural computing have been inspired by studies 
of biological networks. The perspective of statistical pattern recognition, how­
ever, offers a much more direct and principled route to many of the same con­
cepts. For example, the sum-and-threshold model of a neuron arises naturally as 
the optimal discriminant function needed to distinguish two classes whose distri­
butions are normal with equal covariance matrices. Similarly, the familiar logistic 
sigmoid is precisely the function needed to allow the output of a network to be 
interpreted as a probability, when the distribution of hidden unit activations is 
governed by a member of the exponential family. 

An important assumption which is made throughout the book is that the pro­
cesses which give rise to the data do not themselves evolve with time. Techniques 
for dealing with non-stationary sources of data are not so highly developed, nor so 
well established, as those for static problems. Furthermore, the issues addressed 
within this book remain equally important in the face of the additional compli­
cation of non-stationarity. It should be noted that this restriction does not mean 
that applications involving the prediction of time series are excluded. The key 
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consideration for time series is not the time variation of the signals themselves, 
but whether the underlying process which generates the data is itself evolving 
with time, as discussed in Section 8.4. 

Use as a course t ex t 

This book is aimed at researchers in neural computing as well as those wishing 
to apply neural networks to practical applications. It is also intended to be used 
used as the primary text for a graduate-level, or advanced undergraduate-level, 
course on neural networks. In this case the book should be used sequentially, and 
care has been taken to ensure that where possible the material in any particular 
chapter depends only on concepts developed in earlier chapters. 

Exercises are provided at the end of each chapter, and these are intended 
to reinforce concepts developed in the main text, as well as to lead the reader 
through some extensions of these concepts. Each exercise is assigned a grading 
according to its complexity and the length of time needed to solve it, ranging from 
(*) for a short, simple exercise, to (***) for a more extensive or more complex 
exercise. Some of the exercises call for analytical derivations or proofs, while 
others require varying degrees of numerical simulation. Many of the simulations 
can be carried out using numerical analysis and graphical visualization packages, 
while others specifically require the use of neural network software. Often suitable 
network simulators are available as add-on tool-kits to the numerical analysis 
packages. No particular software system has been prescribed, and the course 
tutor, or the student, is free to select an appropriate package from the many 
available. A few of the exercises require the student to develop the necessary 
code in a standard language such as C or C + + . In this case some very useful 
software modules written in C, together with background information, can be 
found in Press et al. (1992). 

Prerequis i tes 

This book is intended to be largely self-contained as far as the subject of neural 
networks is concerned, although some prior exposure to the subject may be 
helpful to the reader. A clear understanding of neural networks can only be 
achieved with the use of a certain minimum level of mathematics. It is therefore 
assumed that the reader has a good working knowledge of vector and matrix 
algebra, as well as integral and differential calculus for several variables. Some 
more specific results and techniques which are used at a number of places in the 
text are described in the appendices. 

Overview of t h e chap te r s 

The first chapter provides an introduction to the principal concepts of pattern 
recognition. By drawing an analogy with the problem of polynomial curve fit­
ting, it introduces many of the central ideas, such as parameter optimization, 
generalization and model complexity, which will be discussed at greater length in 
later chapters of the book. This chapter also gives an overview of the formalism 
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of statistical pattern recognition, including probabilities, decision criteria and 
Bayes' theorem. 

Chapter 2 deals with the problem of modelling the probability distribution of 
a set of data, and reviews conventional parametric and non-parametric methods, 
as well as discussing more recent techniques based on mixture distributions. 
Aside from being of considerable practical importance in their own right, the 
concepts of probability density estimation are relevant to many aspects of neural 
computing. 

Neural networks having a single layer of adaptive weights are introduced in 
Chapter 3. Although such networks have less flexibility than multi-layer net­
works, they can play an important role in practical applications, and they also 
serve to motivate several ideas and techniques which are applicable also to more 
general network structures. 

Chapter 4 provides a comprehensive treatment of the multi-layer perceptron, 
and describes the technique of error back-propagation and its significance as a 
general framework for evaluating derivatives in multi-layer networks. The Hessian 
matrix, which plays a central role in many parameter optimization algorithms 
as well as in Bayesian techniques, is also treated at length. 

An alternative, and complementary, approach to representing general non­
linear mappings is provided by radial basis function networks, and is discussed in 
Chapter 5. These networks are motivated from several distinct perspectives, and 
hence provide a unifying framework linking a number of different approaches. 

Several different error functions can be used for training neural networks, 
and these are motivated, and their properties examined, in Chapter 6. The cir­
cumstances under which network outputs can be interpreted as probabilities are 
discussed, and the corresponding interpretation of hidden unit activations is also 
considered. 

Chapter 7 reviews many of the most important algorithms for optimizing the 
values of the parameters in a network, in other words for network training. Simple 
algorithms, based on gradient descent with momentum, have serious limitations, 
and an understanding of these helps to motivate some of the more powerful 
algorithms, such as conjugate gradients and quasi-Newton methods. 

One of the most important factors in determining the success of a practical 
application of neural networks is the form of pre-processing applied to the data. 
Chapter 8 covers a range of issues associated with data pre-processing, and de­
scribes several practical techniques related to dimensionality reduction and the 
use of prior knowledge. 

Chapter 9 provides a number of insights into the problem of generalization, 
and describes methods for addressing the central issue of model order selec­
tion. The key insight of the bias-variance trade-off is introduced, and several 
techniques for optimizing this trade-off, including regularization, are treated at 
length. 

The final chapter discusses the treatment of neural networks from a Bayesian 
perspective. As well as providing a more fundamental view of learning in neural 
networks, the Bayesian approach also leads to practical procedures for assigning 
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error bars to network predictions and for optimizing the values of regularization 
coefficients. 

Some useful mathematical results are derived in the appendices, relating to 
the properties of symmetric matrices, Gaussian integration, Lagrange multipliers, 
calculus of variations, and principal component analysis. 

An extensive bibliography is included, which is intended to provide useful 
pointers to the literature rather than a complete record of the historical devel­
opment of the subject. 

N o m e n c l a t u r e 

In trying to find a notation which is internally consistent, I have adopted a 
number of general principles as follows. Lower-case bold letters, for example v, 
are used to denote vectors, while upper-case bold letters, such as M , denote 
matrices. One exception is that I have used the notation y to denote a vector 
whose elements yn represent the values of a variable corresponding to different 
patterns in a training set, to distinguish it from a vector y whose elements yk 
correspond to different variables. Related variables are indexed by lower-case 
Roman letters, and a set of such variables is denoted by enclosing braces. For 
instance, {xt} denotes a set of input variables .T;, where ?' = ! , . . . , ( / . Vectors are 
considered to be column vectors, with the corresponding row vector denoted by 
a superscript T indicating the transpose, so that, for example, x r = (xi,..., x,i)-
Similarly, M 1 denotes the transpose of a matrix M. The notation M = (A/y) 
is used to denote the fact that the matrix M has the elements My, while the 
notation (M)y is used to denote the ij element of a matrix M. The Euclidean 
length of a vector x is denoted by ||x||, while the magnitude of a scalar x is 
denoted by |.r|. The determinant of a matrix M is written as |M| . 

I typically use an upper-case P to denote a probability and a lower-case p to 
denote a probability density. Note that I use p(x) to represent the distribution 
of x and p(y) to represent the distribution of y, so that these distributions are 
denoted by the same symbol p even though they represent different functions. By 
a similar abuse of notation 1 frequently use, for example, yk to denote the outputs 
of a neural network, and at the same time use j/it(x; w) to denote the non-linear 
mapping function represented by the network. I hope these conventions will save 
more confusion than they cause. 

To denote functionals (Appendix D) I use square brackets, so that, for exam­
ple, E[f] denotes functional of the function / ( x ) . Square brackets are also used 
in the notation £ [Q] which denotes the expectation (i.e. average) of a random 
variable Q. 

I use the notation O(N) to denote that a quantity is of order N. Given two 
functions f(N) and g(N), we say that / = O(g) if f(N) < Ag(N), where A is 
a constant, for all values of N (although we are typically interested in large A^). 
Similarly, we will say that / ~ g if the ratio f(N)/g(N) -> 1 as W — > oo. 

I find it indispensable to use two distinct conventions to describe the weight 
parameters in a network. Sometimes it is convenient to refer explicitly to the 
weight which goes to a unit labelled by j from a unit (or input) labelled by i. 
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Such a weight will be denoted by Wji- In other contexts it is more convenient 
to label the weights using a single index, as in Wk, where k runs from 1 to W, 
and W is the total number of weights. The variables Wk can then be gathered 
together to make a vector w whose elements comprise all of the weights (or more 
generally all of the adaptive parameters) in the network. 

The notation r5y denotes the usual Kronecker delta symbol, in other words 
5ij — 1 if i — j and 6y = 0 otherwise. Similarly, the notation S(x) denotes the 
Dirac delta function, which has the properties 6(x) — 0 for x /= 0 and 

TOO 

/ 5(x) dx = 1. 

111 (/-dimensions the Dirac delta function is defined by 

d 

6{x) = Y[8{Xi). 
<=i 

The symbols used for the most commonly occurring quantities in the book 
are listed below: 

c number of outputs; number of classes 
Cfc fcth c lass 
d number of inputs 
E error function 
£{Q) expectation of a random variable Q 
g(-) activation function 
i input label 
j hidden unit label 
k output unit label 
M number of hidden units 
n pattern label 
N number of patterns 
P(-) probability 
p(-) probability density function 
t target value 
T time step in iterative algorithms 
W number of weights and biases in a network 
x network input variable 
y network output variable 
z activation of hidden unit 
In logarithm to base e 
!og2 logarithm to base 2 
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1 

STATISTICAL PATTERN RECOGNITION 

The term pattern recognition encompasses a wide range of information processing 
problems of great practical significance, from speech recognition and the classi­
fication of handwritten characters, to fault detection in machinery and medical 
diagnosis. Often these are problems which many humans solve in a seemingly 
effortless fashion. However, their solution using computers has, in many cases, 
proved to be immensely difficult. In order to have the best opportunity of devel­
oping effective solutions, it is important to adopt a principled approach based 
on sound theoretical concepts. 

The most general, and most natural, framework in which to formulate solu­
tions to pattern recognition problems is a statistical one, which recognizes the 
probabilistic nature both of the information we seek to process, and of the form 
in which we should express the results. Statistical pattern recognitionis a well 
established field with a long history. Throughout this book, we shall view neu­
ral networks as an extension of conventional techniques in statistical pattern 
recognition, and we shall build on, rather than ignore, the many powerful results 
which this field offers. 

In this first chapter we provide a gentle introduction to many of the key 
concepts in pattern recognition which will be central to our treatment of neural 
networks. By using a simple pattern classification example, and analogies to the 
problem of curve fitting, we introduce a number of important issues which will 
re-emerge in later chapters in the context of neural networks. This chapter also 
serves to introduce some of the basic formalism of statistical pattern recognition. 

1.1 A n example — character recognition 

We can introduce many of the fundamental concepts of statistical pattern recog­
nition by considering a simple, hypothetical, problem of distinguishing hand­
written versions of the characters 'a' and 'b' . Images of the characters might be 
captured by a television camera and fed to a compute:*, and we seek an algo­
rithm which can distinguish as reliably as possible between the two characters. 
An image is represented by an array of pixels, as illustrated in Figure 1.1, each 
of which carries an associated value which we shall denote- by a:* (where the 
index i labels the individual pixels). The value of Xi might, for instance, range 
from 0 for a completely white pixel to 1 for a completely black pixel. It is of­
ten convenient to gather the x% variables together and denote them by a single 
vector x = {x\,..., Xd)T where d is the total number of such variables, and the 
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Figure 1.1. Illustration of two hypothetical images representing handwritten 
versions of the characters 'a' and 'b'. Each image is described by an array of 
pixel values xt which range from 0 to 1 according to the fraction of the pixel 
square occupied by black ink. 

superscript T denotes the transpose. In considering this example we shall ignore 
a number of detailed practical considerations which would have to be addressed 
in a real implementation, and focus instead on the underlying issues. 

The goal in this classification problem is to develop an algorithm which will 
assign any image, represented by a vector x, to one of two classes, which we 
shall denote by C'j., where k -- 1,2, so that class C\ corresponds to the character 
'a' and class C2 corresponds to 'b ' . We shall suppose that we are provided with 
a large number of examples of images corresponding to both 'a' and '!>', which 
have already been classified by a human. Such a collection will be referred to as 
a data set. In the statistics literature it would be called a sample. 

One obvious problem which we face stems from the high dimensionality of 
the data which we arc collecting. For a typical image size of 256 x 256 pixels, 
each image can be represented as a point in a c/-dimcnsiona] space, where d = 
65 536. The axes of this space represent the grey-level values of the corresponding 
pixels, which in this example might be represented by 8-bit numbers. In principle 
we might think of storing every possible image together with its corresponding 
class label. In practice, of course, this is completely impractical due to the very 
large number of possible images: for a 256 x 250 image with 8-bit pixel values 
there would be 2 8 x 2 5 B x 2 5 C ~ l0 l r , s o o ° different images. By contrast, we might 
typically have a few thousand examples in our training set. It is clear then that, 
the classifier system must be designed so as to be able to classify correctly a 
previously unseen image vector. This is the problem of generalization, which is 
discussed at length in Chapters 9 and 10. 

As we shall see in Section 1.4, the presence of a large number of input variables 
can present some severe problems for pattern recognition systems. One technique 
to help alleviate such problems is to combine input variables together to make a 
smaller number of new variables called features. These might be constructed 'by 
hand' based on some understanding of the particular problem being tackled, or 
they might be derived from the data by automated procedures. In the present 
example, we could, for instance, evaluate the ratio of the height of the character 
to its width, which we shall denote by .TJ, since we might expect that characters 
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Figure 1.2. Schematic plot of the histograms of the feature variable x,\ given 
by the ratio of the height of a character to its width, for a. data set of images 
containing examples from classes C\ = 'a' and Ci = 'b'. Notice that characters 
from class Ci tend to have larger values of ,ri than characters from class C\, 
but that there is a significant overlap between the. two histograms. If a new 
image is observed which has a value of xj given by A, we might expect the 
image is more likely to belong to class C\ than C%. 

from class C'2 (corresponding to 'b') will typically have larger values of X\ than 
characters from class C\ (corresponding to 'a'). We might then hope that the 
value of x\ alone will allow new images to be assigned to the correct class. 
Suppose we measure the value of x\ for each of the images in our data set, and 
plot their values as histograms for each of the two classes. Figure 1.2 shows the 
form which these histograms might take. We see that typically examples of the 
character 'b ' have larger values of x,\ than examples of the character 'a', but we 
also see that the two histograms overlap, so that occasionally we might encounter 
an example of 'b ' which has a smaller value of x,\ than some example of 'a'. We 
therefore cannot distinguish the two classes perfectly using the value of x\ alone. 

If we suppose for the moment that the only information available is the 
value of x\, we may wish to know how to make best use of it to classify a new 
imago so as to minimize the number of misclassifications. For a new image which 
has a value of .TI given by A as indicated in Figure 1.2, we might expect that, 
the image is more likely to belong to class C\ than to class Ci- One approach 
would therefore be to build a classifier system which simply uses a threshold for 
the value of x\ and which classifies as C2 any image for which x.\ exceeds the 
threshold, and which classifies all other images as Ci. We might expect that the 
number of misclassifications in this approach would be minimized if we choose 
the threshold to be at the point where the two histograms cross. This intuition 
turns out to be essentially correct, as we shall see in Section 1.9. 

The classification procedure we have described so far is based on the evalu­
ation of xj followed by its comparison with a threshold. While we would expect 
this to give some degree of discrimination between the two classes, it suffers 
from the problem, indicated in Figure 1.2, that there is still significant overlap 
of the histograms, and hence we must expect that many of the new characteis 
on which we might test it will he iiiisclassifiee?. One way to try to improve the 
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figure 1.3. A hypothetical classification problem involving two feature vari­
ables xi and X2- Circles denote patterns from class Ci and crosses denote 
patterns from class C2. The decision boundary (shown by the line) is able to 
provide good separation of the two classes, although there are still a few pat­
terns which would be incorrectly classified by this boundary. Note that if the 
value of either of the two features were considered separately (corresponding 
to a projection of the data onto one or other of the axes), then there would be 
substantially greater overlap of the two classes. 

situation is to consider a second feature %i (whose actual definition we need not 
consider) and to try to classify new images on the basis of the values of x\ and 
x-2 considered together. The reason why this might be beneficial is indicated in 
Figure 1.3. Here we see examples of patterns from two classes plotted in the 
(£1,2:2) space. It is possible to draw a line in this space, known as a decision 
boundary, which gives good separation of the two classes. New patterns which lie 
above the decision boundary are classified as belonging to class C\ while patterns 
falling below the decision boundary are classified as Ci- A few examples are still 
incorrectly classified, but the separation of the patterns is much better than if 
either feature had been considered individually, as can be seen by considering all 
of the data points projected as histograms onto one or other of the two axes. 

We could continue to consider ever larger numbers of (independent) features 
in the hope of improving the performance indefinitely. In fact, as we shall see in 
Section 1.4, adding too many features can, paradoxically, lead to a worsening of 
performance. Furthermore, for many real pattern recognition applications, it is 
the case that some overlap between the distributions of the classes is inevitable. 
This highlights the intrinsically probabilistic nature of the pattern classification 
problem. With handwritten characters, for example, there is considerable vari­
ability in the way the characters are drawn. We are forced to treat the measured 
variables as random quantities, and to accept that perfect classification of new 
examples may not always be possible. Instead we could aim to build a classifier 
which has the smallest probability of making a mistake. 
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1.2 Classification a n d regression 

The system considered above for classifying handwritten characters was designed 
to take an image and to assign it to one of the two classes C\ or C^- We can 
represent the outcome of the classification in terms of a variable y which takes 
the value 1 if the image is classified as C\, and the value 0 if it is classified as 
Ci. Thus, the overall system can be viewed as a mapping from a set of input 
variables xi,...,Xd, representing the pixel intensities, to an output variable y 
representing the class label. In more complex problems there may be several 
output variables, which we shall denote by y^ where A; = 1 , . . . ,c . Thus, if we 
wanted to classify all 26 letters of the alphabet, we might consider 26 output 
variables each of which corresponds to one of the possible letters. 

In general it will not be possible to determine a suitable form for the required 
mapping, except with the help of a data set of examples. The mapping is therefore 
modelled in terms of some mathematical function which contains a number of 
adjustable parameters, whose values are determined with the help of the data. 
We can write such functions in the form 

yfe=yfc(x;w) (1.1) 

where w denotes the vector of parameters. A neural network model, of the kind 
considered in this book, can be regarded simply as a particular choice for the 
set of functions y/t(x;w). In this case, the parameters comprising w are often 
called weights. For the character classification example considered above, the 
threshold on x was an example of a parameter whose value was found from 
the data by plotting histograms as in Figure 1.2. The use of a simple threshold 
function, however, corresponds to a very limited form for y(x;w), and for most 
practical applications we need to consider much more flexible functions. The 
importance of neural networks in this context is that they offer a very powerful 
and very general framework for representing non-linear mappings from several 
input variables to several output variables, where the form of the mapping is 
governed by a number of adjustable parameters. The process of determining the 
values for these parameters on the basis of the data set is called learning or 
training, and for this reason the data set of examples is generally referred to as a 
training set. Neural network models, as well as many conventional approaches to 
statistical pattern recognition, can be viewed as specific choices for the functional 
forms used to represent the mapping (1.1), together with particular procedures 
for optimizing the parameters in the mapping. In fact, neural network models 
often contain conventional approaches as special cases, as discussed in subsequent 
chapters. 

In classification problems the task is to assign new inputs to one of a number 
of discrete classes or categories. However, there are many other pattern recogni­
tion tasks, which we shall refer to as regression problems, in which the outputs 
represent the values of continuous variables. Examples include the determina­
tion of the fraction of oil in a pipeline from measurements of the attenuation 
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of gamma beams passing through the pipe, and the prediction of the value of 
a currency exchange rate at the some future time, given its values at a num­
ber of recent times. In fact, as discussed in Section 2.4, the term 'regression' 
refers to a specific kind of function defined in terms of an average over a random 
quantity. Both iegression and classification problems can be seen as particular 
cases of junction approximation. Jn the case of regression problems it is the re­
gression function (defined in Section G.1.3) which we wish to approximate, while 
for classif. Nation problems the functions which we seek to approximate arc the 
probabilities of men^crs'iip of the different classes expressed as functions of the 
input variables. Mcny of the key issues which need to be addressed in tackling 
pattern recognition problems are common both to classification and regression. 

1.3 Pre-processing and feature extraction 

Rather than represent the entire transformation from the set of input variables 
x i , . . . , x,]. to the set of or.("put variables i.q,. . . , yc by a single neural network func­
tion, there is often great benefit in breaking down the mapping into an initial 
pre-processing stage, followed by the parametrized neural network model itself. 
This is illustrated schematically in Figure 1.4. For many applications, the outputs 
from the network also undergo post-processing to convcit them to the requited 
form. In our character recognition example, the original input variables, given 
by the pixel values x,, were first transformed to a single variable xi. This is an 
example of a form of pre-processing which is generally called feature extraction. 
The distinction between the pre-processing stage and the neural network is not 
always clear cut, but often the pre-processing can be regarded as a fixed trans­
formation of the variables, while the network itself contains adaptive parameters 
whose values are set as part of the training process. The use of pre-processing 
can often greatly improve the performance of a pattern recognition system, and 
there are several reasons why this may be so, as we now discuss. 

In our character recognition example, we know l'..at the decision on whether 
to classify a character as 'a' or lb' should not, depend on where in the image that 
character is located. A classification system whose decisions are insensitive to 
the location of an object within an image is said to exhibit translation invari-
ance. The simple approach to character recognition considered above satisfies 
this property because the feature Xi (the ratio of height to width of the charac­
ter) does not depend on the character's position. Note that this feature variable 
also exhibits scale invariance, since it is unchanged if the size of the character is 
uniformly re-scaled. Such invariance properties are examples of prior knowledge, 
that is, information which we possess about the desired form of the solution 
which is additional to the information provided by the training data. The in­
clusion of prior knowledge into the desigir of a pattern recognition system can 
improve its performance dramatically, and the use of pre-processing is one im­
portant way of achieving this. Since pre-processing and feature extraction can 
have such a significant impact on the final performance of a pattern recognition 
system, we have devoted the whole of Chapter 8 to a detailed discussion of these 
topics. 
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neural 1 
j n e t w o f k j 

pre­
processing 

x, T-----T xd 
Figure 1.4. The majority of neural network applications require the original 
input variables x\,...,Xi to be transformed by some form of pre-processing 
to give a new set of variables xi,. . •, x# • These are then treated as the inputs 
to the neural netwoik, whose outputs are denoted by y\,... ,yc . 

1.4 T h e curse of d imensional i ty 
There is another important reason why pre-processing can have a profound ef­
fect on the performance of a pattern recognition system. To see this let us return 
again to the character recognition problem, where we saw that increasing the 
number of features from 1 to 2 could lead to an improvement in performance. 
This suggests that we might use an ever larger number of such features, or even 
dispense with feature extraction altogether and simply use all 65 536 pixel values 
directly as inputs to our neural network. In practice, however, we often find that, 
beyond a certain point, adding new features can actually lead to a reduction in 
the performance of the classification system. In order to understand this impor­
tant effect, consider the following very simple technique (not recommended in 
practice) for modelling non-linear mappings from a set of input variables x% to 
an output variable y on the basis of a set of training data. 

We begin by dividing each of the input variables into a number of intervals, 
so that the value of a vaiiable can be specified approximately by saying in which 
interval it lies. This leads to a division of the whole input space into a large 
number of boxes or cells as indicated in Figure 1.5. Each of the training examples 
corresponds to a point in one of the cells, and carries an associated value of 
the output variable y. If we arc given a new point in the input space, we can 
determine a corresponding value for y by finding which cell the point falls in, and 
then returning the average, value of y for all of the training points which lie in 
that cell. By increasing the number of divisions along each axis we could increase 
the precision with which the input variables can be specified. There is, however, a 
major problem. If each input variable is divided into M divisions, then the total 
number of cells is Md and this grows exponentially with the dimensionality of 
the input space. Since each cell must contain at least one data point, this implies 
that the quantity of (raining data needed to specify the mapping also grows 
exponentially. This phenomenon lias been termed the curse of dimensionalUy 
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Figure 1.5. One way to specify a mapping from a d-dimensional space x\,..., x£ 
to an output variable y is to divide the input space into a number of cells, as 
indicated here for the case of d = 3, and to specify the value of y for each of 
the cells. The major problem with this approach is that the number of cells, 
and hence the number of example data points required, grows exponentially 
with d, a phenomenon known as the 'curse of dimensionality'. 

(Bellman, 1961). If we are forced to work with a limited quantity of data, as we 
are in practice, then increasing the dimensionality of the space rapidly leads to 
the point where the data is very sparse, in which case it provides a very poor 
representation of the mapping. 

Of course, the technique of dividing up the input space into cells is a par­
ticularly inefficient way to represent a multivariate non-linear function. In sub­
sequent chapters we shall consider other approaches to this problem, based on 
feed-forward neural networks, which are much less susceptible to the curse of 
dimensionality. These techniques are able to exploit two important properties of 
real data. First, the input variables are generally correlated in some way, so that 
the data points do not fill out the entire input space but tend to be restricted to 
a sub-space of lower dimensionality. This leads to the concept of intrinsic dimen­
sionality which is discussed further in Section 8.6.1. Second, for most mappings 
of practical interest, the value of the output variables will not change arbitrarily 
from one region of input space to another, but will typically vary smoothly as 
a function of the input variables. Thus, it is possible to infer the values of the 
output variables at intermediate points, where no data is available, by a process 
similar to interpolation. 

Although the effects of dimensionality are generally not as severe as the exam­
ple of Figure 1.5 might suggest, it remains true that, in many problems, reducing 
the number of input variables can sometimes lead to improved performance for 
a given data set, even though information is being discarded. The fixed quantity 
of data is better able to specify the mapping in the lower-dimensional space, and 
this more than compensates for the loss of information. In our simple character 
recognition problem we could have considered all 65 536 pixel values as inputs 
to our non-linear model. Such an approach, however, would be expected to give 
extremely poor results as a consequence of the effects of dimensionality coupled 
with a limited size of data set. As we shall discuss in Chapter 8, one of the impor­
tant roles of pre-processing in many applications is to reduce the dimensionality 
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of the data before using it to train a neural network or other pattern recognition 
system. 

1.5 Polynomial curve fitting 

Many of the important issues concerning the application of neural networks 
can be introduced in the simpler context of polynomial curve fitting. Here the 
problem is to fit a polynomial to a set of N data points by the technique of 
minimizing an error function. Consider the Mth-order polynomial given by 

M 

y(x) = WQ+ wix H \- WMXM = 2 ^ WjX*'. (1.2) 
j=o 

This can be regarded as a non-linear mapping which takes x as input and pro­
duces y as output. The precise form of the function y(x) is determined by the 
values of the parameters woi • • • % , which are analogous to the weights in a 
neural network. It is convenient to denote the set of parameters (WQ, ..., WM) by 
the vector w. The polynomial can then be written as a functional mapping in 
the form y = y(x; w) as was done for more general non-linear mapping^^i (1.1). 

We shall label the data with the index n = 1 , . . . , N, so that each dAte point 
consists of a value of a;, denoted by a;", and a corresponding desired*<|$ilue for 
the output y, which we shall denote by tn. These desired outputs ajce called 
target values in the neural network context. In order to find suitable .yalues for 
the coefficients in the polynomial, it is convenient to consider the error between 
the desired output tn, for a particular input xn, and the corresponding value 
predicted by the polynomial function given by y(xn;w). Standard curj^e-fitting 
procedures involve minimizing the square of this error, summed over all data 
points, given by 

1 N 

E = -Y,{y(xn;v)-n2- .(i.3) 
7 1 = 1 

We can regard E as being a function of w, and so the polynomial can be fitted 
to the data by choosing a value for w, which we denote by w*, which minimizes 
E. Note that the polynomial (1.2) is a linear function of the parameters w 
and so (1.3) is a quadratic function of w. This means that the minimum of 
E can be found in terms of the solution of a set of linear algebraic equations 
(Exercise 1.5). Functions which depend linearly on the adaptive parameters are 
called linear models, even though they may be non-linear functions of the original 
input variables. Many concepts which arise in the study of such models are also 
of direct relevance to the more complex non-linear neural networks considered in 
Chapters 4 and 5. We therefore present an extended discussion of linear models 
(in the guise of 'single-layer networks') in Chapter 3. 
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The minimization of an error function such a,s (1.3), which involves target 
values for the network outputs, is called supervised learning since for each input 
patter.i the value of the desired ouiput is specified. A second form of learning in 
neural networks, called wisupervised learning, uoes not involve the use of target 
c.c'ua. i.istcad of learning an input-Oi.t/.t.i mapping, t.ie goal may be to model the 
probability distribution of the input duta (as discussed at length in Chapter 2) 
or to discover clusters or other structure i.. the da>.a. There is a third form of 
learning, called reinforcement learning (Hertz et o l , 1991) in which information 
is supplied as to whether the network outputs are good or bad, but again no 
actual desired values arc given. This is mainly used for control applications, and 
will not be discussed further. 

We have introduced the sum-of-squares error function from a heuristic view­
point. Error functions play an important role in the use of neural networks, and 
the whole of Chapter G is devoted to a detailed discussion of their properties. 
There we snail see how the sum-of-squares error function can be derived from 
some general statistical principles, provided we make certain assumptions about 
1,1.e j/roper.iles of the data. We sha.» also investigate ooher forms of error function 
whlcli are appropriate when these assumption are not valid. 

We can illustrate the technique of polynomial curve fitting by generating 
synthetic data in a way which is intended '..o capture some of the basic properties 
of real data sets used in pattern recognition problems. Specifically, we generate 
training data from the function 

h{x) = 0.5 -1-0.4m.(2i\-x) (1.4) 

by sampling the function /i.(x) at equal intervals of x and then adding random 
noise with a, Gaussian distribution (Section 2.1.1) having standard deviation 
a = 0.05. Thus Tor each data point a new value for the noise contribution is 
chosen. A basic property of most data sets of interest, in pattern recognition is 
that the data exhibits an underlying systematic aspect, represented in this case 
by the function h(x), but is corrupted with random noise. The central goal in 
pattern recognition is to produce a system which makes good predictions for 
new data, in other words one which exhibits good generalization. In order to 
measure the generalization capabilities of the polynomial, we have generated a 
second data set called a test set, wliich is produced in the same way as the 
training set, but with new values for the noise component. This reflects the basic 
assumption that the data on which we wish to use the pattern recognition system 
is produced by the same underlying mechanism as the training data. As we shall 
discuss at length in Chapter 9, the best generalization to new data is obtained 
when the mapping represents the underlying systematic aspects of the data, 
rather capturing the specific details (i.e. the noise contribution) of the particular 
training set. We will therefore be interested in seeing how close the polynomial 
y(x) is to the function h(x). 

Figure 1.6 shows the 11 points from the training set, as well as the function 
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0.0 
0.0 0.5 x 1.0 

Figure l.C. An example of a set of 11 data points obtained by sampling the 
function h(x), defined by (1.4), at equal intervals of x and adding random noise. 
The dashed curve shows the function h(x), while the solid curve shows the 
rather poor approximation obtained with a linear polynomial, corresponding 
to M = 1 in (1.2). 

h(x) from (1.4), together with the result of fitting a linear polynomial, given by 
(1.2) with M — 1. As can be seen, this polynomial gives a poor representation 
of h(x), as a consequence of its limited flexibility. We can obtain a better fit by 
increasing the order of the polynomial, since this increases the number of degrees 
of freedom (i.e. the number of free parameters) in the function, which gives 
it greater flexibility. Figure 1.7 shows the result of fitting a cubic polynomial 
(M = 3) which gives a much better approximation to h(x). If, however, we 
increase the order of the polynomial too far, then the approximation to the 
underlying function actually gets worse. Figure 1.8 shows the result of fitting a 
lOth-order polynomial (M = 10). This is now able to achieve a perfect fit to the 
training data, since a 10th- order polynomial has 11 free parameters, and there 
are 11 data points. However, the polynomial has fitted the data by developing 
some dramatic oscillations. Such functions are said to be over-fitted to the data. 
As a consequence, this function gives a poor representation of h(x). 

1.5.1 Generalization 

In order to assess the capability of the polynomial to generalize to new data, it 
is convenient to consider the root-mean-square (RMS) error given by 

A^>(x";w*)-r.»}2 ( L 5 ) 

where w* represents the vector of coefficients corresponding to the minimum 
of the error function, so that y(x;\v*) represents the fitted polynomial. For the 
purpose of evaluating the effectiveness of the polynomial at predicting new data, 
this is a more convenient quantity to consider than, the original sum-of-squarcs 
error (1.3) since the strong dependence on the number of data points has been 

r.RMS _ 
-O — ^ 
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1.0 
y 
0.5 
0.0 

0.0 0.5 * 1.0 ' 
Figure 1.7. This shows the same data set as in Figure 1.6, but this time fitted by 
a cubic (M = 3) polynomial, showing the significantly improved approximation 
to h(x) achieved by this more flexible function. 

1.0 
y 
0.5 

0.0 
0.0 0.5 x 1.0 

Figure 1.8. The result of fitting the same data set as in Figure 1.6 using a 10th-
order (M = 10) polynomial. This gives a perfect fit to the training data, but 
at the expense of a function which has large oscillations, and which therefore 
gives a poorer representation of the generator function h(x) than did the cubic 
polynomial of Figure 1.7. 

removed. Figure 1.9 shows a plot of £ R M S for both the training data set and the 
test data set, as a function of the order M of the polynomial. We see that the 
training set error decreases steadily as the order of the polynomial increases. The 
test set error, however, reaches a minimum at M = 3, and thereafter increases 
as the order of the polynomial is increased. 

The ability of the polynomial to generalize to new data (i.e. to the test set) 
therefore reaches an optimum value for a polynomial of a particular degree of 
complexity. Generalization is treated at greater length in Chapter 9, where we 
discuss the trade-off between the bias and the variance of a model. A model 
which has too little flexibility, such as the linear polynomial of Figure 1.6, has a 
high bias, while a model which has too much flexibility, such as the lOth-order 
polynomial of Figure 1.8, has a high variance. The point of best generalization is 
determined by the trade-off between these two competing properties, and occurs 
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Figure 1.9. Plots of the RMS error (1.5) as a function of the order of the poly­
nomial for both training and test sets, for the example problem considered in 
the previous three figures. The error with respect to the training set decreases 
monotonically with M, while the error in making predictions for new data (as 
measured by the test set) shows a minimum at M = 3. 

Figure 1.10. A schematic example of vectors in two dimensions (xi,xi) be­
longing to two classes shown by crosses and circles. The solid curve shows the 
decision boundary of a simple model which gives relatively poor separation of 
the two classes. 

when the number of degrees of freedom in the model is relatively small compared 
to the size of the data set (4 free parameters for M = 3, compared with 11 data 
points in this example). 

The problem of over-fitting is one which also arises in classification tasks. Fig­
ures 1.10-1.12 show a succession of decision boundaries for a schematic example 
of a classification problem involving two classes, and two input variables. As the 
complexity of the model is increased, so the decision boundary can become more 
complex and hence give a better fit to the training data. For many applications, 
however, the best generalization performance is again obtained from a model 
with an intermediate level of flexibility. 
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"igiiie 1.1 1. As in Figure 1.10, but showing (.lie derision boundary correspond­
ing (o fi mole lioxiblo model, whicl'. gives bettor sc,j.'.:ation of the training data. 

Figure 1.12. As in Figure 1.10, but showing the decision boundary correspond­
ing to a highly flexible model which is able to achieve perfect separation of 
the training data. In many applications the distributions of data from different 
classes overlap, and the best generalization perfor.i.a.icc is then achieved by a 
model with intermediate complexity, corresponding to the decision boundary 
in Figure i . l l . 

1.6 M o d e l courplexity 

Using an example of polynomial curve fitting, wc have seen that the best gener­
alization performance is achieved by a model whose complexity (measured here 
by the order of the polynomial) is neither too small nor too large. The problem 
of finding the optimal complexity for a model provides an example of Occam's 
razor, named, after William of Occam (1285-1319). This is the principle tlr.it. wo 
should prefer simpler models to more complex models, and that this preference 
should be traded off against the extent to which the models fit the data. Thus a 
highly complex model wdiich fits the data extremely well (such as the lOfh-order 

tlr.it
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polynomial above) actually gives a poorer representation of the systematic as­
pects of the data than would a simpler mode) (such as the .jr.l-order polynomial). 
A model whioi is too simple, however, as in the Ist-crdcr polynomial, is also not 
prefered as 1!; gives too poor a fit to the data. 'Die same considerations apply to 
neural network models, whore again we can control the complexify of the model 
oy coni.ro.ilng t..o number of free parameters which it possesses. 

An a l te ra t ive approach to optimizing the generalization performance of a 
model is to control lis effective complexity. This can be achieved by considering 
a model with many adjustable parameters, and then altering the training pro­
cedure by adding a pc..u,!:,y term il to the error function. The total error then 
Lc-eomes 

E^E + vil (l.C) 

where O is called a regulariza'ion. term. The value of £?. depends on the mapping 
function l(x). and if the functional form of fi is chosen appropriately, it can be 
used to control over-fitting. For example, if we examine the function represented 
by the lOth-order polynomial in Figure 1.8, we sec that it has large oscillations, 
and hence the function ;,(:?;) has regions of large curvature. We might therefore 
choose a regularization function which is large for functions with large values of 
the second derivative, such, as 

The parameter v in (l.C) controls the extent to which the regularization term 
inlluences the form of the solution, and hence controls the effective complexity 
of the moc'ei. Rogi.larizafio.i is discussed in greater detail in Sections 5.4, 9.2 
and 10.1.5. 

We have seen that, for a fixed size of data, set, it is important to achieve the 
optimum level of complexity for the model in order to minimize the combina­
tion of bias and variance. By using a sequence of successively larger data sets, 
however, and a corresponding set of models with successively greater complexity, 
it is possible in principle to reduce both bias and variance simultaneously and 
hence to improve the generalization performance of the network. The ultimate 
generalization achievable will be limited by the intrinsic noise on the data. 

1.7 Mul t i va r i a t e nou-!h,enr t:nof;,ons 

The role of neural nefwoiks, as '.v.- have already indicated, is to provide general 
parametrized non-linear mapping" between n. set of input variables and a set of 
output variables. Polynomials piovide such mappings for the case of one input 
variable arid one output variable. Provided we have a sufficiently large num­
ber of terms in the poiy.iomial, we can approximate any reasonable function to 
arbitrary accuracy. 'J his suggests that we could simply extend the concept ol 

coni.ro
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a polynomial to higher dimensions. Thus, for d input variables, and again one 
output variable, we could consider higher-order polynomials up to, say, order 3, 
given by 

d d d d d d 

y==W0+'52 WhXh + YU2 wiii2XH^ii + Yl ^2 Yl WwUXixXiixis- (^8) 

For an Mth-order polynomial of this kind, the number of independent adjustable 
parameters would grow like dM (Exercise 1.8). While this now has a power 
law dependence on d, rather than the exponential dependence of the model 
represented in Figure 1:$, it still represents a dramatic growth in the number of 
degrees of freedom of themodel as the dimensionality of the input space increases. 
For medium to large applications, such a model!would need huge quantities of 
training data in order tb ensure that the adaptive parameters (the coefficients 
in the polynomial) were well determined. •: '. 

There are in fact many different ways in which to represent general non-linear 
mappings between multidimensional spaces. The importance of neural networks, 
and similar techniques, lies in the way in which they deal with the problem of 
scaling with dimensionality. Generally, these models represent non-linear func­
tions of many variables; in terms of superpositions of non-linear functions of a 
single variable, which we; might call 'hidden functions' (also called hidden units). 
The key point is that the hidden functions are themselves adapted to the data 
as part of the training process, and so the number of such functions only needs 
to grow as the complexity of the problem itself grows, and not simply as the 
dimensionality grows. The number of free parameters in such models, for a given 
number of hidden functions, typically only growsilinearly, of quadratically, with 
the dimensionality of the input space, as compared with, the dM growth for a 
general Mth-order polynomial. We devote Chapters 4 and 5 to a study of two off 
the most popular such models, known respectively as the multi-layer perceptrpn 
and the radial basis function network. . 

Barron (1993) has studied the way in which the residual sum-of-squares er­
ror decreases as the number of parameters in a model is increased. For neural 
networks he showed that this error falls as 0(1 jM) where M is the number Of 
hidden units in the network,1 irrespective of the number of input variables. By 
contrast, the error only decreases as 0{1/M2^d)y where d is the dimensionality 
of input space, for polynomials or indeed any other series expansion in which it 
is the coefficients of linear combinations of fixed functions which are adapted. 
We see that neural networks therefore offer a dramatic advantage for function 
approximation in spaces,of many dimensions. ' 

The price which we pay for this efficient scaling with dimensionality is that 
the network functions are now necessarily non-linear functions of the adaptive 
parameters. Unlike polynomial curve fitting, the procedure for determining the 
values of the parameters is now a problem in non-linear optimization, which is 
computationally intensive and which presents a number of additional complica-
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tions, such as the presence of multiple minima in the error function. Chapter 7 is 
therefore concerned with the important topic of finding efficient algorithms for 
performing this optimization. 

1.8 Bayes ' t h e o r e m 

In the remainder of this chapter we introduce some of the basic concepts of the 
statistical approach to pattern recognition, in preparation for later chapters. For 
readers interested in a more detailed account of these topics there are many stan­
dard textbooks which specialize in this area, including Duda and Hart (1973), 
Hand (1981), Devijver and Kittler (1982), and Fukunaga (1990). Rather than 
present these concepts in an abstract fashion, we let them unfold naturally in 
the context of the character recognition problem introduced at the start of this 
chapter. 

We begin by supposing that we wish to classify a new character but as yet we 
have made no measurements on the image of that character. The goal is to classify 
the character in such a way as to minimize the probability of misclassification. If 
we had collected a large number of examples of the characters, we could find the 
fractions which belong in each of the two classes. We formalize this by introducing 
the prior probabilities P(Ck) of an image belonging to each of the classes Cj.. 
These correspond to the fractions of characters in each class, in the limit of an 
infinite number of observations. Thus, if the letter 'a' occurs three times as often 
as the letter ' b \ we have P(Ci) = 0.75 and P{C2) = 0.25. 

If we were forced to classify a new character without being allowed to see 
the corresponding image, then the best we can do is to assign it to the class 
having the higher prior probability. That is, we assign the image to class C\ if 
P{Ci) > P(C2), and to class C% otherwise. In the character recognition example, 
this means we would always classify a new character as 'a'. This procedure 
minimizes the probability of misclassification, even though we know that some 
of the images will correspond to the character 'b'. 

Now suppose that we have measured the value of the feature variable x\ for 
the image. It is clear from Figure 1.2 that this gives us further information on 
which to base our classification decision, and We seek a formalism which allows 
this information to be combined with the prior probabilities which we already 
possess. To begin with, we shall suppose that X\ is assigned to one of a discrete 
set of values {X1}, as was done for the histogram plot of Figure 1.2. We can 
represent this information in a slightly different way, as an array of cells, as in 
Figure 1.13. The joint probability P{Ck, X1) is defined to be the probability that 
the image has the feature value X1 and belongs to class Ck- This corresponds to 
the fraction of the images which Ifall into'a particular cell (in row Ck and column 
X1) in the limit of an infinite number of images. The prior probabilities P(Ck) 
introduced earlier correspond to the total fraction of images in the corresponding 
row of the array. 

Next we introduce the conditional probability P(Xl\Ck) which specifies the 
probability that the observation falls in column X' of the array given that it 
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\x'. 
Figure 1.13. Data from the histogram of Figure 1.2 represented as an array. 
The feature variable £i can take one of! the discrete values X1 and each image 
is assigned to one of the two classes Ci'or G2. The number of dots in each cell 
represents the number of images having the corresponding value of X1 and the 
corresponding class label. Various probabilities are defined in the text in terms 
of the fraction of points faffing in different regions of the array. 

belongs to class Ck- It is given by the fraction of :the ijmages in row Ck which fall 
in cell X1 (in the limit of an infinite number of images). 

We now note that the fraction of the total number of images which fall into 
cell (Ck,Xl) is given by the fraction of ;the number of images in row Ck which 
fall in cell {Ck, X1) times the fraction of the total nuinber of images which fall in 
row Ck- This is equivalent 'to writing the joint probability i n the form 

P{Ck,X}) ^ PiXl\Ck)HCk)A (1-9) 

By a similar argument, we can see that the joint probability can also be written 
in the form 

Pick,x
l) = F%Ck\xl)p{xly (1.10) 

where P(Ck\Xl) is the probability that the class; is Ck given that the measured 
value of x\ falls in the celi X1. The quantity ff(X') ' is the probability of ob­
serving a value X1 with respect to the •fvhole data set, irrespective of the class 
membership, and is therefore given by the fraction of the total number of images 
which fall into column Xh The two expressions for the joint probabilities in (1.9) 
and (110) must, however, be equal. Thus, we cah write 

P(Ck\X
l) 

P(Xl\Ck)P(Ck) 

i P(xl). • (1-11) 

This expression is referred to as Bayes' theorem (after the Revd. Thomas Bayes, 
1702-1761). The quantity on the left-hand side of ( l . l l ) is called the posterior 
probability, since it gives the probability that the class is Ck after we have made 
a measurement of xi- Bayes' theorem allows the posterior probability to be 
expressed in terms of the prior probability P(Cjt), together with the quantity 
P{Xl\Ck) which is called the class-conditional probability of X1 for class Ck-
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1.0 

0.0 
A 3c, 

Figure 1.14. Histogram plot of posterior probabilities, corresponding to the 
histogram of observations in Figure 1:2, for prior probabilities P(Ci) = 0.6 
and P(C2) = 0.4. 

The denominator in Bayes' theorem, P(Xl), plays the role of a normalization 
factor, and ensures that the posterior probabilities sum to unity. As we shall 
see shortly, the posterior probability is a quantity of central interest since it 
allows us to make optimal decisions regarding the class membership of new data. 
In particular, assigning a new image to the class having the largest posterior 
probability minimizes the probability of misclassification of that image. 

The denominator in Bayes' theorem can be expressed in terms of the prior 
probabilities and the class-conditional probabilities. To do this we note that any 
new measurement must be assigned to one of the two classes C\ or C2. Thus 

P(Cl\X
l) + P(C2\X

l) = l. (1.12) 

Substituting (1.11) into (1.12) we obtain 

, P ( X ' ) = P(X' |Ci)P(C1) + P(X i |C2)P(C2) . (1.13) 

1.8.1 Inference and decision 

The importance of Bayes' theorem lies in the fact that it re-expresses the poste­
rior probabilities in terms of quantities which are often much easier to calculate. 
We have seen in our character recognition example that the prior probabilities 
can be estimated from the proportions of the training data which fall into each 
of the classes. Similarly, the class-conditional probabilities P(Xl\Ck) could be 
estimated from the histograms of Figure 1.2. From these quantities we can also 
find the normalization factor in Bayes' theorem, by use of (1.13), and hence eval­
uate the posterior probabilities. Figure 1.14 shows the histograms of posterior 
probability, corresponding to the class^conditional probabilities in Figure 1.2, for 
prior probabilities P(Ci) = 0.6 and P(C2) = 0.4. 

For a new image, having feature value X1, the probability of misclassificatton 
is minimized if we assign the image to the class Ck for which the posterior prob­
ability P(Ck\Xl) is largest, as we shall demonstrate in Section 1.9. Thus, if we 

kP(C,l3c,) 

• 

r-

_-_* 

P(C2I*,) 
I 
I 
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observe a new image with feature value A, as shown in Figure 1.14, it should be 
assigned to class C\. 

In some cases the prior probabilities can be estimated directly from the train­
ing data itself. However, it sometimes happens (often by design) that the frac­
tions of examples from different classes in the training data set differ from the 
probabilities expected when our trained pattern recognition system is applied to 
new data. As an example, consider the problem of designing a system to distin­
guish between normal tissue (class C\) and tumours (class C%) on medical X-ray 
images, for use in mass screening. From medical statistics we may know that, 
in the general population, the probability of observing a tumour is 1% and so 
we should use prior probabilities of P{C\) = 0.99 and P(C2) = 0.01. In collect­
ing a training data set, however, we might choose to include equal numbers of 
examples from both classes to ensure that we get a reasonable number of repre­
sentatives of tumours, without having to use a huge number of images in total. 
We can still use the images in our data set to estimate the class-conditional 
probabilities P(Xl\Ck) and then use Bayes' theorem to Calculate the correct pos­
terior probabilities using the known prior probabilities. Note that in practice 
these prior probabilities could be obtained from medical statistics without the 
need to collect images or determine their class. In this example, failure to take 
correct account of the prior probabilities would lead to significantly sub-optimal 
results. 

One approach to statistical pattern recognition is therefore to evaluate the 
class-conditional probabilities and the prior probabilities separately and then 
combine them using Bayes' theorem to give posterior probabilities, which can 
then be used to classify new examples. An alternative approach is to estimate 
the posterior probability functions directly. As we shall see in Chapter 6, the 
outputs of a neural network can be interpreted as (approximations to) posterior 
probabilities, provided the error function used to train the network is chosen 
appropriately. 

It is important to distinguish between two separate stages in the classification 
process. The first is inference whereby data is used to determine values for the 
posterior probabilities. These are then used in the second stage which is decision 
making in which those probabilities are used to make decisions such as assigning 
a new data point to one of the possible classes. So far we have based classifica­
tion decisions on the goal of minimizing the probability of misclassification. In 
Section 1.10 we shall discuss more general decision criteria, and introduce the 
concept of a loss matrix. 

As we have indicated, the minimum probability of misclassification is ob­
tained by assigning each new observation to the class for which the posterior 
probability is largest. In the literature this is sometimes referred to as the "Bayes' 
rule". We avoid this terminology, however, since the role of Bayes' theorem is 
in the evaluation of posterior probabilities, and this is quite distinct from any 
subsequent decision procedure. 
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1.8.2 Bayesian versus frequentist statistics 

Until now we have defined probabilities in terms of fractions of a set of obser­
vations in the limit where the number of observations tends to infinity. Such a 
view of probabilities is known as frequentist. There is, however, a totally differ­
ent way of viewing the same formalism. Consider, for example, the problem of 
predicting the winner of a bicycle race. The 'probability' of a particular cyclist 
winning does not sit naturally within the frequentist framework since the race 
will take place only once, and so it will not be possible to perform a large number 
of trials. Nevertheless, it would not seem unusual to hear someone say that a 
particular cyclist has a 30% probability of winning. In this! case we are using 
the term 'probability' to express a subjective 'degree of belief in a particular 
outcome. 

Suppose we try to encode these subjective beliefs as real numbers. In a key 
paper, Cox (1946) showed that, provided we impose soma simple, and very nat­
ural, consistency requirements, we are led uniquely to the Bayesian formalism. 
If we use a value of 1 to dendtb complete certainty that an event will occur, and 
0 to denote complete certainty that the event will not occu^r (with intermedi­
ate values representing corresponding degrees of belief), then these real values 
behave exactly like conventional probabilities. Bayes' theorem then provides us 
with a precise quantitative prescription for updating these probabilities when we 
are presented with new data. The prior probability represents our degree of belief 
before the data arrives. After we observe the data, we can use Bayes' theorem 
to convert this prior probability into a posterior probability. Jaynes (1986) gives 
an enlightening review of the fascinating, and sometimes: controversial, history 
of Bayesian statistics. 

1.8.3 Probability densities .;., 

So far we have treated the feature variable x\ by discretizing it into a finite set 
of values. In many applications it will be more appropriate to! regard the feature 
variables as continuous. Probabilities for discrete variables arte then replaced by 
probability densities^ From now on we shall omit the ~ symbol and suppose that 
the variables Xj now refer to input quantities after any pre-protessing and feature 
extraction have been, performed. 

A probability density function p(x) specifies that the probability of the vari­
able x lying in the interval between any two points x = a and x = b is given 
by 

P(xe[a,b})= f p(x)dx. (1.14) 
Ja 

The function p(x) is normalized so that P(x 6 [a, b}) = 1 if the interval [a, b] cor­
responds to the whole of a;-space. Note that we use upper-case letters for probabil­
ities and lower-case letters for probability densities. For continuous variables, the 
class-conditional probabilities introduced above become class-conditional prob-
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ability density functions, which we write in the form p(x|Cjt). The histograms 
plotted in Figure 1.2 effectively provide unnormalized, discretized estimates of 
the two functions p{x\C\) and p(x\C2). 

If there are d variables x\,...,Xd, we may group them into a vector x = 
{x\,... ,£d)T corresponding to a point in a {/-dimensional space. The distribution 
of values of x can be described by probability density function p(x), such that 
the probability of x lying in a region 7Z bf x-space is given by 

P{xeTV)= J p(x)dx. (1.15) 
Jn 

We define the expectation, or expected (i.e. average) value, of a function Q(x) 
with respect to a probability density p(x) to be 

£[Q]=y"<|(x)p(x)dx (1.16) 

where the integral is over the whole of x^space. For a finite set of data points 
x 1 , . . . ,xN, drawn from the distribution; p(x), the expectation can be approxi­
mated by the average over the data points 

i f ; 1 N 

£ [ Q ] S J Q ( x ) P ( x ) r f X 2 ; - X Q ( x n ) : (1.17) 

1.8.4 Bayes 'theorem in general : « .. ' 

For continuous Variables the prior probabilities can be combined with the class-
conditional densities to give the posterior probabilities P(Ck\x) using Bayes' 
theorem, which can now be written in t{ie form 

mw=#^M.; (1.18) 

Here p(x) is the unconditional density function, that is the density function for 
x irrespective of the class, and is given by 

p(x) = p(i|C,)P(Ci)!+ p(x\C2)P(C2). (1.19) 

Again this plays the role of a normalizing factor in (1.18) and ensures that the 
posterior probabilities sum to 1 

F(Ci|x) + P(C2|i) = l (1.20) 

as can be verified by substituting (1.18) into (1.20) and using (1.19). 
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A large part of Chapter 2 is devoted to the problem of modelling probability 
density functions on the basis of a set of example data. One application for 
such techniques is for estimating class-conditional densities for subsequent use 
in Bayes' theorem to find posterior probabilities. 

In most practical pattern classification problems it is necessary to use more 
than one feature variable. We may also wish to consider more than two possible 
classes, so that in our character recognition problem we might consider more than 
two characters. For c different classes Ci,... ,Cc , and for a continuous feature 
vector x, we can write Bayes' theorem in the form 

»l=*f« 0.2!) 

where the unconditional density p(x) is given by 

c 

p(x) = ]Tp(x|Cfc)P(Cfc) (1-22) 

which ensures that the posterior probabilities sum to unity 

v c 

. £)P(C fc |x) = l. (1.23) 
fc=i 

In practice, we might choose to model the class-conditional densities p(x|Cfc) 
by parametrized functional forms. When viewed as functions of the parameters 
they are referred to as likelihood functions, for the observed value of x. Bayes' 
theorem can therefore be summarized in the form 

likelihood x prior /„ „,, 
posterior = — , ^ . (1-24) 

normalization factor 

1.9 Decision boundaries 
The posterior probability P(Cfc|x) gives the probability of the pattern belonging 
to class Ck once we have observed the feature vector x. The probability of mis-
classification is minimized by selecting the class Ck having the largest posterior 
probability, so that a feature vector x is assigned to class Ck if 

P(Ck\x) > P{Cj\x) for all j ^ k. (1.25) 

We shall examine the justification for this rule shortly. Since the unconditional 
density p(x) is independent of the class, it may be dropped from the Bayes' 
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formula for the purposes of comparing posterior probabilities. Thus, we can use 
(1.21) to write the criterion (1.25) in the form 

p(x\Ck)P(Ck) > pMCJPiCj) for all j ? k. (1.26) 

A pattern classifier provides a rule for assigning each point of feature space 
to one of c classes. We can therefore regard the feature space as being divided 
up into c decision regions 7£ i , . . . ,7JC such that a point falling in region 1Zk is 
assigned to class Ck. Note that each of these regions need not be contiguous, 
but may itself be divided into several disjoint regions all of which are associated 
with the same class. The boundaries between these regions are known as decision 
surfaces or decision boundaries. 

In order to find the optimal criterion for placement of decision boundaries, 
consider again the case of a one-dimensional feature space x and two classes 
C\ and C2. We seek a decision boundary which minimizes the probability of 
misclassification, as illustrated in Figure 1.15. A misclassification error will occur 
if we assign a new pattern to class C\ when in fact it belongs to class C2, or vice 
versa. We can calculate the total probability of an error of either kind by writing 
(Duda and Hart, 1973) 

P(error) = P(x € K2,Ci) + P(x 6 fti,C2) 

= P{x e ft2|Ci)P(Ci) + P(x e fti|C2)P(Ca) 

= / p(x\Ci)P(Ci)dx+ f p(x\C2)P(C2)dx (1.27) 

where P(x 6 7^i,C2) is the joint probability of x being assigned to class C\ and 
the true class being C2. Thus, if p(x\C\)P{C\) > p(x|C2)P(C2) for a given x, we 
should choose the regions Hi and 7£2 such that x is in TJi, since this gives a 
smaller contribution to the error. We recognise this as the decision rule given by 
(1.26) for minimizing the probability of misclassification. The same result can be 
seen graphically in Figure 1.15, in which misclassification errors arise from the 
shaded region. By choosing the decision boundary to coincide with the value of x 
at which the two distributions cross (shown by the arrow) we minimize the area 
of the shaded region and hence minimize the probability of misclassification. This 
corresponds to classifying each new pattern x using (1.26), which is equivalent 
to assigning each pattern to the class having the largest posterior probability. 

A similar justification for this decision rule may be given for the general case 
of c classes and d-dimensional feature vectors. In this case it is easier to calculate 
the probability of a new pattern being correctly classified (Duda and Hart, 1973) 

c 

P(correct) = ^ P ( x eTlk,Ch) 
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Figure 1.15. Schematic illustration of the joint probability densities, given by 
p{x,Ck) = p{x\Ck)P(Ck), as a function of a feature value x, for two classes fr 
and C2. If the vertical line is used as the decision boundary then the classifica: 

tion errors arise from the shaded region. By placing the decision boundary at 
the point where the two probability density curves cross (shown by the arrow), 
the probability of misclassification is minimized. 

c 

= J^P(xeKk\Ck)P(Ck) 
fc=i 

= Y. p(x\Ck)P{Ck)dx. (1.28) 

This probability is maximized by choosing the {Kk} such that each x is assigned 
to the class for which the integrand is a maximum, which is equivalent to (1.26). 

1.9.1 Discriminant functions 

Although we have focused on probability distribution functions, the decision on 
class membership in. our classifiers has been based solely on the relative sizes 
of the probabilities. This observation allows us to reformulate the classification 
process in terms of a set of discriminant functions yi(x),...., yc(x) such that an 
input vector x is assigned to class Ck if 

yfc(x) > yj(x) f o r a l l j ^ f c . (1.29) 

The decision rule for minimizing the probability of misclassification may easily 
be cast in terms of discriminant functions, simply by choosing 

yfc(x) = P(Cfc|x). (1.30) 

If we use Bayes' theorem, and note that the unconditional density p(x) in the 
denominator does not depend on the class label Ck, and therefore does not affect 
the classification decision, we can write an equivalent discriminant function in 
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the form 

ifr(x) = p(x\Ck)P(Ck). (1.31) 

Since it is only the relative magnitudes of the discriminant functions which are 
important in determining the class, we can replace j/it(x) by g(yk(x)), where g() 
is any monotonic function, and the decisions of the classifier will not be affected. 
By taking logarithms for example, we could write our discriminant functions in 
the form 

yk (x) = In p(x|Cfc) + In P(Ck). (1.32) 

In general the decision boundaries are given by the regions where the discrimi­
nant functions are equal, so that if Tlk and TZj are contiguous then the decision 
boundary separating them is given by 

j/ f c(x) = Vj(x). •; : (1.33) 

The locations of the decision boundaries are therefore unaffected by monotonic 
transformations of the discriminant functions. 

Discriminant functions for two-class decision problems are traditionally writ­
ten in a slightly different form. Instead of using two discriminant functions j/i (x) 
and J/2 (x), w e introduce a single discriminant function 

0(x) = y i(x)-ifc(x) (1.34) 

and we now use the rule that x is assigned to class C\ if j/(x) > 0 and to class 
Ci if j/(x) < 0. Prom the remarks above it follows that we can use several forms 
for j/(x) including 

y(x) = P(Ci jx)-P(C|x) (1-35) 

or alternatively 

. p(x|Ci) -P(Ci) „ ,_. 
yw=lnm*)+ln~pWy (L36) 

It may not appear that we have gained a great deal by introducing discrim­
inant functions, but as we shall see it is often possible to determine suitable 
discriminant functions from our training data without having to go through the 
intermediate step of probability density estimation. However, by relating the 
discriminant functions to the probabilities, we retain the link to the optimal 
criteria of decision theory introduced above. There are also important links be­
tween discriminant functions and neural networks, and these will be explored in 
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subsequent chapters. 

1.10 Min imiz ing r isk 

So far we have based our classification decisions on the desire to minimize the 
probability of misclassifying a new pattern. In many applications this may not 
be the most appropriate criterion. Consider for instance the medical screening 
problem discussed on page 20. There may be much more serious consequences if 
we classify an image of a tumour as normal than if we classify a normal image 
as that of a tumour. Such effects may easily be taken into account as follows. 

We define a loss matrix with elements Lkj specifying the penalty associated 
with assigning a pattern to class Cj when in fact it belongs to class Ck. Consider 
all the patterns x which belong to class Ck. Then the expected (i.e. average) loss 
for those patterns is given by 

Rk = YJLki ( p(x\Ck)dx. (1.37) 

Thus, the overall expected loss, or risk, for patterns from all classes is 

c 

/ l = ^ J ? f c P ( C f c ) (1.38) 

= E / \i^Lkip{x\Ck)P(Ck)\ dx. 
J=IJKI U=I J 

This risk is minimized if the integrand is minimized at each point x, that is if 
the regions TZj are chosen such that x e Tlj when 

c c 

Y, LkjP(x\Ck)P(Ck) < Y, LkiP(x\Ck)P(Ck) for all i ? j (1.39) 
fc=i fc=i 

which represents a generalization of the usual decision rule for minimizing the 
probability of misclassification. Note that, if we assign a loss of 1 if the pattern 
is placed in the wrong class, and a loss of 0 if it is placed in the correct class, 
so that Lkj = 1 — 6kj (where <5/y is the Kronecker delta symbol defined on 
page xiii), then (1.39) reduces to the decision rule for minimizing the probability 
of misclassification, given by (1.26). In an application such as the medical image 
classification problem, the values of the coefficients Lkj would probably be chosen 
by hand, based on the views of experienced medical staff. For other applications, 
in finance for example, it may be possible to choose values for the L/y in a more 
systematic fashion since the risks can be more easily quantified. 
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1.10.1 Rejection thresholds 

In general we expect most of the misclassification errors to occur in those regions 
of x-space where the largest of the posterior probabilities is relatively low, since 
there is then a strong overlap between different classes. In some applications 
it may be better not to make a classification decision in such cases. This is 
sometimes called the reject option. For the medical classification problem for 
example, it may be better not to rely on an automatic classification system in 
doubtful cases, but to have these classified instead by a human expert. We then 
arrive at the following procedure 

• r nir, i \ f > #. then classify x ,n . . . 
if maxP(C, |x) | — ^ te.ec^ (1.40) 

where 9 is a threshold in the range (0,1). The larger the value of 9, the fewer 
points will be classified. One way in which the reject option can be used is to 
to design a relatively simple but fast classifier system to cover the bulk of the 
feature space, while leaving the remaining regions to a more sophisticated system 
which might be relatively slow. 

The reject option can be applied to neural networks by making use of the 
result, to be discussed in Chapter 6, that the outputs of a correctly trained 
network approximate Bayesian posterior probabilities. 

Exerc ises 

1.1 (*) The first four exercises explore the failure of common intuition when 
dealing with spaces of many dimensions. In Appendix B it is shown that 

1/2 

J C " » { - H * - ( T ) • <"•> 
Consider the following identity involving the transformation from Cartesian 
to polar coordinates 

T7 / e-^dii^Sd e~rrd-ldr (1.42) 
£_1 J-oo Jo 

where Sj is the surface area of the unit sphere in d dimensions. By making 
use of (1.41) show that 

1-Kdl2 

S^wm (L43) 

where F(x) is the gamma function defined by 
(•OO 

r(x)= / ux~le-udu. (1.44) 
Jo 
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Using the results T(l) = 1 and T(3/2) = v ^ / 2 , verify that (1.43) reduces 
to the well-known expressions when d — 2 and d = 3. 

1.2 (*) Using the result (1.43), show that the volume of a hypersphere of radius 
a in d-dimensions is given by 

Fd = ^ . (1.45) 

Hence show that the ratio of the volume of a hypersphere of radius a to 
the volume of a hypercube of side 2a (i.e. the circumscribed hypercube) is 
given by 

volume of sphere _ ird/2 

volume of cube = d2 d -» r (d /2 ) ' ( ' 

Using Stirling's approximation 

r ( i + 1) ~ (27r)1/2e-xar£+1/2 (1.47) 

which is valid when x is large, show that, as d —* oo, the ratio (1.46) goes 
to zero. Similarly, show that the ratio of the distance from the centre of the 
hypercube to one of the corners, divided by the perpendicular distance to 

' one of the edges, is \/d, and therefore goes to oo as d —* oo. These results 
'. show that, in a high dimensional space, most of the volume of a cube is 
concentrated in the large number of corners, which themselves become very 

; long 'spikes'. 
1.3 (W) Consider a sphere of radius a in d dimensions. Use the result (1.45) to 

show that the fraction of the volume of the sphere which lies at values of 
; the radius between a — e and a, where 0 < e < a, is given by 

/ = l - ( l - i ) d . (1.48) 

: Hence show that, for any fixed e no matter how small, this fraction tends 
to 1 as d —* oo. Evaluate the ratio / numerically, with e/a = 0.01, for 
the cases d = 2, d = 10 and d = 1000. Similarly, evaluate the fraction 
of the volume of the sphere which lies inside the radius a/2, again for 
d = 2, d = 10 and d = 1000. We see that, for points which are uniformly 
distributed inside a sphere in d dimensions where d is large, almost all of 
the points are concentrated in a thin shell close to the surface. 

1.4(**) Consider a probability density function p(x) in d dimensions which is 
a function only of radius r = ||x|| and which has a Gaussian form 

p(x)=(2^exp(-^E)- < L 4 9 > 
By changing variables from Cartesian to polar coordinates, show that the 
probability mass inside a thin shell of radius r and thickness e is given by 
p(r)e where 
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where 5^ is the surface area of a unit sphere in d dimensions. Show that the 
function p(r) has a single maximum which, for large values of d, is located 
at f" ~ \fda. Finally, by considering p{? + e) where f < r show that for 
large d 

p(r + e)=p(r)exp(-^y (1.51) 

Thus, we see that p(r) decays exponentially away from its maximum at 
r" with length scale a. Since a -C r at large d, we see that most of the 
probability mass is concentrated in a thin shell at large radius. By contrast, 
note that the value of the probability density itself is exp(d/2) times bigger 
at the origin than at the radius a, as can be seen by comparing p(x) in 
(1.49) for ||x||2 = 0 with p(x) for ||x||2 = f2 = a2d. Thus, the bulk of the 
probability mass is located in a different part of space from the region of 
high probability density. 

1.5 (*) By differentiating of the sum-of-squares error function (1.3), using the 
form of the polynomial given in (1.2), show that the values of the polyno­
mial coefficients which minimize the error are given by the solution of the 
following set of linear simultaneous equations 

M 

Y^^yw^Ty (1.52) 

where we have: defined 

Air = £ ( * n ) W ' Ty = £ «»(*")*'. (1.53) 
n n 

1.6 (*) Consider the second-order terms in a higher-order polynomial in d di­
mensions, given by 

d d 

Y^^WijXiXj. (1.54) 
t=i j = i 

Show that the matrix tuy can be written as the sum of a symmetric matrix 
wfj — (u>ij + Wji)/2 and an anti-symmetric matrix M)y = (iwy — Wji)/2. 
Verify that these satisfy wfj = w^ and wA = — wf-. Hence show that 

d d d d 

]C J2 wiixixi = YL12 wfjxixi C1-55) 

so that the contribution from the anti-symmetric matrix vanishes. This 
demonstrates that the matrix wtj can be chosen to be symmetric without 
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loss of generality. Show that, as a consequence of this symmetry, the number 
of independent parameters in the matrix w^ is given by did + l ) / 2 . 

* *) Consider the Mth-order term in a multivariate polynomial in d dimen­
sions, given by 

d d d 

/ , Z-j'" 2- / wi\i2-iMXhxii ' ' 'xtM- (1.56) 

The M-dimensional array wili:l...iM contains dM elements, but many of 
these are related as a consequence of the many interchange symmetries of 
the factor x,, £j2 • • • x*M. Show that the redundancy in the coefficients can 
be removed by rewriting (1.56) in the form 

d ti I M - 1 

2_j 2-j " ' Z-j Whi-2---iMXhxi2 ' " xiu- {*••*') 

Hence show that the number of independent parameters n(d, M) which 
appear at order M satisfies the relation 

d 

n(d ,M) = ^ n ( i , M - l ) . (1.58) 
i=l 

Use this relation to show, by induction, that 

To do this, first show that the result is true for M — 2, and any value of 
d>l,by comparing (1.59) with the result of Exercise 1.6. Now use (1.58) 
to show that, if the result holds at order M — 1, then it will also hold at 
order M provided the following relation is satisfied: 

V {i + M - 2 ) ! = (d + M ~ 1 ) !
 M fim 

^ ( i - l ) ! ( M - l ) ! ( d - l ) ! M ! * K' ' 

Finally, use induction to prove (1.60). This can be done by first showing 
that (1.60) is correct for d = 1 and arbitrary M (making use of the result 
0! = 1), then assuming it is correct for dimension d and verifying that it is 
correct for dimension d + 1. 

* *) In the previous exercise we considered the Mth-order term in a gener­
alized polynomial. Now consider all of the terms up to and including the 
Mth order. Show that the total number N(d, M) of independent parame­
ters satisfies 
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M 

N(d,M) = ̂ 2n(d,j). (1.61) 
j=o 

Hence, using the expression (1.59), show by induction that 

N^M) = iJdTm}1- <L 6 2 ) 

To do this, first show that the result (1.62) holds for M = 0 and arbitrary 
d > 1. Then, by assuming that (1.62) holds at order M, show that it holds 
at order M + 1. Use Stirling's approximation in the form In n! ~ n In n — n 
to show that, for large d, the quantity N(d,M) grows like dM. For the 
general cubic (M = 3) polynomial in d-dimensions, evaluate numerically 
the total number of independent parameters for (i) d = 10 and (ii) d — 100, 
which correspond to typical small-scale and medium-scale applications. 

1.9 (*) Suppose we have a box containing 8 apples and 4 oranges, and we have a 
second box containing 10 apples and 2 oranges. One of the boxes is chosen 
at random (with equal probability) and an item is selected from the box 
and found to be an apple. Use Bayes' theorem to find the probability that 
the apple came from the first box. 

1.10 (*) Consider two non-negative numbers a and 6, and show that, if a < b 
then a < (ab)1/2. Use this result to show that, if the decision regions are 
chosen to minimize the probability of misclassification, this probability will 
satisfy 

P(error) < J {p{x\C1)P{C1)p(x\C;i)P(Ca)}
1,i dx. (1.63) 

1.11 (*) Verify that the minimum-risk decision criterion (1.39) reduces to the 
decision rule (1.26) for minimizing the probability of misclassification when 
the loss matrix is given by Lkj = 1 — 6kj-
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PROBABILITY DENSITY ESTIMATION 

In this chapter we consider the problem of modelling a probability density func­
tion p(x), given a finite number of data points x n , n = 1 , . . . , N drawn from 
that density function. The methods we describe can be used to build classifier 
systems by considering each of the classes C^ in turn, and estimating the corre­
sponding class-conditional densities p(x\Ck) by making use of the fact that each 
data point is labelled according to its class. These densities can then be used in 
Bayes' theorem (Section 1.8) to find the posterior probabilities corresponding to 
a new measurement of x, which can in turn be used to make a classification of 
x. 

Density estimation can also be applied to unlabelled data (that is data with­
out any class labels) where it has a number of applications. In the context of 
neural networks it can be applied to the distribution of data in the input space 
as part of the training process for radial basis function networks (Section 5.9), 
and to provide a method for validating the outputs of a trained neural network 
(Bishop, 1994b). 

In Chapter 6, techniques for density estimation are combined with neural 
network models to provide a general framework for modelling conditional density 
functions. 

Here we consider three alternative approaches to density estimation. The 
first of these involves parametric methods in which a specific functional form 
for the density model is assumed. This contains a number of parameters which 
are then optimized by fitting the model to the data set. The drawback of such 
an approach is that the particular form of parametric function chosen might be 
incapable of providing a good representation of the true density. By contrast, 
the second technique of non-parametric estimation does not assume a particular 
functional form, but allows the form of the density to be determined entirely 
by the data. Such methods typically suffer from the problem that the number 
of parameters in the model grows with the size of the data set, so that the 
models can quickly become unwieldy. The third approach, sometimes called semi-
parametric estimation, tries to achieve the best of both worlds by allowing a very 
general class of functional forms in which the number of adaptive parameters can 
be increased in a systematic way to build ever more flexible models, but where the 
total number of parameters in the model can be varied independently from the 
size of the data set. We shall focus on semi-parametric models based on mixture 
distributions. Feed-forward neural networks can be regarded as semi-parametric 
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models for conditional density estimation, as discussed further in Chapter 6. 
It should be emphasized that accurate modelling of probability densities from 

finite data sets in spaces of high dimensionality (where high could be as low as 
d = 10) is, in general, extremely difficult. In Exercise 1.4 it was shown that most 
of the probability mass associated with a Gaussian distribution in a space of high 
dimensionality occurs in a thin shell at large radius. With a finite data set, there 
may be few, if any, data points associated with the region of high probability 
density near the origin. This is another example of the 'curse of dimensionality' 
discussed in Section 1.4. 

The techniques described in this chapter are not only of great interest in 
their own right, but they also provide an excellent introduction to many of the 
central issues which must be addressed when using neural networks in practical 
applications. More extensive discussions of density estimation can be found in 
Duda and Hart (1973), Titterington et al. (1985), Silverman (1986), McLachlan 
and Basford (1988), Pukunaga (1990) and Scott (1992). 

2.1 P a r a m e t r i c m e t h o d s 

One of the most straightforward approaches to density estimation is to represent 
the probability density p(x) in terms of a specific functional form which contains 
a number of adjustable parameters. The values of the parameters can then be 
optimized to give the best fit to the data. The simplest, and most widely used, 
parametric model is the normal or Gaussian distribution, which has a number 
of convenient analytical and statistical properties. Since our aim is to explain the 
basic principles of parametric density estimation, we shall limit our discussion 
to normal distributions. 

We shall also describe the two principal techniques for determining the pa­
rameters of the model distribution, known respectively as maximum likelihood 
and Bayesian inference. As an illustration of the Bayesian approach, we consider 
the problem of finding the mean of a normal distribution. Bayesian methods are 
also considered in Chapter 10 where they are applied to the more complex prob­
lem of learning in neural networks. We shall also consider stochastic techniques 
for on-line learning in which the data values arrive sequentially and must be 
discarded as soon as they are used. 

2.1.1 The normal distribution 

The normal density function, for the case of a single variable, can be written in 
the form 

K*)=(^-p{-^} (2.D 

where \i and a2 are called the mean and variance respectively, and the parameter 
o (which is the square root of the variance) is called the standard deviation. The 
coefficient in front of the exponential in (2.1) ensures that J_oop(x)dx = 1, as 
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can easily be verified using the results derived in Appendix B. The mean and 
variance of the one-dimensional normal distribution satisfy 

/

oo 
xp(x) dx (2.2) 

•CO 

/

CO 

(a; - fifp{x) dx (2.3) 

-co 

where £[•] denotes the expectation. 
In d dimensions the general multivariate normal probability density can be 

written 

P ( X ) = (27r )^ |E | i /2 6 X P \~\{x ~ ^ ) T 5 r l ( x - **)} (2.4) 

where the mean fi is now a d-dimensional vector, E is a d x d covariance 
matrix, and |E | is the determinant of E. The pre-factor in (2.4) ensures that 
/_oo P( x ) rfx = 1, as can again be verified using the results derived in Appendix B. 
The density function p(x) is governed by the parameters fi and E, which satisfy 

\i - £[x] (2.5) 

S = £ [ ( X - M ) ( X - M ) T 1 - (2-6) 

Prom (2.6) we see that E is a symmetric matrix, and therefore has d(d + l ) /2 
independent components. There are also d independent elements in (i, and so the 
density function is completely specified once the values of d(d + 3)/2 parameters 
have been determined. The quantity 

A 2 = ( X - M ) T S - 1 ( X - M ) (2.7) 

which appears in the exponent in (2.4), is called the Mahalanobis distance from 
x to (i. From the results derived in Appendix A for the properties of real sym­
metric matrices, we see that the surfaces of constant probability density for (2.4) 
are hyperellipsoids on which A2 is constant, as shown for the case of two dimen­
sions in Figure 2.1. The principal axes of the hyperellipsoids are given by the 
eigenvectors u, of E which satisfy 

E U i = XiUi (2.8) 

and the corresponding eigenvalues A* give the variances along the respective 
principal directions. 
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Figure 2.1. A normal distribution in two dimensions is governed by a mean 
vector /x and a covariance matrix with eigenvectors ui and U2, and correspond­
ing eigenvalues Ai and A2. The ellipse corresponds to a contour of constant 
probability density on which the density is smaller by a factor e~ : '2 than it is 
at the point fi. 

It is sometimes convenient to consider a simplified form of Gaussian distri­
bution in which the covariance matrix is diagonal, 

(£)« - Sitf, (2.9) 

which reduces the total number of independent parameters in the distribution 
to 2d. In this case the contours of constant density are hyperellipsoids with the 
principal directions aligned with the coordinate axes. The components of x are 
then said to be statistically independent since the distribution of x can be written 
as the product of the distributions for each of the components separately in the 
form 

d 

p ( x ) = n ? ( 4 (2-io) 

Further simplification can obtained by choosing <7j — a for all j , which reduces 
the number of parameters still further to d + 1. The contours of constant den­
sity are then hyperspheres. A surface plot of the normal distribution for this 
case is shown in Figure 2.2. Although these simplified distributions have fewer 
parameters, they also clearly have less generality. 

2.1.2 Properties of the normal distribution 

The normal distribution has a number of important properties which make it a 
common choice for use in parametric density estimation: 
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Figure 2.2. Surface plot of a normal distribution in two dimensions for a diag­
onal covariance matrix governed by a single variance parameter a2. 

1. It has relatively simple analytical properties allowing many useful results 
to be obtained explicitly. For instance, any moment of the distribution can 
be expressed as a function of fx and S . 

2. The central limit theorem states that, under rather general circumstances, 
the mean of M random variables tends to be distributed normally, in the 
limit as M tends to infinity. The main condition is that the variance of any 
one variable should not dominate. A common application is to the sum 
of a set of variables drawn independently from the same distribution. In 
practice, convergence tends to be very rapid, so that for values of M as 
small as 10 the approximation to a normal distribution can be very good. 
We might hope that measurements of naturally occurring phenomena have 
several constituent components, leading to a distribution which is close to 
normal. 

3. Under any non-singular linear transformation of the coordinate system, 
the Mahalanobis distance keeps its quadratic form and remains positive 
definite. Thus, after such a transformation, the distribution is again normal, 
but with different mean and covariance parameters. 

4. The marginal densities of a normal distribution, obtained by integrating 
out some of the variables, are themselves normal. Similarly, the conditional 
densities, obtained by setting some of the variables to fixed values, are also 
normal. 

5. There exists a linear transformation which diagonalizes the covariance ma­
trix. This leads to a new coordinate system, based on the eigenvectors of 
S , in which the variables are statistically independent, so that the density 
function for the vector x factors into the product of the densities for each 
of the component variables separately (Exercise 2.2). 

6. For given values of the mean and the covariance matrix, the normal den­
sity function maximizes the entropy. This point is discussed further in 
Section 6.10. 
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In practice, the main reason for choosing a normal distribution is usually its 
analytical simplicity. 

2.1.3 Discriminant functions 

In Section 1.9.1 we introduced the concept of a discriminant function, and showed 
how it could be related to the class-conditional density functions through Bayes' 
theorem. This led to a particular form of discriminant function given by 

lfc(x) = lnp(x|Cfc) + lnP(C*) (2.11) 

where Ck denotes the kth class, and P(Ck) denotes the corresponding prior prob­
ability. Each new input vector x is assigned to the class Cy. which gives the largest 
value for the corresponding discriminant yk(x)- This choice of classification crite­
rion minimizes the probability of misclassification. If each of the class-conditional 
density functions p(x|Cfc) in (2.11) is taken to be an independent normal distri­
bution, then from (2.4) we have 

»*W = -\{x - /ifc)
TSfc x(x - Mfc) - ~ l n |E* | + lnP(Ck) (2.12) 

where we have dropped constant terms. The decision boundaries, along which 
«/k(x) = J/J(X), are therefore general quadratic functions in d-dimensional space. 

An important simplification occurs if the covariance matrices for the various 
classes are equal, so that Efc = E. Then the |Sfc| terms are class independent and 
may be dropped from (2.12). Similarly, the quadratic term x T E ~ x x is also class 
independent and can be dropped. Since E is a symmetric matrix, its inverse must 
also be symmetric (Appendix A). It therefore follows that xTE_1/Xfc — ^ E - 1 x . 
This gives a set of discriminant functions which can be written in the form 

Vk(x) = w j x + «/fco (2.13) 

where 

w ^ J i J S - 1 (2.14) 

«*o = - - / i j f S T V * + In P(Ck) (2.15) 

The functions in (2.13) are an example of linear discriminants, since they are 
linear functions of x. Decision boundaries, corresponding to j/fc(x) = j/j(x), are 
then hyperplanar. This result is illustrated for a two-class problem with two 
variables, in which the two classes have equal covariance matrices, in Figure 2.3. 
Linear discriminants are closely related to neural network models which have a 
single layer of adaptive weights, as will be discussed in Section 3.1. 

Another simplification of the discriminant functions is possible if again the 
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y,(*) = ^(x) 

Figure 2.3. For two classes having normal probability densities with equal co-
variance matrices, the decision boundary corresponding to the contour along 
which the discriminant functions are equal, is linear. Here the ellipses corre­
spond to contours of constant class-conditional density, while the straight line 
represents the decision boundary which minimizes the probability of misclas-
sification for equal prior probabilities P(Ci) = P(C2). 

covariance matrices for all of the classes are equal, and in addition all of the 
variables are statistically independent, so that S becomes a diagonal matrix. 
Then £ = cr2I (where I denotes the unit matrix) and the discriminant functions 
in (2.12) can be written 

y*(x) = -]- •Mfcll 
2<72 

+ \nP(Ck) (2.16) 

where the class-independent term —dinIT has been dropped. If the classes have 
equal prior probabilities P(Cjt) then the decision rule takes a particularly simple 
form: measure the Euclidean distance to each of the class means fik and assign 
the vector to the class with the nearest mean. In this case the mean vectors act 
as templates or prototypes and the decision rule corresponds to simple template 
matching. If the prior probabilities are not equal then this template matching rule 
becomes modified as indicated by (2.16). The concept of a prototype also arises 
in connection with radial basis function networks, as discussed in Chapter 5. 

2.2 Maximum likelihood 

Having decided on a parametric form for a density function p(x), the next stage is 
to use the data set to find values for the parameters. In this section and the next 
we review briefly the two principal approaches to this problem, known respec­
tively as maximum likelihood and Bayesian inference. Although these methods 
often lead to similar results, their conceptual basis is rather different. Maximum 
likelihood seeks to find the optimum values for the parameters by maximizing a 
likelihood function derived from the training data. By contrast, in the Bayesian 
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approach the parameters are described by a probability distribution. This is 
initially set to some prior distribution, which is then converted to a posterior 
distribution, through the use of Bayes' theorem, once the data has been ob­
served. The final expression for the desired probability density of input variables 
is then given by an integral over all possible values of the parameters, weighted 
by their posterior distribution. Note that the Bayesian approach does not in­
volve setting the parameters to specific values, unlike the maximum likelihood 
method. Since our aim in this chapter is to give an overview of conventional 
pattern recognition techniques, we shall restrict our attention to the case of the 
normal density function for which the results are relatively straightforward. 

We begin our discussion of parameter estimation by considering the maximum 
likelihood procedure. Suppose we consider a density function p(x) which depends 
on a set of parameters 9 = {9\,..., 8M)T- In a classification problem we would 
take one such function for each of the classes. Here we shall omit the class labels 
for simplicity, but essentially the same steps are performed separately for each 
class in the problem. To make the dependence on the parameters explicit, we 
shall write the density function in the form p(x|0). We also have a data set of 
N vectors X = { x 1 , . . . , xN}. If these vectors are drawn independently from the 
distribution p(x|0), then the joint probability density of the whole data set X is 
given by 

N 

P(x\9)^l{p(^\e)^c(e) (2.17) 

where £(0) can be viewed as a function of 0 for fixed X, in which case it is 
referred to as the likelihood of 0 for the given X. The technique of maximum 
likelihood then sets the value of 0 by maximizing C{6). This corresponds to the 
intuitively reasonable idea of choosing the 0 which is most likely to give rise to the 
observed data. A more formal discussion of the origins of the maximum likelihood 
procedure is given in Akaike (1973). In practice, it is often more convenient to 
consider the negative logarithm of the likelihood 

N 

£ = - l n£ (0 ) = - ] T l n p ( x n | 0 ) (2.18) 
n=l 

and to find a minimum of E. This is equivalent to maximizing C since the negative 
logarithm is a monotonically decreasing function. The negative log-likelihood can 
be regarded as an error function, as discussed at greater length in Chapter 6. 

For most choices of density function, the optimum 0 will have to be found by 
an iterative numerical procedure of the kind described in Chapter 7. However, 
for the special case of a multivariate normal density, we can find the maximum 
likelihood solution by analytic differentiation of (2.18), with p(x|0) given by 
(2.4). Some straightforward but rather involved matrix algebra (Anderson, 1958; 
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Tatsuoka, 1971) then leads to the following results 

M = ^ X > " (219) 
n=l 

£ = jf X > " - £KX" - &T (2-2°) 
n—1 

which represents the intuitive result that the maximum likelihood estimate p, of 
the mean vector /i is given by the sample average (i.e. the average with respect to 
the given data set). We recall from (2.5) that, for data generated from a normal 
distribution, the expectation of x (i.e. the average value of x over an infinite 
sample) gives the true mean (i. Similarly, the maximum likelihood estimate £ 
of the covariance matrix £ is given by the sample average of the outer product 
(x" — fx)(xn — / i ) T . Again, from (2.6), we note that, for data generated from 
a normal distribution, the expectation of this quantity (with fi, replaced by fj.) 
gives the true covariance matrix S . 

Although the maximum likelihood approach seems intuitively reasonable, we 
should point out that it can suffer from some deficiencies. Consider the maximum 
likelihood estimates for the mean and variance of a normal distribution in one 
dimension, given from (2.19) and (2.20), by 

1 N 

3 = # ! > " . (2.21) 
n=l 

?2 = ^X>"-£)2- (2-22) 

If we consider the expectation, defined in (1.16), of the estimate for a2, then we 
obtain (Exercise 2.4) 

£[?2] = ^ ° 2 (2.23) 

where <r2 is the true variance of the distribution from which the data set was 
generated. An estimate such as this, whose expected value differs from the true 
value, is said to exhibit bias. In the limit N —> oo, we see that the bias disappears, 
and indeed for moderate values of N the maximum likelihood estimator gives 
a reasonable approximation. The problem has arisen because, in the expression 
(2.22) for a2 , we have used our estimate p for the mean, rather than the true 
value fi. In Chapter 10 a similar effect is discussed in the context of learning 
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Figure 2.4. Schematic illustration of Bayesian inference for a parameter 9. The 
prior distribution reflects our initial belief in the range of values which 6 might 
take, before we have observed any data, and is typically very broad. Once we 
have observed the data set X, we can calculate the corresponding posterior 
distribution using Bayes' theorem. Since some values of the parameter will be 
more consistent with the data than others, this leads to posterior distribution 
which is narrower than the prior distribution. 

in neural networks. In this case the consequences are potentially much more 
serious, as a result of the much larger number of parameters which have to be 
determined. 

2.3 Bayes ian inference 

In the maximum likelihood method described above, the goal is to find the 
single most likely value for the parameter vector 0 given the observed data. The 
Bayesian approach, however, is rather different. Our uncertainty in the values 
of the parameters is represented by a probability density function, as discussed 
in Section 1.8.2. Before we observe the data, the parameters are described by a 
prior probability density, which is typically very broad to reflect the fact that 
we have little idea of what values the parameters should take. Once we observe 
the data, we can make use of Bayes' theorem to find the corresponding posterior 
probability density. Since some values of the parameters are more consistent with 
the data than others, we find that the posterior distribution is narrower than 
the prior distribution. This phenomenon is known as Bayesian learning, and is 
illustrated schematically in Figure 2.4. 

We first give a formal discussion of Bayesian learning in general terms, and 
then consider a very simple example to see how it operates in practice. In Chap­
ter 10 we apply Bayesian techniques to the much more complex problems of 
determining the parameters in a neural network, and of comparing different net­
work models. 

We begin by writing the desired density function for the vector x, given the 
training data set X, as an integral over a joint distribution of the form 

p(x\X)= fp(x,0\X)dO. (2.24) 
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From the definition of conditional probability densities, we can then write 

p(x, 9\X) = p(x|0, X)p(0\X). (2.25) 

The first factor, however, is independent of X since it is just our assumed form 
for the parametrized density, and is completely specified once the values of the 
parameters 9 have been set. We therefore have 

p{x\X)= fp(x\0)p(9\X)d0. (2.26) 

Thus, instead of choosing a specific value for 6, the Bayesian approach performs 
a weighted average over all values of 9. The weighting factor p(0\X), which is the 
posterior distribution of 6, is determined by starting from some assumed prior 
distribution p(9) and then updating it using Bayes' theorem to take account of 
the data set X. Since the data points {x 1 , . . . ,xN} are assumed to be drawn 
independently from the same underlying distribution, we can write 

N 

p(X\0)=:l[p(xn\e) (2.27) 

which is precisely the likelihood function introduced in (2.17). Using Bayes' the­
orem we can then write the posterior distribution for 6 in the form 

mx)=mn=m.^m (2,28) 
where the normalization factor in the denominator is given by 

( N 

P W = P{e')l[p{xn\e')de' (2.29) 

and ensures that fp(0\X)dO = 1. Typically, the evaluation of integrals such 
as (2.26) and (2.29) is a very complex undertaking, and, in general, it is only 
analytically feasible for the class of density functions for which the posterior 
density in (2.28) has the same functional form as the prior. For a given choice 
of density p(x\0), a prior p{9) which gives rise to a posterior p(9\X) having the 
same functional form is said to be a conjugate prior. If we were to update the 
distribution of 9 using a succession of data points, with the posterior at each 
stage forming the prior at the next stage, then the distribution would retain 
the same functional form throughout. Such functions are known as reproducing 
densities (Duda and Hart, 1973), and include the normal distribution as the 
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most commonly encountered example. 
In order to illustrate the technique of Bayesian learning, we consider a simple 

example involving a one-dimensional input space governed by a single variable 
x. We shall suppose that the data is generated from a normal distribution for 
which the standard deviation a is assumed to be known. The goal is to find the 
mean /J. of the distribution, given a set of data points {a;1 , . . . , xN}. We shall take 
the prior density for /i to be a normal distribution having mean /io and standard 
deviation <7o, given by 

This expresses our prior knowledge of the mean n, and so if we are very uncertain 
as to its value we would choose a large value for <TQ. Once we have observed a 
given set of N data points, we can calculate the posterior density p(ji\X) = 
PN{IAXI-> • • • <XN) using Bayes' theorem. It is important to distinguish clearly 
between the distribution of x, which we are trying to model, and the distributions 
Po(fi) and PM(^\X), which describe our uncertainty in the value of ji. In this 
particular example, all of these distributions are normal. 

Using (2.28) we can write the posterior distribution in the form 

Pn(n\X) = $$f[p(x»\n). (2.31) 

Then, using the form (2.1) for the normal distribution for p(x\fj), it is straight­
forward to show (Exercise 2.5) that the posterior distribution p^(p\X) is also 
normal, with mean fj,^ and variance crjy given by 

^ = TM^^N£^^
 (2-32) 

where x is the sample mean 

N 1 
= ~2 + -2 (2-33) 

- ^ E * n - (2-34) N 

Prom (2.32) and (2.33) we see that, as the number of data points JV increases, 
the mean of the posterior distribution for /J approaches the sample mean x. 
Similarly, the standard deviation ax approaches zero. This result is illustrated 
for a particular set of parameter values in Figure 2.5. 
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Figure 2.5. An illustration of Bayesian inference for the case of data drawn 
from a normal density function. The plot shows the posterior density for the 
mean ft, which is itself also given by a normal distribution in this example. As 
the number N of data points increases, the posterior density becomes more 
sharply peaked. In this example, the prior distribution was chosen to have a 
mean of 0.0 and standard deviation of 0.3 to reflect the fact that we have little 
idea of what value /* should have. The true mean of the distribution of x from 
which the data was generated, was 0.8 (with a standard deviation of 0.3 which 
is assumed to be known). Note that, as the size N of the sample increases, the 
posterior distribution concentrates around the true value of the mean. 

There is a simple relationship between the technique of Bayesian inference 
and the maximum likelihood method. From (2.17) and (2.28) we have, omitting 
the denominator since it is independent of 0, 

p(e\x1,...,xN)cx£(0)p(0). (2.35) 

If we have little prior information about 0 then p(0) will be relatively flat. The 
likelihood function by definition peaks at the maximum likelihood value 0. If 
the peak is relatively sharp, then the integral in (2.26) will be dominated by the 
region around 0, and the integral in (2.26) will be given approximately by 

p(x\X) ~ p(x\8) JV{0\X) dO = p{x\d) (2.36) 

where we have used fp(0\X)dd = 1. Thus, the distribution is just given by 
the maximum likelihood expression. We have seen that, as the number N of 
observations increases, the posterior probability density for 0 tends to become 
more and more sharply peaked. For large numbers of observations, therefore, the 
Bayesian representation of the density p(x) approaches the maximum likelihood 
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solution. For a limited number of observations, however, the two approaches will 
tend to give somewhat different results. 

2.4 Sequential parameter estimation 

There are several other approaches to the problem of parameter estimation, 
which we do not have space to discuss in detail here. One technique which is 
worthy of mention, however, is that of sequential parameter estimation, since it 
underpins a number of algorithms used in adaptive neural networks. 

Sequential methods for parameter estimation make use of iterative techniques 
to update the parameter values as new data points or observations are acquired. 
They play an important role in pattern recognition for a number of reasons. First, 
they do not require the storage of a complete data set since each data point can 
be discarded once it has been used, and so they can prove useful when large 
volumes of data are available. Second, they can be used for 'on-line' learning in 
real-time adaptive systems. Finally, if the underlying process which generates 
the data has a slow time variation, the parameter values can adapt to 'track' the 
behaviour of the system. 

In simple cases it may be possible to take a standard 'batch' technique for 
parameter estimation and separate out the contribution from the (N + l ) th 
data point to give a sequential update formula. For instance, from the maximum 
likelihood expression for the mean of a normal distribution, given by (2.19), we 
obtain 

M * + I = £ N + - ^ ( X V V + 1 - £ ; V ) . (2.37) 

We see that it is only necessary to store the values of fi, and N, and so each data 
point is used once and can then be discarded. Note that the contribution of each 
successive data point decreases as a consequence of the l/(N + 1) coefficient. 
Although this heuristic procedure seems reasonable, we would like to find some 
formal assurance that it will converge satisfactorily. To do this, we turn to a 
more general view of sequential parameter estimation. 

2.4.1 The Robbins-Monro algorithm 

The iterative formula of (2.37) is a particular example of a more general proce­
dure for finding the roots of functions which are defined stochastically. Consider a 
pair of random variables g and 0 which are correlated, as indicated in Figure 2.6. 
The average value of g for each value of 0 defines a function f(0) 

f(0) = em (2.38) 

where S[\9\ denotes the expectation for the given value of 0. Thus, if we could 
make several measurements of the value of g for a given value of 6 we would obtain 
a set of random values whose average value (in the limit of an infinite sample) 
defines the value of the function / at that value of 0. Functions which have this 
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Figure 2.6. The regression function f(0) is defined to be the expectation of a 
random variable g for each value of 9. The root 6* of f(0) can be found by the 
Robbins-Monro algorithm. 

general form are referred to as regression functions, and a general procedure for 
finding the roots of such functions was given by Robbins and Monro (1951). 

The goal is to find a value 9* for which /(#*) = 0. We shall assume that g 
has finite variance 

£l(g-f)2\e)<<x> (2.39) 

and we shall also assume, without loss of generality, that f(9) > 0 for 6 < 6* and 
f(0) < 0 for 6 > 6* as indicated in Figure 2.6. The Robbins-Monro procedure 
then specifies a sequence of successive estimates for the root given by 

0N+1 = 0N + (JWff(^) (2.40) 

where g(0i<f) is a value for the random variable g obtained when 9 takes the value 
&N- The coefficients {ojv} represent a sequence of positive numbers which satisfy 
the following three conditions: 

lim ajv = 0 

YlaN = oo 

(2.41) 

(2.42) 
J V = 1 

Ea^ < CO. (2.43) 

It can then be shown that the sequence of estimates 0fj does indeed converge to 
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the root 9* with probability 1 (Robbins and Monro, 1951). For a simple proof of 
this result, see Fukunaga (1990). 

The first condition (2.41) ensures that successive corrections tend to decrease 
in magnitude so that the process converges to a limiting value, while the second 
condition (2.42) ensures that the corrections are sufficiently large that the root is 
eventually found. The final condition (2.43) ensures that the accumulated noise 
has finite variance so that the noise does not spoil the convergence to the root. 

An analogous procedure for finding the minimum of a regression function 
has been given by Kiefer and Wblfowitz (1952). These stochastic approximation 
schemes have also been extended to the multidimensional case by Blum (1954). 

We can formulate the maximum likelihood parameter estimate as a sequential 
update method using the Robbins-Monro formula as follows. The maximum 
likelihood value 9 is given by a solution of 

d_ 

89 

N 

l[p(x"\e) = o. (2.44) 

Since we can equally well seek a maximum of the logarithm of the likelihood 
function, we can also write 

ff! {£>*"!•>} = 0 (2.45) 

where we have introduced an extra factor of l/N, which allows us to take the 
limit N —> oo and hence obtain the expectation 

n = l v ' 

\np{x\9) (2.46) 

Thus, the maximum likelihood solution is asymptotically equivalent to finding a 
solution of 

\np(x\9) = 0. (2.47) 

From the Robbins-Monro formula (2.40) this can be solved using an iterative 
scheme of the form 

6N+i = 9N + aN ^ \nP(xN+l\9) 
eN 

(2.48) 
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Figure 2.7. This figure shows the specific form taken by the diagram in Fig­
ure 2.6, for the particular case of data drawn from an assumed normal distribu­
tion in which the variable g corresponds to the derivative of the log-likelihood 
function, arid is given by (x — Ji)/a2. The dashed line represent the regres­
sion function (fi — /I)/CT2, and its root gives the required maximum likelihood 
estimate jl of the mean in the limit of an infinite set of data. 

This is a very straightforward scheme to implement, once we have chosen a 
functional form for the density p(x\0). 

As a specific example, consider the case where p(x\6) is taken to be a normal 
distribution, with known standard deviation a and unknown mean fx. It is then 
a few lines of algebra (Exercise 2.6) to show that, if we choose a/v = a2/(N+ 1), 
we recover the one-dimensional version of (2.37). This choice of O,N satisfies the 
criteria (2.41) - (2.43), and so convergence is assured. In this case, the random 
variable 9 of Figure 2.6 is given by the estimate (7 of the mean, and the random 
variable g is given by (x — fi)/a2. The corresponding regression function f(8) 
is then £\(x — fi)/o2] = (/i — V)/a2, and the root of this regression function 
gives the required maximum likelihood estimate p, = n of the mean, in the 
limit of an infinite supply of data, as shown in Figure 2.7. Similar stochastic 
learning schemes are discussed in the context of adaptive neural networks in 
later chapters. 

2.5 Non-parametric methods 

In this section we consider some of the more important non-parametric tech­
niques for probability density estimation. The term non-parametric is used to de­
scribe probability density functions for which the functional form is not specified 
in advance, but which depends on the data itself. We begin with a discussion of 
simple histogram methods, and then move onto kernel-based approaches which, 
as discussed in Chapter 5, have a close connection with radial basis function 
neural networks. We then discuss another important non-parametric estimation 
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Figure 2.8. An illustration of the histogram approach to density estimation. A 
set of thirty data points was generated by sampling a density function given by 
the sum of two normal distributions with means /ii = 0.3, ft2 — 0.8, standard 
deviations o\ — 02 = 0.1, and amplitudes of 0.7 and 0.3 respectively. The 
original distribution is shown by the dashed curve, and the histogram estimates 
are shown by the solid curves. The number M of histogram bins within the 
given interval determines the width of the bins, which in turn controls the 
smoothness of the estimated density. 

technique called if-nearest-neighbours and show how this approach can be used 
both for density estimation and to provide classification decisions directly. Fi­
nally, we consider the role of the smoothing parameters which govern the degree 
of smoothness of the estimated density and which arise in any non-parametric 
technique. Determination of suitable values for such parameters is an important 
part of the density estimation process. 

2.5.1 Histograms 

The basic problem of non-parametric density estimation is very simple. Given a 
set of data points, we wish to model the probability distribution which generated 
the data, without making any prior assumption about the form of the distribution 
function (except for some general smoothness properties, which we shall discuss 
shortly). In Section 1.1 we considered a histogram of hypothetical values for a 
feature x\ for each of two classes. The histogram is obtained simply by dividing 
the rci-axis into a number of bins, and approximating the density at each value 
of xi by the fraction of the points which fall inside the corresponding bin. This 
procedure represents a simple form of non-parametric density estimation. 

In Figure 2.8 we show a simple example of density estimation using the 
histogram approach. Note that we can choose both the number of bins M , and 
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their starting position on the axis. The results are often not too sensitive to the 
starting position, but the parameter M plays a crucial role. Figure 2.8 shows the 
histograms which result from values of M of 3, 7 and 22. We see that the number 
of bins (or more precisely the bin width) is acting as a smoothing parameter. If 
the bin width is too small then the estimated density is very spiky, while if its 
value is too large then some of the true structure in the density (in this case the 
bimodal nature of the distribution) is smoothed out. In general we expect there to 
be some optimum value for the bin width which represents the best compromise 
between these problems. This situation is closely related to that encountered in 
Section 1.5 in the context of curve fitting with polynomials. There we saw the 
importance of choosing a suitable number of terms in the polynomial in order 
to capture the underlying structure in the data, without over-fitting to the noise 
on the individual data points. Similarly, in the case of density estimation, we do 
not know the true underlying density, and so we are faced with the problem of 
how to choose a suitable value for the parameter M. We shall see that this is 
a key issue which will arise in a number of different guises, both in the context 
of conventional techniques and of neural networks. For the moment we defer the 
problem of finding the optimal value for parameters such as M while we examine 
alternative approaches to non-parametric density estimation. 

One advantage of the histogram method is that, once the histogram has been 
constructed, the data can be discarded and only the information on the sizes and 
locations of the histogram bins need be retained. (In this sense, the histogram 
representation should strictly be regarded as a semi-parametric technique). In­
deed, the histogram may be constructed sequentially in which data points are 
considered one at a time and then discarded. The benefits of sequential tech­
niques were discussed in Section 2.4. However, the simple histogram suffers from 
a number of difficulties which make it unsuitable for use in most practical ap­
plications, except for rapid visualization of data in one or two dimensions. One 
problem is that the estimated density function is not smooth but has discon­
tinuities at the boundaries of the histogram bins. Since these boundaries were 
selected by hand in advance of observing the data, it is unlikely that they repre­
sent true structure in the distribution. A second very serious problem becomes 
apparent when we consider the generalization to higher dimensions. If we divide 
each variable into M intervals, then a d-dimensional feature space will be di­
vided into Md bins. This exponential growth with d is an example of the 'curse 
of dimensionality' discussed in Section 1.4. In high dimensions we would either 
require a huge number of data points to obtain a density estimate, or most of 
the bins would be empty, corresponding to an estimated density of zero. 

2.5.2 Density estimation in general 

So far we have given a rather heuristic discussion of density estimation based on 
the idea of histograms. To proceed further we return to the basic definition of 
probability density functions. The probability that a new vector x, drawn from 
the unknown density function p(x), will fall inside some region 11 of x-space is, 
by definition, given by 
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I P(x') 
Jn 

dx'. (2.49) 

If we have N data points drawn independently from p(x) then the probability 
that K of them will fall within the region 71 is given by the binomial law 

PriK^mN-KVPK(l-P)N~K- (2-50) 

The mean fraction of points falling in this regions is given by £[K/N] = P and 
the variance around this mean is given by £[(K/N - P)2) — P(l - P)/N. Thus 
the distribution is sharply peaked as N —» oo. We therefore expect that a good 
estimate of the probability P can be obtained from the mean fraction of the 
points which fall within 71, so that 

P ~ K/N. (2.51) 

If we assume that p(x) is continuous and does not vary appreciably over the 
region 71, then we can approximate (2.49) by 

P= f p(x') dx' ~ p(x) V (2.52) 
Jn 

where V is the volume of 71, and x is some point lying inside 71. Prom (2.51) 
and (2.52) we obtain the intuitive result 

K * ) - ~ . (2-53) 

Note that to obtain this estimate we have had to make two assumptions, the 
validity of which is governed by the choice of the region 71. In order for (2.51) to 
hold accurately we require 71 to be relatively large, so that P will be large and 
the binomial distribution will be sharply peaked. However, the approximation in 
(2.52) is most accurate when 71 is relatively small, so that p(x) is approximately 
constant inside the integration region. Once again, we see that there is a choice 
to be made regarding the degree of smoothing to be performed, and for a given 
size of data set we expect that there will be some optimum value for the size 
of 71 which will give the best estimate of p(x). We shall return to this problem 
shortly. 

In applying (2.53) to practical density estimation problems there are two 
basic approaches we can adopt. The first is to choose a fixed value of K and 
determine the corresponding volume V from the data. This gives rise to the K-
nearest-neighbour approach discussed later. Alternatively we can fix the volume 
V and determine K from the data. This leads to the class of kernel-based density 
estimation techniques, which we describe next. 
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We expect that, in the limit of an infinite number of data points, our esti­
mation procedure should become exact, since the volume of 1i- can be shrunk 
to zero, thereby ensuring that (2.52) becomes increasingly accurate, while also 
improving the accuracy of (2.51) by ensuring that 71 contains an ever increasing 
number of points. It can be shown that both kernel methods and if-nearest-
neighbour methods do indeed converge to the true probability density in the 
limit of infinite TV, provided that V shrinks with N, and K grows with N, in a 
suitable way (Duda and Hart, 1973). 

2.5.3 Kernel-based methods 

Suppose we take the region ft to be a hypercube with sides of length h centred 
on the point x. Its volume is then given by 

V = hd. (2.54) 

We can find an expression for K, the number of points which fall within this 
region, by defining a kernel junction H(u), also known as a Parzen window 
(Rosenblatt, 1956; Parzen, 1962) given by 

"<«)-{; Jai^r j=1 ' <"•> 
so that H(u) corresponds to a unit hypercube centred at the origin. Thus, for 
all data points x", the quantity H((x. — xn)/h) is equal to unity if the point x " 
falls inside a hypercube of side h centred on x, and is zero otherwise. The total 
number of points falling inside the hypercube is then simply 

*=i>04^)- (2-56) 
n = l ^ ' 

If we substitute (2.56) and (2.54) into (2.53) we obtain the following estimate 
for the density at the point x: 

where p(x) denotes the model density. We can regard this density estimate as 
consisting of the superposition of N cubes of side h, with each cube centred 
on one of the data points. This is somewhat reminiscent of the histogram ap­
proach, except that, instead of bins which are defined in advance, we have cells 
whose locations are determined by the data points. Nevertheless, we still have 
an estimate which has discontinuities. 

We can smooth out the estimate by choosing different forms for the kernel 
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function H(u). For instance, a common choice is a multivariate normal kernel, 
for which 

**>=]vg ( 2 ^ w e x p r ^ ^ / (2-58) 

In general, if the kernel functions satisfy 

H(u) > 0 (2.59) 

and 

/ # ( u ) d u = l (2.60) 

then the estimate in (2.57) will satisfy p(x) > 0 and fp(x)dx — 1, as required. 
As a simple example of kernel density estimation, we return to the data 

set used to construct the histograms of Figure 2.8. In Figure 2.9 we plot the 
results of density estimation using a Gaussian kernel function, with values of the 
width parameter h given by 0.2, 0.08 and 0.01 respectively. This shows that h is 
acting as a smoothing parameter, and that an appropriate choice for the value 
of h is important if a good approximation to the true density is to be obtained. 
When the kernel width h is too large the estimated density is over-smoothed 
and the bimodal nature of the underlying distribution is lost. Conversely, when 
h is too small, a great deal of structure is present in the estimated density which 
represents the properties of the particular data set rather than true structure in 
the underlying distribution. 

Some insight into the role of the kernel function can be obtained by computing 
the expectation of the estimated density, in other words the average value of the 
model density at some given point x, where the average is taken over different 
possible selections of the data points x". Making use of (2.57) we have 

n = l L v ' J 

where, in the third line, we have used the fact that the vectors xn are drawn 
independently from the density p{x), and so the expectation is simply given by an 
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(a) h = 0.2 

(b) h = 0.08 

h = 0.01 

Figure 2.9. An example of the kernel approach to density estimation, using 
the same data as in Figure 2.8. Gaussian kernel functions have been used with 
various values for the kernel width h. 

integral weighted by this density. We see that the expectation of the estimated 
density is a convolution of the true density with the kernel function, and so 
represents a smoothed version of the true density. Here the kernel width h plays 
the role of the smoothing parameter. For /i —• 0, the kernel approaches a delta 
function and p(x) approaches the true density. For a finite sample size, however, 
a small value of h leads to a noisy representation for p(x) which approaches a set 
of delta functions centred on the data points. Once again, we see that we must 
choose a compromise value for the smoothing parameter h. 

The kernel-based method suffers from the drawback of requiring all of the 
data points to be stored, which can make evaluation of the density very slow if 
the number of data points is large. One solution is to use fewer kernel functions 
and to adapt their positions and widths in response to the data. Methods for 
doing this, based on maximum likelihood, will be described in Section 2.6. 

Another problem with the kernel-based estimator is that it gives a biased es­
timate of the density. In fact, Rosenblatt (1956) showed that, for a finite data set, 
there is no non-negative estimator which is unbiased for all continuous density 
functions. 

The use of kernel methods to estimate regression functions is discussed in 
Chapter 5, which also demonstrates the close link with radial basis function 
networks. 

2.5.4 K-nearest-neighbours 

One of the potential problems with the kernel-based approach to density estima­
tion arises from the use of a fixed width parameter h for all of the data points. 
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Figure 2.10. The AT-nearest-neighbour approach to density estimation, again 
using the same data as in Figure 2.8, for various values of K. 

If h is too large there may be regions of x-space in which the estimate is over-
smoothed. Reducing h may, however, lead to problems in regions of lower density 
where the model density p will become noisy. Thus, the optimum choice of h may 
be a function of position. This difficulty is addressed in the if-nearest-neighbour 
approach to density estimation. 

We again return to (2.53) as our starting point, but we now fix K and allow 
the volume V to vary. Thus, we consider a small hypersphere centred at a point 
x, and allow the radius of the sphere to grow until it contains precisely K data 
points. The estimate of the density at the point x is then given by (2.53), where 
V is the volume of the sphere. In Figure 2.10 we show the result of the if-nearest-
neighbour approach, for the same data set as used in Figures 2.8 and 2.9, for the 
values K = 20, 8 and 1. We see that K acts as a smoothing parameter and that 
there is an optimum choice for the value of K. 

One disadvantage of the iiT-nearest-neighbour technique is that the resulting 
estimate is not a true probability density since its integral over all x-space di­
verges. A disadvantage of both kernel and iiT-nearest-neighbour methods is that 
all of the training data points must be retained. This might lead to problems of 
computer storage, and can require large amounts of processing to evaluate the 
density for new values of x. More sophisticated versions of these algorithms al­
low fewer data points to be used (Hart, 1968; Gates, 1972; Hand and Batchelor, 
1978). There also exist tree search techniques which speed up the process finding 
the near neighbours of a point (Fukunaga and Narendra, 1975). 

As we have already indicated, one of the applications of density estimation is 
in the construction of classifiers through the use of Bayes' theorem. This involves 
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modelling the class-conditional densities for each class separately, and then com­
bining them with priors to give models for the posterior probabilities which can 
then be used to make classification decisions. We can use this approach to find a 
classifier based directly on the if-nearest-neighbour technique by the following 
slight modification. Suppose our data set contains Nk points in class Ck and N 
points in total, so that Y^k ̂ k = N- We then draw a hypersphere around the 
point x which encompasses K points irrespective of their class label. Suppose 
this sphere, of volume V, contains Kk points from class Ck- Then we can use 
(2.53) to give approximations for the class-conditional densities in the form 

P(x\Ck) = — ? • (2.62) 

The unconditional density can be similarly estimated from 

P(x) = ^ (2.63) 

while the priors can be estimated using 

m ) = 7 p (2-64) 

We now use Bayes' theorem to give 

p{Ck]x) ~ — K 3 ~ T- (2-65) 

Thus, to minimize the probability of misclassifying a new vector x, it should 
be assigned to the class Ck for which the ratio Kk/K is largest. This is known 
as the K-nearest-neighbour classification rule. It involves finding a hypersphere 
around the point x which contains K points (independent of their class), and 
then assigning x to the class having the largest number of representatives inside 
the hypersphere. For the special case of K = 1 we have the nearest-neighbour 
rule, which simply assigns a point x to the same class as that of the nearest point 
from the training set. Figure 2.11 shows an example of the decision boundary 
corresponding to the nearest-neighbour classification rule. 

2.5.5 Smoothing parameters 

For all of the density estimation techniques discussed in this section we have seen 
that there is always some form of smoothing parameter governing the nature of 
the estimated density. For histograms it is the width of the bins, for kernel 
methods it is the kernel width h, and for iV-nearest-neighbours it is the value of 
K. If the model density is over-smoothed, the bias becomes large and leads to a 
relatively poor estimator. However, with insufficient smoothing the variance is 
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Figure 2.11. Example of the decision boundary produced by the nearest-
neighbour classification rule. Note that the boundary is piecewise linear, with 
each segment corresponding to the perpendicular bisector between two data 
points belonging to different classes. 

high, so that the model density is noisy and very sensitive to the individual data 
points. (Bias and variance are defined more precisely in Section 9.1). The choice 
of a suitable value for the smoothing parameter is analogous to the problem of 
choosing the number of terms in a polynomial used in curve fitting, discussed 
in Section 1.5. Similar smoothing parameters will appear in our discussions of 
neural networks. For instance, the number of hidden units in a layered feed­
forward network can play a similar role to the number of terms in a polynomial. 

It is important to realize that we cannot simply pick the value of the smooth­
ing parameter which gives the largest value for the likelihood, as the likelihood 
can always be increased indefinitely by choosing ever smaller values for the 
smoothing parameter. Consider for instance the case of kernel estimators. The 
likelihood function can be written as 

N 

C(h)= J]p(xn |h;x1 , . . .xw) (2.66) 
n = l 

where p ( x | . . . ) is given by (2.58) for the case of Gaussian kernels. It is easily 
verified that unconstrained maximization of C(h) leads to h —• 0 so that the 
resulting density estimate consists of a delta function at each data point, with 
zero density elsewhere. 

The goal in selecting smoothing parameters is to produce a model for the 
probability density which is as close as possible to the (unknown) true den­
sity p(x). It is often convenient to have a formal measure of the difference, or 
'distance', between two density functions. If p(x) is our model of the density 
function, then the average negative log-likelihood per data point, in the limit as 
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the number of data points goes to infinity, can be written as an expectation in 
the form 

i N 
£ [- ln£] = - Im^ - £ lnp(x») (2.67) 

n = l 

= - J p(x)lnp(x) dx (2.68) 

which can be regarded as a measure of the extent to which the model density 
and the true density agree. When p(x) = p(x) this measure has a residual value 
given by 

- j p(x) In p(x)dx (2.69) 

which is known as the entropy of p(x) (Section 6.10). It is convenient to subtract 
off this residual value to give a measure of the 'distance' between p(x) and p(x) 
in the form 

• / P W In^dx (2.70) 
p(x) 

which is known as the Kullback-Leibler distance or asymmetric divergence (Kull-
back and Leibler, 1951; Kullback, 1959). It is easily shown (Exercise 2.10) that 
L > 0 with equality if, and only if, the two density functions are equal. Note 
that L is not symmetric with respect to the two probability distributions. This is 
reasonable since it is more important for the model distribution p(x) to be close 
to the true distribution p(x) in regions where data is more likely to be found. 
Thus the integral in (2.70) is weighted by the true distribution. 

In a practical density estimation problem we are therefore faced with the 
difficulty of deciding a suitable value for the smoothing parameter. This is an 
example of a very general, and very important, issue which is concerned with 
choosing the optimal level of complexity, or flexibility, of a model for a given 
data set. Rather than consider this problem in the framework of density estima­
tion, we defer further discussion until Chapters 9 and 10, where we consider the 
analogous issue in the context of neural network models. There we shall discuss 
two general approaches for dealing with model complexity, based respectively on 
cross-validation and Bayesian inference. 

2.6 M i x t u r e mode l s 

So far in this chapter we have considered two general approaches to density 
estimation, parametric and non parametric, each of which has its merits and 
limitations. In particular, the parametric approach assumes a specific form for 
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the density function, which might be very different from the true density. Usually, 
however, parametric models allow the density function to be evaluated very 
rapidly for new values of the input vector. Non-parametric methods, by contrast, 
allow very general forms of density function, but suffer from the fact that the 
number of variables in the model grows directly with the number of training data 
points. This leads to models which can be very slow to evaluate for new input 
vectors. 

In order to combine the advantages of both parametric and non-parametric 
methods we need to find techniques which are not restricted to specific functional 
forms, and yet where the size of the model only grows with the complexity of 
the problem being solved, and not simply with the size of the data set. This 
leads us to a class of models which we shall call semi-parametric. The price we 
have to pay is that the process of setting up the model using the data set (i.e. 
the training of the model) is computationally intensive compared to the simple 
procedures needed for parametric or non-parametric methods (which in some 
cases involve little more than evaluating a few expressions for parameter values, 
or even just storing the training data). 

In this section we shall restrict attention to one particular form of density 
function, called a mixture model. As well as providing powerful techniques for 
density estimation, mixture models find important applications in the context 
of neural networks, for example in configuring the basis functions in radial basis 
function networks (Section 5.9), in techniques for conditional density estimation 
(Section 6.4), in the technique of soft weight sharing (Section 9.4), and in the 
mixture-of-experts model (Section 9.7). Here we discuss three training methods 
for mixture models, all of which are based on maximum likelihood, involving 
respectively non-linear optimization, re-estimation (leading to the EM algorithm) 
and stochastic sequential estimation. 

In the non-parametric kernel-based approach to density estimation, the den­
sity function was represented as a linear superposition of kernel functions, with 
one kernel centred on each data point. Here we consider models in which the den­
sity function is again formed from a linear combination of basis functions, but 
where the number M of basis functions is treated as a parameter of the model 
and is typically much less than the number N of data points. We therefore write 
our model for the density as a linear combination of component densities p(x\j) 
in the form 

M 

p(x) = £ > ( x | j ) P ( j ) . (2.71) 
3=1 

Such a representation is called a mixture distribution (Titterington et al., 1985; 
McLachlan and Basford, 1988) and the coefficients P(j) are called the mixing 
parameters. Notice that there is a strong similarity between (2.71) and the ex­
pression given in equation (1.22) for the unconditional density of data taken from 
a mixture of several classes. This similarity has been emphasized by our choice of 
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notation. We shall call P(j) the prior probability of the data point having been 
generated from component j of the mixture. These priors are chosen to satisfy 
the constraints 

M 

$ > 0 ) = 1 (2.72) 

0 < P(j) < 1. (2.73) 

Similarly, the component density functions p(x\j) are normalized so that 

fp(x\j)dx=l (2.74) 

and hence can be regarded as class-conditional densities. To generate a data 
point from the probability distribution (2.71), one of the components j is first 
selected at random with probability P(j), and then a data point is generated 
from the corresponding component density p(xjj). An important property of such 
mixture models is that, for many choices of component density function, they can 
approximate any continuous density to arbitrary accuracy provided the model 
has a sufficiently large number of components, and provided the parameters of 
the model are chosen correctly. 

The key difference between the mixture model representation and a true 
classification problem lies in the nature of the training data, since in this case we 
are not provided with any 'class labels' to say which component was responsible 
for generating each data point. This represents an example of incomplete data, 
and we shall discuss this problem at greater length when we consider the EM 
algorithm in Section 2.6.2. As with any of the other density estimation techniques 
discussed in this chapter, the technique of mixture modelling can be applied 
separately to each class Ck in a true classification problem. In this case, each 
class-conditional density p(x|Cfc) is represented by an independent mixture model 
of the form (2.71). 

Having made the link with prior probabilities and conditional densities, we 
can introduce the corresponding posterior probabilities, which we can express 
using Bayes' theorem in the form 

POIx) = ^ g P (2-75) 

where p(x) is given by (2.71). These posterior probabilities satisfy 

M 

£ P 0 ' M = 1. (2.76) 
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P « 

Figure 2.12. Representation of the mixture model (2.71) in terms of a network 
diagram. For Gaussian component densities p(x|j) given by (2.77), the lines 
connecting the inputs xi to the components p(x\j) represent the elements \Xji 
of the corresponding mean vectors fij. 

The value of P(j\x) represents the probability that a particular component j 
was responsible for generating the data point x. 

In this section, we shall limit our attention to mixture models in which the 
individual component densities are given by Gaussian distribution functions. We 
shall further assume that the Gaussians each have a covariance matrix which is 
some scalar multiple of the identity matrix so that £ / = cr?I (where I is the 
identity matrix) and hence 

In fact, the techniques we shall describe are easily extended to general Gaussian 
component densities having full covariance matrices as discussed in Section 2.1.1 
in the context of parametric distributions. 

The mixture model can be represented in terms of a network diagram as 
shown in Figure 2.12. This is simply a diagrammatic representation of a mathe­
matical function, in this case the mixture model in (2.71). Such diagrams prove 
particularly useful when considering complex neural network structures, as dis­
cussed in later chapters. 

2.6.1 Maximum likelihood 

Various procedures have been developed for determining the parameters of a 
Gaussian mixture model from a set of data. In the remainder of this chapter we 
consider three approaches, all of them based on maximizing the likelihood of the 
parameters for the given data set. A review of maximum likelihood techniques 
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in this context has been given by Redner and Walker (1984). 
For the case of Gaussian components of the form (2.77), the mixture den­

sity contains the following adjustable parameters: P(j), /!,• and <jj (where j = 
1 , . . . , M) . The negative log-likelihood for the data set is given by 

E = -ln£ = - X>P(*n) = - J > I £>(xn|j)P(i) \ (2.78) 
n=l n=l | ^ = 1 J 

which can be regarded as an error function. Maximizing the likelihood £ is then 
equivalent to minimizing E. 

It is important to emphasize that minimizing this error function is non-trivial 
in a number of respects. First of all, there exist parameter values for which the 
likelihood goes to infinity (Day, 1969). These arise when one of the Gaussian 
components collapses onto one of the data points, as can be seen by setting 
fij — x in (2.77) and then letting Oj —> 0. In addition, small groups of points 
which are close together can give rise to local minima in the error function which 
may give poor representations of the true distribution. In practical problems we 
wish to avoid the singular solutions and the inappropriate local minima. Several 
techniques for dealing with the problems of singularities have been proposed. One 
approach is to constrain the components to have equal covariance matrices (Day, 
1969). Alternatively, when one of the variance parameters shrinks to a small value 
during the course of an iterative algorithm, the corresponding Gaussian can be 
replaced with one having a larger width. 

Since the error function is a smooth differentiable function of the parameters 
of the mixture model, we can employ standard non-linear optimization tech­
niques, such as those described in Chapter 7, to find its minima. We shall see in 
Chapter 7, that there are considerable computational advantages in making use 
of gradient information provided it can be evaluated efficiently. In the present 
case the derivatives of E can be found analytically. 

For the centres \i: of the Gaussian components we find, by simple differenti­
ation of (2.78), and making use of (2.75) and (2.77), 

f^£p(i|x»)^^. (2.79) 
c^i n=i ai 

Similarly, for the width parameter cr, we obtain 

The minimization of E with respect to the mixing parameters P(j) must be 
carried out subject to the constraints (2.72) and (2.73). This can be done by 
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representing the mixing parameters in terms of a set of M auxiliary variables 
{~(j} such that 

expfe) 
Efcliexp(7fc) 

PU) = ^ V K W , ,- ( " I ) 

The transformation given by (2.81) is called the softmax function, or normalized 
exponential, and ensures that, for —oo < 7j < oo, the constraints (2.72) and 
(2.73) are satisfied as required for probabilities. We can now perform an uncon­
strained minimization of the error function with respect to the {7,}. To find the 
derivatives of E with respect to fj we make use of 

^ 1 = 6jkP(j) - P(j)P(k) (2.82) 

which follows from (2.81). Using the chain rule in the form 

BE _ ^ dE dP(k) 

dl. -Ajep(fc) a7j
 (28S) 

together with (2.75) and (2.78), we then obtain the required derivatives in the 
form 

BP N 

where we have made use of (2.76). The complete set of derivatives of the error 
function with respect to the parameters of the model, given by (2.79), (2.80) 
and (2.84), can then be used in the non-linear optimization algorithms described 
in Chapter 7 to provide practical techniques for finding minima of the error 
function. 

Some insight into the nature of the maximum likelihood solution can be 
obtained by considering the expressions for the parameters at a minimum of E. 
Setting (2.79) to zero we obtain 

a E n P Q W ,285* 
M j~ EnPUW ( 85) 

which represents the intuitively satisfying result that the mean of the jth compo­
nent is just the mean of the data vectors, weighted by the posterior probabilities 
that the corresponding data points were generated from that component. Simi­
larly, setting the derivatives in (2.80) to zero we find 
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"j - 3 E„PO|x») (2-86) 

which again represents the intuitive result that the variance of the j t h component 
is given by the variance of the data with respect to the mean of that component, 
again weighted with the posterior probabilities. Finally, setting the derivative in 
(2.84) to zero we obtain 

1 N 

pM = Ar£p0'1xn) (2-87) 

so that , at the maximum likelihood solution, the prior probability for the j t h 
component is given by the posterior probabilities for that component, averaged 
over the data set. 

2.6.2 The EM algorithm 

While the formulae given in (2.85), (2.86) and (2.87) provide useful insight into 
the nature of the maximum likelihood solution, they do not provide a direct 
method for calculating the parameters. In fact they represent highly non-linear 
coupled equations, since the parameters occur implicitly on the right-hand sides 
by virtue of (2.75). They do, however, suggest that we might seek an iterative 
scheme for finding the minima of E. Suppose we begin by making some initial 
guess for the parameters of the Gaussian mixture model, which we shall call 
the 'old' parameter values. We can then evaluate the right-hand sides in (2.85), 
(2.86) and (2.87), and this will give a revised estimate for the parameters, which 
we shall call the 'new' parameter values, for which we might hope the value of the 
error function is smaller. These parameter values then become the 'old' values, 
and the process is repeated. We shall show that, provided some care is taken 
over the way in which the updates are performed, an algorithm of this form can 
be found which is guaranteed to decrease the error function at each iteration, 
until a local minimum is found. This provides a simple, practical method for 
estimating the mixture parameters which avoids the complexities of non-linear 
optimization algorithms. We shall also see that this is a special case of a more 
general procedure known as the expectation-maximization, or EM, algorithm 
(Dempster et al., 1977). 

From (2.78) we can write the change in error when we replace the old pa­
rameter values by the new values in the form 

£ n e w _ £ o , d = _ p n j ^ ^ j ( 2 . g 8 ) 

where p n e w (x) denotes the probability density evaluated using the new values 
for the parameters, while po l d(x) represents the density evaluated using the old 
parameter values. Using the definition of the mixture distribution given by (2.71), 
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we can write this in the form 

rmew E10 '^ 
^ \ pold(x") Po l d( j |x")J v ' 

where the last factor inside the brackets is simply the identity. We now make use 
of Jensen's inequality (Exercise 2.13) which says that, given a set of numbers 
\j > 0 such that J^ • Aj = 1, 

1,1 E V i >E A i h N' (2-9°) 

Since the probabilities PoM{j\x) in the numerator of (2.89) sum to unity, they 
can play the role of the \j in (2.90). This gives 

E«eW _ ^ < _ £ £ poMy | x » , l n { ^ p p j } . (2.91) 

We wish to minimize E"™ with respect to the 'new' parameters. If we let Q be 
the right-hand side in (2.91) then we have Enew < Eo]d+Q and so EoM+Q rep­
resents an upper bound on the value of £'new. We can therefore seek to minimize 
this bound with respect to the 'new' values of the parameters, as illustrated in 
Figure 2.13 (Luttrell, 1994). Minimizing Q will necessarily lead to a decrease in 
the value of the Enew unless £ n e w is already at a local minimum. 

If we now drop terms which depend only on the 'old' parameters, we can 
write the right-hand side of (2.91) in the form 

<? = - £ £ P°'d0'lxn)ln {^new0>new(*n|j)} (2.92) 

and the smallest value for the upper bound is found by minimizing this quantity. 
If we consider the specific case of a Gaussian mixture model then we have 

~ f llxn — un e w l l2 1 
Q=-EE^^") | ini,new(i) -d i™rw - 2(gnVi)2 |+cons t-

(2.93) 
We can now minimize this function with respect to the 'new' parameters. For 
the parameters fj,j and Oj this minimization is straightforward. However, for the 
mixing parameters Pnew(j) we must take account of the constraint YLj PnevrU) — 
1. This is casilv done bv introducing a L^.granse multiplier A and minimizing the 
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E(9ncw) 

£ ( 9 ) 

Figure 2.13. Schematic plot of the error function E as a function of the new 
value 0new of one of the parameters of the mixture model. The curve Eold + 
<3(0now) pfoyjdgg a n Upp e r bound on the value of £n e w and the EM algorithm 
involves finding the minimum value of this upper bound. 

Q + X hr>nCT,(j)-i (2.94) 

Setting the derivatives of (2.94) with respect to P n e w ( i ) to zero we obtain 

^-TP°y^+X. (2.95) 
Z-, pnew ( j) V 

The value of A can be found by multiplying both sides of (2.95) by P n 6 w ( j ) 
and summing over j . Using £.,• P n e w 0 ' ) = 1 and ]Cj P o l d ( j | x n ) = 1 we obtain 
A = N. We then finally obtain the following update equations for the parameters 
of the mixture model: 

Mi" 
E n p o l d ( j | x n ) x n 

£„P° w ( j | x») 

/ new,2 _ l E „ i * ' ' d ( j | x " ) H x " - A i ? e W | | 2 

{(Tj ' d £ n P o k l ( j | x " ) 

(2.96) 

(2.97) 

Notice carefully where the 'new' and 'old' parameters appear on the right-hand 
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Figure 2.14. Example of the application of the EM algorithm to mixture den­
sity estimation showing 1000 data points drawn from a distribution which is 
uniform inside an annular region. 

sides of these expressions. These should be compared with the corresponding 
maximum likelihood results (2.85)-(2.87). The algorithm is readily extended to 
include Gaussian functions with full covariance matrices. 

As a simple example of the use of the EM algorithm for density estimation, 
we consider a set of 1000 data points generated from a distribution which is 
uniform within an annular-shaped region, as shown in Figure 2.14. A Gaussian 
mixture model, with seven components of the form (2.77), was then fitted to 
this data. The initial configuration of the model is shown in Figure 2.15. After 
20 cycles of the EM algorithm the Gaussians had evolved to the form shown 
in Figure 2.16. The corresponding contours of probability density are shown in 
Figure 2.17. 

Further insight into the EM algorithm can be obtained by returning to our 
earlier remarks concerning the similarities between a mixture density model and 
the representation for the unconditional density in a classification problem. In 
the latter case, the data points x n all carry a class label indicating which com­
ponent density function was responsible for generating them. This allows each 
class-conditional density function to be considered separately, and its parameters 
found by maximizing the likelihood using only the data points from that class. 
If the class-conditional densities are given by Gaussian functions, then we saw in 
Section 2.2 that the corresponding maximum likelihood problem could be solved 
analytically to give expressions such as (2.19) and (2.20) for the parameters of 
the Gaussians. 

For the problem of unconditional density estimation using a mixture model we 
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Figure 2.15. This shows the initial configuration of seven Gaussians of a mix­
ture model which has been initialized using the data in Figure 2.14. Each circle 
represents the line along which ||x — /*-|| = <Xj for the corresponding Gaus­
sian component. The parameters of the mixture model were initialized by first 
setting the centres /* • to a random subset of the data points. The width pa­
rameter <jj for each component was initialized to the distance to the nearest 
other component centre, and finally the priors P(j) were all set to 1/M, where 
M — 7 in this example. 

do not have corresponding 'class' labels. The data set is said to be incomplete, and 
the maximum likelihood procedure leads to a non-linear optimization problem 
which does not have an analytic solution. A very general treatment of such 
incomplete-data problems was given by Dempster et al. (1977), who developed 
the EM algorithm as an elegant and powerful approach to their solution. It can 
also be applied to problems in which incompleteness of the data takes the form 
of missing values for some of the variables in the training set. The example of 
re-estimating the parameters of a Gaussian mixture model discussed above is a 
special case of the EM algorithm. 

We have already remarked that the problem of determining the parameters 
in the mixture model would be very straightforward if we knew which compo­
nent j was responsible for generating each data point. We therefore consider 
a hypothetical complete data set in which each data point is labelled with the 
component which generated it. Thus, for each data point x" , we can introduce a 
variable zn, which is an integer in the range (1,M) specifying which component 
of the mixture generated the data point. The negative log-likelihood (or error 
function) for the complete data problem, for 'new' parameter values, is given by 
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1.0 

Figure 2.16. Final configuration of the Gaussians from Figure 2.15 after 20 
cycles of the EM algorithm using the data set from Figure 2.14. 

Figure 2.17. Contours of constant probability density corresponding to the 
Gaussian mixture model of Figure 2.16. 
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£Comp = _ l n £ c o m p ^ _ g g j 

N 

= - ^ l n p n e w ( x n , 2 n ) (2.100) 
n=l 

N 

= - ] T In {P n e w (z n )p n e w (x n | 2 n )} . (2.101) 
n=l 

If we knew which component was responsible for generating each data point, 
then Pnew(zn) = 1 and the complete-data error function decomposes into a sum 
of independent terms, one for each component of the mixture, each of which only 
involves the data points generated by that component. This sum is then easily 
minimized with respect to the parameters of the component distributions. The 
problem, however, is that we do not know which component is responsible for 
each data point, and hence we do not know the distribution of the zn. We there­
fore adopt the following procedure. First we guess some values for the parameters 
of the mixture model (the 'old' parameter values) and we then use these, together 
with Bayes' theorem, to find the probability distribution of the {zn}. We then 
compute the expectation of iJcomP with respect to this distribution. This is the 
expectation or E-step of the EM algorithm. The 'new' parameter values are then 
found by minimizing this expected error with respect to the parameters. This 
is the maximization or M-step of the EM algorithm (since minimizing an error 
function is equivalent to maximizing the corresponding likelihood). 

The probability for zn, given the value of x n and the 'old' parameter values, 
is just P o l d ( z n | x n ) . Thus, the expectation of £ c o m p over the complete set of {zn} 
values is obtained by summing (2.101) over all possible values of the {zn} with 
a weighting factor given by the probability distribution for the {zn} to give 

M M N 

5[£compj = J2 • • • J2 Ecomp Y[ PM(zn\xn). (2.102) 

2 i = l z " = l n=l 

It is convenient to rewrite Ecomp from (2.101) in the equivalent form 

N M 

Ecomp = - Y, Yl Si*" ln {p n e W0')Pn e W(x nU)} • ( 2 1 0 3 ) 
n = l j = l 

We now substitute (2.103) into (2.102), and perform the sums over the {zn} 
variables by making use of the identity 

M M N 

E £ ^ " I I P°,d(*n'\xn') = PM(J\xn) (2-104) 
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which can be proved using 

JT]Pol<V|xn) = l. (2.105) 
2 = 1 

This gives the expectation of the complete-data likelihood in the form 

N M 

£[£comP] = _ J2 £ P o l d ( j |x" ) In { P n e w 0 > n e w ( x n | j ) } • (2.106) 

We now note that (2.106) is identical to (2.92). Thus, minimization of (2.106) 
leads to the form of the EM algorithm derived above. 

2.6.3 Stochastic estimation of parameters 

As a third approach to the determination of the parameters of a Gaussian mix­
ture model we consider the technique of stochastic on-line optimization (Traven, 
1991). Again we seek to minimize the error function, but now we suppose that 
the data points are arriving one at a time and we wish to find a sequential update 
scheme. Consider the minimum-error expression (2.85) for the mean fj,j of the 
jth component of the mixture for a data set consisting of N points 

N _ E » = i P(j\xn)xn , 

^ ~ E^POIx") • (2-107) 

Prom the corresponding expression for TV + 1 data points, we can separate off 
the contribution from x ^ + 1 in order to obtain an expression for / i j ^ + 1 in terms 
of fi®. This is analogous to the procedure we adopted for stochastic estimation 
of the parameters of a single Gaussian function in Section 2.4. After some simple 
algebra we obtain 

M W + 1 = ^N + ^ N + 1 ( X N + 1 _ ^ N j ( 2 1 0 8 ) 

1 

where the parameter rff^1 is given by 

As it stands this does not constitute a useful algorithm since the denominator 
in (2.109) contains an ever increasing number of terms, all of which would have to 
be re-estimated every time the parameter values were changed. It would therefore 
require the storage of all previous data points, in conflict with the goal of a 
stochastic learning procedure. One approach is to note that, if the model had 
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already converged to the maximum likelihood solution, we could use (2.87) to 
write (2.109) in the form 

^ (N + l)P(j) ( 2 - U U ) 

and then to use this as an approximation for the T]J . Alternatively, the parameters 
r\j can themselves also be estimated stochastically, using the update formula 

1 - ^ > ' + 1 (2.111) 
r,™ P(3\xN+1)v? 

which follows directly from the definition (2.109). If the data is arriving on-line, 
as distinct from being taken from a fixed training set with replacement, then the 
problem of singular solutions, discussed in Section 2.6.1, will not arise since an 
individual data point is used once only and then discarded. 

Exerc ises 

2.1 (*) Using the form (2.1) for the normal distribution in one dimension, and 
the results derived in Appendix B, show that fp(x)dx = 1, and verify 
(2.2) and (2.3). 

2.2 (**) Consider the Gaussian distribution in d dimensions given by (2.4). By 
using the properties of symmetric matrices derived in Appendix A, show 
that there exists a transformation to a new coordinate system, defined 
by the eigenvectors of S , such that the transformed variables Xj become 
statistically independent, so that the distribution of the J* can be written 
as p ( x i , . . . ,x,j) = n»P(^»)- Hence show that show that fp{x.)dic = 1. 
Finally, verify (2.5) and (2.6). 

2.3 (*) Using the expression (2.1) for the normal distribution in one dimension, 
show that values of the mean and variance parameters which minimize the 
error function (2.18) are given by (2.21) and (2.22). 

2 .4 (**) Using the definition of expected value given by (1.16), and the form 
of the normal distribution (2.1), derive the result (2.23). Now consider the 
following estimate of the variance 

N 
=2 = 

* » - -^ I > n - » ! (2.U2). 

where /x is the maximum likelihood estimate for the mean given by (2.21). 
Show that this estimate has the property that its expected value is equal 
to the true variance a2. Estimators which have this property are said to 
be unbiased. If the mean \i of the distribution is known exactly, instead of 
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being determined from the data, show that the estimate of the variance 
given by 

*3 = ^ X > n - / ' ) 2 (2.113) 
n = l 

is unbiased. 
2.5 (*) Derive the results (2.32) and (2.33) for the mean and variance of the 

posterior distribution of fi given a set of TV observed values of x. 
2.6 (*) Using the maximum likelihood expression (2.19) for the mean \JL of a 

Gaussian distribution, derive the result (2.37) for the iterative sequential 
estimation of \x. 

2.7 (**) Consider the problem of parametric density estimation for data in one 
dimension using a normal distribution with mean fi and variance a2. Show 
that the Robbins-Monro formula (2.48) for sequential maximum likelihood 
gives rise to the heuristic formula (2.37) for the estimation of /i provided we 
choose the coefficients a/v = cr2/(N + l). Obtain the corresponding formula 
for iterative estimation of a2, analogous to (2.37) for /J., by separating out 
the contribution from the (N + l ) t h data point in the maximum likelihood 
expression (2.22). Verify that substitution of a normal distribution into the 
Robbins-Monro formula (2.48) gives the same result, for a suitable choice 
of the coefficients OAT. 

2.8 (*) Consider two class-conditional densities in d-dimensions, each of which is 
described by a Gaussian with a covariance matrix given by Sjt = a2,!, where 
I is the unit matrix, but with different values of the variance parameter a\. 
Show that the decision boundary along which the posterior probabilities 
for the two classes are equal takes the form of a hypersphere. 

2 . 9 ( * * * ) This exercise explores numerically the behaviour of the /f-nearest-
neighbour classification algorithm. Begin by generating data in two dimen­
sions from two classes, each described by a Gaussian distribution having a 
covariance matrix which is proportional to the unit matrix, but with dif­
ferent variances. Assume equal class priors but use different class means. 
Plot the data points, using a different symbol for each of the two classes, 
and also plot the optimal decision boundary given by the result derived in 
Exercise 2.8. Also plot the decision boundaries predicted by the /if-nearest-
neighbour classification algorithm for various values of K. One way to do 
this is to consider a fine grid of points covering the region of interest, 
and assign each point the value + 1 or —1 according to the class predicted 
the /^-nearest-neighbour classification described on page 57. Then use a 
contouring package to plot the contour having value 0. By restricting the 
number of data points, show that there exists an optimal value for K in 
order for the decision boundary predicted by the algorithm to be as close 
as possible to the optimal one, and that smaller or larger values of K give 
poorer results. 
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2.10 (*) By sketching graphs of In a; and x — 1 verify the inequality In a: < a: — 1 
with equality if, and only if, x = 1. Confirm this result by differentiation 
of In x — (x — 1). Hence show that the Kullback-Leibler distance (2.70) 
satisfies L > 0 with equality if, and only if, the two distributions are equal. 

2.11 (*) Consider two discrete probability distributions Pi and <7, such that 
J2iPi — 1 a n d ^2iQi — 1- The corresponding discrete version of the 
Kullback-Leibler distance can be written 

- X > h r ( ! ) (2.114) 

By differentiating (2.114) with respect to q,, and making use of a Lagrange 
multiplier (Appendix C) to ensure that the constraint ]T^ qi = 1 is satisfied, 
show that this distance is minimized when qt = pi for all i, and that the 
corresponding value for the distance is zero. 

2.12 (*) Using the result (2.105), verify the identity (2.104). 
2.13 (* *) In discussing the convergence properties of the EM algorithm we made 

use of Jensen's inequality for convex functions. We can define a convex 
function f(x) as one for which every chord lies on or below the graph of 
the function (a chord being a straight line which connects two points on the 
graph of the function). This is illustrated in Figure 2.18. Use this definition 

A 

/ J ^ chord 

i 1 1 1 ^ 

a x, b x 

Figure 2.18. Illustration of a convex function f(x) as used to derive Jensen's 
inequality. 

to show that, for a point xt = (1 -t)a + tb part way along the chord, where 
0 < t < 1, we have 

/ ( ( l - t)a + tb) > (1 - t)f(a) + tf{b). (2.115) 

Given a set of points Xj all lying in the interval (a,b), and a set of M 
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numbers Xj > 0 such that J2j ^j ^ 1) show that the quantity J2j^jxj 
also lies in the interval (a, b). Starting from (2.115) use induction to prove 
Jensen's inequality 

( M \ M 

EA^UEVW. (2.116) 
for any M > 2. This is the form of Jensen's inequality used in (2.90). 

2.14 (**) Starting from (2.107), derive the expression (2.108) for the stochastic 
update of the mean fij of the j th component of a Gaussian mixture model. 
Similarly, starting from the maximum likelihood expression for the variance 
of a spherical Gaussian given by (2.86), obtain the corresponding expression 
for (a])N+1. Finally, derive (2.111) from (2.109). 



3 

SINGLE-LAYER NETWORKS 

In Chapter 1 we showed that the optimal decision rule for minimizing the prob­
ability of misclassification requires a new pattern to be assigned to the class 
having the largest posterior probability. We also showed how the posterior prob­
abilities can be related to class-conditional densities through Bayes' theorem, and 
in Chapter 2 we described several techniques for estimating these densities. An 
alternative approach, which circumvents the determination of probability densi­
ties, is based on the idea of a discriminant function, also introduced in Chapter 1. 
In a practical application of discriminant functions, specific parametrized func­
tional forms are chosen, and the values of the parameters are then determined 
from a set of training data by means of a suitable learning algorithm. 

The simplest choice of discriminant function consists of a linear combination 
of the input variables, in which the coefficients in the linear combination are the 
parameters of the model, and has been considered widely in the literature on 
conventional approaches to pattern recognition. This simple discriminant can be 
generalized by transforming the linear combination with a non-linear function 
(called an activation function) which leads to concepts such as logistic regression 
and the perceptron. Another extension involves transforming the input variables 
with fixed non-linear functions before forming the linear combination, to give 
generalized linear discriminants. As we shall see, these various forms of linear 
discriminant can be regarded as forms of neural network in which there is a single 
layer of adaptive weights between the inputs and the outputs. 

Various techniques exist for determining the weight values in single-layer 
networks, and in this chapter we shall consider several of them in detail. In 
particular, we shall study perceptron learning, least-squares methods and the 
Fisher discriminant. As well as forming an important class of techniques in their 
own right, single-layer networks provide many useful insights into the properties 
of more complex multi-layer networks. Single-layer networks were widely studied 
in the 1960's, and the history of such networks is reviewed in Widrow and Lehr 
(1990). Two useful books from this period are Nilsson (1965) and Lewis and 
Coates (1967). 

3.1 Linear discriminant functions 

In Chapter 1 we saw that optimal discriminant functions can be determined 
from class-conditional densities via Bayes' theorem. Instead of performing density 
estimation, however, we can postulate specific parametrized functional forms for 



78 3: Single-Layer Networks 

the discriminant functions and use the training data set to determine suitable 
values for the parameters. In this section we consider various forms of linear 
discriminant, and discuss their properties. 

3.1.1 Two classes 

We begin by considering the two-category classification problem. In Chapter 1 
we introduced the concept of a discriminant function y(x) such that the vector 
x is assigned to class C\ if t/(x) > 0 and to class C2 if y(x) < 0. The simplest 
choice of discriminant function is one which is linear in the components of x, 
and which can therefore be written as 

y(x) = wTx + w0 (3.1) 

where we shall refer to the rf-dimensional vector w as the weight vector and the 
parameter wo as the bias. Sometimes —wo is called a threshold. Note that the use 
of the term bias here is quite distinct from the concept of statistical bias which 
is discussed briefly on page 41, and at length in Section 9.1. Prom Section 2.1.3 
we know that, for class-conditional densities having normal distributions with 
equal covariance matrices, a linear discriminant of the form (3.1) is optimal. 

The expression in (3.1) has a simple geometrical interpretation (Duda and 
Hart, 1973) as follows. We first note that the decision boundary y(x) = 0 cor­
responds to a (rf — l)-dimensional hyperplane in rf-dimensional x-space. For the 
case of a two-dimensional input space, rf = 2, the decision boundary is a straight 
line, as shown in Figure 3.1. If xA and xB are two points on the hyperplane, then 
y(xA) — 0 = 2/(xB) and so, using (3.1), we have w T ( x s — xA) — 0. Thus, w is 
normal to any vector lying in the hyperplane, and so we see that w determines 
the orientation of the decision boundary. If x is a point on the hyperplane then 
the normal distance from the origin to the hyperplane is given by 

/ = |RT = " M (3'2) 

where we have used y(x) — 0 together with (3.1). Thus, the bias WQ determines 
the position of the hyperplane in x-space, as indicated in Figure 3.1. 

There is a slightly different notation which we can adopt which will often 
prove convenient. If we define new (d + l)-dimensional vectors w = (iuo,w) and 
x = (l ,x), then we can rewrite (3.1) in the form 

y(x) = wTx. (3.3) 

With this notation we can interpret the decision boundary y{x) = 0 as a rf-
dimensional hyperplane which passes through the origin in (d + l)-dimensional 
x-space. 

We can represent the linear discriminant function in (3.1) or (3.3) in terms 
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Figure 3.1. A linear decision boundary, corresponding to y{x) — 0, in a two-
dimensional input space (3:1,3:2). The weight vector w, which can be rep­
resented as a vector in x-space, defines the orientation of the decision plane, 
while the bias too defines the position of the plane in terms of its perpendicular 
distance from, the origin. 

bias 

inputs 

Figure 3.2. Representation of a linear discriminant function as a neural network 
diagram. Bach component in the diagram corresponds to a variable in the linear 
discriminant expression. The bias wo can be considered as a weight parameter 
from an extra input whose activation Xo is permanently set to +1. 

of a network diagram as shown in Figure 3.2. Inputs xi,...,Xd are shown as 
circles, which are connected by the weights wi,...,vid to the output y(x). The 
bias wo is represented as a weight from an extra input XQ which is permanently 
set to unity. 
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3.1.2 Several classes 

Linear discriminants can easily be extended to the case of c classes by following 
the ideas introduced in Chapter 1 and using one discriminant function yk(x) for 
each class Ck of the form 

yk(x) = w J x + wfco. (3.4) 

A new point x is then assigned to class Ck if 2/k(x) > «/j(x) for all j ^ k. The 
decision boundary separating class Ck from class Cj is given by yk(x.) = yj(x) 
which, for linear discriminants, corresponds to a hyperplane of the form 

(w fc - W j ) T x + (wjto - Wjo) = 0. (3.5) 

By analogy with our earlier results for the single discriminant (3.1), we see that 
the normal to the decision boundary is given by the difference between the two 
weight vectors, and that the perpendicular distance of the decision boundary 
from the origin is given by 

l = J^-W»l (3.6) 

The multiclass linear discriminant function (3.4) can be expressed in terms of 
a neural network diagram as shown in Figure 3.3. The circles at the top of 
the diagram, corresponding to the functions yfc(x) in (3.4) are sometimes called 
processing units, and the evaluation of the discriminant functions can be viewed 
as a flow of information from the inputs to the outputs. Each output yk{x) is 
associated with a weight vector wfc and a bias wkQ. We can express the network 
outputs in terms of the components of the vectors {w^} to give 

yk(x) = Y2wkiXi+v}k0. (3.7) 
»=i 

Then each line in Figure 3.3 connecting an input i to an output k corresponds to 
a weight parameter wki- As before, we can regard the bias parameters as being 
weights from an extra input XQ = 1, so that 

d 

yk(x.) = ^2wkiXi. (3.8) 
j=0 

Once the network is trained, a new vector is classified by applying it to the 
inputs of the network, computing the output unit activations, and assigning the 
vector to the class whose output unit has the largest activation. This leads to 
a set of decision regions which are always simply connected and convex. To see 
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Figure 3.3. Representation of multiple linear discriminant functions l/*(x) as 
a neural network diagram having c output units. Again, the biases are repre­
sented as weights from an extra input xo = 1. 

Figure 3.4. Example of decision boundaries produced by a multiclass linear 
discriminant. If two points xA and xfl both lie in decision region Ti.k then every 
point x on the line connecting them must also lie in region 7?*. It therefore 
follows that the decision regions must be simply connected and convex. 

this, consider two points xA and x B which both lie in the region 7Zk as shown in 
Figure 3.4. Any point x which lies on the line joining x A and x £ 

as 
can be written 

x = axA + (1 - a ) x f (3.9) 

where 0 < a < 1. Since xA and x B both lie in TZk, they must satisfy 2At(x'4) > 
Vj(xA) and yk(x

B) > 2/j(xB) for all j ^ k. Using (3.4) and (3.9) it follows that 
yk(x) = ayk(x

A) + (1 - a)yk{xB) and hence yk(x) > yj(x) for all j =£ k. Thus, 
all points on the line connecting xA and x B also lie in 1Zk and so the region Tlk 

must be simply connected and convex. 
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3.1.3 Logistic discrimination 

So far we have considered discriminant functions which are simple linear func­
tions of the input variables. There are several ways in which such functions can 
be generalized, and here we consider the use of a non-linear function g(-) which 
acts on the linear sum to give a discriminant function for the two-class problem 
of the form 

y = p ( w T x + w0) (3.10) 

where g() is called an activation function and is generally chosen to be mono-
tonic. The form (3.10) is still regarded as a linear discriminant since the decision 
boundary which it generates is still linear, as a consequence of the monotonic 
nature of g(-). 

As a motivation for this form of discriminant, consider a two-class problem 
in which the class-conditional densities are given by Gaussian distributions with 
equal covariance matrices E i = £ 2 = S , so that 

p(x|Cfe) = (2^)^|S|V2 exp {~1(X ~ ^ ) T S _ 1 ( X ~ ***>} • (3-H> 

Using Bayes' theorem, the posterior probability of membership of class C\ is 
given by 

P ( d | x ) 
p(x|Ci)P(d) 

p(x|C1)P(C1)+p(x|C2)P(C2) 

1 
1 + exp(—0) 

= 0(a) 

a ^ n ^ \ P 3 \ 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

where 

% ( x | C 2 ) P ( C 2 ) 

and the function g(a) is the logistic sigmoid activation function given by 

g{a) ~ —. r (3.16) 
y v ' 1 + exp(-a) v ' 

which is plotted in Figure 3.5. If we now substitute expressions for the class-
conditional densities from (3.11) into (3.15) we obtain 
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Figure 3.5. Plot of the logistic sigmoid activation function given by (3.16). 

o = w T x + w0 (3.17) 

where 

w = E - 1 ^ - /x2) (3.18) 

w0 = -\vjv~ Vi + \v$v- Va +ln S^y- (3-19) 

Thus, we see that the use of the logistic sigmoid activation function allows the 
outputs of the discriminant to be interpreted as posterior probabilities. This 
implies that such a discriminant is providing more than simply a classification 
decision, and is potentially a very powerful result. The importance of interpreting 
the outputs of networks in terms of probabilities is discussed at much greater 
length in Chapter 6. 

The term sigmoid means 'S-shaped', and the logistic form of the sigmoid maps 
the interval (—oo, oo) onto (0,1). If |o| is small, then the logistic sigmoid function 
g(a) can be approximated by a linear function, and so in this sense a network 
with sigmoidal activation functions contains a linear network as a special case. 
If there are more than two classes then an extension of the previous analysis 
leads to a generalization of the logistic sigmoid called a normalized exponential 
or softmax, which is discussed in detail in Section 6.9. 

Linear discriminants with logistic activation functions have been widely used 
in the statistics literature under the name logistic discrimination (Anderson, 
1982). Sigmoidal activation functions also play a crucial role in multi-layer neural 
networks, as discussed in Chapter 4. 

Another form of linear discriminant was introduced by McCulloch and Pitts 
(1943) as a simple mathematical model for the behaviour of a single neuron in 

file://-/vjv~
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a biological nervous system. Again this takes the form (3.10) with an activation 
function which is the Heaviside step function 

, > / 0 when a < 0 ,„ o n . 
ff(a) = { l whena>0 . ( 3 2 0 ) 

In this model the inputs X; represent the level of activity of other neurons which 
connect to the neuron being modelled, the weights u>i represent the strengths of 
the interconnections, called synapses, between the neurons, and the bias Wo rep­
resents the threshold for the neuron to 'fire'. Although this model has its origins 
in biology, it is clear that it can equally well be motivated within the framework 
of statistical pattern recognition. Networks of threshold units were studied by 
Rosenblatt (1962) under the name perceptrons and by Widrow and Hoff (1960) 
who called them adalines. They will be discussed in detail in Section 3.5. 

Note that it is sometimes convenient to regard the linear discriminant (3.1) 
as a special case of the more general form (3.10). In this case the model is said 
to have a linear activation function, which in fact is just the identity g(a) = a. 

3.1.4 Binary input vectors 

Linear discriminants, and the logistic activation function, also arise in a natural 
way when we consider input patterns in which the variables are binary (so that 
each Xi can take only the values 0 or 1). Let Pki denote the probability that 
the input Xj takes the value +1 when the input vector is drawn from the class 
Ck. The corresponding probability that Xi = 0 is then given by 1 — Pki. We can 
combine these together to write the probability for Xi to take either of its allowed 
values in the form 

p(xi\Ck) = P£(l-Pki)
1-x< (3.21) 

which is calleda Bernoulli distribution. If we now assume that the input variables 
are statistically independent, we obtain the probability for the complete input 
vector as the product of the probabilities for each of the components separately: 

p(x\Ck) = f[Pk*i(l-Pki)
1-*i. (3.22) 

We now recall from Chapter 1 that we can write a discriminant function which 
minimizes the probability of misclassifying new inputs in the form 

yk(x) = In P{x\Ck) + In P(Ck). (3.23) 

Substituting (3.22) into (3.23) we obtain a linear discriminant function given by 
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2/k(x) = X ] WkiXi + Wk0 (3-24) 
« = l 

in which the weights and bias are given by 

wki = lnPki-ln(l-Pki) (3.25) 

d 

wfc0 = J2la^ ~ Pfci) + ln P(Ck^ (3-26) 
» = 1 

We have already seen that, for two classes with normally distributed class-
conditional densities, the posterior probabilities can be obtained from the linear 
discriminant by applying a logistic activation function. A similar result holds 
also for the Bernoulli distribution. Consider a set of independent binary variables 
Xj, having Bernoulli class-conditional densities given by (3.22), If we substitute 
(3.22) into (3.12) we again obtain a single-layer network structure, with a logistic 
activation function, of the form 

P(Ci |x) = 5 ( w T x + w0) (3.27) 

where g(a) is given by (3.16) and 

We have shown that, both for normally distributed and Bernoulli distributed 
class-conditional densities, the posterior probabilities are obtained by a logistic 
single-layer network. In fact these are particular instances of a much more general 
result, which is derived in Section 6.7.1. 

3.2 Linear separability 

So far in this chapter we have discussed discriminant functions having a decision 
boundary which is linear, or more generally hyperplanar in higher dimensions. 
Clearly this is a very restricted class of decision boundary, and we might well 
expect such systems to have less than optimal performance for many practical 
applications. Indeed, this provides' the principal motivation for using multi-layer 
networks of the kind discussed in Chapters 4 and 5. The particular nature of 
the limitation inherent in single-layer systems warrants some careful discussion, 
however. 
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Figure 3.6. The exclusive-OR problem consists of four patterns in a two-
dimensional space as shown. It provides a simple example of a problem which 
is not linearly separable. 

Consider for the moment the problem of learning to classify a given data set 
exactly, where each input vector has been labelled as belonging to one of two 
classes C\ and C%. If all of the points can be a classified correctly by a linear 
(i.e. hyperplanar) decision boundary, then the points are said to be linearly 
separable. For such a data set there exist weight and bias values such that a 
linear discriminant will lead to perfect classification. A simple example of a data 
set which is not linearly separable is provided by the two-dimensional exclusive-
OR problem, also known as XOR, illustrated in Figure 3.6. The input vectors 
x = (0,0) and (1,1) belong to class C\, while the input vectors (0,1) and (1,0) 
belong to class C%. It is clear that there is no linear decision boundary which can 
classify all four points correctly. This problem can be generalized to d-dimensions 
when it is known as the rf-bit parity problem. In this case the data set consists 
of all possible binary input vectors of length d, which are classified as class C\ if 
there is an even number of l 's in the input vector, and as class Ci otherwise. 

For the case of continuous input variables it is interesting to consider the 
probability that a random set of patterns will be linearly separable. Suppose 
we have N data points distributed at random in d dimensions. Note that the 
particular distribution used to generate the random points is not relevant. All 
that we require is that there are no accidental degeneracies, i.e. that there is no 
subset of d or fewer points which are linearly dependent. The points are then 
said to be in general position. Having chosen the points, imagine that we then 
randomly assign each of the points to one of the two classes C\ and Ci with equal 
probability. Each possible assignment for the complete data set is referred to as 
a dichotomy, and for N points there are 2N possible dichotomies. We now ask 
what fraction F(N, d) of these dichotomies is linearly separable. It can be shown 
(Cover, 1965) that this fraction is given by the expression 
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Figure 3.7. Plot of the fraction F(N,d) of the dichotomies of N data points 
in d dimensions which are linearly separable, as a function of N/(d + 1), for 
various values of d. 

1 

F{N, d) = 
2N 

1 d 

t = 0 

J V - 1 
i 

when JV < d 4-1 

when JV > d + 1 (3.30) 

which is plotted as a function of N/(d + 1) in Figure 3.7 for d = 1, d = 20 and 
<i = oo. Here the symbol 

JV! 

(N ~M)\M\ 
(3.31) 

denotes the number of combinations of M objects selected from a total of JV. We 
see from (3.30) that, if the number of data points is fewer than d + 1 , any labelling 
of the points will always lead to a linearly separable problem. For JV = 2 (d+ 1), 
the probability of linear separability is 0.5 for any value of d (Exercise 3.5). In 
a practical application, the positions of points from the same class will tend to 
be correlated, and so the probability that a data set with a much larger number 
of points than 2(d + 1) will be linearly separable is higher than (3.30) would 
suggest. 

For the case of binary input patterns, if there are d inputs then there are 
2d possible input patterns and hence 22 possible labellings of those patterns 
between two classes. Those which can be implemented by a perceptron are called 
threshold logic functions and form an extremely small subset (less than 2d /d!) 
of the total (Lewis and Coates, 1967). 

In the neural computing literature a lot of attention is often paid to the in­
ability of single-layer networks to solve simple problems such as XOR. From our 
statistical pattern recognition perspective, however, we see that the ability of 
a particular model to provide an exact representation of a given training set is 
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largely irrelevant. We are primarily interested in designing systems with good 
generalization performance, so that they give the greatest accuracy when pre­
sented with previously unseen data. Furthermore, problems such as XOR and 
parity involve learning the complete set of all possible input patterns, so the 
concept of generalization does not even apply. Finally, they have the property 
that the smallest possible change in the input pattern produces the largest pos­
sible change in the output. Most practical pattern recognition problems have the 
opposite characteristic, so that small changes in the inputs do not, for the most 
part, produce large changes in the outputs, and hence the mapping represented 
by the network should be relatively smooth. > 

Consider the problem of two normally-distributed classes with equal covari-
ance matrices, discussed in Section 2.1.3. Since the class distributions overlap it 
is entirely possible that a finite sized data set drawn from these distributions will 
not be linearly separable. However, we know that the optimal decision boundary 
is in fact linear. A single-layer network can therefore achieve the best possible 
classification performance on unseen data, even though it may not separate the 
training data exactly. 

The key consideration concerns the choice of an appropriate discriminant 
function for the particular problem in hand. This may involve a combination 
of prior knowledge of the general form which the solution should take, coupled 
with an empirical comparison of the performance of alternative models. These 
issues are considered in more detail in Chapters 8, 9 and 10. Here we simply 
note that single-layer networks correspond to a very narrow class of possible 
discriminant functions, and in many practical situations may not; represent the 
optimal choice. Nevertheless, single-layer networks remain of considerable prac­
tical importance in providing a benchmark against which the performance of 
more complex multi-layer networks can be assessed. The fact that single-layer 
networks can often be trained very quickly, as shown in Section 3.4, gives them a 
particular advantage over more complex network structures which often require 
considerable computational effort to train. 

3.3 Generalized linear discriminants 

One way to generalize the discriminant functions, so as to permit a much larger 
range of possible decision boundaries, is to transform the input vector x using a 
set of M predefined non-linear functions </>j(x), sometimes called basis functions, 
and then to represent the output as a linear combination of these functions 

M 

Vk(x) = ^twfcj^-(x) + wk0. (3.32) 
j=i 

This now represents a much larger class of functions yk(x). In fact, as discussed in 
Chapters 4 and 5, for a suitable choice of the basis functions <^j(x), the function 
in (3.32) can approximate any continuous functional transformation to arbitrary 
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accuracy. Again, we can absorb the biases as special cases of the weights by 
defining an extra basis function <f>o = 1, so that 

M 

yk(x) = J2w*i't'i(x)- (3-33) 
3=0 

We have assumed that the basis functions <f>j(x) are fixed, independently of the 
data. Chapters 4 and 5 discuss multi-layer neural networks, many of which can 
be regarded as generalized discriminant functions of the form (3.32), but in which 
the basis functions themselves can be modified during the training process. 

3.4 Leas t - squa res t echn iques 

So far in this chapter we have discussed various forms of single-layer network 
and explored some of their properties. The remainder of the chapter is concerned 
with techniques for training such networks, and we begin with a discussion of 
methods based on the minimization of a sum-of-squares error function. This is 
the simplest form of error function and is most suitable for regression problems. 
While it can also be used for classification problems, there exist other, more 
appropriate, error functions, discussed at length in Chapter 6. 

3.4.1 Sum-of-squares error function 

For consistency with the discussions in Chapter 5, we shall consider the error 
minimization problem in the context of the generalized linear network (3.33). 
This contains the simple linear discriminant of (3.4) as a special case in which 
the <f>j(x) simply correspond to the input variables Xj. The sum-of-squares error 
function is given by a sum over all patterns in the training set, and over all 
outputs, of the form 

£ ( w ) = \ £ X>*(x";w) - ^>2 <3-34) 

where j/fc(xn; w) represents the output of unit k as a function of the input vector 
x n and the weight vector w, N is the number of training patterns, and c is the 
number of outputs. The quantity tjj represents the target value for output unit k 
when the input vector is x" . This error function is a smooth function of the weight 
parameters u>kj, and can be minimized by a variety of standard techniques. Since 
(3.33) is a linear function of the weights, the error function E(w) is a quadratic 
function of the weights, and hence its derivatives with respect to the weights 
are linear functions of the weights.. The solution for the weight values at the 
minimum of the error function can therefore be found exactly in closed form, as 
we shall see in Section 3.4.3. 
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Figure 3.8. Geometrical interpretation of the solution to the least-squares prob­
lem, illustrated for the case of 3 training patterns (JV = 3) and 2 basis functions 
4>o and (pi (corresponding to M — 1). The target values tn are grouped together 
to form an iV-dimensional vector t which lives in an ./V-dimensional Euclidean 
space. The corresponding network outputs can similarly be represented as a 
vector y which consists of a linear combination of M 4- 1 basis vectors tf>j, 
which themselves span an (M + l)-dimensional Euclidean sub-space S. The 
least-squares solution for y is given by the orthogonal projection of t onto S. 

3.4.2 Geometrical interpretation of least squares 

Before deriving a solution for the weights, it is instructive to consider a geo­
metrical interpretation of the least-squares problem. To do this we consider a 
network having a single output y. There is no loss of generality in doing this 
as the same discussion applies separately to each output of the network. For a 
particular input pattern x™ we can write the network output as 

M 

where tfft = cf>j(xn). We now group the target values together to form an N-
dimensional vector t whose elements are given by tn. This vector can be con­
sidered to live in an iV-dimensional Euclidean space, as indicated in Figure 3.8. 
For each basis function <?^(x) we can similarly group the N values of <$", corre­
sponding to the N data points, to make a vector 4>j, also of dimension N, which 
can be drawn in the same space as the vector t. For the moment we shall assume 
that the number of basis functions (including the bias) is less than the number 
of patterns, so that M + 1 < N. The M + 1 vectors <f>j, corresponding to the 
M + 1 basis functions, then form a (non-orthogonal) basis set which spans an 
(M + l)-dimensional Euclidean sub-space S. The network outputs yn can also 
be grouped to form a vector y. From (3.35) we see that y is given by a linear 
combination of the 4>j of the form 
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M 

j = 0 

(3.36) 

so that y is constrained to lie in the sub-space S, as shown in Figure 3.8. By 
changing the values of the weights Wj we can change the location of y subject to 
this constraint. 

The sum-of-squares error (3.34) can now be written in the form 

H 
M 

j=0 
(3.37) 

If we minimize this expression with respect to the weights Wj we find 

| | = 0 = ^ r ( y - f ) , j = l , . . . , M . (3.38) 

This represents a set of coupled equations for the weights, known as the normal 
equations of the least-squares problem, for which we shall find an explicit solution 
shortly. Before doing so, however, it is useful to consider the geometrical inter­
pretation of (3.38). Let us decompose t into the sum of two vectors t = tj_ + i|| 
where t|| is the orthogonal projection of t onto the sub-space S, and tj_ is the 
remainder. Then <j>7t± = 0 by definition, and hence from (3.38) we have 

?7(?-*D = o, j = l , . . . , M . (3.39) 

Since the vectors 4>i form a basis set which span the sub-space S, we can solve 
(3.39) to give 

y = h (3.40) 

and so the solution vector is just the projection of the vector of target values 
onto the sub-space spanned by the basis vectors, as indicated in Figure 3.8. This 
result is intuitively correct, since the process of learning corresponds to choosing 
a direction for y such as to minimize its distance from t. Since y is constrained 
to lie in the sub-space, the best we can do is choose it to correspond to the 
orthogonal projection of t onto S. This minimizes the length of the error vector 
e = y — t. Note that the residual error vector (fmin = i|| — t — —t± is then 
orthogonal to S, so that (f>Jemm — 0-
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3.4.3 Pseudo-inverse solution 

We now proceed to find an exact solution to the least-squares problem. To do 
this we return to the case of a network having c outputs. Using the expression 
(3.33), we can write the sum-of-squares error function (3.34) in the form 

N c ( M \ 2 

n=lfc=l (^=0 J 

Differentiating this expression with respect to w^j and setting the derivative to 
zero gives the normal equations for the least-squares problem in the form 

£{£™ f c;<^-t2U?=0. (3.42) 
71=1 [j' = 0 J 

In order to find a solution to (3.42) it is convenient to write it in a matrix 
notation to give 

( $ T * ) W T = $ T T . (3.43) 

Here # has dimensions N x M and elements ^ , W has dimensions ex M and 
elements w^j, and T has dimensions N x c and elements t£. The matrix # «& 
in (3.43) is a square matrix of dimension M x M. Provided it is non-singular we 
may invert it to obtain a solution to (3.43) which can be written in the form 

W T = $ t T (3.44) 

where 3?' is an M x N matrix known as the pseudo-inverse of 4? (Golub and 
Kalian, 1965; Rao and Mitra, 1971) and is given by 

* t = ( $ T $ ) - 1 $ T (3.45) 

Since <& is, in general, a non-square matrix it does not itself have a true inverse, 
but the pseudo-inverse does have the property (as is easily seen from 3.45) that 
#T<j> = J where I is the unit matrix. Note, however, that *4? ' ^ I in general. If 
the matrix $ T $ is singular then (3.43) does not have a unique solution. However, 
if the pseudo-inverse is defined by 

* t = n m ( * T * + e I ) - 1 * T (3.46) 
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then it can be shown that the limit always exists, and that this limiting value 
minimizes E (Rao and Mitra, 1971). 

In practice, the direct solution of the normal equations can lead to numerical 
difficulties due to the possibility of $ $ being singular or nearly singular. This 
can arise if two of the basis vectors <j>j, shown in Figure 3.8, are nearly collinear. 
The effects of noise and numerical error can then lead to very large values for 
the weights which give near cancellation between these vectors. Figure 3.9(a) 
shows two basis vectors 4n and <j>2 which are nearly orthogonal, together with 
the component i/j| of y which lies in the plane spanned by fa and $2- The corre­
sponding weight values needed to express y^ as a linear combination of fa and 
<f>2 have relatively small values. By contrast, Figure 3.9(b) shows the correspond­
ing situation when the vectors fa and fa are nearly collinear. In this case the 
weights need to adopt large (positive or negative) values in order to represent 
j / | | as a linear combination of the basis vectors. In the case where the two basis 
vectors are exactly collinear, we can write fa = Xfa for some constant A. Then 
u>i(/>i + W2&2 = (wi + ^2) fa a n d onby the combination (v>i + AW2) is fixed 
by the least-squares procedure, with the value of u>2, say, being arbitrary. Near 
degeneracies will not be uncommon when dealing with real, noisy data sets. In 
practice, such problems are best resolved by using the technique of singular value 
decomposition (SVD) to find a solution for the weights. A good introduction to 
SVD, together with a suggested numerical implementation, can be found in Press 
et al. (1992). Such an approach avoids problems due to the accumulation of nu­
merical roundoff errors, and automatically selects (from amongst a set of nearly 
degenerate solutions) the one for which the length || wfc|| of the fcth weight vector 
is shortest. 

In the above discussion, the bias parameters were treated as a special case 
of the weights. We can gain some insight into the role of the biases if we make 
them explicit. If we consider the minimization of (3.41) with respect to the bias 
parameters alone we obtain 

d^T0 = E | Y>H+1 + «*o - $ | = 0 (3.47) 

which can be solved for the biases to give 

M 

•Wko = *fc - E Wk^i (3 '4 8) 

where 
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(b) 

Figure 3.9. In (a) we see two basis vectors (j>i and 4>i which are nearly orthog­
onal. The least-squares solution vector y^ is given by a linear combination of 
these vectors, with relatively small values for the coefficients w\ and wi. In (b) 
the basis vectors are nearly collinear, and the magnitudes of the corresponding 
weight values become very large. 

This result tells us that the role of the bias parameters is to compensate for the 
difference between the mean (over the training set) of the output vector for the 
network and the corresponding mean of the target data. 

If # T is a square non-singular matrix, the pseudo-inverse reduces to the usual 
inverse. The matrix is square when N = M, so that the number of patterns equals 
the number of basis functions. If we multiply (3.43) by ( $ T ) _ 1 we obtain 

$ W T = T. (3.50) 

If we write this in index notation we have 

M 

X>JW# = tf (3.51) 
3=0 

and we see that, for each input pattern, the network outputs are exactly equal to 
the corresponding target values, and hence the sum-of-squares error (3.41) will 
be zero. The condition for ( $ )"""' to exist is that the columns 4>n of the matrix 
<&T be linearly independent. If the vectors </>" are not linearly independent, so 
that the effective value of N is less than M, then the least-squares problem 
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is under-determined. Similarly, if there are fewer patterns than basis functions, 
so that N < M, then the least-squares problem is again under-determined. In 
such cases, there is a continuum of solutions for the weights, all of which give 
zero error. Singular value decomposition leads to a numerically well-behaved 
algorithm which picks out the particular solution for which the magnitude ||w/t|| 
of the weight vector for each output unit k is the shortest. As we have already 
indicated in Chapter 1, it is desirable to have a sufficiently large training set 
that the weight values are 'over-determined', so that in practice we arrange that 
N > M, which corresponds to the situation depicted in Figure 3.8. 

3.4.4 Gradient descent 

We have shown how, for a linear network, the weight values which minimize the 
sum-of-squares error function can be found explicitly in terms of the pseudo-
inverse of a matrix. It is important to note that this result is only possible for 
the case of a linear network, with a sum-of-squares error function. If a non-linear 
activation function, such as a sigmoid, is used, or if a different error function 
is considered, then a closed form solution is no longer possible. However, if the 
activation function is differentiable, as is the case for the logistic sigmoid in (3.16) 
for instance, the derivatives of the error function with respect to the weight 
parameters can easily be evaluated. These derivatives can then be used in a 
variety of gradient-based optimization algorithms, discussed in Chapter 7, for 
finding the minimum of the error function. Here we consider one of the simplest 
of such algorithms, known as gradient descent. 

It is convenient to group all of the parameters (weights and biases) in the 
network together to form a single weight vector w, so that the error function 
can be expressed as E = JB(W). Provided E is a differentiable function of w we 
may adopt the following procedure. We begin with an initial guess for w (which 
might for instance be chosen at random) and we then update the weight vector 
by moving a small distance in w-space in the direction in which E decreases most 
rapidly, i.e. in the direction of —Vw-E. By iterating this process we generate a 
sequence of weight vectors w(T) whose components are calculated using 

(T+1) (r) 9E 

where rj is a small positive number called the learning rate parameter. Under 
suitable conditions the sequence of weight vectors will converge to a point at 
which E is minimized. The choice of the value for r) can be fairly critical, since 
if it is too small the reduction in error will be very slow, while, if it is too large, 
divergent oscillations can result. 

In general the error function is given by a sum of terms each of which is 
calculated using just one of the patterns from the training set, so that 

£ ( w ) = ] T ) £ n ( w ) (3.53) 
n 

(3.52) 
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where the term En is calculated using pattern n only. In this case we can update 
the weight vector using just one pattern at a time 

(T+I) (T) 9En 

and this is repeated many times by cycling through all of the patterns used in the 
.definition of E. This form of sequential, or pattern-based, update is reminiscent 
of the Robbins-Monro procedure introduced in Section 2.4, and many of the 
same comments apply here. In particular, this technique allows the system to be 
used in real-time adaptive applications in which data is arriving continuously. 
Each data point can be used once and then discarded, and if the value of r\ 
is chosen appropriately, the system may be able to 'track' any slow changes 
in the characteristics of the data. If r) is chosen to decrease with time in a 
suitable way during the learning process, then gradient descent becomes precisely 
the Robbins-Monro procedure for finding the root of the regression function 
£\dEn/dwi] where £ denotes the expectation. If the value of x\ is chosen to be 
steadily decreasing with time, so that TJ^ = TJO/T (which satisfies the conditions 
for the Robbins-Monro theorem stated in Section 2.4), then the weight matrix 
W can be shown to converge to a solution of 

* T ( $ W - T) = 0 (3.55) 

where <fr is defined on page 92, irrespective of whether or not $ $ is singular. 
Gradient descent, and its limitations, are discussed at greater length in Chap­
ter 7, along with a variety of more sophisticated optimization algorithms. 

In order to implement gradient descent, we need explicit expressions for the 
derivatives of the error function with respect to the weights. We consider first 
the pattern-based form of gradient descent given by (3.54). For a generalized 
linear network function of the form (3.33) the derivatives are given by 

dv)k 

where we have defined 

9En = {ifcfx") - ttUi{xn) = %<% (3.56) 

# S M f c ( x » ) - # . (3.57) 

We see that the derivative with respect to a weight Wkj connecting basis function 
j to output k can be expressed as the product of 6). for the output unit and fo for 
the basis function. Thus, the derivative can be calculated from quantities which 
are 'local' (in the sense of the network diagram) to the weight concerned. This 
property is discussed at greater length in the context of multi-layer networks in 
Section 4.8. Combining (3.54) and (3.56) we see that the change in the weights 
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due to presentation of a particular pattern is given by 

Awkj = -rffi<P>. (3.58) 

This rule, and its variants, are known by a variety of names including the LMS 
(least mean squares) rule, the adaline rule, the Widrow-HorT rule (Widrow and 
Hoff, 1960), and the delta rule. 

For networks with differentiable non-linear activation functions, such as the 
logistic sigmoid shown in Figure 3.5, we can write the network outputs in the 
form 

Vk = 9(ak) (3.59) 

where <?(•) is the activation function, and 

M 
ak = '%2wkj4>j- (3-60) 

3=0 

The derivatives of the error function for pattern n again take the form 

J^-fWW (3-61) 

in which 

*Z = 0'.(ffl*)(Mb(xB)-*E). (3.62) 

For the logistic sigmoid given by (3.16), the derivative of the activation function 
can be expressed in the simple form 

g'(a) = g(a)(l-g(a)). (3.63) 

For gradient descent based on the total error function (summed over all patterns 
in the training set) given by (3.52), the derivatives are obtained by computing 
the derivatives for each pattern separately and then summing over all patterns 

9wkj t-' dwkj 
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Figure 3.10. The perceptron network used a fixed set of processing elements, 
denoted <f>j, followed by a layer of adaptive weights Wj and a threshold acti­
vation function g(-). The processing elements <pj typically also had threshold 
activation functions, and took inputs from a randomly chosen subset of the 
pixels of the input image. 

3.5 T h e p e r c e p t r o n 

Single-layer networks, with threshold activation functions, were studied by Rosen­
blatt (1962) who called them perceptrons. Rosenblatt also built hardware imple­
mentations of these networks, which incorporated learning using an algorithm 
to be discussed below. These networks were applied to classification problems, 
in which the inputs were usually binary images of characters or simple shapes. 
The properties of perceptrons are reviewed in Block (1962). 

At the same time as Rosenblatt was developing the perceptron, Widrow and 
co-workers were working along similar lines using systems known as adalines 
(Widrow and Lehr, 1990). The term adaline comes from ADAptive LINear Ele­
ment, and refers to a single processing unit with threshold non-linearity (Widrow 
and HofT, 1960) of essentially the same form as the perceptron. 

We have already seen that a network with a single layer of weights has very 
limited capabilities. To improve the performance of the perceptron, Rosenblatt 
used a layer of fixed processing elements to transform the raw input data, as 
shown in Figure 3.10. These processing elements can be regarded as the basis 
functions of a generalized linear discriminant. They typically took the form of 
fixed weights connected to a random subset of the input pixels, with a threshold 
activation function of the form (3.20). We shall again use the convention intro­
duced earlier of defining an extra basis function 4>Q whose activation is perma­
nently set to + 1 , together with a corresponding bias parameter wo- The output 
of the perceptron is therefore given by 

ff=s[Ew^x))=^wT*) (3-65) 

where 4> denotes the vector formed from the activations cf>o,..., 4>M- The output 
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unit activation function is most conveniently chosen to be an anti-symmetric 
version of the threshold activation function of the form 

9(a) = {-\ W l ! e n a ^ (3.66) 
3^ ' \ + 1 when a > 0. v ' 

We now turn to a discussion of the procedures used to train the perceptron. 

3.5.1 The perceptron criterion 

Since our goal is to produce an effective classification system, it would be natural 
to define the error function in terms of the total number of misclassifications over 
the training set. More generally we could introduce a loss matrix (Section 1.10) 
and consider the total loss incurred as a result of a particular classification of 
the data set. Such error measures, however, prove very difficult to work with 
in practice. This is because smooth changes in the values of the weights (and 
biases) cause the decision boundaries to move across the data points resulting 
in discontinuous changes in the error. The error function is therefore piecewise 
constant, and so procedures akin to gradient descent cannot be applied. We 
therefore seek other error functions which can be more easily minimized. 

In this section we consider a continuous, piecewise-linear error function called 
the perceptron criterion. As each input vector xra is presented to the inputs of 
the network it generates a corresponding vector of activations <f>n in the first-
layer processing elements. Suppose we associate with each input vector x n a 
corresponding target value tn, such that the desired output from the network 
is tn = +1 if the input vector belongs to class C\, and tn = — 1 if the vector 
belongs to class C^. Prom (3.65) and (3.66) we want wT(/>n > 0 for vectors from 
class C\, and w T 0 n < 0 for vectors from class Ci- It therefore follows that for all 
vectors we want to have •wr(<pntn) > 0. This suggests that we try to minimize 
the following error function, known as the perceptron criterion 

£ P e r c ( w ) = _ £ WT(<t>ntn) (3.67) 

where M is the set of vectors 4>n which are misclassified by the current weight 
vector w. The error function jBperc(w) is the sum of a number of positive terms, 
and equals zero if all of the data points are correctly classified. From the dis­
cussion in Section 3.1 we see that JEperc(w) is proportional to the sum, over all 
of the input patterns which are misclassified, of the (absolute) distances to the 
decision boundary. During training, the decision boundary will move and some 
points which were previously misclassified will become correctly classified (and 
vice versa) so that the set of patterns which contribute to the sum in (3.67) will 
change. The perceptron criterion is therefore continuous and piecewise linear 
with discontinuities in its gradient. 
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3.5.2 Perceptron learning 

If we apply the pattern-by-pattern gradient descent rule (3.54) to the perceptron 
criterion (3.67) we obtain 

w<r+1> = w « + nW1. (3.68) 

This corresponds to a very simple learning algorithm which can be summarized 
as follows. Cycle through all of the patterns in the training set and test each 
pattern in turn using the current set of weight values. If the pattern is correctly 
classified do nothing, otherwise add the pattern vector (multiplied by 77) to the 
weight vector if the pattern is labelled class C\ or subtract the pattern vector 
(multiplied by n) from the weight vector if the pattern is labelled class C^. It is 
easy to see that this procedure tends to reduce the error since 

- v / T + i y r ( 4 > n i n ) = -w<T>T (0 n t n ) - r](<pntn)'1\<j>ntn) < - w W T ( 0 B t n ) (3.69) 

since ||<An£"||2 > 0 and 7/ > 0. 
For the particular case of the perceptron criterion, we see that the value of 

n is in fact unimportant since a change in TJ is equivalent to a re-scaling of the 
weights and bias (assuming the initial parameter values are similarly re-scaled). 
This leaves the location of the decision boundaries unchanged. To see this, recall 
that the location of the decision boundary is given by (3.2), and is therefore 
unchanged if all of the weights, including the bias, are rescaled by the same 
constant. Thus, when minimizing the perceptron criterion, we can take r\ = 1 
with no loss of generality. This property does not hold, however, for most other 
forms of error function. 

In Figures 3.11-3.13 we give a simple example of learning in a perceptron, for 
the case of one basis function <pi, so that, with biases included as special cases of 
the weights, the data points live in a two-dimensional space (0o,<£i) with <f>o = 1. 

3.5.3 Perceptron convergence theorem 

There is an interesting result which states that, for any data set which is linearly 
separable, the learning rule in (3.68) is guaranteed to find a solution in a finite 
number of steps (Rosenblatt, 1962; Block, 1962; Nilsson, 1965; Minsky and Pa-
pert, 1969; Duda and Hart, 1973; Hand, 1981; Arbib, 1987; Hertz et al., 1991). 
This is known as the perceptron convergence theorem. Here we give a relatively 
simple proof, based on Hertz et al. (1991). 

Since we are considering a data set which is linearly separable, we know 
that there exists at least one weight vector w for which all training vectors are 
correctly classified, so that 

wT4>ntn > 0 for all n. (3.70) 
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Figure 3.11. A simple example of perceptron learning, for a data set with four 
patterns. Circles represent patterns belonging to class C\ and squares represent 
patterns belonging to class C%. The initial decision boundary, corresponding to 
the weight vector w , shown by the dashed curve, leaves one of the points, 
at <j>1, incorrectly classified. 

The learning process starts with some arbitrary weight vector which, without loss 
of generality, we can assume to be the zero vector. At each step of the algorithm, 
the weight vector is updated using 

w<T+1) = w ( T ) + 4>ntn (3.71) 

where <j)n is a vector which is misclassified by the-perceptron. Suppose that, after 
running the algorithm for some time, the number of times that each vector <f>" 
has been presented and misclassified is r n . Then the weight vector at this point 
will be given by 

W = ] T T V Y \ (3.72) 

We now take the scalar product of this equation with w to give 

wTw = ]TTnw'V lin 

n 

> r m i n ( w I > n t n ) (3.73) 
n 

where r = J2n
 TU ls t^ l e total number of weight updates, and the inequality 

results from replacing each update vector by the smallest of the update vectors. 
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Figure 3.12. To correct for the misclassification of tfi1 in Figure 3.11 we add 
(minus) 0 1 onto w'0 ' to give a new weight vector w'1 ' , with the new decision 
boundary again shown by the dashed curve. The point at <j>1 is now correctly 
classified, but the point at (j>2 is now incorrectly classified. 

•S, /w<2) o 

Figure 3.13. To correct for the misclassification of 4>2 in Figure 3.12 we add 
(j>2 onto w'1 ' to give a new weight vector w'2 ' which classifies all the points 
correctly. 

From (3.70) it then follows that the value of w T w is bounded below by a function 
which grows linearly with r . 

Keeping this result in mind, we now turn to a consideration of the magnitude 
of the weight vector w. From (3.71) we have 
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||W(T+1>||2 = | | w « | | 2 + \\<pnf(tnf + 2 w ( T ) T f t " 

< | | w W | | 2 + | | ^ n | | 2 ( t n ) 2 (3.74) 

where the inequality follows from the fact that the pattern </>" must have been 
misclassified, and so -w^r(f>ntn < 0. We also have ( t n ) 2 = 1 since tn = ± 1 , and 
||<£n||2 < ll^llmax where ||<£||max is the length of the longest input vector. Thus, 
the change in the value of | |w||2 satisfies 

A| |w| |2
 S H w ' ^ l l 2 - | |wM| | 2 < ||«£||Lx (3.75) 

and so after r weight vector updates we have 

I M P < r l M l L x (3.76) 

and so the length ||w|| of the weight vector increases no faster than T 1 / 2 . We 
now recall the previous result that w T w is bounded below by a linear function 
of T. Since w is fixed, we see that for sufficiently large r these two results would 
become incompatible. Thus T cannot grow indefinitely, and so the algorithm 
must converge in a finite number of steps. 

One of the difficulties with the perceptron learning rule is that, if the data 
set happens not to be linearly separable, then the learning algorithm will never 
terminate. Furthermore, if we arbitrarily stop the learning process there is no 
guarantee that the weight vector found will generalize well for new data. Various 
heuristics have been proposed with a view to giving good performance on prob­
lems which are not linearly separable while still ensuring convergence when the 
problem is linearly separable. For example, the value of the parameter T? may be 
made to decrease during the learning process so that the corrections gradually 
become smaller. One approach is to take n = K/r where K is a constant and T is 
the step number, by analogy with the Robbins-Monro procedure (Section 2.4.1). 
An alternative algorithm for finding good solutions on problems which are not 
linearly separable, called the pocket algorithm, is described in Section 9.5.1. As 
we have already discussed, the issue of linear separability is a somewhat arti­
ficial one, and it is more important to develop learning algorithms which can 
be expected to give good performance across a wide range of problems, even if 
this means sacrificing the guarantee of perfect classification for linearly separable 
problems. 

3.5.4 Limitations of the perceptron 

When perceptrons were being studied experimentally in the 1960s, it was found 
that they could solve many problems very readily, whereas other problems, which 
superficially appeared to be no more difficult, proved impossible to solve. A crit­
ical appraisal of the capabilities of these networks, from a formal mathematical 
viewpoint, was given by Minsky and Papert (1969) in their book Perceptrons. 
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They showed that there are many types of problem which a perceptron cannot, 
in any practical sense, be used to solve. In this context a solution is taken to be 
a correct classification of all of the patterns in the training set. 

Many recent textbooks on neural networks have summarized Minsky and 
Papert 's contribution by pointing out that a single-layer network can only classify 
data sets which are linearly separable, and hence can not solve problems such as 
the XOR example considered earlier. In fact, the arguments of Minsky and Papert 
are rather more subtle, and shed light on the nature of multi-layer networks in 
which only one of the layers of weights is adaptive. Consider the perceptron 
shown in Figure 3.10. The first layer of fixed (non-adaptive) processing units 
computes a set of functions <j>j whose values depend on the input pattern. Even 
though the data set of input patterns may not be linearly separable, when viewed 
in the space of original input variables, it can easily be the case that the same 
set of patterns becomes linearly separable when transformed into the space of 
4>j values. Thus a perceptron can solve a linearly inseparable problem, provided 
it has an appropriate set of first-layer processing elements. 

The real difficulty with the perceptron arises from the fact that these pro­
cessing elements are fixed in advance and cannot be adapted to the particular 
problem (or data set) which is being considered. As a consequence of this, it turns 
out that the number, or complexity, of such units must grow very rapidly (typi­
cally exponentially) with the dimensionality of the problem if the perceptron is 
to remain capable in general of providing a solution. It is therefore necessary to 
limit either the number or the complexity of the first-layer units. Minsky and 
Papert discuss a range of different forms of perceptron (depending on the form 
of the functions 4>j) and for each of them they provide examples of problems 
which cannot be solved. 

Here we consider one particular form, called a diameter-limited perceptron, 
in which we consider two-dimensional input images as shown in Figure 3.10, and 
in which each of the <pj takes its inputs only from within a small localized region 
of the image, called a receptive field, having fixed diameter. Minsky and Papert 
(1969) provide a simple geometrical proof that such a perceptron cannot solve a 
simple problem involving the determination of whether a binary geometrical im­
age is simply connected. This is illustrated in Figure 3.14. We shall suppose that 
connected shapes are labelled with targets +1 and that disconnected shapes have 
targets — 1. Note that the overall length of the shapes is taken to be much larger 
than the maximum diameter of the receptive fields (indicated by the dashed cir­
cles) , so that no single receptive field can overlap both ends of the shape. For the 
shape in Figure 3.14 (a), the functions 4>j and the adaptive weights in the per­
ceptron must be such that the linear sum which forms the input to the threshold 
function is negative, if this figure is to be correctly classified as 'disconnected'. 
In going to 3.14 (b), only the left-hand end of the shape has changed, so the 
receptive fields which lie in this region, and their corresponding weights, must 
be such that the linear sum is increased sufficiently to make it go positive, since 
this shape is 'connected'. Similarly, in going from 3.14 (a) to 3.14 (c) the linear 
sum must also be increased sufficiently to make it positive. However, in going 
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Figure 3.14. An example of a simple problem, involving the determination of 
whether a geometrical figure is simply connected, which cannot be solved by 
a perceptron whose inputs are taken from regions of limited diameter. 

from 3.14 (a) to 3.14 (d), both ends of the shape have been changed in this way, 
and so the linear sum must be even more positive. This is inevitable since the 
diameter limitation means that the response due to the two ends of the shape are 
independent. Thus, the linear sum cannot be negative for the shape in 3.14 (d), 
which will therefore be misclassified. 

Various alternative approaches to limiting the complexity of the first-layer 
units can be considered. For instance, in an order-limited perceptron, each of the 
<pj can take inputs only from a limited number of input pixels (which may lie 
anywhere on the input image). Counter-examples similar to the one presented 
above can be found also for these other choices of <f>j. These difficulties can be 
circumvented by allowing the number and complexity of the <j>j to grow suffi­
ciently rapidly with the dimensionality of the problem. For example, it is shown 
in Section 4.2.1 that, for networks with binary inputs, there is a simple proce­
dure for constructing the <j>j such that any set of input patterns is guaranteed to 
be linearly separable in the <pj space. The number of such units, however, must 
grow exponentially with the input dimensionality. Such an approach is therefore 
totally impractical for anything other than toy problems. 

The practical solution to these difficulties is to allow the functions <j>j to be 
adaptive, so that they are chosen as part of the learning process. This leads to a 
consideration of multi-layer adaptive networks, as discussed in Chapters 4 and 5. 

3.6 Fisher's linear discriminant 

As the final topic of this chapter we consider a rather different approach to lin­
ear discriminants, introduced by Fisher (1936). In Section 1.4 we encountered 
the problem of the 'curse of dimensionality' whereby the design of a good clas­
sifier becomes rapidly more difficult as the dimensionality of the input space 

1 \ I 
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increases. One way of dealing with this problem is to pre-process the data so 
as to reduce its dimensionality before applying a classification algorithm. The 
Fisher discriminant aims to achieve an optimal linear dimensionality reduction. 
It is therefore not strictly a discriminant itself, but it can easily be used to 
construct a discriminant. As well as being an important technique in its own 
right, the Fisher discriminant provides insight into the representations learned 
by multi-layer networks, as discussed in Section 6.6.1. 

3.6.1 Two classes 

One very simple approach to dimensionality reduction, motivated by our earlier 
discussion of single-layer networks, is to use a linear projection of the data onto 
a one-dimensional space, so that an input vector x is projected onto a value y 
given by 

y = w T x (3.77) 

where, as before, w is a vector of adjustable weight parameters. Note that this 
expression does not contain any bias parameter. We shall return to this point 
shortly. In general, the projection onto one dimension leads to a considerable loss 
of information, and classes which are well separated in the original d-dimensional 
space may become strongly overlapping in one dimension. However, by adjusting 
the components of the weight vector w we can select a projection which maxi­
mizes the class separation. To begin with, consider a two-class problem in which 
there are Ni points of class C\ and N2 points of class C2. The mean vectors of 
the two classes are given by 

»» = jz £*"• m2 = k £x"- (3-78) 

We might think of defining the separation of the classes, when projected onto 
w, as being the separation of the projected class means. This suggests that we 
might choose w so as to maximize 

m,2 — m\ = wT(rri2 — m i ) (3.79) 

where 

mfc = wTm f c (3.80) 

is the class mean of the projected data from class Ck- However, this expression 
can be made arbitrarily large simply by increasing the magnitude of w. To solve 
this problem, we could constrain w to have unit length, so that ]T^ w\ — 1. Using 
a Lagrange multiplier (Appendix C) to perform the constrained maximization 
we then find that w cc (rri2 — mi ) . There is still a problem with this approach, 
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Figure 3.15. A schematic illustration of why it is important to take account of 
the within-class covariances when constructing the Fisher linear discriminant 
criterion. Projection of the data onto the xi-axis leads to greater separation 
of the projected class means than does projection onto the X2-axis, and yet it 
leads to greater class overlap. The problem is resolved by taking account of 
the within-class scatter of the data points. 

however, as illustrated in Figure 3.15. This shows two classes which are well 
separated in the original two-dimensional space {x\,X2)- We see that projection 
onto the £i-axis gives a much larger separation of the projected class means 
than does projection onto the 2,'2-axis. Nevertheless, separation of the projected 
data is much better when the data is projected onto the X2-axis than when it is 
projected onto the xi-axis. This difficulty arises from the substantial difference 
of the within-class spreads along the two axis directions. The resolution proposed 
by Fisher is to maximize a function which represents the difference between the 
projected class means, normalized by a measure of the within-class scatter along 
the direction of w. 

The projection formula (3.77) transforms the set of labelled data points in x 
into a labelled set in the one-dimensional space y. The within-class scatter of the 
transformed data from class Ck is described the within-class covariance, given by 

nECk 

(3.81) 

and we can define the total within-class covariance for the whole data set to be 
simply s\ + s\. We therefore arrive at the Fisher criterion given by 

J (w) = 
(?n2 - m i ) 2 

(3.82) 

We can make the dependence on w explicit by using (3.77), (3.80) and (3.81) to 
rewrite the Fisher criterion in the form 
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w T S B w 

where S B is the between-class covariance matrix and is given by 

S B = (m 2 - m 1 ) ( m 2 - m 1 ) T (3.84) 

and S\y is the total within-class covariance matrix, given by 

SW = J2 (x" - m iK x" - m i ) T + E (x" - m«Kx" - m2)T (3-85) 
n6Ci n6C2 

Differentiating (3.83) with respect to w, we find that J ( w ) is maximized when 

( w T S B w ) S w w = ( w T S ^ w ) S B w . (3.86) 

From (3.84) we see that S g w is always in the direction of (rri2 — m i ) . Further­
more, we do not care about the magnitude of w, only its direction. Thus, we can 
drop any scalar factors. Multiplying both sides of (3.86) by Sjy we then obtain 

w « S ^ ( m 2 - m i ) . (3.87) 

This is known as Fisher's linear discriminant, although strictly it is not a dis­
criminant but rather a specific choice of direction for projection of the data down 
to one dimension. Note that, if the within-class covariance is isotropic, so that 
Siy is proportional to the unit matrix, we find that w is proportional to the 
difference of the class means, as discussed above. The projected data can sub­
sequently be used to construct a discriminant, by choosing a threshold J/O so 
that we classify a new point as belonging to C\ if y(x) > J/O, and classify it as 
belonging to C2 otherwise. In doing this we note that y = w T x is the sum of 
a set of random variables, and so we may invoke the central limit theorem (see 
page 37) and model the class-conditional density functions p(y\Ck) using normal 
distributions. The techniques of Chapter 2 can then be used to find the param­
eters of the normal distributions by maximum likelihood, and the formalism of 
Chapter 1 then gives an expression for the optimal threshold. 

Once we have obtained a suitable weight vector and a threshold, the proce­
dure for deciding the class of a new vector is identical to that of the perceptron 
network of Section 3.5. We can therefore view the Fisher criterion as a specific 
procedure for choosing the weights (and subsequently the bias) in a single-layer 
network. More conventionally, however, it is regarded as a technique for dimen­
sionality reduction, a subject which is discussed at greater length in Chapter 8. In 
reducing the dimensionality of the data we are discarding information, and this 
cannot reduce (and will typically increase) the theoretical minimum achievable 
error rate. Dimensionality reduction may be worthwhile in practice, however, as 
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it alleviates problems associated with the curse of dimensionality. Thus, with 
finite-sized data sets, reduction of the dimensionality may well lead to overall 
improvements in the performance of a classifier system. 

3.6.2 Relation to the least-squares approach 

The least-squares approach to the determination of a linear discriminant was 
based on the goal of making the network outputs as close as possible to a set of 
target values. By contrast, the Fisher criterion was derived by requiring maxi­
mum class separation in the output space. It is interesting to see the relationship 
between these two approaches. In particular, we shall show that , for the two-class 
problem, the Fisher criterion can be obtained as a special case of least squares. 

So far we have taken the target values to be +1 for class C\ and —1 for 
class C%. If, however, we adopt a slightly different target coding scheme then the 
least-squares solution solution for the weights becomes equivalent to the Fisher 
solution (Duda and Hart, 1973). In particular, we shall take the targets for class 
C\ to be N/Ni, where Ni is the number of patterns in class C\, and N is the 
total number of patterns. This target value approximates the reciprocal of the 
prior probability for class C\. For class Ci we shall take the targets to be —N/N2. 

The sum-of-squares error function can be written 

7 N 

£ = T(wTx" + "*-tf' (3-88) 
2 n = l 

Setting the derivatives of E with respect to wg and w to zero we obtain respec­
tively 

N 

Y^, (wTxn + w0 - tn) = 0 (3.89) 

n = l 

N 

^ ( w T x n + w0- tn) x " = 0. (3.90) 
n = l 

From (3.89), and making use of our choice of target coding scheme for the tn, 
we obtain an expression for the bias in the form 

Wo = - w
T m (3.91) 

where m is the mean of the total data set and is given by 

1 N 1 
m = - ^ x " = - ( A T 1 m 1 + i V 2 m 2 ) . (3.92) 

n—l 
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After some straightforward algebra, and again making use of the choice of tn, 
the second equation (3.90) becomes 

= JV( m i - m 2 ) (3.93) 

where Sw is defined by (3.85), S B is defined by (3.84), and we have substituted 
for the bias using (3.91). Using (3.84) we note that S g w is always in the direction 
of (rri2 — m i ) . Thus we can write 

w o c S ^ m a - m i ) (3.94) 

where we have ignored irrelevant scale factors. Thus the weight vector coincides 
with that found from the Fisher criterion. In addition, we have also found an 
expression for the bias value wo given by (3.91). This tells us that a new vector 
x should be classified as belonging to class C\ if w T ( x — m) > 0 and class C2 
otherwise. 

3.6.3 Several classes 

We now consider the generalization of the Fisher discriminant to several classes, 
and we shall assume that the dimensionality of the input space is greater than 
the number of classes, so that d > c. Also, we introduce dl > 1 linear 'features' 
yk = w j x , where k = 1 , . . . , a". These feature values can conveniently be grouped 
together to form a vector y. Similarly, the weight vectors {wjtj can be considered 
to be the rows of a matrix W , so that 

y = W x (3.95) 

The generalization of the within-class covariance matrix to the case of c classes 
follows from (3.85) to give 

Sw = i2Sk (3'96) 
fc=i 

where 

and 

Sfc = £ (x" - m f c)(x" - m f c)T (3.97) 

yVfc n€Ck 



3.6: Fisher's linear discriminant 111 

where Nk is the number of patterns in class Ck- In order to find a generalization 
of the between-class covariance matrix, we follow Duda and Hart (1973) and 
consider first the total covariance matrix 

JV 

S T = ] T ( x n - m) (x n - m ) T (3.99) 
n = l 

where m is the mean of the total data set 

JV c 

m = ^ E x n = ^ I > * m * (3-10°) 
n = l k=l 

and N = £] fc Nk is the total number of data points. The total covariance matrix 
can be decomposed into the sum of the within-class covariance matrix, given by 
(3.96) and (3.97), plus an additional matrix Sg which we identify as a measure 
of the between-class covariance 

S T = S w + S B (3.101) 

where 

c 

S B = ^ i V f c ( m f c - m ) ( m A ; - m ) T (3.102) 

These covariance matrices have been defined in the original x-space. We can now 
define similar matrices in the projected d'-dimensional y-space 

sw = E £ ( y n - ^ ) ( y n - ^ ) T (3-103) 

and 

c 

SB = Y,N^-t1)^k-»)T (3-104) 
fe=i 

?here 

Again we wish to construct a scalar which is large when the between-class co-
variance is large and when the within-class covariance is small. There are now 
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many possible choices of criterion (Pukunaga, 1990). One example is given by 

J ( W ) = T V { s ^ s B } (3.106) 

where Tr{M} denotes the trace of a matrix M. This criterion can then be rewrit­
ten as an explicit function of the projection matrix W in the form 

J ( W ) = Tr { ( W S V V W T ) - 1 ( W S B W T ) } . (3.107) 

Maximization of such criteria is straightforward, though somewhat involved, 
and is discussed at length in Pukunaga (1990). The weight values are determined 
by those eigenvectors of S J ^ / S B which correspond to the d! largest eigenvalues. 

There is one important result which is common to all such criteria, which is 
worth emphasizing. We first note from (3.102) that S B is composed of the sum 
of c matrices, each of which.is an outer product of two vectors and therefore of 
rank 1. In addition only (c — 1) of these matrices are independent as a result 
of the constraint (3.100). Thus, S B has rank at most equal to (c — 1) and so 
there are at most (c — 1) non-zero eigenvalues. This shows that the projection 
down onto the (c — l)-dimensional sub-space spanned by the eigenvectors of S B 
does not alter the value of J ( W ) , and so we are therefore unable to find more 
than (c — 1) linear 'features' by this means (Pukunaga, 1990). Dimensionality 
reduction and feature extraction are discussed at greater length in Chapter 8. 

Exerc ises 

3.1 (*) Consider a point x which lies on the plane y{x) = 0, where y(x) is given 
by (3.1). By minimizing the distance ||x — x|| with respect to x subject 
to this constraint, show that the value of the linear discriminant function 
y(x) gives a (signed) measure of the perpendicular distance L of the point 
x to the decision boundary y(x) = 0 of the form 

3.2 (*) There are several possible ways in which to generalize the concept of a 
linear discriminant function from two classes to c classes. One possibility 
would be to use (c— 1) linear discriminant functions, such that £//t(x) > 0 for 
inputs x in class Ck and 2//t(x) < 0 for inputs not in class Ck. By drawing 
a simple example in two dimensions for c = 3, show that this approach 
can lead to regions of x-space for which the classification is ambiguous. 
Another approach would be to use one discriminant function 2/jfc(x) for 
each possible pair of classes C, and Cjt, such that yjk(x) > 0 for patterns in 
class Cj, and yjk(x) < 0 for patterns in class Ck- For c classes we would need 
c(c — l ) / 2 discriminant functions. Again, by drawing a specific example 
in two dimensions for c = 3, show that this approach can also lead to 
ambiguous regions. 
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3.3 (*) Consider a mixture model of the form (2.71) in which the component 
densities are given by 

d 

P(x|i) = n i ^ ' ( 1 - P > ' ) 1 : 1 ' (3.109) 

which is equivalent to (3.22). Show that the maximum likelihood solution 
for the parameters Pji is given by 

31 E„P0|x«) ( 3 1 1 0 ) 

where P(j\x) is the posterior probability for component j corresponding 
to an input vector x and is given, from Bayes' theorem, by 

Ul) EfcPWfc)P(fc) ( 3 i n ) 

and P(j) is the corresponding prior probability. 
3.4 (**) Given a set of data points {x n} we can define the convex hull to be the 

set of all points x given by 

x = ^ a „ x " (3.112) 
n 

where a n > 0 and Y^n
 an — 1- Consider a second set of points {zn} and its 

corresponding convex hull. The two sets of points will be linearly separable 
if there exists a vector w and a scalar WQ such that w T x " + WQ > 0 for all 
x n , and w T z n + wo < 0 for all z n . Show that, if their convex hulls intersect, 
the two sets of points cannot be linearly separable, and conversely that, if 
they are linearly separable, their convex hulls do not intersect. 

3.5 (* *) Draw all 22 = 4 dichotomies of N = 2 points in one dimension, and 
hence show that the fraction of such dichotomies which are linearly sepa­
rable is 1.0. By considering the binomial expansion of 2d = (1 + l ) d , verify 
that the summation in (3.30) does indeed give F = 1 when N = d + 1 for 
any d. Similarly, by drawing all 24 = 16 dichotomies of N — 4 points in one 
dimension, show that the fraction of dichotomies which are linearly sepa­
rable is 0.5. By considering the binomial expansion of 2 2 d + 1 = (1 + l ) 2 d + 1 , 
show from (3.30) that the fraction of dichotomies which are linearly sep­
arable for TV = 2(d + 1) is given by F(2d + 2,d) = 0.5 for any N. Verify 
that these results are consistent with Figure 3.7. 

3 .6 (***) Generate and plot a set of data points in two dimensions, drawn 
from two classes each of which is described by a Gaussian class-conditional 
density function. Implement the gradient descent algorithm for training a 
logistic discriminant, and plot the decision boundary at regular intervals 
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Figure 3.16. Distribution of data in one dimension drawn from two classes, 
used in Exercise 3.7. 

during the training procedure on the same graph as the data. Explore the 
effects of choosing different values for the learning rate parameter r\. Com­
pare the behaviour of the sequential and batch weight update procedures 
described by (3.52) and (3.54) respectively. 

3.7 (**) Consider data in one dimension drawn from two classes having the dis­
tributions shown in Figure 3.16. What is the ratio of the prior probabilities 
for the two classes? Find the linear discriminant function y(x) = wx 4- wo 
which minimizes the sum-of-squares error function defined by 

£ = 3 / {y(x) - l}2 dx + f {y(x) + l}2dx (3.113) 
JO J4 

where the target values are t — +1 for class C\ and t — —1 for class C2. Show 
that the decision boundary given by y(x) = 0 just fails to separate the two 
classes. Would a single-layer perceptron necessarily find a solution which 
separates the two classes exactly? Justify your answer. Discuss briefly the 
advantages and limitations of the least-squares and perceptron algorithms 
in the light of these results. 

3.8 (*) Prove that, for arbitrary vectors w and w, the following inequality is 
satisfied: 

(wTw^2 

112 -< 1. (3.114) 

Hence, using the results (3.73) and (3.76) from the proof of the percep­
tron convergence theorem given in the text, show that an upper limit on 
the number of weight updates needed for convergence of the perceptron 
algorithm is given by 

2\W\L 
m i n n ( w T ^ " ) 2 ' 

(3.115) 
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3.9 (***) Generate a data set consisting of a small number of vectors in two 
dimensions, each belonging to one of two classes. Write a numerical im­
plementation of the perceptron learning algorithm, and plot both the data 
points and the decision boundary after every iteration. Explore the be­
haviour of the algorithm both for data sets which are linearly separable 
and for those which are not. 

3.10 (*) Use a Lagrange multiplier (Appendix C) to show that, for two classes, 
the projection vector which maximizes the separation of the projected class 
means given by (3.79), subject to the constraint ||w||2 = 1, is given by 
w oc (rri2 — m i ) . 

3.11 (**) Using the definitions of the between-class and within-class covariance 
matrices given by (3.84) and (3.85) respectively, together with (3.91) and 
(3.92) and the choice of target values described in Section 3.6.2, show that 
the expression (3.90) which minimizes the sum-of-squares error function 
can be written in the form (3.93). 

3.12 (*) By making use of (3.98), show that the total covariance matrix S7 
given by (3.99) can be decomposed into within-class and between-class 
covariance matrices as in (3.101), where the within-class covariance matrix 
Sw is given by (3.96) and (3.97), and the between-class covariance matrix 
S B is given by (3.102). 
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THE MULTI-LAYER PERCEPTRON 

In Chapter 3, we discussed the properties of networks having a single layer of 
adaptive weights. Such networks have a number of important limitations in terms 
of the range of functions which they can represent. To allow for more general map­
pings we might consider successive transformations corresponding to networks 
having several layers of adaptive weights. In fact we shall see that networks with 
just two layers of weights are capable of approximating any continuous functional 
mapping. More generally we can consider arbitrary network diagrams (not nec­
essarily having a simple layered structure) since any network diagram can be 
converted into its corresponding mapping function. The only restriction is that 
the diagram must be feed-forward, so that it contains no feedback loops. This 
ensures that the network outputs can be calculated as explicit functions of the 
inputs and the weights. 

We begin this chapter by reviewing the representational capabilities of multi-
layered networks having either threshold or sigmoidal activation functions. Such 
networks are generally called multi-layer perceptrons, even when the activation 
functions are sigmoidal. For networks having differentiable activation functions, 
there exists a powerful and computationally efficient method, called error back-
propagation, for finding the derivatives of an error function with respect to the 
weights and biases in the network. This is an important feature of such networks 
since these derivatives play a central role in the majority of training algorithms 
for multi-layered networks, and we therefore discuss back-propagation at some 
length. We also consider a variety of techniques for evaluating and approximating 
the second derivatives of an error function. These derivatives form the elements 
of the Hessian matrix, which has a variety of different applications in the context 
of neural networks. 

4.1 Feed-forward network mappings 

In the first three sections of this chapter we consider a variety of different kinds 
of feed-forward network, and explore the limitations which exist on the mappings 
which they can generate. We are only concerned in this discussion with finding 
fundamental restrictions on the capabilities of the networks, and so we shall for 
instance assume that arbitrarily large networks can be constructed if needed. In 
practice, we must deal with networks of a finite size, and this raises a number of 
important issues which are discussed in later chapters. 
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Figure 4.1. An example of a feed-forward network having two layers of adaptive 
weights. The bias parameters in the first layer are shown as weights from an 
extra input having a fixed value of xQ = 1. Similarly, the bias parameters in the 
second layer are shown as weights from an extra hidden unit, with activation 
again fixed at zo = 1. 

We shall view feed-forward neural networks as providing a general framework 
for representing non-linear functional mappings between a set of input variables 
and a set of output variables. This is achieved by representing the non-linear 
function of many variables in terms of compositions of non-linear functions of 
a single variable, called activation functions. Each multivariate function can be 
represented in terms of a network diagram such that there is a one-to-one corre­
spondence between components of the function and the elements of the diagram. 
Equally, any topology of network diagram, provided it is feed-forward, can be 
translated into the corresponding mapping function. We can therefore catego­
rize different network functions by considering the structure of the corresponding 
network diagrams. 

4.1.1 Layered networks 

We begin by looking at networks consisting of successive layers of adaptive 
weights. As discussed in Chapter 3, single-layer networks are based on a linear 
combination of the input variables which is transformed by a non-linear activa­
tion function. We can construct more general functions by considering networks 
having successive layers of processing units, with connections running from every 
unit in one layer to every unit in the next layer, but with no other connections 
permitted. Such layered networks are easier to analyse theoretically than more 
general topologies, and can often be implemented more efficiently in a software 
simulation. 

An example of a layered network is shown in Figure 4.1. Note that units 
which are not treated as output units are called hidden units. In this network 
there are d inputs, M hidden units and c output units. We can write down the 
analytic function corresponding to Figure 4.1 as follows. The output of the j t h 

hidden 
units 
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hidden unit is obtained by first forming a weighted linear combination of the d 
input values, and adding a bias, to give 

°j = itwj\)xi + *>jo- (4-1) 

Here w^' denotes a weight in the first layer, going from input i to hidden unit 

j , and Wj0 denotes the bias for hidden unit j . As with the single-layer networks 
of Chapter 3, we have made the bias terms for the hidden units explicit in the 
diagram of Figure 4.1 by the inclusion of an extra input variable xo whose value 
is permanently set at xo = 1. This can be represented analytically by rewriting 
(4.1) in the form 

d 

a, = 5>j«V (4.2) 
<=o 

The activation of hidden unit j is then obtained by transforming the linear sum 
in (4.2) using an activation function g(-) to give 

Zj = g(a}). (4.3) 

In this chapter we shall consider two principal forms of activation function 
given respectively by the Heaviside step function, and by continuous sigmoidal 
functions, as introduced already in the context of single-layer networks in Sec­
tion 3.1.3. 

The outputs of the network are obtained by transforming the activations of 
the hidden units using a second layer of processing elements. Thus, for each 
output unit k, we construct a linear combination of the outputs of the hidden 
units of the form 

M 

j = i 

Again, we can absorb the bias into the weights to give 

M 

«* = 5 > i ^ (4-5) 

which can be represented diagrammatically by including an extra hidden unit 
with activation zo = 1 as shown in Figure 4.1. The activation of the A;th output 
unit is then obtained by transforming this linear combination using a non-linear 
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activation function, to give 

Vk = g((ik). : (4.6) . 

Here we have used the notation #(•) for the activation function of the output 
units to emphasize that this need not be the same function as used for the 
hidden units. 

If we combine (4.2), (4.3), (4.5) and (4.6) we obtain an explicit expression for 
the complete function represented by the network diagram in Figure 4.1 in the 
form 

We note that, if the activation functions for the output units are taken to be 
linear, so that g(a) = a, this functional form becomes a special case of the 
generalized linear discriminant function discussed in Section 3.3, in which the 
basis functions are given by the particular functions Zj defined by (4.2) and 
(4.3). The crucial difference is that here we shall regard the weight parameters 
appearing in the first layer of the network, as well as those in the second layer, 
as being adaptive, so that their values can be changed during the process of 
network training. 

The network of Figure 4.1 corresponds to a transformation of the input vari­
ables by two successive single-layer networks. It is clear that we can extend this 
class of networks by considering further successive transformations of the same 
general kind, corresponding to networks with extra layers of weights. Through­
out this book, when we use the term L-layer network we shall be referring to 
a network with L layers of adaptive weights. Thus we shall call the network of 
Figure 4.1 a two-layer network, while the networks of Chapter 3 are called single-
layer networks. It should be noted, however, that an alternative convention is 
sometimes also found in the literature. This counts layers of units rather than 
layers of weights, and regards the inputs as separate units. According to this 
convention the networks of Chapter 3 would be called two-layer networks, and 
the network in Figure 4.1 would be said to have three layers. We do not recom­
mend this convention, however, since it is the layers of adaptive weights which 
are crucial in determining the properties of the network function. Furthermore, 
the circles representing inputs in a network diagram are not true processing units 
since their sole purpose is to represent the values of the input variables. 

A useful technique for visualization of the weight values in a neural network 
is the Hinton diagram, illustrated in Figure 4.2. Each square in the diagram cor­
responds to one of the weight or bias parameters in the network, and the squares 
are grouped into blocks corresponding to the parameters associated with each 
unit. The size of a square is proportional to the magnitude of the corresponding 
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Figure 4.2. Example of a two-layer network which solves the XOR problem, 
showing the corresponding Hinton diagram. The weights in the network have 
the value 1.0 unless indicated otherwise. 

parameter, and the square is black or white according to whether the parameter 
is positive or negative. 

4.1.2 General topologies 

Since there is a direct correspondence between a network diagram and its mathe­
matical function, we can develop more general network mappings by considering 
more complex network diagrams. We shall, however, restrict our attention to the 
case of feed-forward networks. These have the property that- there are no feed­
back loops in the network. In general we say that a network is feed-forward if it 
is possible to attach successive numbers to the inputs and to all of the hidden 
and output units such that each unit only receives connections from inputs or 
units having a smaller number. An example of a general feed-forward network 
is shown in Figure 4.3. Such networks have the property that the outputs can 
be expressed as deterministic functions of the inputs, and so the whole network 
represents a multivariate non-linear functional mapping. 

The procedure for translating a network diagram into the corresponding 
mathematical function follows from a straightforward extension of the ideas 
already discussed. Thus, the output of unit k is obtained by transforming a 
weighted linear sum with a non-linear activation function to give 

2fc = 9 \YlWkizi (4.8) 

where the sum runs over all inputs and units which send connections to unit k 
(and a bias parameter is included in the summation). For a given set of values 
applied to the inputs of the network, successive use of (4.8) allows the activations 
of all units in the network to be evaluated including those of the output units. 
This process can be regarded as a forward propagation of signals through the 
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inputs 

Figure 4.3. An example of a neural network having a general feed-forward 
topology. Note that each unit has an associated bias parameter, which has 
been omitted from the diagram for clarity. 

network. In practice, there is little call to consider random networks,, but there 
is often considerable advantage in building a lot of structure into the network. 
An example involving multiple layers of processing units, with highly restricted 
and structured interconnections between the layers, is discussed in Section 8.7.3. 

Note that, if the activation functions of all the hidden units in a network are 
taken to be linear, then for any such network we can always find an equivalent 
network without hidden units. This follows from the fact that the composition of 
successive linear transformations is itself a linear transformation. Note, however, 
that if the number of hidden units is smaller than either the number of input or 
output units, then the linear transformation which the network generates is not 
the most general possible since information is lost in the dimensionality reduction 
at the hidden units. In Section 8.6.2 it is shown that such networks can be related 
to conventional data processing techniques such as principal component analysis. 
In general, however, there is little interest in multi-layer linear networks, and we 
shall therefore mainly consider networks for which the hidden unit activation 
functions are non-linear. 

4.2 T h r e s h o l d un i t s 

There are many possible choices for the non-linear activation functions in a multi-
layered network, and the choice of activation functions for the hidden units may 
often be different from that for the output units. This is because hidden and 
output units perform different roles, as is discussed at length in Sections 6.6.1 
and 6.7.1. However, we begin by considering networks in which all units have 
Heaviside, or step, activation functions of the form 
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, , f 0 when a < 0 , . _, 

•9(a) = {l whena>0. ( 4 9 ) 

Such units are also known as threshold units. We consider separately the cases 
in which the inputs consist of binary and continuous variables. 

4.2.1 Binary inputs 

Consider first the case of binary inputs, so that X\ — 0 or 1. Since the network 
outputs are also 0 or 1, the network is computing a Boolean function. We can 
easily show that a two-layer network of the form shown in Figure 4.1 can generate 
any Boolean function, provided the number M of hidden units is sufficiently large 
(McCulloch and Pitts, 1943). This can be seen by constructing a specific network 
which computes a particular (arbitrary) Boolean function. We first note that for 
d inputs the total possible number of binary patterns which we have to consider 
is 2rf. A Boolean function is therefore completely specified once we have given 
the output (0 or 1) corresponding to each of the 2d possible input patterns. To 
construct the required network we take one hidden unit for every input pattern 
which has an output target of 1. We then arrange for each hidden unit to respond 
just to the corresponding pattern. This can be achieved by setting the weight 
from an input to a given hidden unit to + 1 if the corresponding pattern has a 
1 for that input, and setting the weight to —1 if the pattern has a 0 for that 
input. The bias for the hidden unit is set to 1 — b where b is the number of 
non-zero inputs for that pattern. Thus, for any given hidden unit, presentation 
of the corresponding pattern will generate a summed input of b and the unit will 
give an output of 1, while any other pattern (including any of the patterns with 
target 0) will give a summed input of at most b — 2 and the unit will have an 
output of 0. It is now a simple matter to connect each hidden unit to the output 
unit with a weight + 1 . An output bias of —1 then ensures that the output of the 
network is correct for all patterns. 

This construction is of little practical value, since it merely stores a set of 
binary relations and has no capability to generalize to new patterns outside the 
training set (since the training set was exhaustive). It does, however, illustrate the 
concept of a template. Each hidden unit acts as a template for the corresponding 
input pattern and only generates an output when the input pattern matches the 
template pattern. 

4.2.2 Continuous inputs 

We now discuss the case of continuous input variables, again for units with 
threshold activation functions, and we consider the possible decision boundaries 
which can be produced by networks having various numbers of layers (Lippmann, 
1987; Lonstaff and Cross, 1987). In Section 3.1 it was shown that a network with 
a single layer of weights, and a threshold output unit, has a decision boundary 
which is a hyperplane. This is illustrated for a two-dimensional input space in 
Figure 4.4 (a). Now consider networks with two layers of weights. Again, each 
hidden units divides the input space with a hyperplane, so that it has activation 
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(a) (b) (c) 

Figure 4.4. Illustration of some possible decision boundaries which can be gen­
erated by networks having threshold activation functions and various numbers 
of layers. Note that, for the two-layer network in (b), a single convex region of 
the form shown is not the most general possible. 

2 = 1 on one side of the hyperplane, and z = 0 o n the other side. If there are M 
hidden units and the bias on the output unit is set to —M, then the output unit 
computes a logical AND of the outputs of the hidden units. In other words, the 
output unit has an output of 1 only if all of the hidden units have an output of 1. 
Such a network can generate decision boundaries which surround a single convex 
region of the input space, whose boundary consists of segments of hyperplanes, 
as illustrated in Figure 4.4 (b). A convex region is defined to be one for which any 
line joining two points on the boundary of the region passes only through points 
which lie inside the region. These are not, however, the most general regions 
which can be generated by a two-layer network of threshold units, as we shall 
see shortly. 

Networks having three layers of weights can generate arbitrary decision re­
gions, which may be non-convex and disjoint, as illustrated in Figure 4.4 (c). A 
simple demonstration of this last property can be given as follows (Lippmann, 
1987). Consider a particular network architecture in which, instead of having 
full connectivity between adjacent layers as considered so far, the hidden units 
are arranged into groups of 2d units, where d denotes the number of inputs. The 
topology of the network is illustrated in Figure 4.5. The units in each group send 
their outputs to a unit in the second hidden layer associated with that group. 
Each second-layer unit then sends a connection to the output unit. Suppose the 
input space is divided into a fine grid of hypercubes, each of which is labelled as 
class C\ or Ci- By making the input-space grid sufficiently fine we can approxi­
mate an arbitrarily shaped decision boundary as closely as we, wish. One group 
of first-layer units is assigned to each hypercube which corresponds to class Ci, 
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Figure 4.5. Topology of a neural network to demonstrate that networks with 
three layers of threshold units can generate arbitrarily complex decision bound­
aries. Biases have been omitted for clarity. 

and there are no units corresponding to class C%. Using the 'AND' construction 
for two-layer networks discussed above, we now arrange that each second-layer 
hidden unit generates a 1 only for inputs lying in the corresponding hypercube. 
This can be done by arranging for the hyperplanes associated with the first-layer 
units in the block to be aligned with the sides of the hypercube. Finally, the 
output unit has a bias which is set to —1 so that it computes a logical 'OR' 
of the outputs of the second-layer hidden units. In other words the output unit 
generates a 1 whenever one (or more) of the second-layer hidden units does so. If 
the output unit activation is 1, this is interpreted as class Cx, otherwise it is inter­
preted as class C%. The resulting decision boundary then reflects the (arbitrary) 
assignment of hypercubes to classes C\ and C%. 

The above existence proof demonstrates that feed-forward neural networks 
with threshold units can generate arbitrarily complex decision boundaries. The 
proof is of little practical interest, however, since it requires the decision boundary 
to be specified in advance, and also it will typically lead to very large networks. 
Although it is 'constructive' in that it provides a set of weights and thresholds 
which generate a given decision boundary, it does not answer the more practical 
question of how to choose an appropriate set of weights and biases for a particular 
problem when we are given only a set of training examples and we do not know 
in advance what 'the optimal decision boundary will be. 

Returning to networks with two layers of weights, we have already seen how 
the AND construction for the output unit allows such a network to generate 
an arbitrary simply-connected convex decision region. However, by relaxing the 
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Figure 4.6. Example of a non-convex decision boundary generated by a network 
having two layers of threshold units. The dashed lines show the hyperplanes 
corresponding to the hidden units, and the arrows show the direction in which 
the hidden unit activations make the transition from 0 to 1. The second-layer 
weights are all set to 1, and so the numbers represent the value of the linear 
sum presented to the output unit. By setting the output unit bias to —3.5, the 
decision boundary represented by the solid curve is generated. 
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Figure 4.7. As in Figure 4.6, but showing how a disjoint decision region can 
be produced. In this case the bias on the output unit is set to —4.5. 

restriction of an AND output unit, more general decision boundaries can be con­
structed (Wieland and Leighton, 1987; Huang and Lippmann, 1988). Figure 4.6 
shows an example of a non-convex decision boundary, and Figure 4.7 shows a 
decision region which is disjoint. Huang and Lippmann (1988) give some exam­
ples of very complex decision boundaries for networks having a two layers of 
threshold units. 

This would seem to suggest that a network with just two layers of weights 
could generate arbitrary decision boundaries. This is not in fact the case (Gibson 
and Cowan, 1990; Blum and Li, 1991) and Figure 4.8 shows an example of a 
decision region which cannot be produced by a network having just two layers of 
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Figure 4.8. An example of a decision boundary which cannot be produced by 
a network having two layers of threshold units (Gibson and Cowan, 1990). 

weights. Note, however, that any given decision boundary can be approximated 
arbitrarily closely by a two-layer network having sigmoidal activation functions, 
as discussed in Section 4.3.2. 

So far we have discussed procedures for generating particular forms of deci­
sion boundary. A distinct, though related, issue whether a network can classify 
correctly a given set of data points which have been labelled as belonging to one 
of two classes (a dichotomy). In Chapter 3 it is shown that a network having a 
single layer of threshold units could classify a set of points perfectly if they were 
linearly separable. This would always be the case if the number of data points 
was at most equal to d + 1 where d is the dimensionality of the input space. 
Nilsson (1965) showed that, for a set of JV data points, a two-layer network of 
threshold units with JV — 1 units in the hidden layer could exactly separate an 
arbitrary dichotomy. Baum (1988) improved this result by showing that for JV 
points in general position (i.e. excluding exact degeneracies) in <2-dimensional 
space, a network with \N/d] hidden units in a single hidden layer could separate 
them correctly into two classes. Here 1 ^ / ^ ! denotes the smallest integer which 
is greater than or equal to N/d. 

4.3 Sigmoidal units 

We turn now to a consideration of multi-layer networks having differentiable 
activation functions, and to the problem of representing smooth mappings be­
tween continuous variables. In Section 3.1.3 we introduced the logistic sigmoid 
activation function, whose outputs lie in the range (0,1), given by 

g{a) = l (4.10) 
1 + exp( -a ) 
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Figure 4.9. Plot of the 'tanh' activation function given by (4.11). 

which is plotted in Figure 3.5. We discuss the motivation for this form of acti­
vation function in Sections 3.1.3 and 6.7.1, where we show that the use of such 
activation functions on the network outputs plays an important role in allowing 
the outputs to be given a probabilistic interpretation. 

The logistic sigmoid (4.10) is often used for the hidden units of a multi-layer 
network. However, there may be some small practical advantage in using a 'tanh' 
activation function of the form 

g(a) = tanh(o) = J ~ ^ (4.11) 

which is plotted in Figure 4.9. Note that (4.11) differs from the logistic function 
in (4.10) only through a linear transformation. Specifically, an activation function 
g(a) = tanh(a) is equivalent to an activation function g(a) = 1/(1 + e~n) if we 
apply a linear transformation a — a/2 to the input and a linear transformation 
g = 2g - 1 to the output. Thus a neural network whose hidden units use the 
activation function in (4.11) is equivalent to one with hidden units using (4.10) 
but having different values for the weights and biases. Empirically, it is often 
found that ' tanh' activation functions give rise to faster convergence of training 
algorithms than logistic functions. 

In this section we shall consider networks with linear output units. As we 
shall see, this does not restrict the class of functions which such networks can 
approximate. The use of sigmoid units at the outputs would limit the range of 
possible outputs to the range attainable by the sigmoid, and in some cases this 
would be undesirable. Even if the desired output always lay within the range 
of the sigmoid we note that the sigmoid function <?(•) is monotonic, and henro 
is invertible, and so a desired output of y for a network with sigmoidal output 
units is equivalent to a desired output of g~x{y) for a network with linear output 
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units. Note, however, that there are other reasons why we might wish to use 
non-linear activation functions at the output units, as discussed in Chapter 6. 

A sigmoidal hidden unit can approximate a linear hidden unit arbitrarily 
accurately. This can be achieved by arranging for all of the weights feeding into 
the unit, as well as the bias, to be very small, so that the summed input lies on 
the linear part of the sigmoid curve near the origin. The weights on the outputs 
of the unit leading to the next layer of units can then be made correspondingly 
large to re-scale the activations (with a suitable offset to the biases if necessary). 
Similarly, a sigmoidal hidden unit can be made to approximate a step function 
by setting the weights and the bias feeding into that unit to very large values. 

As we shall see shortly, essentially any continuous functional mapping can be 
represented to arbitrary accuracy by a network having two layers of weights with 
sigmoidal hidden units. We therefore know that networks with extra layers of 
processing units also have general approximation capabilities since they contain 
the two-layer network as a special case. This follows from the fact that the 
remaining layers can be arranged to perform linear transformations as discussed 
above, and the identity transformation is a special case of a linear transformation 
(provided there is a sufficient number of hidden units so that no reduction in 
dimensionality occurs). Nevertheless, it is instructive to begin with a discussion 
of networks having three layers of weights. 

4.3.1 Three-layer networks 

In Section 4.2 we gave a heuristic proof that a three-layer network with threshold 
activation functions could represent an arbitrary decision boundary to arbitrary 
accuracy. In the same spirit we can give an analogous proof that a network with 
three layers of weights and sigmoidal activation functions can approximate, to 
arbitrary accuracy, any smooth mapping (Lapedes and Farber, 1988). The re­
quired network topology has the same form as in Figure 4.5, with each group of 
units in the first hidden layer again containing 2d units, where d is the dimen­
sionality of the input space. As we did for threshold units, we try to arrange for 
each, group to provide a non-zero output only when the input vector lies within 
a small region of the input space. For this purpose it is convenient to consider 
the logistic sigmoid activation function given by (4.10). 

We can illustrate the construction of the network by considering a two-
dimensional input space. In Figure 4.10 (a) we show the output from a single 
unit in the first hidden layer, given by 

z = s ( w T x + w0). (4.12) 

From the discussion in Section 3.1, we see that the orientation of the sigmoid is 
determined by the direction of w, its location is determined by the bias WQ, and 
the steepness of the sigmoid slope is determined by ||w||. Units in the second 
hidden layer form linear combinations of these sigmoidal surfaces. Consider the 
combination of two such surfaces in which we choose the second sigmoid to have 
the same orientation as the first but displaced from it by a short distance. By 
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Figure 4.10. Demonstration that a network with three layers of weights, and 
sigmoidal hidden units, can approximate a smooth multivariate mapping to 
arbitrary accuracy. In (a) we see the output of a single sigmoidal unit as a 
function of two input variables. Adding the outputs from two such units can 
produce a ridge-like function (b), and adding two ridges can give a function 
with a maximum (c). Transforming this function with another sigmoid gives a 
localized response (d). By taking linear combinations of these localized func­
tions, we can approximate any smooth functional mapping. 

adding the two sigmoids together we obtain a ridge-like function as shown in 
Figure 4.10 (b). We next construct d of these ridges with orthogonal orientations 
and add them together to give a bump-like structure as shown in Figure 4.10 (c). 
Although this has a central peak there are also many other ridges present which 
stretch out to infinity. These are removed by the action of the sigmoids of the 
second-layer units which effectively provide a form of soft threshold to isolate 
the central bump, as shown in Figure 4.10 (d). We now appeal to the intuitive 
idea (discussed more formally in Section 5.2) that any reasonable function can 
be approximated to arbitrary accuracy by a linear superposition of a sufficiently 
large number of localized 'bump' functions, provided the coefficients in the linear 
combination are appropriately chosen. This superposition is performed by the 
output unit, which has a linear activation function. 

Once again, although this is a constructive algorithm it is of little relevance to 
practical applications and serves mainly as an existence proof. However, the idea 
of representing a function as a linear superposition of localized bump functions 
suggests that we might consider two-layer networks in which each hidden unit 
generates a bump-like function directly. Such networks are called local basis 
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function networks, and will be considered in detail in Chapter 5. 

4.3.2 Two-layer networks 

We turn next to the question of the capabilities of networks having two layers of 
weights and sigmoidal hidden units. This has proven to be an important class of 
network for practical applications. The general topology is shown in Figure 4.1, 
and the network function was given explicitly in (4.7). We shall see that such 
networks can approximate arbitrarily well any functional (one-one or many-one) 
continuous mapping from one finite-dimensional space to another, provided the 
number M of hidden units is sufficiently large. 

A considerable number of papers have appeared in the literature discussing 
this property including Funahashi (1989), Hecht-Nielsen (1989), Cybenko (1989), 
Hornik et al. (1989), Stinchecombe and White (1989), Cotter (1990), Ito (1991), 
Hornik (1991) and Kreinovich (1991). An important corollary of this result is 
that, in the context of a classification problem, networks with sigmoidal non-
linearities and two layers of weights can approximate any decision boundary to 
arbitrary accuracy. Thus, such networks also provide universal non-linear dis­
criminant functions. More generally, the capability of such networks to approx­
imate general smooth functions allows them to model posterior probabilities of 
class membership. 

Here we outline a simple proof of the universality property (Jones, 1990; Blum 
and Li, 1991). Consider the case of two input variables X\ and x,2, and a single 
output variable y (the extension to larger numbers of input or output variables 
is straightforward). We know that, for any given value of xi, the desired function 
y(xy,X2) can be approximated to within any given (sum-of-squares) error by a 
Fourier decomposition in the variable X2, giving rise to terms of the form 

y(x1,x2)2i'*r,A!l(xi)cos(sx2) (413) 
5 

where the coefficients As are functions of x\. Similarly, the coefficients themselves 
can be expressed in terms of a Fourier series giving 

y(x\,x2) c^]P^ ,4 s ; cos( te 1 )cos( . s : r2) (4.14) 
s I 

We can now use the standard trigonometric identity cos a cos 0 — \ cos(a + 
P) + \ cos(a — 0) to write this as a linear combination of terms of the form 
cos(zsi) and cos(z'sl) where z,i = lx\ + sx2 and z'sl = Ixi — SX2- Finally, we 
note that the function cos(z) can be approximated to arbitrary accuracy by a 
linear combination of threshold step functions. This can be seen by making an 
explicit construction, illustrated in Figure 4.11, for a function f(z) in terms of a 
piecewise constant function, of the form 
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Figure 4.11. Approximation of a continuous function f(z) by a linear superpo­
sition of threshold step functions. This forms the basis of a simple proof that a 
two-layer network having sigmoidal hidden units and linear output units can 
approximate a continuous function to arbitrary accuracy. 

N 

f{z) ^ / o + X) M+ 1 - ^ H(-z ~ z ' ) <4'15) 
i=0 

where H(z) is the Heaviside step function. Thus we see that the function y(x-i,X2) 
can be expressed as a linear combination of step functions whose arguments are 
linear combinations of x\ and xi- In other words the function y(x\,x-i) can be 
approximated by a two-layer network with threshold hidden units and linear 
output units. Finally, we recall that threshold activation functions can be ap­
proximated arbitrarily well by sigmoidal functions, simply by scaling the weights 
and biases. 

Note that this proof does not indicate whether the network can simultane­
ously approximate the derivatives of the function, since our approximation in 
(4.15) has zero derivative except at discrete points at which the derivative is 
undefined. A proof that two-layer networks having sigmoidal hidden units can 
simultaneously approximate both a function and its derivatives was given by 
Hornik et al. (1990). 

As a simple illustration of the capabilities of two-layer networks with sig­
moidal hidden units we consider mappings from a single input x to a' single 
output y. In Figure 4.12 we show the result of training a network with five hid­
den units having 'tanh' activation functions given by (4.11). The data sets each 
consist of 50 data points generated by a variety of functions, and the network 
has a single linear output unit and was trained for 1000 epochs using the BFGS 
quasi-Newton algorithm described in Section 7.10. We see that the same network 
can generate a wide variety of different functions simply by choosing different 
values for the weights and biases. 

The above proofs were concerned with demonstrating that a network with a 
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Figure 4.12. Examples of sets of data points (circles) together with the corre­
sponding functions represented by a multi-layer perceptron network which has 
been trained using the data. The data sets were generated by sampling the 
following functions: (a) x2, (b) sin(2;rx) (c) \x\ which is continuous but with a 
discontinuous first derivative, and (d) the step function 8{x) = sign(a;), which 
is discontinuous. 

sufficiently large number of hidden units could approximate a particular map­
ping. White (1990) and Gallant and White (1992) considered the conditions 
under which a network will actually learn a given mapping from a finite data 
set, showing how the number of hidden units must grow as the size of the data 
set grows. 

If we try to approximate a given function h(x) with a network having a finite 
number M of hidden units, then there will be a residual error. Jones (1992) and 
Barron (1993) have shown that this error decreases as 0(1/M) as the number 
M of hidden units is increased. 

Since we know that, with a single hidden layer, we can approximate any map­
ping to arbitrary accuracy we might wonder if there is anything to be gained by f 
using any other network topology, for instance one having several hidden layers. 
One possibility is that by using extra layers we might find more efficient approx­
imations in the sense of achieving the same level of accuracy with fewer weights 
and biases in total. Very little is currently known about this issue. However, 
later chapters discuss situations in which there are other good reasons to con­
sider networks with more complex topologies, including networks with several 
hidden layers, and networks with only partial connectivity between layers. 
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4.4 Weight - space s y m m e t r i e s 

Consider a two-layer network having M hidden units, with 'tanh' activation 
functions given by (4.11), and full connectivity in both layers. If we change the 
sign of all of the weights and the bias feeding into a particular hidden unit, 
then, for a given input pattern, the sign of the activation of the hidden unit 
will be reversed, since (4.11) is an odd function. This can be compensated by 
changing the sign of all of the weights leading out of that hidden unit. Thus, 
by changing the signs of a particular group of weights (and a bias), the input-
output mapping function represented by the network is unchanged, and so we 
have found two different weight vectors which give rise to the same mapping 
function. For M hidden units, there will be M such 'sign-flip' symmetries, and 
thus any given weight vector will be one of a set 2 M equivalent weight vectors 
(Chen et ai, 1993). 

Similarly, imagine that we interchange the values of all of the weights (and 
the bias) leading into and out of a particular hidden unit with the corresponding 
values of the weights (and bias) associated with a different hidden unit. Again, 
this clearly leaves the network input-output mapping function unchanged, but 
it corresponds to a different choice of weight vector. For M hidden units, any 
given weight vector will have M! equivalent weight vectors associated with this 
interchange symmetry, corresponding to the M! different orderings of the hidden 
units (Chen et ai, 1993). The network will therefore have an overall weight-space 
symmetry factor of M!2 M . For networks with more than two layers of weights, 
the total level of symmetry will be given by the product of such factors, one for 
each layer of hidden units. 

It turns out that these factors account for all of the symmetries in weight 
space (except for possible accidental symmetries due to specific choices for the 
weight values). Furthermore, the existence of these symmetries is not a particular 
property of the ' tanh' function, but applies to a wide range of activation functions 
(Sussmann, 1992; Chen et ai, 1993; Albertini and Sontag, 1993; Kiirkova and 
Kainen, 1994). In many cases, these symmetries in weight space are of little 
practical consequence. However, we shall encounter an example in Section 10.6 
where we need to take them into account. 

4.5 Highe r -o rde r ne tworks 

So far in this chapter we have considered units for which the output is given by 
a non-linear activation function acting on a linear combination of the inputs of 
the form 

a, = 2_2wjixi +Wjo- (4-16) 
i 

We have seen that networks composed of such units can in principle approximate 
any functional mapping to arbitrary accuracy, and therefore constitute a univer­
sal class of parametrized multivariate non-linear mappings. Nevertheless, there 
is still considerable interest in studying other forms of processing unit. Chapter 5 
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y(x) 

Figure 4.13. A one-dimensional input space x with decision regions Ti-t (which 
is disjoint) and ~R-2- A linear discriminant function cannot generate the required 
decision boundaries, but a quadratic discriminant y(x), shown by the solid 
curve, can. The required decision rule then assigns an input x to class C\ if 
y(x) > 0 and to class Ci otherwise. 

for instance is devoted to a study of networks containing units whose activations 
depend on the distance of an input vector from the weight vector. Here we con­
sider some extensions of the linear expression in (4.16) which therefore contain 
(4.16) as a special case. 

As discussed in Chapter 3, a network consisting of a single layer of units of 
the form (4.16) can only produce decision boundaries which take the form of 
piecewise hyperplanes in the input space. Such a network is therefore incapable 
of generating decision regions which are concave or which are multiply connected. 
Consider the one-dimensional input space x illustrated in Figure 4.13. We wish to 
find a discriminant function which will divide the space into the decision regions 
TZi and 7?-2 as shown. A linear discriminant function is not sufficient since the 
region Hi is disjoint. However, the required decision boundaries can be generated 
by a quadratic discriminant of the form 

y(x) — Wix + Mia; + wo (4.17) 

provided the weights t02,wi and Wo are chosen appropriately. 
We can generalize this idea to higher orders than just quadratic, and to 

several input variables (Ivakhnenko, 1971; Barron and Barron, 1988). This leads 
to higher-order processing units (Giles and Maxwell, 1987; Ghosh and Shin, 
1992), also known as sigma-pi units (Rumelhart et al, 1986). For second-order 
units the generalization of (4.16) takes the form 
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d d d 

where the sums run over all inputs, or units, which send connections to unit j . 
As before, this sum is then transformed using a non-linear activation function to 
give Zj = g(dj). If terms up to degree M are retained, this will be known as on 
Mth-order unit. Clearly (4.18) includes the conventional linear (first-order) unit 
(4.16) as a special case. The similarity to the higher-order polynomials discussed 
in Section 1.7 is clear. Note that the summations in (4.18) can be constrained 
to allow for the permutation symmetry of the higher-order terms. For instance, 
the term x^x^ is equivalent to the term x^Xj, and so we need only retain one 
of these in the summation. The total number of independent parameters in a 
higher-order expression such as (4.18) is discussed in Exercises 1.6-1.8. 

If we introduce an extra input zo = +1 then, for an Mth-order unit we can 
absorb all of the terms up to the Mth-order within the Mth-order term. For 
instance, if we consider second-order units we can write (4.18) in the equivalent: 
form 

d d 

i,=Ot2=0 

with similar generalizations to higher orders. 
We see that there will typically be many more weight parameters in a higher-

order unit than there are in a first-order unit. For example, if we consider an 
input dimensionality of d = 10 then a first-order unit will have 11 weight param­
eters (including the bias), a second-order unit will have 66 independent weights, 
and a third-order unit will have 572 independent weights. This explosion in the 
number of parameters is the principal difficulty with such higher-order units. 
The compensating benefit is that it is possible to arrange for the response of the 
unit to be invariant to various transformations of the input. In Section 8.7.4 it 
is shown how a third-order unit can be simultaneously invariant to translations. 
rotations and scalings of the input patterns when these are drawn from pixels 
in a two-dimensional image. This is achieved by imposing constraints on the 
weights, which also greatly reduce the number of independent parameters, and 
thereby makes the use of such units a tractable proposition. Higher-order unit:; 
are generally used only in the first layer of a network, with subsequent layers 
being composed of conventional first-order units. 

4.6 Project ion pursuit regress ion and o t h e r convent ional t echn iques 

Statisticians have developed a variety of techniques for classification and regie? 
sion which can be regarded as complementary to the multi-layer perceptron. Here 
we give a brief overview of the most prominent of these approaches, and indi 
cate their relation to neural networks. One of the most closely related is that of 
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projection pursuit regression (Friedman and Stuetzle, 1981; Huber, 1985). For a 
single output variable, the projection pursuit regression mapping can be written 
in the form 

M 

y = '^T Wj(t>j(ujx + uj0) + wo (4.20) 
3 = 1 

which is remarkably similar to a two-layer feed-forward neural network. The pa­
rameters Uj and MJO define the projection of the input vector x onto a set of 
planes labelled by j = 1 , . . . , M, as in the multi-layer perceptron. These projec­
tions are transformed by non-linear 'activation functions' (j>j and these in turn 
are linearly combined to form the output variable y. Determination of the param­
eters in the model is done by minimizing a sum-of-squares error function. One 
important difference is that each 'hidden unit' in projection pursuit regression 
is allowed a different activation function, and these functions are not prescribed 
in advance, but are determined from the data as part of the training procedure. 

Another difference is that typically all of the parameters in a neural net­
work are optimized simultaneously, while those in projection pursuit regression 
are optimized cyclically in groups. Specifically, training in the projection pur­
suit regression network takes place for one hidden unit at a time, and for each 
hidden unit the second-layer weights are optimized first, followed by the acti­
vation function, followed by the first-layer weights. The process is repeated for 
each hidden unit in turn, until a sufficiently small value for the error function is 
achieved, or until some other stopping criterion is satisfied. Since the output y in 
(4.20) depends linearly on the second-layer parameters, these can be optimized 
by linear least-squares techniques, as discussed in Section 3.4. Optimization of 
the activation functions <j>j represents a problem in one-dimensional curve-fitting 
for which a variety of techniques can be used, such as cubic splines (Press et 
al, 1992). Finally, the optimization of the first-layer weights requires non-linear 
techniques of the kind discussed in Chapter 7. 

Several generalizations to more than one output variable are possible (Ripley, 
1994) depending on whether the outputs share common basis functions <pj, and 
if not, whether the separate basis functions 4>jk (where k labels the outputs) 
share common projection directions. In terms of representational capability, we 
can regard projection pursuit regression as a generalization of the multi-layer 
perceptron, in that the activation functions are more flexible. It is therefore not 
surprising that projection pursuit regression should have the same 'universal' ap­
proximation capabilities as multi-layer perceptrons (Diaconis and Shahshahani, 
1984; Jones, 1987). Projection pursuit regression is compared with multi-layer 
perceptron networks in Hwang et al. (1994). 

Another framework for non-linear regression is the class of generalized addi­
tive models (Hastie and Tibshirani, 1990) which take the form 
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y = 9lj^<l>i(xi)+Wo\ (4.21) 

where the <fo(-) are non-linear functions and g(-) represents the logistic sigmoid 
function (4.10). This is actually a very restrictive class of models, since it does not 
allow for interactions between the input variables. Thus a function of the form 
£1X21 for example, cannot be modelled. They do, however, have an advantage in 
terms of the interpretation of the trained model, since the individual univariate 
functions cpi(-) can be plotted. 

An extension of the additive models which allows for interactions is given 
by the technique of multivariate adaptive regression splines (MARS) (Friedman, 
1991) for which the mapping function can be written 

M Kj 

^ E ^ I I <t>jk{xu(k,i)) + ™<> (4.22) 

where the jth basis function is given by a product of some number Kj of one-
dimensional spline functions <j>jk (Press et al, 1992) each of which depends on 
one of the input variables x„, where the particular input variable used in each 
case is governed by a label u(k,j). The basis functions are adaptive in that the 
number of factors Kj, the labels u(k,j), and the knots for the one-dimensional 
spline functions are all determined from the data. Basis functions are added 
incrementally during learning, using the technique of sequential forward selection 
discussed in Section 8.5.3. 

An alternative framework for learning non-linear multivariate mappings in--
volves partitioning the input space into regions, and fitting a different mapping 
within each region. In many such algorithms, the partitions are formed from 
hyperplanes which are parallel to the input variable axes, as indicated in Fig­
ure 4.14. In the simplest case the output variable is taken to be constant within 
each region. A common technique is to form a binary partition in which the 
input space is divided into two regions, and then each of these is divided in turn, 
and so on. This form of partitioning can then be described by a binary tree 
structure, in which each leaf represents one of the regions. Successive branches 
can be added to the tree during learning, with the locations of the hyperplanes 
being determined by the data. Procedures are often also devised for pruning the 
tree structure as a way of controlling the effective complexity of the model. Two 
of the best known algorithms of this kind are classification and regression trees 
(CART) (Breiman et al., 1984) and ID3 (Quinlan, 1986). A detailed discussion 
of these algorithms would, however, take us too far afield. 

4.7 Ko lmogorov ' s t h e o r e m 

There is a theorem due to Kolmogorov (1957) which, although of no direct prac­
tical significance, does have an interesting relation to neural networks. The theo-
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Figure 4.14. An example of the partitioning of a space by hyperplanes which 
are parallel to the coordinate axes. Such partitions form the basis of a number 
of algorithms for solving classification and regression problems. 

rem has its origins at the end of the nineteenth century when the mathematician 
Hilbert compiled a list of 23 unsolved problems as a challenge for twentieth cen­
tury mathematicians (Hilbert, 1900). Hilbert's thirteenth problem concerns the 
issue of whether functions of several variables can be represented in terms of 
superpositions of functions of fewer variables. He conjectured that there exist 
continuous functions of three variables which cannot be represented as super­
positions of functions of two variables. The conjecture was disproved by Arnold 
(1957). However, a much more general result was obtained by Kolmogorov (1957) 
who showed that every continuous function of several variables (for a closed and 
bounded input domain) can be represented as the superposition of a small num­
ber of functions of one variable. Improved versions of Kolmogorov's theorem have 
been given by Sprecher (1965), Kahane (1975) and Lorentz (1976). In neural net­
work terms this theorem says that any continuous mapping j/(x) from d input 
variables Xi to an output variable y can be represented exactly by a three-layer 
neural network having d(2d + l) units in the first hidden layer and (2d 4-1) units 
in the second hidden layer. The network topology is illustrated, for the case of 
a single output, in Figure 4.15. Each unit in the first hidden layer computes a 
function of one of the input variables X{ given by hj(xi) where j — 1 , . . . , 2d + 1 
and the hj are strictly monotonic functions. The activation of the j t h unit in 
the second hidden layer is given by 

^Xihjixi) (4.23) 
t = i 
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Figure 4.15. Network topology to implement Kolmogorov's theorem. 

where 0 < \ , < 1 are constants. The output y of the network is then given by 

(4.24) 
2 d + l 

y = Yl s(zi) 

where the function g is real and continuous. Note that the function g depends 
on the particular function y(x) which is to be represented, while the functions 
hj do not. This expression can be extended to a network with more that one 
output unit simply by modifying (4.24) to give 

2d+l 

V* = Y, 9k{zj). (4-25) 
3 = 1 

Note that the theorem only guarantees the existence of a suitable network. No ac­
tual examples of functions hj or g are known, and there is no known constructive 
technique for finding them. 

While Kolmogorov's theorem is remarkable, its relevance to practical neural 
computing is at best limited (Girosi and Poggio, 1989; Kurkova, 1991; Kurkova, 
1992): There are two reasons for this. First, the functions hj are far from being 
smooth. Indeed, it has been shown that if the functions hj are required to be 
smooth then the theorem breaks down (Vitushkin, 1954). The presence of non-
smooth functions in a network would lead to problems of extreme sensitivity 
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to the input variables. Smoothness of the network mapping is an important 
property in connection with the generalization performance of a network, as is 
discussed in greater detail in Section 9.2. The second reason is that the function 
g depends on the particular function y(x) which we wish to represent. This is 
the converse of the situation which we generally encounter with neural networks. 
Usually, we consider fixed activation functions, and then adjust the number of 
hidden units, and the values of the weights and biases, to give a sufficiently close 
representation of the desired mapping. In Kolrnogorov's theorem the number of 
hidden units is fixed, while the activation functions depend on the mapping. In 
general, if we are trying to represent an arbitrary continuous function then w e ' 
cannot hope to do this exactly with a finite number of fixed activation functions 
since the finite number of adjustable parameters represents a finite number of 
degrees of freedom, and a general continuous function has effectively infinitely 
many degrees of freedom. 

4.8 E r r o r back-propaga t ion 

So far in this chapter we have concentrated on the representational capabilities of 
multi-layer networks. We next consider how such a network can learn a suitable 
mapping from a given data set. As in previous chapters, learning will be based on 
the definition of a suitable error function, which is then minimized with respect 
to the weights and biases in the network. 

Consider first the case of networks of threshold units. The final layer of 
weights in the network can be regarded as a perceptron,with inputs given by 
the outputs of the last layer of hidden units. These weights could therefore be 
chosen using the perceptron learning rule introduced in Chapter 3. Such an ap­
proach cannot, however, be used to determine the weights in earlier layers of 
the network. Although such layers could in principle be regarded as being like 
single-layer perceptrons, we have no procedure for assigning target values to their 
outputs, and so the perceptron procedure cannot be applied. This is known as 
the credit assignment problem. If an output unit produces an incorrect response 
when the network is presented with an input vector we have no way of determin­
ing which of the hidden units should be regarded as responsible for generating 
the error, so there is no way of determining which weights to adjust or by how 
much. 

The solution to this credit assignment problem is relatively simple. If we 
consider a network with differentiable activation functions, then the activations 
of the output units become differentiable functions of both the input variables, 
and of the weights and biases. If we define an error function, such as the sum-of-
squares error introduced in Chapter 1, which is a differentiable function of the 
network outputs, then this error is itself a differentiable function of the weights. 
We can therefore evaluate the derivatives of the error with respect to the weights, 
and these derivatives can then be used to find weight values which minimize the 
error function, by using either gradient descent or one of the more powerful 
optimization methods discussed in Chapter 7. The algorithm for evaluating the 
derivatives of the error function is known as back-propagation since, as we shall 
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see, it corresponds to a propagation of errors backwards through the network. 
The technique of back-propagation was popularized in a paper by Rumelhart, 
Hinton and Williams (1986). However, similar ideas had been developed earlier 
by a number of researchers including Werbos (1974) and Parker (1985). 

It should be noted that the term back-propagation is used in the neural com­
puting literature to mean a variety of different things. For instance, the multi­
layer perceptron architecture is sometimes called a back-propagation network. 
The term back-propagation is also used to describe the training of a multi-layer 
perceptron using gradient descent applied to a sum-of-squares error function. In 
order to clarify the terminology it is useful to consider the nature of the training 
process more carefully. Most training algorithms involve an iterative procedure 
for minimization of an error function, with adjustments to the weights being 
made in a sequence of steps. At each such step we can distinguish between 
two distinct stages. In the first stage, the derivatives of the error function with 
respect to the weights must be evaluated. As we shall see, the important con­
tribution of the back-propagation technique is in providing a computationally 
efficient method for evaluating such derivatives. Since it is at this stage that 
errors are propagated backwards through the network, we shall use the term 
back-propagation specifically to describe the evaluation of derivatives. In the 
second stage, the derivatives are then used to compute the adjustments to be 
made to the weights. The simplest such technique, and the one originally con­
sidered by Rumelhart et al. (1986), involves gradient descent. It is important to 
recognize that the two stages are distinct. Thus, the first stage process, namely 
the propagation of errors backwards through the network in order to evaluate 
derivatives, can be applied to many other kinds of network and not just the 
multi-layer perceptron. It can also be applied to error functions other that just 
the simple sum-of-squares, and to the evaluation of other derivatives such as the 
Jacobian and Hessian matrices, as we shall see later in this chapter. Similarly, the 
second stage of weight adjustment using the calculated derivatives can be tack­
led using a variety of optimization schemes (discussed at length in Chapter 7), 
many of which are substantially more powerful than simple gradient descent. 

4.8.1 Evaluation of error function derivatives 

We now derive the back-propagation algorithm for a general network having 
arbitrary feed-forward topology, and arbitrary differentiable non-linear activation 
functions, for the case of an arbitrary differentiable error function. The resulting 
formulae will then be illustrated using a simple layered network structure having 
a single layer of sigmoidal hidden units and a sum-of-squares error. 

In a general feed-forward network, each unit computes a weighted sum of its 
inputs of the form 

aj = ]Pu>jjZj (4.26) 
i 

where z* is the activation of a unit, or input, which sends a connection to unit 
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j , and Wji is the weight associated with that connection. The summation runs 
over all units which send connections to unit j . In Section 4.1 we showed that 
biases can be included in this sum by introducing an extra unit, or input, with 
activation fixed at + 1 . We therefore do not need to deal with biases explicitly. 
The sum in (4.26) is transformed by a non-linear activation function g(-) to give 
the activation Zj of unit j in the form 

Zj = g(aj). (4.27) 

Note that one or more of the variables Zi in the sum in (4.26) could be an input, 
in which case we shall denote it by Xi. Similarly, the unit j in (4.27) could be an 
output unit, in which case we denote its activation by j/fc. 

As before, we shall seek to determine suitable values for the weights in the 
network by minimization of an appropriate error function. Here we shall consider 
error functions which can be written as a sum, over all patterns in the training 
set, of an error defined for each pattern separately 

E = Y.E" (4-28) 
n 

where n labels the patterns. Nearly all error functions of practical interest take 
this form, for reasons which are explained in Chapter 6. We shall also suppose 
that the error En can be expressed as a differentiable function of the network 
output variables so that 

En = En{yu...,yc). (4.29) 

Our goal is to find a procedure for evaluating the derivatives of the error function 
E with respect to the weights and biases in the network. Using (4.28) we can 
express these derivatives as sums over the training set patterns of the derivatives 
for each pattern separately. From now on we shall therefore consider one pattern 
at a time. 

For each pattern we shall suppose that we have supplied the corresponding 
input vector to the network and calculated the activations of all of the hidden 
and output units in the network by successive application of (4.26) and (4.27). 
This process is often called forward propagation since it can be regarded as a 
forward flow of information through the network. 

Now consider the evaluation of the derivative of En with respect to some 
weight Wji. The outputs of the various units will depend on the particular input 
pattern n. However, in order to keep the notation uncluttered, we shall omit 
the superscript n from the input and activation variables. First we note that 
En depends on the weight Wji only via the summed input aj to unit j . We can 
therefore apply the chain rule for partial derivatives to give 
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8En _ dEn da5 

du)ji daj dwji' 

We now introduce a useful notation 

dEn 

6, S - ^ (4.31) 

where the <5's are often referred to as errors for reasons we shall see shortly. Using 
(4.26) we can write 

- ^ L = Zi. (4.32) 
dwji 

Substituting (4.31) and (4.32) into (4.30) we then obtain 

dEn 

duiji 
= 6jZt. (4.33) 

Note that this has the same general form as obtained for single-layer networks 
in Section 3.4. Equation (4.33) tells us that the required derivative is obtained 
simply by multiplying the value of 6 for the unit at the output end of the weight 
by the value of z for the unit at the input end of the weight (where z = 1 in 
the case of a bias). Thus, in order to evaluate the derivatives, we need only to 
calculate the value of 8j for each hidden and output unit in the network, and 
then apply (4.33). 

For the output units the evaluation of 6k is straightforward. From the defini­
tion (4.31) we have 

. dEn .dEn 

where we have used (4.27) with Zk denoted by yk- In order to evaluate (4.34) we 
substitute appropriate expressions for g'(a) and dEn/dy. This will be illustrated 
with a simple example shortly. 

To evaluate the 6's for hidden units we again make use of the chain rule for 
partial derivatives, 

where the sum runs over all units k to which unit j sends connections. The 
arrangement of units and weights is illustrated in Figure 4.16. Note that the 
units labelled k could include other hidden units and/or output units. In writing 
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Figure 4.16. Illustration of the calculation of <5, for hidden unit j by back-
propagation of the <5's from those units k to which unit j sends connections. 

down (4.35) we are making use of the fact that variations in a, give rise to 
variations in the error function only through variations in the variables a/t. If we 
now substitute the definition of 6 given by (4.31) into (4.35), and make use of 
(4.26) and (4.27), we obtain the following back-propagation formula 

6j - g'(aj) ] P WkjSk (4.36) 
k 

which tells us that the value of 6 for a particular hidden unit can be obtained by 
propagating the 6's backwards from units higher up in the network, as illustrated 
in Figure 4.16. Since we already know the values of the 6's for the output units, 
it follows that by recursively applying (4.36) we can evaluate the 6's for all of 
the hidden units in a feed-forward network, regardless of its topology. 

We can summarize the back-propagation procedure for evaluating the deriva­
tives of the error En with respect to the weights in four steps: 

1. Apply an input vector x n to the network and forward propagate through 
the network using (4.26) and (4.27) to find the activations of all the hidden 
and output units. 

2. Evaluate the 6k for all the output units using (4.34). 
3. Back-propagate the 6's using (4.36) to obtain 6j for each hidden unit in 

the network. 
4. Use (4.33) to evaluate the required derivatives. 

The derivative of the total error E can then be obtained by repeating the above 
steps for each pattern in the training set, and then summing over all patterns: 
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dE ^ dEn 

dwu ^ dwii' 
J n J 

In the above derivation we have implicitly assumed that each hidden or output 
unit in the network has the same activation function g(-). The derivation is 
easily generalized, however, to allow different units to have individual activation 
functions, simply by keeping track of which form of g(-) goes with which unit. 

4.8.2 A simple example 

The above derivation of the back-propagation procedure allowed for general 
forms for the error function, the activation functions and the network topol­
ogy. In order to illustrate the application of this algorithm, we shall consider a 
particular example. This is chosen both for its simplicity and for its practical 
importance, since many applications of neural networks reported in the litera­
ture make use of this type of network. Specifically, we shall consider a two-layer 
network of the form illustrated in Figure 4.1, together with a sum-of-squares 
error. The output units have linear activation functions while the hidden units 
have logistic sigmoid activation functions given by (4.10), and repeated here: 

g(a) = - -.—r. (4.38) 
v ' l + exp(-a) v ; 

A useful feature of this function is that its derivative can be expressed in a 
particularly simple form: 

g'(a) = <?(a)(l - g(a)). (4.39) 

In a software implementation of the network algorithm, (4.39) represents a con­
venient property since the derivative of the activation can be obtained efficiently 
from the activation itself using two arithmetic operations. 

For the standard sum-of-squares error function, the error for pattern n is 
given by 

En = \Y,{yk-tk? (4.40) 

where yk is the response of output unit k, and tk is the corresponding target, for 
a particular input pattern x" . 

Using the expressions derived above for back-propagation in a general net­
work, together with (4.39) and (4.40), we obtain the following results. For the 
output units, the 6's are given by 

6k=Vk- h (4.41) 
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while for units in the hidden layer the <5's are found using 

c 

si = zj (! ~ zi) ] C WkJ6k (4-42) 

where the sum runs over all output units. The derivatives with respect to the 
first-layer and second-layer weights are then given by 

dEn gEn 
• 5 — = 6jXU = bkZj. (4.43) 

So far we have discussed the evaluation of the derivatives of the error function 
with respect to the weights and biases in the network. In order to turn this into 
a learning algorithm we need some method for updating the weights based on 
these derivatives. In Chapter 7 we discuss several such parameter optimization 
strategies in some detail. For the moment, we consider the fixed-step gradient 
descent technique introduced in Section 3.4. We have the choice of updating the 
weights either after presentation of each pattern (on-line learning) or after first 
summing the derivatives over all the patterns in the training set (batch learning). 
In the former case the weights in the first layer are updated using 

Aniji = -tjSjXi (4.44) 

while in the case of batch learning the first-layer weights are updated using 

A W j i = ~ 7 7 ^ « 5 X (4-45) 
n 

with analogous expressions for the second-layer weights. 

4.8.3 Efficiency of back-propagation 

One of the most important aspects of back-propagation is its computational 
efficiency. To understand this, let us examine how the number of computer op­
erations required to evaluate the derivatives of the error function scales with the 
size of the network. Let W be the total number of weights and biases. Then a 
single evaluation of the error function (for a given input pattern) would require 
0(W) operations, for sufficiently large W. This follows from the fact that, except 
for a network with very sparse connections, the number of weights is typically 
much greater than the number of units. Thus, the bulk of the computational 
effort in forward propagation is concerned with evaluating the sums in (4.26), 
with the evaluation of the activation functions representing a small overhead. 
Each term in the sum in (4.26) requires one multiplication and one addition, 
leading to an overall computational cost which is 0(W). 

For W weights in total there are W such derivatives to evaluate. If we simply 
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took the expression for the error function and wrote down explicit formulae for 
the derivatives and then evaluated them numerically by forward propagation, we 
would have to evaluate W such terms (one for each weight or bias) each requiring 
0{W) operations. Thus, the total computational effort required to evaluate all 
the derivatives would scale as OiW"2). By comparison, back-propagation allows 
the derivatives to be evaluated in 0(W) operations. This follows from the fact 
that both the forward and the backward propagation phases are 0(W), and the 
evaluation of the derivative using (4.33) also requires 0(W) operations. Thus 
back-propagation has reduced the computational complexity from 0(W2) to 
0(W) for each input vector. Since the training of MLP networks, everi using* 
back-propagation, can be very time consuming, this gain in efficiency is crucial. . 
For a total of N training patterns, the number of computational steps required 
to evaluate the complete error function for the whole data set is N times larger 
than for one pattern. 

The practical importance of the 0(W) scaling of back-propagation is anal­
ogous in some respects to that of the fast Fourier transform (FFT) algorithm 
(Brigham, 1974; Press et al, 1992) which reduces the computational complex­
ity of evaluating an L-point Fourier transform from 0(L2) to C(Llog2 L). The 
discovery of this algorithm led to the widespread use of Fourier transforms in a 
large range of practical applications. 

4.8.4 Numerical differentiation 

An alternative approach to back-propagation for computing the derivatives of 
the error function is to use finite differences. This can be done by perturbing 
each weight in turn, and approximating the derivatives by the expression 

a p ^ K + c ) - ^ ) 
duiji e 

where e < 1 is a small quantity. In a software simulation, the accuracy of the 
approximation to the derivatives can be improved by making e smaller, until 
numerical roundoff problems arise. The main problem with this approach is that 
the highly desirable 0(W) scaling has been lost. Each forward propagation re­
quires 0(W) steps, and there are W weights in the network each of which must 
be perturbed individually, so that the overall scaling is OfW2). However, finite 
differences play an important role in practice, since a numerical comparison of 
the derivatives calculated by back-propagation with those obtained using finite 
differences provides a very powerful check on the correctness of any software 
implementation of the back-propagation algorithm. 

The accuracy of the finite differences method can be improved significantly 
by using symmetrical central differences of the form 

™1 = E»(Wji + e)-E»(Wji-e) + 
duiji 2e 
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In this case the 0(e) corrections cancel, as is easily verified by Taylor expan­
sion on the right-hand side of (4.47), and so the residual corrections are 0(e2). 
The number of computational steps is, however, roughly doubled compared with 
(4.46). 

We have seen that the derivatives of an error function with respect to the 
weights in a network can be expressed efficiently through the relation 

— - — 
dwji da,j 

Instead of using the technique of central differences to evaluate the derivatives 
dEn/duiji directly, we can use it to estimate dEn/da,j since 

a ^ i ^ - ^ - ^ . - e ) 
oa.j 2e 

We can then make use of (4.48) to evaluate the required derivatives. Because the 
derivatives with respect to the weights are found from (4.48) this approach is 
still relatively efficient. Back-propagation requires one forward and one backward 
propagation through the network, each taking G(W) steps, in order to evaluate 
all of the dE/ddi. By comparison, (4.49) requires 2M forward propagations, 
where M is the number of hidden and output nodes. The overall scaling is there­
fore proportional to MW, which is typically much less than the 0(W2) scaling 
of (4.47), but more than the 0(W) scaling of back-propagation. This technique 
is called node perturbation (Jabri and Flower, 1991), and is closely related to the 
madeline III learning rule (Widrow and Lehr, 1990). 

In a software implementation, derivatives should be evaluated using back-
propagation, since this gives the greatest accuracy and numerical efficiency. How­
ever, the results should be compared with numerical differentiation using (4.47) 
for a few test cases in order to check the correctness of the implementation. 

4.9 T h e Jacobian matrix 

We have seen how the derivatives of an error function with respect to the weights 
can be obtained by the propagation of errors backwards through the network. 
The technique of back-propagation can also be applied to the calculation of 
other derivatives. Here we consider the evaluation of the Jacobian matrix, whose 
elements are given by the derivatives of the network outputs with respect to the 
inputs 

where each such derivative is evaluated with all other inputs held fixed. Note 
that the term Jacobian matrix is also sometimes used to describe the derivatives 
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of the error function with respect to the network weights, as calculated earlier 
using back-propagation. The Jacobian matrix provides a measure of the local 
sensitivity of the outputs to changes in each of the input variables, and is useful 
in several contexts in the application of neural networks. For instance, if there 
are known errors associated with the input variables, then the Jacobian matrix 
allows these to be propagated through the trained network in order to estimate 
their contribution to the errors at the outputs. Thus, we have 

In general, the network mapping represented by a trained neural network will 
be non-linear, and so the elements of the Jacobian matrix will not be constants 
but will depend on the particular input vector used. Thus (4.51) is valid only for 
small perturbations of the inputs, and the Jacobian itself must be re-evaluated 
for each new input vector. 

The Jacobian matrix can be evaluated using a back-propagation procedure 
which is very similar to the one derived earlier for evaluating the derivatives of 
an error function with respect to the weights. We start by writing the element 
Jk% in the form 

J = ^Mh. = V^ dVk dai 
dxi " dai 8xi 

j 

E« dyk 
^ { 4 5 2 > 

where we have made use of (4.26). The sum in (4.52) runs over all units j to 
which the input unit i sends connections (for example, over all units in the first 
hidden layer in the layered topology considered earlier). We now write down a 
recursive back-propagation formula to determine the derivatives dyk/daj 

dyk _ y ^ dyk dat 

da,j ^-r* dai 9aj 

B>t)Y,wvi!!r (4-53> 

where the sum runs over all units I to which unit j sends connections. Again, we 
have made use of (4.26) and (4.27). This back-propagation starts at the output 
units for which, using (4.27), we have 
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| ^ - = g'{ak)8kk, (4.54) 

where 6kk' is the Kronecker delta symbol, and equals 1 if k = k' and 0 otherwise. 
We can therefore summarize the procedure for evaluating the Jacobian matrix 
as follows. Apply the input vector corresponding to the point in input space at 
which the Jacobian matrix is to be found, and forward propagate in the usual 
way to obtain the activations of all of the hidden and output units in the network. 
Next, for each row k of the Jacobian matrix, corresponding to the output unit k, 
back-propagate using the recursive relation (4.53), starting with (4.54), for all of 
the hidden units in the network. Finally, use (4.52) to do the back-propagation 
to the inputs. The second and third steps are then repeated for each value of k, 
corresponding to each row of the Jacobian matrix. 

The Jacobian can also be evaluated using an alternative forward propagation 
formalism which can be derived in an analogous way to the back-propagation 
approach given here (Exercise 4.6). Again, the implementation of such algorithms 
can be checked by using numerical differentiation in the form 

dyk Vk(xi + e) - yk{xi - e) 2 

dxi 2e 
+ 0(e 2 ) . (4.55) 

4.10 T h e Hessian matrix 

We have shown how the technique of back-propagation can be used to obtain the 
first derivatives of an error function with respect to the weights in the network. 
Back-propagation can also be used to evaluate the second derivatives of the error, 
given by 

92E (4.56) 
dwudwik 

These derivatives form the elements of the Hessian matrix, which plays an im­
portant role in many aspects of neural computing, including the following: 

1. Several non-linear optimization algorithms used for training neural net­
works are based on considerations of the second-order properties of the 
error surface, which are controlled by the Hessian matrix (Chapter 7). 

2. The Hessian forms the basis of a fast procedure for re-training a feed­
forward network following a small change in the training data (Bishop, 
1991a). 

3. The inverse of the Hessian has been used to identify the least signifi­
cant weights in a network as part of network 'pruning' algorithms (Sec­
tion 9.5.3). 

4. The inverse of the Hessian can also be used to assign error bars to the 
predictions made by a trained network (Section 10.2). 
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5. Suitable values for regularization parameters can be determined from the 
eigenvalues of the Hessian (Section 10.4). 

6. The determinant of the Hessian can be used to compare the relative prob­
abilities of different network models (Section 10.6). 

For many of these applications, various approximation schemes have been 
used to evaluate the Hessian matrix. However, the Hessian can also be calculated 
exactly using an extension of the back-propagation technique for evaluating the 
first derivatives of the error function. 

An important consideration for many applications of the Hessian is the effi­
ciency with which it can be evaluated. If there are W parameters (weights and 
biases) in the network then the Hessian matrix has dimensions W x W and 
so the computational effort needed to evaluate the Hessian must scale at least 
like 0(W2) for each pattern in the data set. As we shall see, there are efficient 
methods for evaluating the Hessian whose scaling is indeed 0(W2). 

4.10.1 Diagonal approximation 

Some of the applications for the Hessian matrix discussed above require the 
inverse of the Hessian, rather than the Hessian itself. For this reason there has 
been some interest in using a diagonal approximation to the Hessian, since its 
inverse is trivial to evaluate. We again shall assume, as is generally the case, that 
the error function consists of a sum of terms, one for each pattern in the data 
set, so that E = ]T n E

n. The Hessian can then be obtained by considering one 
pattern at a time, and then summing the results over all patterns. From (4.26) 
the diagonal elements of the Hessian, for pattern n, can be written 

d2En _ d2En 

dw2
5i ~ da) 

•*?. (4.57) 

Using (4.26) and (4.27), the second derivatives on the right-hand side of (4.57) 
can be found recursively using the chain rule of differential calculus, to give a 
back-propagation equation of the form 

S = 9'^? E E »« «*J £ £ ; + S"(aj) £ Wkj^. (4.58) 
J k k' k 

If we now neglect off-diagonal elements in the second derivative terms we obtain 
(Becker and Le Cun, 1989; Le Cun et al, 1990) 

92En ., x 2 V ^ 2 d2En .., , ^ - , dEn ,AKn. 

3 k K k 

Due to the neglect of off-diagonal terms on the right-hand side of (4.59), this 
approach only gives an approximation to the diagonal terms of the Hessian. 
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However, the number of computational steps is reduced from 0(W2) to 0{W). 
Ricotti et al. (1988) also used the diagonal approximation to the Hessian, 

but they retained all terms in the evaluation of d2En/dOj and so obtained exact 
expressions for the diagonal terms. Note that this no longer has 0(W) scaling. 
The major problem with diagonal approximations, however, is that in practice 
the Hessian is typically found to be strongly non-diagonal, and so these approxi­
mations, which are driven mainly be computational convenience, must be treated 
with great care. 

4.10.2 Outer product approximation 

When neural networks are applied to regression problems, it is common to use 
a sum-of-squares error function of the form 

E = \Y,(yn-n2 (4-60) 
n 

where we have considered the case of a single output in order to keep the notation 
simple (the extension to several outputs is straightforward). We can then write 
the elements of the Hessian in the form 

dwjidwik *-* duiji dwik *—i dwjidwik' 

If the network has been trained on the data set and its outputs yn happen to be 
very close to the target values tn then the second term in (4.61) will be small 
and can be neglected. If the data are noisy, however, such a network mapping 
is severely over-fitted to the data, and is not the kind of mapping we seek in 
order to achieve good generalization (see Chapters 1 and 9). Instead we want to 
find a mapping which averages over the noise in the data. It turns out that for 
such a solution we may still be able to neglect the second term in (4.61). This 
follows from the fact that the quantity (yn — tn) is a random variable with zero 
mean, which is uncorrelated with the value of the second derivative term on the 
right-hand side of (4.61). This whole term will therefore tend to average to zero 
in the summation over n (Hassibi and Stork, 1993). A more formal derivation of 
this result is given in Section 6.1.4. 

By neglecting the second term in (4.61) we arrive at the Levenberg-Marquardt 
approximation (Levenberg, 1944; Marquardt, 1963) or outer product approxima­
tion (since the Hessian matrix is built up from a sum of outer products of vectors), 
given by 

a2£ =£££• (-) duijidwik z--' dwji dwik' 

Its evaluation is straightforward as it only involves first derivatives of the error 
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function, which can be evaluated efficiently in 0(W) steps using standard back-
propagation. The elements of the matrix can then be found in G(W2) steps by 
simple multiplication. It is important to emphasize that this approximation is 
only likely to be valid for a network which has been trained correctly on the 
same data set used to evaluate the Hessian, or on one with the same statistical 
properties. For a general network mapping, the second derivative terms on the 
right-hand side of (4.61) will typically not be negligible. 

4.10.3 Inverse Hessian 

Hassibi and Stork (1993) have used the outer product approximation to develop a 
computationally efficient procedure for approximating the inverse of the Hessian. 
We first write the outer product approximation in matrix notation as 

N 

H* = X>"(gn)T (4.63) 

where N is the number of patterns in the data set, and the vector g = V w £ 
is the gradient of the error function. This leads to a sequential procedure for 
building up the Hessian, obtained by separating off the contribution from data 
point N + 1 to give 

H N + 1 = H w + g " + 1 ( g " + 1 ) T . (4.64) 

In order to evaluate the inverse of the Hessian we now consider the matrix identity 
(Kailath, 1980) 

(A + B C ) - 1 = A " 1 - A - 1 B ( I + C A - 1 B ) - 1 C A ~ 1 (4.65) 

where I is the unit matrix. If we now identify HAT with A, g N + 1 with B , and 
(g J V + 1 ) T with C, then we can apply (4.65) to (4.64) to obtain 

r - i ...TT-i H ^ + ' t e ^ y r H ^ 
IJV+1 "iV l + ( g W + l ) T H - V + 1 " 

H ^ + 1 = H ^ 1 - : » * > * ' » . (4.66) 

This represents a procedure for evaluating the inverse of the Hessian using a 
single pass through the data set. The initial matrix Ho is chosen to be a l , where 
a is a small quantity, so that the algorithm actually finds the inverse of H + al. 
The results are not particularly sensitive to the precise value of a. Extension 
of this algorithm to networks having more than one output is straightforward 
(Exercise 4.9). 

We note here that the Hessian matrix can sometimes be calculated indi­
rectly as part of the network training algorithm. In particular, quasi-Newton 
non-linear optimization algorithms gradually build up an approximation to the 
inverse of the Hessian during training. Such algorithms are discussed in detail in 
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Section 7.10. 

4.10.4 Finite differences 

As with first derivatives of the error function, we can find the second derivatives 
by using finite differences, with accuracy limited by the numerical precision of 
our computer. If we perturb each possible pair of weights in turn, we obtain 

g ^ T k = 4 ? &{*» + e, wlk + e)~ E(Wji + e, wlk - e) 

-E(wn - e, wik + e) + E{Wji - e, wik - e)} + C(e2). (4.67) 

Again, by using a symmetrical central differences formulation, we ensure that 
the residual errors are 0(e2) rather than 0(e) . Since there are W2 elements 
in the Hessian matrix, and since the evaluation of each element requires four 
forward propagations each needing 0(W) operations (per pattern), we see that 
this approach will require 0(W3) operations to evaluate the complete Hessian. 
It therefore has very poor scaling properties, although in practice it is very useful 
as a check on the software implementation of back-propagation methods. 

A more efficient version of numerical differentiation can be found by apply­
ing central differences to the first derivatives of the error function, which are 
themselves calculated using back-propagation. This gives 

M^ ( U" f c + e ) - ^ ( t 0 , * - e ) } + O ( e 9 ) - (468) d2E 

Since there are now only W weights to be perturbed, and since the gradients 
can be evaluated in 0(W) steps, we see that this method gives the Hessian in 
0(W2) operations. 

4.10.5 Exact evaluation of the Hessian 

So far we have considered various approximation schemes for evaluating the Hes­
sian matrix. We now describe an algorithm for evaluating the Hessian exactly, 
which is valid for a network of arbitrary feed-forward topology, of the kind il­
lustrated schematically in Figure 4.3 (Bishop, 1991a, 1992). The algorithm is 
based on an extension of the technique of back-propagation used to evaluate 
first derivatives, and shares many of its desirable features including computa­
tional efficiency. It can be applied to any differentiable error function which can 
be expressed as a function of the network outputs, and to networks having ar­
bitrary differentiable activation functions. The number of computational steps 
needed to evaluate the Hessian scales like 0(W2). Similar algorithms have also 
been considered by Buntine and Weigend (1993). As before, we shall consider 
one pattern at a time. The complete Hessian is then obtained by summing over 
all patterns. 
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Consider the general expression (4.33) for the derivative of the error function 
with respect to an arbitrary weight wjjt, which we reproduce here for convenience 

dEn 

dwtk 
= S(Zk-

Differentiating this with respect to some other weight Wj, we obtain 

Q2En da,j 8 

dwjidwik dwji da, \dwik 

8En 

Zi 
d (8En 

ddj \dwik 

(4.69) 

(4.70) 

where we have used (4.26). Here we have assumed that the weight Wj, does not 
occur on any forward propagation path connecting unit I to the outputs of the 
network. We shall return to this point shortly. 

Making use of (4.69), together with the relation Zk = g(ak), we can write 
(4.70) in the form 

Q2Bn 

dwjidwik 

where we have defined the quantities 

Zi8ig'(ak)hkj + z%Zkt 

hkj — 

bn — 

dak 
da. 

dSi 

(4.71) 

(4.72) 

(4.73) 

The quantities {hkj} can be evaluated by forward propagation as follows. 
Using the chain rule for partial derivatives we have 

<-kj = £ dak &ar 
dar daj 

(4.74) 

where the sum runs over all units r which send connections to unit k. In fact, 
contributions only arise from units which lie on paths connecting unit j to unit 
k. From (4.26) and (4.27) we then obtain the forward propagation equation 

hkj - Y^9'(ar)wkrhr (4.75) 

The initial conditions for evaluating the {hkj} follow from the definition (4.72), 
and can be stated as follows. For each unit j in the network, (except for input 
units, for which the corresponding {hkj} are not required), set hjj = 1 and set 

file:///dwik
file:///dwik
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hkj = 0 for all units k ^ j which do not lie on any forward propagation path 
starting from unit j . The remaining elements of hkj can then be found by forward 
propagation using (4.75). 

Similarly, we can derive a back-propagation equation which allows the {bij} 
to be evaluated. We have already seen that the quantities Si can be found by 
back-propagation 

<5<=</(ai)X>3'5*- (4-76) 

Substituting this into the definition of b\j in (4.73) we obtain 

which gives 

hi = g"(ai)hij ^2 wsiSs + g'(a{) ] P waib3j (4.78) 

where the sums run over all units s to which unit / sends connections. Note that, 
in a software implementation, the first summation in (4.78) will already have 
been computed in evaluating the {61} in (4.76). 

There is one subtlety which needs to be considered. The derivative d/daj 
which appears in (4.77) arose from the derivative djdw^ in (4.70). This transfor­
mation, from Wji to a,j, is valid provided Wji does not appear explicitly within the 
brackets on the right-hand side of (4.77). In other words, the weight Wji should 
not lie on any of the forward-propagation paths from unit I to the outputs of the 
network, since these are also the paths used to evaluate 61 by back-propagation. 
In practice the problem is easily avoided as follows. If Wji does occur in the 
sequence of back-propagations needed to evaluate <5j, then we simply consider 
instead the diagonally opposite element of the Hessian matrix for which this 
problem will not arise (since the network has a feed-forward topology). We then 
make use of the fact that the Hessian is a symmetric matrix. 

The initial conditions for the back-propagation in (4.78) follow from (4.72) 
and (4.73), together with the initial conditions (4.34) for the 6's, to give 

bkj = YJHkk-hvj (4.79) 
fc' 

where we have defined 

d2En 
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This algorithm represents a straightforward extension of the usual forward 
and backward propagation procedures used to find the first derivatives of the 
error function. We can summarize the algorithm in five steps: 

1. Evaluate the activations of all of the hidden and output units, for a given 
input pattern, by using the usual forward propagation equations. Similarly, 
compute the initial conditions for the hkj and forward propagate through 
the network using (4.75) to find the remaining non-zero elements of hkj. 

2. Evaluate 6k for the output units in the usual way. Similarly, evaluate the 
JEffc for all the output units using (4.80). 

3. Use the standard back-propagation equations to find 6j for all hidden units 
in the network. Similarly, back-propagate to find the {bij} by using (4.78) 
with initial conditions given by (4.79). 

4. Evaluate the elements of the Hessian for this input pattern using (4.71). 
5. Repeat the above steps for each pattern in the training set, and then sum 

to obtain the full Hessian. 

In a practical implementation, we substitute appropriate expressions for the 
error function and the activation functions. For the sum-of-squares error function 
and linear output units, for example, we have 

h = Vk~tk, Hkk< = 6kk> (4.81) 

where 6kk> is the Kronecker delta symbol. 

4.10.6 Exact Hessian for two-layer network 

As an illustration of the above algorithm, we consider the specific case of a layered 
network having two layers of weights. We can then use the results obtained above 
to write down explicit expressions for the elements of the Hessian matrix. We 
shall use indices i and i' to denote inputs, indices j and j ' to denoted units in the 
hidden layer, and indices k and k' to denote outputs. Using the previous results, 
the Hessian matrix for this network can then be considered in three separate 
blocks as follows. 

1. Both weights in the second layer: 

d2En 

= ZjZj'Skk'Hkk- (4.82) dwkjdwk 

2. Both weights in the first layer: 

d2En 

dwjidwj'j 
- = XiXi>g"(a.ji)6jj> 2 J wjyfifc 

+ xixilg'{ajl)g'{aj) ^ wkrwkiHkk. (4.83) 
fc 
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3. One weight in each layer: 

d2En 

dwjidwkf 
- Xig'iaj) {SkSjf + zyWkjHkk}. (4.84) 

If one or both of the weights is a bias term, then the corresponding expressions 
are obtained simply by setting the appropriate activation(s) to 1. 

4.10.7 Fast multiplication by the Hessian 

In some applications of the Hessian, the quantity of interest is not the Hessian 
matrix H itself, but the product of H with some vector v. We have seen that the 
evaluation of the Hessian takes 0(W2) operations, and it also requires storage 
which is 0(W2). The vector v T H which we wish to calculate itself only has 
W elements, so instead of computing the Hessian as an intermediate step, we 
can instead try to find an efficient approach to evaluating v T H directly, which 
requires only 0(W) operations. 

We first note that 

v T H = v T V ( V £ ) (4.85) 

where V denotes the gradient operator in weight space. We can then estimate 
the right-hand side of (4.85) using finite differences to give 

VTV(VE) = V g ( w + e v ) - V g C w ) + 0{e) ( 4 g 6 ) 

Thus, the quantity v T H can be found by forward propagating first with the 
original weights, and then with the weights perturbed by the small vector ev. 
This procedure therefore takes 0(W) operations. It was used by Le Cun et al. 
(1993) as part of a technique for on-line estimation of the learning rate parameter 
in gradient descent. 

Note that the residual error in (4.86) can again be reduced from 0(e) to 
C(e2) by using central differences of the form 

V T V ( V £ ) = V ^ w + e v ^ - V ^ w - e v ) + ^ ( 4 g ? ) 

which again scales as 0(W). 
The problem with a finite-difference approach is one of numerical inaccu­

racies. This can be resolved by adopting an analytic approach (M0ller, 1993a; 
Pearlmutter, 1994). Suppose we write down standard forward-propagation and 
back-propagation equations for the evaluation of VE. We can then apply (4.85) 
to these equations to give a set of forward-propagation and back-propagation 
equations for the evaluation of v T H . This corresponds to acting on the original 
forward-propagation and back-propagation equations with a differential operator 
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v T V . Pearlmutter (1994) used the notation fc{} to denote the operator v T V 
and we shall follow this notation. The analysis is straightforward, and makes use 
of the usual rules of differential calculus, together with the result 

K{w} = v. (4.88) 

The technique is best illustrated with a simple example, and again we choose 
a two-layer network with linear output units and a sum-of-squares error function. 
As before, we consider the contribution to the error function from one pattern in 
the data set. The required vector is then obtained as usual by summing over the 
contributions from each of the patterns separately. For the two-layer network, 
the forward-propagation equations are given by 

aj = y^WjiXi (4.89) 
i 

Zi = g{aj) (4.90) 

i 

We now act on these equations using the 7l{-} operator to obtain a set of forward 
propagation equations in the form 

^{M = X)«^i (4-92) 

K{*i} = ff>i)ftfo} (4-93) 

K{Vk} = Y, wM*i) + Y, Vk*zi (4-94) 
5 i 

where Vji is the element of the vector v which corresponds to the weight Wji. 
Quantities of the form TZ{ZJ}, 1Z{aj} and T^{yk} a r e to be regarded as new 
variables whose values are found using the above equations. 

Since we are considering a sum-of-squares error function, we have the follow­
ing standard back-propagation expressions: 

6k=yk- tfc (4.95) 

5J =</(%) X>fcA- (4-96) 
k 

i 
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Again we act on these equations with the 7?.{} operator to obtain a set of back-
propagation equations in the form 

K{6k] = MVk} (4.97) 

K{sj} = 9"{a,i)Tl{aj}'^2lWkj6k 
k 

+ 9'(aj)Y2vki6k 
k 

+ </(%) X>kjft{4}- (4.98) 
k 

Finally, we have the usual equations for the first derivatives of the error 

dE 

dwkj 

dE 

dwji 

= 6kzj (4.99) 

6jXi (4.100) 

and acting on these with the TZ{} operator we obtain expressions for the elements 
of the vector v T H : 

I dwkj J 

f dE ~) 

I dwji J 

K{6k}zj + 8kn{zj} (4.101) 

XiH{6j}. (4.102) 

The implementation of this algorithm involves the introduction of additional 
variables H{a,j}, 71{ZJ} and 7£{6j} for the hidden units, and TZ{6k} and 7l{yk} 
for the output units. For each input pattern, the values of these quantities can 
be found using the above results, and the elements of v T H are then given by 
(4.101) and (4.102). An elegant aspect of this technique is that the structure of 
the equations for evaluating v T H mirror closely those for standard forward and 
backward propagation, and so software implementation is straightforward. 

If desired, the technique can be used to evaluate the full Hessian matrix by 
choosing the vector v to be given successively by a series of unit vectors of the 
form ( 0 , 0 , . . . , 1 , . . . , 0) each of which picks out one column of the Hessian. This 
leads to a formalism which is analytically equivalent to the back-propagation 
procedure of Bishop (1992), as described in Section 4.10.5, though with some 
loss of efficiency in a software implementation due to redundant calculations. 
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Exercises 

4.1 (*) In Section 4.4 we showed that, for networks with ' tanh' hidden unit acti­
vation functions, the network mapping is invariant if all of the weights and 
the bias feeding into and out of a unit have their signs changed. Demon­
strate the corresponding symmetry for hidden units with logistic sigmoidal 
activation functions. 

4.2 (*) Consider a second-order network unit of the form (4.19). Use the sym­
metry properties of this term, together with the results of Exercises 1.7 
and 1.8, to find an expression for the number of independent weight pa­
rameters and show that this is the same result as that obtained by applying 
symmetry considerations to the equivalent form (4.18). 

4.3 (*) Show, for a feed-forward network with ' tanh' hidden unit activation func­
tions, and a sum-of-squares error function, that the origin in weight space 
is a stationary point of the error function. 

4.4 (*) Consider a layered network with d inputs, M hidden units and c output 
units. Write down an expression for the total number of weights and biases 
in the network. Consider the derivatives of the error function with respect 
to the weights for one input pattern only. Using the fact that these deriva­
tives are given by equations of the form dEn/dw^j = l>kzj\ write down an 
expression for the number of independent derivatives. 

4.5 (*) Consider a layered network having second-order units of the form (4.19) 
in the first layer and conventional units in the remaining layers. Derive 
a back-propagation formalism for evaluating the derivatives of the error 
function with respect to any weight or bias in the network. Extend the 
result to general Mth-order units in the first layer. 

4.6 (*) In Section 4.9, a formalism was developed for evaluating the Jacobian 
matrix by a process of back-propagation. Derive an alternative formalism 
for obtaining the Jacobian matrix using forward propagation equations. 

4.7 (*) Consider a two-layer network having 20 inputs, 10 hidden units, and 5 
outputs, together with a training set of 2000 patterns. Calculate roughly 
how long it would take to perform one evaluation of the Hessian matrix 
using (a) central differences based on direct error function evaluations; (b) 
central differences based on gradient evaluations using back-propagation; 
(c) the analytic expressions given in (4.82), (4.83) and (4.84). Assume that 
the workstation can perform 5 x 107 floating point operations per second, 
and that the time taken to evaluate an activation function or its derivatives 
can be neglected. 

4.8 (*) Verify the identity (4.65) by pre- and post-multiplying both sides by 
A + B C . 

4.9 (*) Extend the expression (4.63) for the outer product approximation of the 
Hessian to the case of c > 1 output units. Hence derive a recursive ex­
pression analogous to (4.64) for incrementing the number N of patterns, 
and a similar expression for incrementing the number c of outputs. Use 
these results, together with the identity (4.65), to find sequential update 
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expressions analogous (4.66) for finding the inverse of the Hessian by in­
crementally including both extra patterns and extra outputs. 

4.10 (**) Verify that the results (4.82), (4.83) and (4.84) for the Hessian ma­
trix of a two-layer network follow from the general expressions for cal­
culating the Hessian matrix for a network of arbitrary topology given in 
Section 4.10.5. 

4.11 (**) Derive the results (4.82), (4.83) and (4.84) for the exact evaluation of 
the Hessian matrix for a two-layer network by direct differentiation of the 
forward-propagation and back-propagation equations. 

4.12 (* * *) Write a software implementation of the forward and backward prop­
agation equations for a two-layer network with 'tanh' hidden unit activation 
function and linear output units. Generate a data set of random input and 
target vectors, and set the network weights to random values. For the case 
of a sum-of-squares error function, evaluate the derivatives of the error 
with respect to the weights and biases in the network by using the cen­
tral differences expression (4.47). Compare the results with those obtained 
using the back-propagation algorithm. Experiment with different values of 
e, and show numerically that, for values of e in an appropriate range, the 
two approaches give almost identical results. Plot graphs of the logarithm 
of the evaluation times for these two algorithms versus the logarithm of 
the number W of weights in the network, for networks having a range of 
different sizes (including networks with relatively large values of W). Hence 
verify the scalings with W discussed in Section 4.8. 

4.13 (***) Extend the software implementation of the previous exercise to in­
clude the forward and backward propagation equations for the 7?.{} vari­
ables, described in Section 4.10.7. Use this implementation to evaluate the 
complete Hessian matrix by setting the vector v in the 7l{} operator to 
successive unit vectors of the form ( 0 , 0 , . . . , 1 , . . . , 0) each of which picks 
out one column of the Hessian. Also implement the central differences ap­
proach for evaluation of the Hessian given by (4.67). Show that the results 
from the 7l{-} operator and central difference methods agree closely, pro­
vided e is chosen appropriately. Again, plot graphs of the logarithm of 
the evaluation time versus the logarithm of the number of weights in the 
network, for networks having a range of different sizes, for both of these 
approaches to evaluation of the Hessian, and verify the scalings with W of 
the two algorithms, as discussed in the text. 

4.14 (***) Extend further the software implementation of Exercise 4.12 by im­
plementing equations (4.82), (4.83) and (4.84) for computing the elements 
of the Hessian matrix. Show that the results agree with those from the 
7?.{-}-operator approach, and extend the graph of the previous exercise to 
include the logarithm of the computation times for this algorithm. 

4.15 (**) Consider a feed-forward network which has been trained to a min­
imum of some error function E, corresponding to a set of weights {WJ}, 
where for convenience we have labelled all of the weights and biases in the 
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network with a single index j . Suppose that all of the input values xf and 
target values ££ in the training set are perturbed by small amounts Ax" and 
At£ respectively. This causes the minimum of the error function to change 
to a new set of weight values given by {to,- + Aw,}. Write down the Taylor 
expansion of the new error function E({vjj + Aw,} , {x^+Ax^}, {t£+At£}) 
to second order in the A's. By minimizing this expression with respect to 
the {AWJ}, show that the new set of weights which minimizes the error 
function can be calculated from the original set of weights by adding cor­
rections AWJ which are given by solutions of the following equation 

YjHtjAwj^-ATu (4.103) 
3 

where Hij are the elements of the Hessian matrix, and we have defined 

n % l n k K 

i 



5 

RADIAL BASIS FUNCTIONS 

The network models discussed in Chapters 3 and 4 are based on units which 
compute a non-linear function of the scalar product of the input vector and a 
weight vector. Here we consider the other major class of neural network model, 
in which the activation of a hidden unit is determined by the distance between 
the input vector and a prototype vector. 

An interesting and important property of these radial basis function networks 
is that they form a unifying link between a number of disparate concepts as we 
shall demonstrate in this chapter. In particular, we shall motivate the use of 
radial basis functions from the point of view of function approximation, regu-
larization, noisy interpolation, density estimation, optimal classification theory, 
and potential functions. 

One consequence of this unifying viewpoint is that it motivates procedures 
for training radial basis function networks which can be substantially faster than 
the metliods used to train multi-layer perceptron networks. This follows from the 
interpretation which can be given to the internal representations formed by the 
hidden units, and leads to a two-stage training procedure. In the first stage, the 
parameters governing the basis functions (corresponding to hidden units) are 
determined using relatively fast, unsupervised methods (i.e. methods which use 
only the input data and not the target data). The second stage of training then 
involves the determination of the final-layer weights, which requires the solution 
of a linear problem, and which is therefore also fast. 

5.1 E x a c t in te rpo la t ion 

Radial basis function methods have their origins in techniques for performing 
exact interpolation of a set of data points in a multi-dimensional space (Powell, 
1987). The exact interpolation problem requires every input vector to be mapped 
exactly onto the corresponding target vector, and forms a convenient starting 
point for our discussion of radial basis function networks. 

Consider a mapping from a d-dimensional input space x to a one-dimensional 
target space t. The data set consists of N input vectors x", together with corre­
sponding targets tn. The goal is to find a function h(x) such that 

h(x.n)=tn, n = l , . . . , JV. (5.1) 
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The radial basis function approach (Powell, 1987) introduces a set of N basis 
functions, one for each data point, which take the form <̂ >(||x — x"||) where </>(•) 
is some non-linear function whose form will be discussed shortly. Thus the nth 
such function depends on the distance ||x — x n | | , usually taken to be Euclidean, 
between x and x". The output of the mapping is then taken to be a linear 
combination of the basis functions 

/>(x) = ] [ > ^ ( | | x - x l ) . (5.2) 
n 

We recognize this as having the same form as the generalized linear discriminant 
function considered in Section 3.3. The interpolation conditions (5.1) can then 
be written in matrix form as 

* w = t (5.3) 

where t = (<n), w = (wn), and the square matrix 4? has elements $„„ ' = 
<^(||xn — x n | |). Provided the inverse matrix # - 1 exists we can solve (5.3) to give 

w = * _ 1 t . (5.4) 

It has been shown (Micchelli, 1986) that, for a large class of functions <j>{-), the 
matrix 3? is indeed non-singular provided the data points are distinct. When the 
weights in (5.2) are set to the values given by (5.4), the function h(x) represents 
a continuous differentiate surface which passes exactly through each data point. 

Both theoretical and empirical studies (Powell, 1987) show that, in the con­
text of the exact interpolation problem, many properties of the interpolating 
function are relatively insensitive to the precise form of the non-linear function 
</>(•). Several forms of basis function have been considered, the most common 
being the Gaussian 

^ ( x ) = e x p ( - ~ ) (5.5) 

where a is a parameter whose value controls the smoothness properties of the 
interpolating function. The Gaussian (5.5) is a localized basis function with the 
property that tj> —> 0 as |a;| —> oo. Another choice of basis function with the same 
property is the function 

c/>(x) = (x2 + a2ya, a>0. (5.6) 

It is not, however, necessary for the functions to be localized, and other possible 
choices are the thin-plate spline function 
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(j>(x)=x2\n(x), (5.7) 

the function 

4>(x) = (a;2 + a2f, 0 < / ? < l , (5.8) 

which for /? = 1/2 is known as the multi-quadric function, the cubic 

<l>(x) = x 3 , (5.9) 

and the 'linear' function 

<j>(x) = x (5.10) 

which all have the property that <j> —> oo as x —> oo. Note that (5.10) linear in 
x — ||x — x n || and so is still a non-linear function of the components of x. In one 
dimension, it leads to a piecewise-linear interpolating function which represents 
the simplest form of exact interpolation. As we shall see, in the context of neural 
network mappings there are reasons for considering localized basis functions. We 
shall focus most of our attention on Gaussian basis functions since, as well as 
being localized, they have a number of useful analytical properties. The technique 
of radial basis functions for exact interpolation is illustrated in Figure 5.1 for a 
simple one-input, one-output mapping. 

The generalization to several output variables is straightforward. Each input 
vector x n must be mapped exactly onto an output vector t n having components 
££ so that (5.1) becomes 

M x n ) = # , n = l , . . . , /V (5.11) 

where the /jfc(x) are obtained by linear superposition of the same TV basis func­
tions as used for the single-output case 

Mx) = £>fcn#||x-xn||). (512) 
n 

The weight parameters are obtained by analogy with (5.4) in the form 

wkn = ^ ( S r 1 ) ™ ^ ' . (5.13) 
n' 

Note that in (5.13) the same matrix 3>~x is used for each of the output functions. 
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Figure 5.1. A simple example of exact interpolation using radial basis func­
tions. A set of 30 data points was generated by sampling the function 
y = 0.5 4-0.4sin(27r.-r), shown by the dashed curve, and adding Gaussian noise 
with standard deviation 0.05. The solid curve shows the interpolating func­
tion which results from using Gaussian basis functions of the form (5.5) with 
width parameter a = 0.067 which corresponds to roughly twice the spacing of 
the data points. Values for the second-layer weights were found using matrix 
inversion techniques as discussed in the text. 

5.2 Radial basis function networks 

The radial basis function mappings discussed so far provide an interpolating 
function which passes exactly through every data point. As the example in Fig­
ure 5.1 illustrates, the exact interpolating function for noisy data is typically 
a highly oscillatory function. Such interpolating functions are generally unde­
sirable. As discussed in Section 1.5.1, when there is noise present on the data, 
the interpolating function which gives the best generalization is one which is 
typically much smoother and which averages over the noise on the data. An ad­
ditional limitation of the exact interpolation procedure discussed above is that 
the number of basis functions is equal to the number of patterns in the data 
set, and so for large data sets the mapping function can become very costly to 
evaluate. 

By introducing a number of modifications to the exact interpolation proce­
dure we obtain the radial basis function neural network model (Broomhead and 
Lowe, 1988; Moody and Darken, 1989). This provides a smooth interpolating 
function in which the number of basis functions is determined by the complexity 
of the mapping to be represented rather than by the size of the data set. The 
modifications which are required are as follows: 

1. The number M of basis functions need not equal the number TV of data 
points, and is typically much less than N. 

2. The centres of the basis functions are no longer constrained to be given by 
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input data vectors. Instead, the determination of suitable centres becomes 
part of the training process. 

3. Instead of having a common width parameter a, each basis function is 
given its own width aj whose value is also determined during training. 

4. Bias parameters are included in the linear sum. They compensate for the 
difference between the average value over the data set of the basis function 
activations and the corresponding average value of the targets, as discussed 
in Section 3.4.3. 

When these changes are made to the exact interpolation formula (5.12), we 
arrive at the following form for the radial basis function neural network mapping 

M 

Vk (x) = Yi wkj (pj(x)+wkQ. (5.14) 
j= l 

If desired, the biases Wfco c a n be absorbed into the summation by including an 
extra basis function <po whose activation is set to 1. For the case of Gaussian 
basis functions we have 

4>j(x) = exp / ^f— I (5.15) 

where x is the d-dimensional input vector with elements x,, and fij is the vector 
determining the centre of basis function <j>j and has elements /ijj. Note that 
the Gaussian basis functions in (5.15) are not normalized, as was the case for 
Gaussian density models in Chapter 2 for example, since any overall factors can 
be absorbed into the weights in (5.14) without loss of generality. This mapping 
function can be represented as a neural network diagram as shown in Figure 5.2. 
Note that more general topologies of radial basis function network (more than 
one hidden layer for instance) are not normally considered. 

In discussing the representational properties of multi-layer perceptron net­
works in Section 4.3.1, we appealed to intuition to suggest that a linear super­
position of localized functions, as in (5.14) and (5.15), is capable of universal 
approximation. Hartman et al. (1990) give a formal proof of this property for 
networks with Gaussian basis functions in which the widths of the Gaussians are 
treated as adjustable parameters. A more general result was obtained by Park 
and Sandberg (1991) who show that, with only mild restrictions on the form of 
the kernel functions, the universal approximation property still holds. Further 
generalizations of this results are given in (Park and Sandberg, 1993). As with 
the corresponding proofs for multi-layer perceptron networks, these are existence 
proofs which rely on the availability of an arbitrarily large number of hidden 
units, and they do not offer practical procedures for constructing the networks. 
Nevertheless, these theorems are crucial in providing a theoretical foundation on 
which practical applications can be based with confidence. 
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Figure 5.2. Architecture of a radial basis function neural network, correspond­
ing to (5.14). Each basis function acts like a hidden unit. The lines connecting 
basis function ij>j to the inputs represent the corresponding elements ix$i of 
the vector \Xy The weights uifej are shown as lines from the basis functions 
to the output units, and the biases are shown as weights from an extra 'basis 
function' <po whose output is fixed at 1. 

Girosi and Poggio (1990) have shown that radial basis function networks 
possess the property of best approximation. An approximation scheme has this 
property if, in the set of approximating functions (i.e. the set of functions cor­
responding to all possible choices of the adjustable parameters) there is one 
function which has minimum approximating error for any given function to be 
approximated. They also showed that this property is not shared by multi-layer 
perceptrons. 

The Gaussian radial basis functions considered above can be generalized to 
allow for arbitrary covariance matrices S j , as discussed for normal probability 
density functions in Section 2.1.1. Thus we take the basis functions to have the 
form 

^ ( x ) = exp | - i ( x - M j )
T ^ 7 1 ( x - nt) J . (5.16) 

Since the covariance matrices 5^ are symmetric, this means that each basis func­
tion has d{d-\-2>)/1 independent adjustable parameters (where d is the dimension­
ality of the input space), as compared with the (d + 1) independent parameters 
for the basis functions (5.15). In practice there is a trade-off to be considered 
between using a smaller number of basis with many adjustable parameters and 
a larger number of less flexible functions. 
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5.3 Network training 

A key aspect of radial basis function networks is the distinction between the 
roles of the first and second layers of weights. As we shall see, the basis functions 
can be interpreted in a way which allows the first-layer weights (i.e. the param­
eters governing the basis functions) to be determined by unsupervised training 
techniques. This leads to the following two-stage training procedure for training 
radial basis function networks. In the first stage the input data set {x n} alone 
is used to determine the parameters of the basis functions (e.g. \i, and <jj for 
the spherical Gaussian basis functions considered above). The basis functions 
are then kept fixed while the second-layer weights are found in the second phase 
of training. Techniques for optimizing the basis functions are discussed at length 
in Section 5.9. Here we shall assume that the basis function parameters have 
already been chosen, and we discuss the problem of optimizing the second-layer 
weights. Note that , if there are fewer basis functions than data points, then in 
general it will no longer possible to find a set of weight values for which the 
mapping function fits the data points exactly. 

We begin by considering the radial basis function network mapping in (5.14) 
and we absorb the bias parameters into the weights to give 

M 

Vk (x) = J2 W*J $i (X) (5 •17) 
3=0 

where <j>o is an extra 'basis function' with activation value fixed at (f>o = 1- This 
can be written in matrix notation as 

y(x) = Wtf> (5.18) 

where W = (Wkj) and <f> = (rf>j). Since the basis functions are considered fixed, 
the network is equivalent to a single-layer network of the kind considered in Sec­
tion 3.3 in the context of classification problems, where it is termed a generalized 
linear discriminant. As discussed in earlier chapters, we can optimize the weights 
by minimization of a suitable error function. It is particularly convenient, as we 
shall see, to consider a sum-of-squares error function given by 

n k 

where ££ is the target value for output unit k when the network is presented with 
input vector x n . Since the error function is a quadratic function of the weights, 
its minimum can be found in terms of the solution of a set of linear equations. 
This problem was discussed in detail in Section 3.4.3, from which we see that 
the weights are determined by the linear equations 
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$ T $ W T = $ T T (5.20) 

where (T)nfc = t% and (3?)nj = ^-(x™). The formal solution for the weights is 
given by 

W T = * t T (5.21) 

where the notation $ ' denotes the pseudo-inverse of $ (Section 3.4.3). In prac­
tice, the equations (5.20) are solved using singular value decomposition, to avoid 
problems due to possible ill-conditioning of the matrix $ . Thus, we see that the 
second-layer weights can be found by fast, linear matrix inversion techniques. 

For the most part we shall consider radial basis function networks in which the 
dependence of the network function on the second-layer weights is linear, and in 
which the error function is given by the sum-of-squares. It is possible to consider 
the use of non-linear activation functions applied to the output units, or other 
choices for the error function. However, the determination of the second-layer 
weights is then no longer a linear problem, and hence a non-linear optimization of 
these weights is then required. As we have indicated, one of the major advantages 
of radial basis function networks is the possibility of avoiding the need for such 
an optimization during network training. 

As a simple illustration of the use of radial basis function networks, we return 
to the data set shown in Figure 5.1 and consider the mapping obtained by using 
a radial basis function network in which the number of basis functions is smaller 
than the number of data points, as shown in Figure 5.3 

The width parameter a in Figure 5.3 was chosen to be roughly twice the 
average spacing between the basis functions. Techniques for setting the basis 
function parameters, including <jj, are discussed in detail in Section 5.9. Here we 
simply note the effect of poor choices of a. Figure 5.4 shows the result of choosing 
too small a value for a, while the effect of having a too large is illustrated in 
Figure 5.5. 

5.4 Regularization theory 

An alternative motivation for radial basis function expansions comes from the 
theory of regularization (Poggio and Girosi, 1990a, 1990b). In Section 1.6 the 
technique of regularization was introduced as a way of controlling the smoothness 
properties of a mapping function. It involves adding to the error function an extra 
term which is designed to penalize mappings which are not smooth. For simplicity 
of notation we shall consider networks having a single output y, so that with a 
sum-of-squares error, the total error function to be minimized becomes 

E = \ 5>(*") - H 2 + \ l \Py? d* (5.22) 
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Figure 5.3. This shows the same set of 30 data points as in Figure 5.1, together 
with a network mapping (solid curve) in which the number of basis functions 
has been set to 5, which is significantly fewer than the number of data points. 
The centres of the basis functions have been set to a random subset of the data 
set input vectors, and the width parameters of the basis functions have been 
set to a common value of a = 0.4, which again is roughly equal to twice the 
average spacing between the centres. The second-layer weights are found by 
minimizing a sum-of-squares error function using singular value decomposition. 
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Figure 5.4. As in Figure 5.3, but in which the width parameter has been set 
to CT = 0.08. The resulting network function is insufficiently smooth and gives 
a poor representation of the underlying function which generated the data. 
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Figure 5.5. As in Figure 5.3, but in which the width parameter has been set to 
a = 10.0. This leads to a network function which is over-smoothed, and which 
again gives a poor representation of the underlying function which generated 
the data. 

where P is some differential operator, and v is called a regularization parameter. 
Network mapping functions y(x) which have large curvature will typically give 
rise to large values of \Py\2 and hence to a large penalty in the total error 
function. The value of v controls the relative importance of the regularization 
term, and hence the degree of smoothness of the function y{x). 

We can solve the regularized least-squares problem of (5.22) by using calculus 
of variations (Appendix D) as follows. Setting the functional derivative of (5.22) 
with respect to y(x) to zero we obtain 

£ { y ( x " ) - tn}6(x - x n ) + i/PPy(x) = 0 (5.23) 
n 

where P is the adjoint differential operator to P and S(x) is the Dirac delta 
function. The equations (5.23) are the Euler-Lagrange equations corresponding 
to (5.22). A formal solution to these equations can be written down in terms of 
the Green's functions of the operator PP, which are the functions G(x, x') which 
satisfy 

PPG(K,X!) = 6(x - x ' ) . (5.24) 

If the operator P is translationally and rotationally invariant, then the Green's 
functions depend only on the distance ||x — x'|), and hence they are radial func­
tions. The formal solution to (5.23) can then be written as 
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l,(x) = 5> n G( | | x -x" | | ) (5.25) 
n 

which has the form of a linear expansion in radial basis functions. Substituting 
(5.25) into (5.23) and using (5.24) we obtain 

^ { y ( x n ) - r } 5 ( x - x n ) + i / ^ T / ; n 5 ( x - x n ) = 0 (5.26) 
n n 

Integrating over a small region around x n shows that the coefficients v>n satisfy 

2/(xn) - tn + vwn = 0. (5.27) 

Values for the coefficients wn can be found by evaluating (5.25) at the values of 
the training data points x n and substituting into (5.27). This gives the values of 
wn as the solutions of the linear equation 

(G + i/I)w = t (5.28) 

where (G)„n< = (?(||xn — x n | | ) , (w) n = wn, (t)„ = tn and I denotes the unit 
matrix. 

If the operator P is chosen to have the particular form 

\Py\'dx^^yj\Dly(x)\2dx (5.29) 

where D2t = (V 2 ) ' and D2l+l = V(V 2 ) ' , with V and V 2 denoting the gradient 
and Laplacian operators respectively, then the Green's functions are Gaussians 
with width parameters a (Exercise 5.3). 

We see that there is a very close similarity between this form of basis func­
tion expansion, and the one discussed in the context of exact interpolation in 
Section 5.1. Here the Greens functions G(|jx —xn|j) correspond to the basis func­
tions </>(||x — x n | | ) , and there is one such function centred on each data point in 
the training set. Also, we see that (5.28) reduces to the exact interpolation result 
(5.3) when the regularization parameter v is zero. When the regularization pa­
rameter is greater than zero, however, we no longer have an exact interpolating 
function. The effect of the regularization term is to force a smoother network 
mapping function, as illustrated in Figure 5.6. 

In practice, regularization can also be applied to radial basis function net­
works in which the basis functions are not constrained to be centred on the data 
points, and in which the number of basis functions need not equal the number 
of data points. Also, regularization terms can be considered for which the basis 
functions are not necessarily the Green's functions. Provided the regularization 
term is a quadratic function of the network mapping, the second-layer weights 
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Figure 5.6. This shows the same data set as in Figure 5.1, again with one basis 
function centred on each data point, and a width parameter a = 0.067. In this 
case, however, a regularization term is used, with coefficient v = 40, leading 
to a smoother mapping (shown by the solid curve) which no longer gives an 
exact fit to the data, but which now gives a much better approximation to the 
underlying function which generated the data (shown by the dashed curve). 

can again be found by the solution of a set of linear equations which minimize a 
sum-of-squares error. For example, the regularizer 

n k l x * ' 

penalizes mappings which have large curvature (Bishop, 1991b). This regularizer 
leads to second-layer weights which are found by solution of 

M W = $ T T (5.31) 

where 

n \ i \ l l 

and $ = ((f)1-) as before. When v = 0 (5.31) reduces to the previous result (5.20). 
The inclusion of the regularization term adds little to the computational cost, 
since most of the time is spent in solving the coupled linear equations (5.31). 

(5.32) 
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5.5 Noisy interpolation theory 

Yet another viewpoint on the origin of radial basis function expansions comes 
from the theory of interpolation of noisy data (Webb, 1994). Consider a mapping 
from a single input variable a; to a single output variable y in which the target 
data is generated from a smooth noise-free function h(x) but in which the input 
data is corrupted by additive noise. The sum-of-squares error, in the limit of 
infinite data, takes the form 

E=\ JJ{y{x + 0 - h(x)}2p(Op(x) df dx (5.33) 

where p(x) is the probability density function of the input data, and p(£) is the 
probability density function of the noise. Changing variables using z = x + £ we 
have 

E = i f f{y(z) - h(x)}2p(z - x)p(x)dzdx. (5.34) 

A formal expression for the minimum of the error can then be obtained using 
variational techniques (Appendix D) by setting the functional derivative of E 
with respect to y(z) to zero, to give 

/ h(x)p(z — x)p(x) dx 
y(z) = i—^ . (5.35) 

/ p(z — x)p(x) dx 

If we consider the case of a finite number of data points {xn} drawn from 
the distribution p(x), we can approximate (5.35) by 

which we recognize as being an expansion in radial basis functions, in which 
h{xn) are the expansion coefficients, and the basis functions are given by 

4>{x-xn)=J{x~Xn) .. (5.37) 

Since the function h(x) is unknown, the coefficients h(xn) should be regarded 
as parameters to be determined from the data. To do this we note that h(x) is 
noise-free and so we have h(xn) — tn. Thus (5.36) becomes an expansion in basis 
functions in which the coefficients are given by the target values. Note that this 
form of basis function expansion differs from that introduced in (5.14) and (5.15) 
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in that the basis functions are normalized (Moody and Darken, 1989). Strictly 
speaking, the normalization in (5.36) would require lateral connections between 
different hidden units in a network diagram. If the distribution of the noise is 
normal, so that p(£) oc exp(—£2/2a2), then we obtain an expansion in Gaussian 
basis functions 

V i ) ~ E „ e x p { - ( , - x - ) V 2 a 2 } ' ( 5 ' 3 8 ) 

The extension of this result to several output variables is straightforward and 
gives 

vJx) E n M * n ) e x p { - ( s - x " ) V 2 g a } 
Vk(>~ ZneW{-(x-xn)y2o*} • ( 5 3 9 ) 

Note that (5.36) will only be a good approximation to (5.35) if the integrand 
is sufficiently smooth. This implies that the width of the basis functions should 
be large in relation to the spacing of the data, which is a useful rule of thumb 
when designing networks with good generalization properties. 

5.6 R e l a t i o n t o kernel regress ion 

Further motivation for the use of radial basis functions for function approxima­
tion comes from the theory of kernel regression (Scott, 1992). This is a technique 
for estimating regression functions from noisy data, based on the methods of 
kernel density estimation discussed in Section 2.5.3. Consider a mapping from 
an input vector x to an output vector y , and suppose we are given a set of train­
ing data {x™, t " } where n = 1 , . . . , N. A complete description of the statistical 
properties of the generator of the data is given by the probability density p(x, t ) 
in the joint input-target space. We can model this density by using a Parzen 
kernel estimator constructed from the data set. If we consider Gaussian kernel 
functions, this estimator takes the form 

N • - ' " ^ n | | 2 _ lit - t" 
N ^ (27T/l2)(<<+<:>/2 " ^ \ 2/l2 2h2 P(*, t ) = ^ ( 2 7 r / t 2 ) ( d + c ) / 2 e x p | - - (5.40) 

where d and c are the dimensionalities of the input and output opaces respec­
tively. This is illustrated schematically, for the case of one input variable and 
one output variable, in Figure 5.7. 

As we have already seen, the goal of learning is to find a smooth mapping 
from x to y which captures the underlying systematic aspects of the data, with­
out fitting the noise on the data. In Section 6.1.3 it is shown that, under many 
circumstances, the optimal mapping is given by forming the regression, or condi­
tional average (t |x), of the target data, conditioned on the input variables. This 
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Figure 5.7. Schematic illustration of the use of a kernel estimator to model the 
joint probability density in the input-output space. The dots show the data 
points, and the circles represent Gaussian kernel functions centred on the data 
points, while the curve shows the regression function given by the conditional 
average of t as a function of x. 

can be expressed in terms of | he conditional density p(t |x) , and hence in terms 
of the joint density p(x, t ) , as follows: 

y(x) = (t|x> 

= jtp(t\x)dt 

J 
7 

tp(x, t) dt 
(5.41) 

p(x, t) dt 

If we now substitute our density estimate (5.40) into (5.41) we obtain the fol­
lowing expression for the regression of the target data 

y(*) = 
E ^ e x p j - l l x - x " ! ! 2 ^ 2 } 

£ n e x P { - | | x - x " P / 2 f c 2 } ' 
(5.42) 

This is known as the Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 
1964), and has been re-discovered relatively recently in the context of neural 
networks (Specht, 1990; Schi0ler and Hartmann, 1992). We see that (5.42) has 
the form of a normalized expansion in Gaussian radial basis functions defined in 
the input space, and should be compared with the form (5.38) obtained earlier 
from the perspective of additive noise on the input data. Each basis function is 
centred on a data point, and the coefficients in the expansion are given by the 
target values t n . Note that this construction provides values for the hidden-to-
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output unit weights which are just given by the target data values. 
This approach can be extended by replacing the kernel estimator with an 

adaptive mixture model, as discussed in Section 2.6. The parameters of the mix­
ture model can be found using, for instance, the EM (expectation-maximization) 
algorithm (Section 2.6.2). For a mixture of M spherical Gaussian functions, we 
can write the joint density in the form 

Following the same line of argument as before, we arrive at the following expres­
sion for the regression: 

_ E ,P0> ,«pHx- , , , l l a / 2 t f } 
n>~ £,P(/)e*p{-||x-M3/2Aa} ^ ' 

which can be viewed as a normalized radial basis function expansion in which 
the number of basis functions is typically much smaller than the number of data 
points, and in which the basis function centres are no longer constrained to 
coincide with the data points. This result can be extended to Gaussian functions 
with general covariance matrices (Ghahramani and Jordan, 1994b). 

5.7 R a d i a l basis funct ion ne tworks for classification 

A further key insight into the nature of the radial basis function network is ob­
tained by considering the use of such networks for classification problems (Lowe, 
1995). Suppose we have a data set which falls into three classes as shown in Fig­
ure 5.8. A multi-layer perceptron can separate the classes by using hidden units 
which form hyperplanes in the input space, as indicated in Figure 5.8(a). An 
alternative approach is to model the separate class distributions by local kernel 
functions, as indicated in (b). This latter type of representation is related to the 
radial basis function network. 

Suppose we model the data in each class Ck using a single kernel function, 
which we write as p(x|Cfc). In a classification problem our goal is to model the 
posterior probabilities p(Cfc|x) for each of the classes. These probabilities can be 
obtained through Bayes' theorem, using prior probabilities p(Ck), as follows: 

m | x ) = Pj^£m (5.45, 
p(x) 

_ p(x\Ck)P(Ck) ( 5 4 6 ) 

Dfc'PMCfcOmo' 
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(a) (b) 

Figure 5.8. Schematic example of data points in two dimensions which fall into 
three distinct classes. One way to separate the classes is to use hyperplanes, 
shown in (a), as used in a multi-layer perceptron. An alternative approach, 
shown in (b), is to fit each class with a kernel function, which gives the type 
of representation formed by a radial basis function network. 

This can be viewed as a simple form of basis function network with normalized 
basis functions given by 

Wx) = V- f^'Lr N (5-47) 

and second-layer connections which consist of one weight from each hidden unit 
going to the corresponding output unit, with value p(Cjt)- The outputs of this 
network represent approximations to the posterior probabilities. 

In most applications a single kernel function will not give a particularly good 
representation of the class-conditional distributions p(x|Cfc). A better represen­
tation could be obtained by using a separate mixture model to represent each of 
the conditional densities. However, a computationally more efficient approach, 
and one which may help to reduce the number of adjustable parameters in the 
model, is to use a common pool of M basis functions, labelled by an index j , to 
represent all of the class-conditional densities. Thus, we write 

M 

p(x|Cfc) = £ p ( x | j ) P ( j | C f c ) . (5.48) 

An expression for the unconditional density p(x) can be found from (5.48) by 
summing over all classes 

p(x) = £>(x|Cfc)P(C*) (5.49) 
k 
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M 

= *£p(x\j)P(j) (5.50) 

where we have defined priors for the basis functions given by 

P(j)=:^rP(j\Ck)P(Ck). (5.51) 

Again, the quantities we are interested in are the posterior probabilities of class 
membership. These can be obtained by substituting the expressions (5.48) and 
(5.50) into Bayes' theorem (5.45) to give 

!?.,iW)fli1 p« 

M 

= ^ i w f c j ^ ( x ) (5.53) 
j = i 

where we have inserted an extra factor of 1 = P(j)/P(j) into (5.52). The expres­
sion (5.53) represents a radial basis function network, in which the normalized 
basis functions are given by 

p(x | j )P( j ) 
fc« - ^™;:XL.» ^) 

= P ( j |x ) (5.55) 

and the second-layer weights are given by 

,„ _ P(J\Ck)P(Ck) 

P{j) 

= P(Cfc|j). (5.57) 

Thus, the activations of the basis functions can be interpreted as the posterior 
probabilities of the presence of corresponding features in the input space, and 
the weights can similarly be interpreted as the posterior probabilities of class 
membership, given the presence of the features. The activations of the hidden 
units in a multi-layer perceptron (with logistic sigmoid activation functions) can 
be given a similar interpretation as posterior probabilities of the presence of 
features, as discussed in Section 6.7.1. 

Note from (5.50) that the unconditional density of the input data is expressed 
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in terms of a mixture model, in which the component densities are given by 
the basis functions. This motivates the use of mixture density estimation as a 
procedure for finding the basis function parameters, as discussed in Section 5.9.4. 

It should be emphasized that the outputs of this network also have a precise 
interpretation as the posterior probabilities of class membership. The ability to 
interpret network outputs in this way is of central importance in the effective 
application of neural networks, and is discussed at length in Chapter 6. 

Finally, for completeness, we point out that radial basis functions are also 
closely related to the method of potential functions (Aizerman et al., 1964; Ni-
ranjan et al., 1989). This is a way of finding a linear discriminant function from 
a training set of data points, based on an analogy with electrostatics. Imagine 
we place a unit of positive charge at each point in input space at which there is a 
training vector from class C\, and a unit of negative charge at each point where 
there is a training vector from class C2. These charges give rise to an electro­
static potential field which can be treated as a discriminant function. The kernel 
function which is used to compute the contribution to the potential from each 
charge need not be that of conventional electrostatics, but can be some other 
function of the radial distance from the data point. 

5.8 Comparison with the multi-layer perceptron 

Radial basis function networks and multi-layer perceptrons play very similar roles 
in that they both provide techniques for approximating arbitrary non-linear func­
tional mappings between multidimensional spaces. In both cases the mappings 
are expressed in terms of parametrized compositions of functions of single vari­
ables. The particular structures of the two networks are very different, however, 
and so it is interesting to compare them in more detail. Some of the important 
differences between the multi-layer perceptron and radial basis function networks 
are as follows: 

1. The hidden unit representations of the multi-layer perceptron depend on 
weighted linear summations of the inputs, transformed by monotonic acti­
vation functions. Thus the activation of a hidden unit in a multi-layer per­
ceptron is constant on surfaces which consist of parallel (d— l)-dimensional 
hyperplanes in (/-dimensional input space. By contrast, the hidden units 
in a radial basis function network use distance to a prototype vector fol­
lowed by transformation with a (usually) localized function. The activation 
of a basis function is therefore constant on concentric (d — l)-dimensional 
hyperspheres (or more generally on (d — l)-dimensional hyperellipsoids). 

2. A multi-layer perceptron can be said to form a distributed representation in 
the space of activation values for the hidden units since, for a given input 
vector, many hidden units will typically contribute to the determination 
of the output value. During training, the functions represented by the hid­
den units must be such that, when linearly combined by the final layer 
of weights, they generate the correct outputs for a range of possible input 
values. The interference and cross-coupling between the hidden units which 
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this requires results in the network training process being highly non-linear 
with problems of local minima, or nearly flat regions in the error function 
arising from near cancellations in the effects of different weights. This can 
lead to very slow convergence of the training procedure even with advanced 
optimization strategies. By contrast, a radial basis function network with 
localized basis functions forms a representation in the space of hidden units 
which is local with respect to the input space because, for a given input 
vector, typically only a few hidden units will have significant activations. 

3. A multi-layer perceptron often has many layers of weights, and a com­
plex pattern of connectivity, so that not all possible weights in any given 
layer are present. Also, a variety of different activation functions may be 
used within the same network. A radial basis function network, however, 
generally has a simple architecture consisting of two layers of weights, in 
which the first layer contains the parameters of the basis functions, and 
the second layer forms linear combinations of the activations of the basis 
functions to generate the outputs. 

4. All of the parameters in a multi-layer perceptron are usually determined 
at the same time as part of a single global training strategy involving 
supervised training. A radial basis function network, however, is typically 
trained in two stages, with the basis functions being determined first by 
unsupervised techniques using the input data alone, and the second-layer 
weights subsequently being found by fast linear supervised methods. 

5.9 Basis function optimization 

One of the principal advantages of radial basis function neural networks, as 
compared with the multi-layer perceptron, is the possibility of choosing suitable 
parameters for the hidden units without having to perform a full non-linear 
optimization of the network. In this section we shall discuss several possible 
strategies for selecting the parameters of the basis functions. The problem of 
selecting the appropriate number of basis functions, however, is discussed in the 
context of model order selection and generalization in Chapter 9. 

We have motivated radial basis functions from the perspectives of function 
approximation, regularization, noisy interpolation, kernel regression, and the es­
timation of posterior class probabilities for classification problems. All of these 
viewpoints suggest that the basis function parameters should be chosen to form 
a representation of the probability density of the input data. This leads to an 
unsupervised procedure for optimizing the basis function parameters which de­
pends only on the input data from the training set, and which ignores any target 
information. The basis function centres fij can then be regarded as prototypes 
of the input vectors. In this section we discuss a number of possible strategies 
for optimizing the basis functions which are motivated by these considerations. 

There are many potential applications for neural networks where unlabelled 
input data is plentiful, but where labelled data is in short supply. For instance, 
it may be easy to collect examples of raw input data for the network, but the 
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labelling of the data with target variables may require the time of a human expert 
which therefore limits the amount of data which can be labelled in a reasonable 
time. With such applications, the two-stage training process for a radial basis 
function network can be particularly advantageous since the determination of 
the non-linear representation given by first layer of the network can be done 
using a large quantity of unlabelled data, leaving a relatively small number of 
parameters in the second layer to be determined using the labelled data. At each 
stage of the training process, we can ensure that the number of data points is 
large compared with the number of parameters to be determined, as required for 
good generalization. 

One of the major potential difficulties with radial basis function networks, 
however, also stems from the localized nature of the hidden unit representation. 
It concerns the way in which such a network addresses the curse of dimensionality 
discussed in Section 1.4. There we saw that the number of hypercubes which are 
needed to fill out a compact region of a d-dimensional space grows exponentially 
with d. When the data is confined to some lower-dimensional sub-space, d is 
to be interpreted as the effective dimensionality of the sub-space, known as the 
intrinsic dimensionality of the data. If the basis function centres are used to fill 
out the sub-space then the number of basis function centres will be an exponential 
function of d (Hartman et al., 1990). As well as increasing the computation time, 
a large number of basis functions leads to a requirement for large numbers of 
training patterns in order to ensure that the network parameters are properly 
determined. 

The problem is particularly severe if there are input variables which have 
significant variance but which play little role in determining the appropriate 
output variables. Such irrelevant inputs are not uncommon in practical applica­
tions. When the basis function centres are chosen using the input data alone, 
there is no way to distinguish relevant from irrelevant inputs. This problem is 
illustrated in Figure 5.9 where we see a variable y which is a non-linear function 
of an input variable x\. We wish to use radial basis function network network 
to approximate this function. The basis functions are chosen to cover the region 
of the X\ axis where data is observed. Suppose that a second input variable X2 
is introduced which is uncorrelated with x\. Then the number of basis functions 
needed to cover the required region of input space increases dramatically as in­
dicated in Figure 5.10. If y is independent of x2 then these extra basis functions 
have no useful role in determining the value of y. Simulations using artificial data 
(Hartman et al, 1990), in which 19 out of 20 input variables consisted of noise 
uncorrelated with the output, showed that a multi-layer perceptron could learn 
to ignore the irrelevant inputs and obtain accurate results with a small number 
of hidden units, while radial basis function networks showed large error which 
decreased only slowly as the number of hidden units was increased. 

Problems arising from the curse of dimensionality may be much less severe if 
basis functions with full covariance matrices are used, as in (5.16), rather than 
spherical basis functions of the form (5.15). However, the number of parameters 
per basis function is then much greater. 
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y(xt) 
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Figure 5.9. A schematic example of a function y(x\) of an input variable x\ 
which has been modelled using a set of radial basis functions. 

Figure 5.10. As in Figure 5.9, but in which an extra, irrelevant variable xi 
has been introduced. Note that the number of basis functions, whose locations 
are determined using the input data alone, has increased dramatically, even 
though X2 carries no useful information for determining the output variable. 

We have provided compelling reasons for using unsupervised methods to de­
termine the first-layer parameters in a radial basis function network by modelling 
the density of input data. Such method have also proven to be very powerful in 
practice. However, it should be emphasized that the optimal choice of basis func­
tion parameters for density estimation need not be optimal for representing the 
mapping to the output variables. Figure 5.11 shows a simple example of a prob­
lem for which the use of density estimation to set the basis function parameters 
clearly gives a sub-optimal solution. 
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Figure 5.11. A simple example to illustrate why the use of unsupervised meth­
ods based on density estimation to determine the basis function parameters 
need not be optimal for approximating the target function. Data in one di­
mension (shown by the circles) is generated from a Gaussian distribution p{x) 
shown by the dashed curve. Unsupervised training of one Gaussian basis func­
tion would cause it to be centred at x = a, giving a good approximation to 
p(x). Target values for the input data are generated from a Gaussian function 
centred at b shown by the solid curve. The basis function centred at a can only 
give a very poor representation of h(x). By contrast, if the basis function were 
centred at b it could represent the function h(x) exactly. 

5.9.1 Subsets of data points 

One simple procedure for selecting the basis function centres fii is to set them 
equal to a random subset of the input vectors from the training set, as was 
done for the example shown in Figure 5.3. Clearly this is not an optimal pro­
cedure so far as density estimation is concerned, and may also lead to the use 
of an unnecessarily large number of basis functions in order to achieve adequate 
performance on the training data. This method is often used, however, to pro­
vide a set of starting values for many of the iterative adaptive procedures to be 
discussed shortly. 

Another approach is to start with all data points as basis functions centres 
and then selectively remove centres in such a way as to have minimum disruption 
on the performance of the system. Such an approach was introduced into the 
if-nearest-neighbour classification scheme by Devijver and Kittler (1982) and 
applied to radial basis function networks used for classification by Kraaijveld 
and Duin (1991). A procedure for selecting a subset of the basis functions so as 
to preserve the best estimator of the unconditional density is given in Fukunaga 
and Hayes (1989). 

These techniques only set the basis function centres, and the width param­
eters Uj must be chosen using some other procedure. One heuristic approach is 
to choose all the ffj to be equal and to be given by some multiple of the average 
distance between the basis function centres. This ensures that the basis func-



5.9: Basis function optimization 187 

tions overlap to some degree and hence give a relatively smooth representation 
of the distribution of training data. We might also recognize that the optimal 
width may be different for basis functions in different regions of input space. For 
instance, the widths may be determined from the average distance of each basis 
function to its L nearest neighbours, where L is typically small. Such ad hoc 
procedures for choosing the basis function parameters are very fast, and allow 
a radial basis function network to be set up very quickly, but are likely to be 
significantly sub-optimal. 

5.9.2 Orthogonal least squares 

A more principled approach to selecting a sub-set of the data points as basis 
function centres is based on the technique of orthogonal least squares. To motivate 
this approach consider the following procedure for selecting basis functions. We 
start by considering a network with just one basis function. For each data point 
in turn we set the basis function centre to the input vector for that data point, 
and then set the second-layer weights by pseudo-inverse techniques using the 
complete training set of N data points. The basis function centre which gives rise 
to the smallest residual error is retained. In subsequent steps of the algorithm, 
the number of basis functions is then increased incrementally. If at some point in 
the algorithm I of the data points have been selected as basis function centres, 
then N — I networks are trained in which each of the remaining N — I data points 
in turn is selected as the centre for the additional basis function. The extra basis 
function which gives the smallest value for the residual sum-of-squares error is 
then retained, and the algorithm proceeds to the next stage. 

Such an approach would be computationally intensive since at each step it 
would be necessary to obtain a complete pseudo-inverse solution for each possible 
choice of basis functions. A much more efficient procedure for achieving the same 
result is that of orthogonal least squares (Chen et al., 1989, 1991). In outline, the 
algorithm involves the sequential addition of new basis functions, each centred 
on one of the data points, as described above. This is done by constructing a 
set of orthogonal vectors in the space S spanned by the vectors of hidden unit 
activations for each pattern in the training set (Section 3.4.2). It is then possible 
to calculate directly which data point should be chosen as the next basis function 
centre in order to produce the greatest reduction in residual sum-of-squares error. 
Values for the second-layer weights are also determined at the same time. If the 
algorithm is continued long enough then all data points will be selected, and the 
residual error will be zero. In order to achieve good generalization, the algorithm 
must be stopped before this occurs. This is the problem of model-order selection, 
and is discussed at length in Chapters 9 and 10. 

5.9.3 Clustering algorithms 

As an improvement on simply choosing a subset of the data points as the basis 
function centres, we can use clustering techniques to find a set of centres which 
more accurately reflects the distribution of the data points. Moody and Darken 
(1989) use the K-means clustering algorithm, in which the number K of centres 
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must be decided in advance. The algorithm involves a simple re-estimation pro­
cedure, as follows. Suppose there are N data points x n in total, and we wish 
to find a set of K representative vectors fij where j = 1 if. The algorithm 
seeks to partition the data points {x n} into K disjoint subsets Sj containing Nj 
data points, in such a way as to minimize the sum-of-squares clustering function 
given by 

J = E£i i x n -M 2 (5-58) 
j = l n£Sj 

where pij is the mean of the data points in set Sj and is given by 

M, = ± £ x». (5.59) 
3 neSj 

The batch version of if-means (Lloyd, 1982) begins by assigning the points at 
random to K sets and then computing the mean vectors of the points in each set. 
Next, each point is re-assigned to a new set according to which is the nearest 
mean vector. The means of the sets are then recomputed. This procedure is 
repeated until there is no further change in the grouping of the data points. It 
can be shown (Linde et al., 1980) that at each such iteration the value of J will 
not increase. The calculation of the means can also be formulated as a stochastic 
on-line process (MacQueen, 1967; Moody and Darken, 1989). In this case, the 
initial centres are randomly chosen from the data points, and as each data point 
x n is presented, the nearest /x, is updated using 

Afij = V(xn - »j) (5.60) 

where r) is the learning rate parameter. Note that this is simply the Robbins-
Monro procedure (Section 2.4.1) for finding the root of a regression function given 
by the derivative of J with respect to fij. Once the centres of the basis functions 
have been found in this way, the covariance matrices of the basis functions can 
be set to the covariances of the points assigned to the corresponding clusters. 

Another unsupervised technique which has been used for assigning basis func­
tion centres is the Kohonen topographic feature map, also called a self-organizing 
feature map (Kohonen, 1982). This algorithm leads to placement of a set of pro­
totype vectors in input space, each of which corresponds to a point on a regular 
grid in a (usually two-dimensional) feature-map space. When the algorithm has 
converged, prototype vectors corresponding to nearby points on the feature map 
grid have nearby locations in input space. This leads to a number of applications 
for this algorithm including the projection of data into a two-dimensional space 
for visualization purposes. However, the imposition of the topographic property, 
particularly if the data is not intrinsically two-dimensional (Section 8.6.1), may 
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lead to suboptimal placement of vectors. 

5.9.4 Gaussian mixture models 

We have already discussed a number of heuristic procedures for setting the basis 
function parameters such that the basis functions approximate the distribution of 
the input data. A more principled approach, however, is to recognize that this is 
essentially the mixture density estimation problem, which is discussed at length 
in Section 2.6. The basis functions of the neural network can be regarded as the 
components of a mixture density model, whose parameters are to be optimized 
by maximum likelihood. We therefore model the density of the input data by a 
mixture model of the form 

M 

p(x) = ; £ P ( j ) & ( x ) (5.61) 
3 = 1 

where the parameters P(j) are the mixing coefficients, and <f>j(x) are the ba­
sis functions of the network. Note that the mixing coefficients can be regarded 
as prior probabilities for the data points to have been generated from the jth 
component of the mixture. The likelihood function is given by 

C == ]\v{xn) (5.62) 
n 

and is maximized both with respect to the mixing coefficients P(j), and with 
respect to the parameters of the basis functions. This maximization can be per­
formed by computing the derivatives of C with respect to the parameters and us­
ing these derivatives in standard non-linear optimization algorithms (Chapter 7). 
Alternatively, the parameters can be found by re-estimation procedures based 
on the EM (expectation-maximization) algorithm, described in Section 2.6.2. 

Once the mixture model has been optimized, the mixing coefficients P(j) 
can be discarded, and the basis functions then used in the radial basis function 
network in which the second-layer weights are found by supervised training. By 
retaining the mixing coefficients, however, the density model p(x) in (5.61) can 
be used to assign error bars to the network outputs, based on the degree of 
novelty of the input vectors (Bishop, 1994b). 

It is interesting to note that the if-means algorithm can be seen as a par­
ticular limit of the EM optimization of a Gaussian mixture model. From Sec­
tion 2.6.2, the EM update formula for a basis function centre is given by 

,,new _ I v n " ( J [X")X" 

^ ~ E„.PCil*»') ( 5 6 3 ) 

where P(j\x) is the posterior probability of basis function j , and is given in terms 
of the basis functions and the mixing coefficients, using Bayes' theorem, in the 
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form 

P m = ^MM (5.64) 
p(x) 

where p(x) is given by (5.61). Suppose we consider spherical Gaussian basis 
functions having a common width parameter a. Then the ratio of the posterior 
probabilities of two of the basis functions, for a particular data point x n , is given 
by 

p(« _ exp M i * " - ^ ' + ii»«-MtH m. (5.65) 
P{k\xn) r 2cr2 2cr2 J P(k) 

If we now take the limit a —* 0, we see that 

H g - 0 if ||x"-^||2>||x"-/xfc||
a. (5.66) 

Thus, the probabilities for all of the kernels is zero except for the kernel whose 
centre vector \ik is closest to x n . In this limit, therefore, the EM update formula 
(5.63) reduces to the /C-means update formula (5.59). 

5.10 Superv i sed t r a in ing 

As we have already remarked, the use of unsupervised techniques to determine 
the basis function parameters is not in general an optimal procedure so far as 
the subsequent supervised training is concerned. The difficulty arises because 
the setting up of the basis functions using density estimation on the input data 
takes no account of the target labels associated with that data. In order to set 
the parameters of the basis functions to give optimal performance in computing 
the required network outputs we should include the target data in the training 
procedure. That is, we should perform supervised, rather than unsupervised, 
training. 

The basis function parameters for regression can be found by treating the ba­
sis function centres and widths, along with the second-layer weights, as adaptive 
parameters to be determined by minimization of an error function. For the case 
of the sum-of-squares error (5.19), and spherical Gaussian basis functions (5.15), 
we obtain the following expressions for the derivatives of the error function with 
respect to the basis function parameters 

dE ST^, , n, ,nX ( Vn-^\?\ l l*"-*M|2 , e e , , 
^ = L L f o * ( x )-*fc>w«exP 2jT—) a3 (5-67) 

1 n k \ J' / J 
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where fiji denotes the ith component of/x^. These expressions for the derivatives 
can then be used in conjunction with one of the standard optimization strategies 
discussed in Chapter 7. 

The setting of the basis function parameters by supervised learning represents 
a non-linear optimization problem which will typically be computationally in­
tensive and may be prone to finding local minima of the error function. However, 
provided the basis functions are reasonably well localized, any given input vector 
will only generate a significant activation in a small fraction of the basis func­
tions, and so only these functions will be significantly updated in response to that 
input vector. Training procedures can therefore be speeded up significantly by 
identifying the relevant basis functions and thereby avoiding unnecessary compu­
tation. Techniques for finding these units efficiently are described by Omohundro 
(1987). Also, one of the unsupervised techniques described above can be used 
to initialize the basis function parameters, after which they can be 'fine tuned' 
using supervised procedures. However, one of the drawbacks of supervised train­
ing of the basis functions is that there is no guarantee that they will remain 
localized. Indeed, in numerical simulations it is found that a subset of the basis 
functions may evolve to have very broad responses (Moody and Darken, 1989). 
Also, some of the main advantages of radial basis function networks, namely fast 
two-stage training, and interpretability of the hidden unit representation, are 
lost if supervised training is adopted. 

Exercises 

5.1 (*) Consider a radial basis function network represented by (5.14) with 
Gaussian basis functions having full covariance matrices of the form (5.16). 
Derive expressions for the elements of the Jacobian matrix given by 

dyk 
>H = — • (5-69) 

5.2 (**) Consider a radial basis function network with spherical Gaussian basis 
of the form (5.15), network outputs given by (5.17) and a sum-of-squares 
error function of the form (5.19). Derive expressions for elements of the 
Hessian matrix given by 

d2E 
Hrs = ^ - (5.70) 

owrawa 

where wr and ws are any two parameters in the network. Hint: the results 
can conveniently be set out as six equations, one for each possible pair of 
weight types (basis function centres, basis function widths, or second-layer 
weights). 
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5.3 (**) Consider the functional derivative (Appendix D) of the regularization 
functional given by (5.29), with respect to the function y(x). By using 
successive integration by parts, and making use of the identities 

V(ab) = aVb + bVa (5.71) 

V • (aVb) = aV2b + V6 • Va (5.72) 

show that the operator PP is given by 

oo 21 

i=o l-z 

It should be assumed that 'boundary' terms arising from the integration by 
parts can be neglected. Now find the Green's function G(||x — x'| |) of this 
operator, defined by (5.24), as follows. First introduce the multidimensional 
Fourier transform of G, in the form 

G ( | | x - x ' | | ) = / " G ( s ) e x p { - i s T ( x - x ' ) } da. (5.74) 

By substituting (5.74) into (5.73), and using the following form for the 
Fourier transform of the delta function 

<5(* " xO = J^yif™P {- te T (x - x ' )} ds (5.75) 

where d is the dimensionality of x and s, show that the Fourier transform 
of the Green's function is given by 

•{-£w}. G ( s ) = e x P | - y | | s | | 2 | . (5.76) 

Now substitute this result into (5.74) and, by using the results given in 
Appendix B, show that the Green's function is given by 

G(ii* - x'H) = j ^ m exp {-2^HX - x'n2} • f5-77* 

5.4 (*) Consider general Gaussian basis functions of the form (5.16) and suppose 
that all of the basis functions in the network share a common covariance 
matrix E. Show that the mapping represented by such a network is equiv­
alent to that of a network of spherical Gaussian basis functions of the 
form (5.15), with a common variance parameter cr2 = 1, provided the in­
put vector x is first transformed by an appropriate linear transformation. 
By making use of the results of Appendix A, find expressions relating the 
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transformed input vector x and transformed basis function centres /x, to 
the corresponding original vectors x and /x,. 

5.5 (*) In a multi-layer perceptron a hidden unit has a constant activation for 
input vectors which lie on a hyperplanar surface in input space given by 
w x + WQ = const., while for a radial basis function network, with ba­
sis functions given by (5.15), a hidden unit has constant activation on a 
hyperspherical surface defined by ||x — / i | | 2 = const. Show that, for suit­
able choices of the parameters, these surfaces coincide if the input vectors 
are normalized to unit length, so that ||x|| = 1. Illustrate this equivalence 
geometrically for vectors in a three-dimensional input space. 

5 . 6 (*** ) Write a numerical implementation of the if-means clustering algo­
rithm described in Section 5.9.3 using both the batch and on-line versions. 
Illustrate the operation of the algorithm by generating data sets in two di­
mensions from a mixture of Gaussian distributions, and plotting the data 
points together with the trajectories of the estimated means during the 
course of the algorithm. Investigate how the results depend on the value 
of K in relation to the number of Gaussian distributions, and how they 
depend on the variances of the distributions in relation to their separation. 
Study the performance of the on-line version of the algorithm for differ­
ent values of the learning rate parameter TJ in (5.60), and compare the 
algorithm with the batch version. 

5.7 (***) Implement a radial basis function network for one input variable, one 
output variable and Gaussian basis functions having a common variance 
parameter a2. Generate a set of data by sampling the function h(x) = 
0.5 + 0.4 sin(2/T2:) with added Gaussian noise, and with x values taken 
randomly from a uniform distribution in the interval (0,1). Set the basis 
function centres to a random subset of the x values, and use singular value 
decomposition (Press et al., 1992) to find the network weights which min­
imize the sum-of-squares error function. Investigate the dependence of the 
network function on the number of basis function centres and on the value 
of the variance parameter. Plot graphs of the form shown in Figure 5.3 to 
illustrate the results. 

5 . 8 (*** ) Write down an analytic expression for the regularized matrix M in 
(5.32) for the case of Gaussian basis functions given by (5.15). Extend the 
software implementation of the previous exercise to include this form of 
regularization. Consider the case in which the number of basis functions 
equals the number of data points and in which a is equal to roughly twice 
the average separation of the input values. Investigate the effect of using 
different values for the regularization coefficient A, and show that, if the 
value of A is either too small or too large, then the resulting network 
mapping gives a poor approximation to the function h(x) from which the 
data was generated. 
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ERROR FUNCTIONS 

In previous chapters we have made use of the sum-of-squares error function, 
which was motivated primarily by analytical simplicity. There are many other 
possible choices of error function which can also be considered, depending on 
the particular application. In this chapter we shall describe a variety of different 
error functions and discuss their relative merits. 

For regression problems we shall see that the basic goal is to model the con­
ditional distribution of the output variables, conditioned on the input variables. 
This motivates the use of a sum-of-squares error function, and several important 
properties of this error function will be explored in some detail. 

For classification problems the goal is to model the posterior probabilities of 
class membership, again conditioned on the input variables. Although the sum-
of-squares error function can be used for classification (and can approximate 
the posterior probabilities) we shall see that there are other, more appropriate, 
error functions which can be considered. Generally speaking, Sections 6.1 to 6.4 
are concerned with error functions for regression problems, while the remaining 
sections are concerned primarily with error functions for classification. 

As we have stressed several times, the central goal in network training is not 
to memorize the training data, but rather to model the underlying generator of 
the data, so that the best possible predictions for the output vector t can be 
made when the trained network is subsequently presented with a new value for 
the input vector x. The most general and complete description of the generator 
of the data is in terms of the probability density p(x, t ) in the joint input-target 
space. For associative prediction problems of the kind we are considering, it is 
convenient to decompose the joint probability density into the product of the 
conditional density of the target data, conditioned on the input data, and the 
unconditional density of input data, so that 

p ( x , t ) = p ( t | x ) p ( x ) (6.1) 

where p( t |x) denotes the probability density of t given that x takes a particular 
value, while p(x) represents the unconditional density of x and is given by 

p(x) = fp(t,x)dt. (6.2) 
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The density p(x) plays an important role in several aspects of neural networks, 
including procedures for choosing the basis function parameters in a radial basis 
function network (Section 5.9). However, for the purposes of making predictions 
of t for new values of x, it is the conditional density p(t|x) which we need to 
model. 

Most of the error functions which will be considered in this chapter can be 
motivated from the principle of maximum likelihood (Section 2.2). For a set of 
training data {x n , t n } , the likelihood can be written as 

C = ]Jp(xn,tn) 
n 

= JJp(tn\xn)p(xn) (6.3) 
n 

where we have assumed that each data point (x",t") is drawn independently 
from the same distribution, and hence we can multiply the probabilities. Instead 
of maximizing the likelihood, it is generally more convenient to minimize the 
negative logarithm of the likelihood. These are equivalent procedures, since the 
negative logarithm is a monotonic function. We therefore minimize 

E=-ln£ = - £ l n p ( t n | x n ) - ]Tmp(x n ) (6.4) 
n n 

where E is called an error function. As we shall see, a feed-forward neural network 
can be regarded as a framework for modelling the conditional probability density 
p(t|x). The second term in (6.4) does not depend on the network parameters, 
and so represents an additive constant which can be dropped from the error 
function. We therefore have 

£ = - £ > p ( t n | x " ) . (6.5) 
n 

Note that the error function takes the form of a sum over patterns of an error 
term for each pattern separately. This follows from the assumed independence of 
the data points under the given distribution. Different choices of error function 
arise from different assumptions about the form of the conditional distribution 
p(t|x). For interpolation problems, the targets t consist of continuous quantities 
whose values we are trying to predict, while for classification problems they 
represent labels defining class membership or, more generally, estimates of the 
probabilities of class membership. 

6.1 Sum-of-squares error 
Consider the case of c target variables t% where k = 1, . . . , c, and suppose that 
the distributions of the different target variables are independent, so that we can 
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write 

p(tix)=n^ix)- <6-6) 
k=l 

We shall further assume that the distribution of the target data is Gaussian. More 
specifically, we assume that the target variable tk is given by some deterministic 
function of x with added Gaussian noise e, so that 

tk=hk(x) + ek. (6.7) 

We now assume that the errors ek have a normal distribution with zero mean, 
and standard a deviation a which does not depend on x or on k. Thus, the 
distribution of ek is given by 

P(<*) = 7 ^ m 7 5 « p ( - § | » ) . <6 '8) (27T(72)1/2 

We now seek to model the functions hk(x) by a neural network with outputs 
2A:(x; w) where w is the set of weight parameters governing the neural network 
mapping. Using (6.7) and (6.8) we see that the probability distribution of target 
variables is given by 

^ * W = (2^5)175 e x ? ( ^ ) (6-9) 

where we have replaced the unknown function hk(x) by our model t/fc(x;w). 
Together with (6.6) and (6.5) this leads to the following expression for the error 
function 

E = ^ E E f e ( x » - « 2 + i V c l n f f + f l n(24 (6.10) 
n = l f c = l 

We note that, for the purposes of error minimization, the second and third terms 
on the right-hand side of (6.10) are independent of the weights w and so can 
be omitted. Similarly, the overall factor of 1/a2 in the first term can also be 
omitted. We then finally obtain the familiar expression for the sum-of-squares 
error function 

N c 

£ = 5EZ>*(xB;w)-t2}a (6-n> 
n=lfc=l 
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= 5El|y(x";w)-t"| |2 . (6.12) 
n=\ 

Having found a set of values w* for the weights which minimizes the error, 
the optimum value for a can then by found by minimization of E in (6.10) with 
respect to a. This minimization is easily performed analytically with the explicit, 
and intuitive, result 

ff! = F c ^ W x " ; w V i S } 2 (6-13) 

n=lfc=l 

which says that the optimal value of a2 is proportional to the residual value of 
the sum-of-squares error function at its minimum. We shall return to this result 
later. 

We have derived the sum-of-squares error function from the principle of maxi­
mum likelihood on the assumption of Gaussian distributed target data. Of course 
the use of a sum-of-squares error does not require the target data to have a Gaus­
sian distribution. Later in this chapter we shall consider the least-squares solution 
for an example problem with a strongly non-Gaussian distribution. However, as 
we shall see, if we use a sum-of-squares error, then the results we obtain cannot 
distinguish between the true distribution and any other distribution having the 
same mean and variance. 

Note that it is sometimes convenient to assess the performance of networks 
using a different error function from that used to train them. For instance, in 
an interpolation problem the networks might be trained using a sum-of-squares 
error function of the form 

£ = ^Eiiy( x";w)- t nn 2 (6-14) 
n 

where the sum runs over all N patterns in the training set, whereas for network 
testing it would be more convenient to use a root-mean-square (RMS) error of 
the form 

£RMS = Enlly(*"-,W*)-t"|j2 

£j|t"-t||2 

where w* denotes the weight vector of the trained network, and the sums now 
run over the N' patterns in the test set. Here t is defined to be the average test 
set target vector 
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n—1 

The RMS error (6.15) has the advantage, unlike (6.14), that its value does not 
grow wjth the size of the data set. If it has a value of unity then the network 
is predicting the test data 'in the mean' while a value of zero means perfect 
prediction of the test data. 

6.1.1 Linear output units 

The mapping function of a multi-layer perceptron or a radial basis function 
network can be written in the form 

2/fc(x;w) = g(ak) (6.17) 

M 
ak = X^w/y-ZjC*;^) (6.18) 

where g(-) denotes the activation function of the output units, {w/y} denotes the 
set of weights (and biases) which connect directly to the output units, and w 
denotes the set of all other weights (and biases) in the network. The derivative 
of the sum-of-squares error (6.11) with respect to Ofc can be written as 

^ - = E»'(°z)(»ir-*)?)• (6-i9) 
n 

If we choose the activation function for the output units to be linear, g(a) = a, 
then this derivative takes a particularly simple form 

*£ = £(!*-*)• (6-M) 
"• n 

This allows the minimization with respect to the weights {tujy} (with the weights 
w held fixed) to be expressed as a linear optimization problem, which can be 
solved in closed form as discussed in Section 3.4.3. Here we shall follow a similar 
analysis, except that we shall find it convenient to make the bias parameters 
explicit and deal with them separately. 

We first write the network mapping in the form 

M 
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Minimizing the sum-of-squares error (6.11) with respect to the biases first, we 
then obtain 

g^-0 = E E w«*" +u>ko-t»A=0 (6.22) 

which can be solved explicitly for the biases to give 

M 

Wko = *fc - E Wki*i (6-23) 
i = i 

where we have defined the following average quantities: 

n = l n—1 

The result (6.23) shows that the role of the biases is to compensate for the 
difference between the averages (over the data set) of the target values, and the 
weighted sums of the averages of the hidden unit outputs. 

If we back-substitute the expression (6.23) into the sum-of-squares error we 
obtain 

N c ( M "J 

w h e r e w e h a v e def ined 

* * = * * - **» z? = z?-*j. (6.26) 

We can now minimize this error with respect to the output weights wjy to give 

It is convenient at this point to introduce a matrix notation so that (T)nfc = ££, 
(W)fcj = Wkj and (Z)nj- = zj1. We can then write (6.27) in the form 

Z T ZW T - ZTT = 0 (6.28) 
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where Z T denotes the transpose of Z. We can write an explicit solution for the 
weight matrix as 

W T = Z*T = 0 (6.29) 

where Z* is the pseudo-inverse of the matrix Z given by 

Zt = (Z T Z) - 1 Z T . (6.30) 

Here we have assumed that the matrix (ZTZ) is non-singular. A more general 
discussion of the properties of the pseudo-inverse can be found in Section 3.4.3. 
For a single-layer network, this represents the optimal solution for the weights, 
which can therefore be calculated explicitly. In the present case, however, this 
expression for the weights depends on the activations of the hidden units which 
themselves depend on the weights w. Thus, as the weights w change during 
learning, so the optimal values for the weights {wkj} will also change. Never­
theless, it is still possible to exploit the linear nature of the partial optimization 
with respect to the output unit weights as part of an overall strategy for error 
minimization, as discussed in Section 7.3. 

6.1.2 Linear sum rules 

The use of a sum-of-squares error function to determine the weights in a network 
with linear output units implies an interesting sum rule for the jietwork outputs 
(Lowe and Webb, 1991). Suppose that the target patterns used to train the 
network satisfy an exact linear relation, so that for each pattern n we have 

u T t n + « o = 0 (6.31) 

where u and uo are constants. We now show that, if the final-layer weights 
are determined by the optimal least-squares procedure outlined above, then the 
outputs of the network will satisfy the same linear constraint for arbitrary input 
patterns. 

Summing over all patterns n in (6.31) we find that the average target vector 
t satisfies the relation UQ = —uTt where the components of t are given by (6.24). 
Thus, the linear relation (6.31) can be written in the form 

u T t " = u T t . (6.32) 

The network outputs, given by (6.21), can be written in vector notation as 

y = W z + w0 . (6.33) 

Similarly, the solution for the optimal biases given by (6.23) can be written as 
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w 0 = t - W z . (6.34) 

Now consider the scalar product of y with the vector u, for an arbitrary input 
pattern. Using the optimal weights given by (6.29), together with (6.33) and 
(6.34), we have 

u T y = uT(wo + Wz) 

= u T t + u T T T ( z t ) T ( z - z) (6.35) 

where we have used the following property of matrix transposes ( A B ) T = B T A T . 
Prom (6.32), however, it follows that 

( u T T T ) n = u T t " = u T ( t " - t ) = 0 (6.36) 

where we have used the linear constraint (6.32). Combining (6.35) and (6.36) we 
obtain 

u T y = u T t (6.37) 

and so the network outputs exactly satisfy the same linear sum rule as the target 
data. We shall see an application of this result in the next section. More generally, 
if a set of targets satisfies several linear constraints simultaneously, then so will 
the outputs of the network (Exercise 6.3). 

6.1.3 Interpretation of network outputs 

We next derive an important result for the interpretation of the outputs of a net­
work trained by minimizing a sum-of-squares error function. In particular, we 
will show that the outputs approximate the conditional averages of the target 
data. This is a central result which has several important consequences for prac­
tical applications of neural networks. An understanding of its implications can 
help to avoid some common mistakes, and lead to more effective use of network 
network techniques. 

Consider the limit in which the size N of the training data set goes to infinity. 
In this limit we can replace the finite sum over patterns in the sum-of-squares 
error with an integral of the form 

E = AÎ OO m £ £ <«*<*";w) - « } a <6-38) 
n=l k 

= JH//{vfc(x;w)-*fc}2p(tk.x)<ttfcdx (6-39) 
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where we have introduced an extra factor of l/N into the definition of the sum-
of-squares error in order to make the limiting process meaningful. We now factor 
the joint distributions p(tk,x) into the product of the unconditional density 
function for the input data p(x), and the target data density conditional on the 
input vector p(tk\x), as in (6.1), to give 

E=\Y1 11{yk(x;w)-tk}
2p(tk\x)p(x)dtkdx. (6.40) 

Next we define the following conditional averages of the target data 

(ifc|x) = J tkp{tk\x) dtk (6.41) 

(t\\x)= Jt2
kp{tk\x)dtk. (6.42) 

We now write the term in brackets in (6.40) in the form 

{Vk - tk}
2 = {yk - (tk\x) + (tk\x) - tk}

2 (6.43) 

= {Vk ~ (tk\x)}2 + 2{yk - (tk\x)}{{tk\x) - tk} 

+ {{tk\x)-tk}
2 (6.44) 

Next we substitute (6.44) into (6.40) and make use of (6.41) and (6.42). The 
second term on the right-hand side of (6.44) then vanishes as a consequence of 
the integration over tk. The sum-of-squares error can then be written in the form 

E = \ £ f^x>w) - <**lx»aP(x) dx 

+ \ E / { < ^ x > ~ <**l*>a}p(x) dx. (6.45) 

We now note that the second term in (6.45) is independent of the network 
mapping function yk(x;w) and hence is independent of the network weights w. 
For the purposes of determining the network weights by error minimization, this 
term can be neglected. Since the integrand in the first term in (6.45) is non-
negative, the absolute minimum of the error function occurs when this first term 
vanishes, which corresponds to the following result for the network mapping 

yk(x;w*) = {tk\x) (6.46) 
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J W 

Figure 6.1. A schematic illustration of the property (6.46) that the network 
mapping which minimizes a sum-of-squares error function is given by the con­
ditional average of the target data. Here we consider a mapping from a single 
input variable x to a single target variable t. At any given value Xo of the input 
variable, the network output y(xo) is given by the average of t with respect to 
the distribution p(t\xo) of the target variable, for that value of x. 

where w* is the weight vector at the minimum of the error function. Equa­
tion (6.46) is a key result and says that the network mapping is given by the 
conditional average of the target data, in other words by the regression of tfc 
conditioned on x. This result is illustrated schematically in Figure 6.1, and by a 
simple example in Figure 6.2. 

Before discussing the consequences of this important result we note that it is 
dependent on three key assumptions. First, the data set must be sufficiently large 
that it approximates an infinite data set. Second, the network function j/fc(x; w) 
must be sufficiently general that there exists a choice of parameters which makes 
the first term in (6.45) sufficiently small. This second requirement implies that 
the number of adaptive weights (or equivalently the number of hidden units) 
must be sufficiently large. It is important that the two limits of large data set 
and large number of weights must be approached in a coupled way in order to 
achieve the desired result. This important issue is discussed in Section 9.1 in the 
context of generalization and the trade-off between bias and variance. The third 
caveat is that the optimization of the network parameters is performed in such 
a way as to find the appropriate minimum of the cost function. Techniques for 
parameter optimization in neural networks are discussed in Chapter 7. 

Note that the derivation of the result (6.46) did not depend on the choice of 
network architecture, or even whether we were using a neural network at all. It 
only required that the representation for the non-linear mapping be sufficiently 
general. The importance of neural networks is that they provide a practical 
framework for approximating arbitrary non-linear multivariate mappings, and 
can therefore in principle approximate the conditional average to arbitrary ac­
curacy. 
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Figure 6.2. A simple example of a network mapping which approximates the 
conditional average of the target data (shown by the circles) generated from 
the function t = x + 0.3sin(27rx)4-e where e is a random variable drawn from a 
uniform distribution in the range (—0.1,0.1). The solid curve shows the result 
of training a multi-layer perceptron network with five hidden units using a sum-
of-squares error function. The network approximates the conditional average 
of the target data, which gives a good representation of the function from 
which the data was generated. 

We can easily see why the minimum of a sum-of-squares error is given by the 
average value of the target data by considering the simple error function 

E(y) = (y-a)2 + (y-b)2 (6.47) 

where a and b are constants. Differentiation of E{y) with respect to y shows that 
the minimum occurs at 

y™» = ( a + 6)/2 (6.48) 

In other words, the minimum is given by the average of the target data. The 
more general property (6.46) is simply the extension of this result to conditional 
averages. 

We can also derive (6.46) in a more direct way as follows. If we take the sum-
of-squares error in the form (6.39) and set the functional derivative (Appendix D) 
of E with respect to yk (x) to zero we obtain 
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J-TT = I {Vk(x) - t*}p(**|x)p(x) dtk = 0. (6.49) 

If we make use of (6.41) we then obtain (6.46) directly. The use of a functional 
derivative here is equivalent to the earlier assumption that the class of functions 
!/fc(x) is very general. 

For many regression problems, the form of network mapping given by the 
conditional average (6.46) can be regarded as optimal. If the data is generated 
from a set of deterministic functions hk(x) with superimposed zero-mean noise 
ek then the target data is given by 

tf = Mxn)+ejJ. (6.50) 

The network outputs, given by the conditional averages of the target data, then 
take the form 

y*(x) = <t*|x) = (hk(x) + e*|x) = A*(x) (6.51) 

since (en) — 0. Thus the network has averaged over the noise on the data and 
discovered the underlying deterministic function. Not all regression problems are 
as simple as this, however, as we shall see later. 

Note that the first integral in (6.45) is weighted by the unconditional density 
p(x). We therefore see that the network function 2/fc(x) pays a significant penalty 
for departing from the conditional average (tk\x) in regions of input space where 
the density p(x) of input data is high. In regions where p(x) is small, there is 
little penalty if the network output is a poor approximation to the conditional 
average. This forms the basis of a simple procedure for assigning error bars to 
network predictions, based on an estimate of the density p(x) (Bishop, 1994b). 

If we return to (6.45) we see that the second term can be written in the form 

i ^ y " a 2 ( x ) p ( x ) d x (6.52) 

where a\ (x) represents the variance of the target data, as a function of x, and 
is given by 

a\{x) = («g|x) - (ifc(x>2 (6.53) 

= ((tk - (tfc |x))2 |x) (6.54) 

= J{tk-(tk\x}}2p(tk\x)dtk. (6.55) 

If the network mapping function is given by the conditional average (6.46), so 



206 6: Error Functions 

that the first term in (6.45) vanishes, then the residual error is given by (6.52). 
The value of the residual error is therefore be a measure of the average variance 
of the target data. This is equivalent to the earlier result (6.13) obtained for a 
finite data set. It should be emphasized, however, that these are biased estimates 
of the variance, as discussed in Section 2.2, and so they should be treated with 
care in practical applications. 

We originally derived the sum-of-squares error function from the principle 
of maximum likelihood by assuming that the distribution of the target data 
could be described by a Gaussian function with an x-dependent mean, and a 
single global variance parameter. As we noted earlier, the sum-of-squares error 
does not require that the distribution of target variables be Gaussian. If a sum-
of-squares error is used, however, the quantities which can be determined are 
the x-dependent mean of the distribution (given by the outputs of the trained 
network) and a global averaged variance (given by the residual value of the 
error function at its minimum). Thus, the sum-of-squares error function cannot 
distinguish between the true distribution, and a Gaussian distribution having 
the same x-dependent mean and average variance. 

6.1.4 Outer product approximation for the Hessian 

In Section 4.10.2 we discussed a particular approximation to the Hessian matrix 
(the matrix of second derivatives of the error function with respect to the network 
weights) for a sum-of-squares error function. This approximation is based on a 
sum of outer products of first derivatives. Here we show that the approximation 
is exact in the infinite data limit, provided we are at the global minimum of the 
error function. Consider the error function in the form (6.45). Taking the second 
derivatives with respect to two weights wr and ws we obtain 

d2E ^ / / dyk dyk 

dwrdw, 

+ £/{ij3^»-M*»}p(x)<l*. (6.56) 

Using the result (6.46) that the outputs j/fc(x) of the trained network represent 
the conditional averages of the target data, we see that the second term in (6.56) 
vanishes. The Hessian is therefore given by an integral of terms involving only 
the products of first derivatives. For a finite data set, we can write this result in 
the form 

&E _ 1 » gyngyn 

dwrdws N ^ ^ dwr dw3'
 K ' ' 
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6.1.5 Inverse problems 

The fact that a least-squares solution approximates the conditional average of 
the target data has an important consequence when neural networks are used 
to solve inverse problems. Many potential applications of neural networks fall 
into this category. Examples include the analysis of spectral data, tomographic 
reconstruction, control of industrial plant, and robot kinematics. For such prob­
lems there exists a well-defined forward problem which is characterized by a 
functional (i.e. single-valued) mapping. Often this corresponds to causality in a 
physical system. In the case of spectral reconstruction, for example, the forward 
problem corresponds to the evaluation of the spectrum when the parameters 
(locations, widths and amplitudes) of the spectral lines are prescribed. In prac­
tical applications we generally have to solve the corresponding inverse problem 
in which the roles of input and output variables are interchanged. In the case 
of spectral analysis, this corresponds to the determination of the spectral line 
parameters from an observed spectrum. For inverse problems, the mapping can 
be often be multi-valued, with values of the inputs for which there are several 
valid values for the outputs. For example, there may be several choices for the 
spectral line parameters which give rise to the same observed spectrum. If a 
least-squares approach is applied to an inverse problem, it will approximate the 
conditional average of the target data, and this will frequently lead to extremely 
poor performance, (since the average of several solutions is not necessarily itself 
a solution). 

As a simple illustration of this problem, consider the data set shown earlier 
in Figure 6.2 where we saw how a network which approximates the conditional 
average of the target data gives a good representation of the underlying gen­
erator of the data. Suppose we now reverse the roles of the input and target, 
variables. Figure 6.3 shows the result of training a network of the same type as 
before on the same data set, but with input and output variables interchanged. 
The network again tries to approximate the conditional average of the target 
data, but this time the conditional average gives a very poor description of the 
generator of the data. The problem can be traced to the intermediate values of 
x in Figure 6.3 where the target data is multi-valued. Predictions made by the 
trained network in this region can be very poor. The problem cannot be solved 
by modifying the network architecture or the training algorithm, since it is a 
fundamental consequence of using a sum-of-squares error function. For problems 
involving many input and output variables, where visualization of the data is not 
straightforward, it can be very difficult to ascertain whether there are regions 
of input space for which the target data is multi-valued. One approach to such 
problems is to go beyond the Gaussian description of the distribution of target 
variables, and to find a more general model for the conditional density, as will 
be discussed in Section 6.4. 
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Figure 6.3. An illustration of the problem which can arise when a least-squares 
approach is applied to an inverse problem. This shows the same data set as 
in Figure 6.2 but with the roles of input and output variables interchanged. 
The solid curve shows the result of training the same neural network as in 
Figure 6.2, again using a sum-of-squares error. This time the network gives a 
very poor fit to the data, as it again tries to represent the conditional average 
of the target values. 

6.2 Minkowski error 

We have derived the sum-of-squares error function from the principle of maxi­
mum likelihood on the assumption of a Gaussian distribution of target data. We 
can obtain more general error functions by considering a generalization of the 
Gaussian distribution of the form 

P(e) 2F{l/R) 
exp(-/3|e | f l) (6.58) 

where T(o) is the gamma function (defined on page 28), the parameter ft con­
trols the variance of the distribution, and the pre-factor in (6.58) ensures that 
Jp(e) de = l. For the case of R = 2 this distribution reduces to a Gaussian. We 
now consider the negative log-likelihood of a data set, given by (6.5) and (6.6), 
under the distribution (6.58). Omitting irrelevant constants, we obtain an error 
function of the form 

£ = ^2_>(x n ;w) - t£ ntR (6.59) 
n k = l 
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\y-t\ 

Figure 6.4. Plot of the function \y — t\R against \y — t\ for various values of 
R. This function forms the basis for the definition of the Minkowski-R error 

measure. 

called the Minkowski-R error. This reduces to the usual sum-of-squares error 
when R = 2. For the case of R = 1, the distribution function (6.58) is a Laplacian, 
and the corresponding Minkowski-R measure (6.59) is called the city block metric 
(because the distance between two points on a plane measured by this metric is 
equal to the Euclidean distance covered by moving between the two points along 
segments of lines parallel to the axes, as if moving along blocks in a city). More 
generally, the distance metric \y — t\R is known as the LR norm. The function 
\y — t\R is plotted against \y — t\ for various values of R in Figure 6.4. 

The derivatives of the Minkowski-J? error function with respect to the weights 
in the network are given by 

dE 
dwu Y, Yl l ^ ( x " : w ) - *EIK-1sign(l/fc(xB; w) - tn

k) M 
dw 

(6.60) 
' j » 

These derivatives can be evaluated using the standard back-propagation proce­
dure, discussed in Section 4.8. Examples of the application of the Minkowski-R 
error to networks trained using back-propagation are given in Hanson and Burr 
(1988) and Burrascano (1991). 

One of the potential difficulties of the standard sum-of-squares error is that it 
receives the largest contributions from the points which have the largest errors. 
If there are long tails on the distributions then the solution can be dominated 
by a very small number of points called outliers which have particularly large 
errors. This is illustrated by a simple example in Figure 6.5. 

A similarly severe problem can also arise from incorrectly labelled data. For 
instance, one single data point for which the target value has been incorrectly 
labelled by a large amount can completely invalidate the least-squares solution. 

f 
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(a) (b) 

Figure 6.5. Example of fitting a linear polynomial through a set of noisy data 
points by minimizing a sum-of-squares error. In (a) the line gives a good rep­
resentation of the systematic aspects of the data. In (b) a single extra data 
point has been added which lies well away from the other data points, showing 
how it dominates the fitting of the line. 

Techniques which attempt to solve this problem are referred to as robust statis­
tics, and a review in the context of conventional statistical methods can be found 
in Huber (1981). The use of the Minkowski error with an R value less than 2 
reduces the sensitivity to outliers. For instance, with R — 1, the minimum error 
solution computes the conditional median of the data, rather than the condi­
tional mean (Exercise 6.5). The reason for this can be seen by considering the 
simple error 

£(i/) = £ | y - t B | . 
n 

Minimizing E(y) with respect to y gives 

]Tsign(2/-tn)=0 

(6.61) 

(6.62) 

which is satisfied when y is the median of the points {£"} (i.e. the value for which 
the same number of points tn have values greater than y as have values less than 
y). If one of the tn is taken to some very large value, this has no effect on the 
solution for y. 
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6.3 I n p u t - d e p e n d e n t var iance 

So far we have assumed that the variance of the target data can be described 
by a single global parameter a. In many practical applications, this will be a 
poor assumption, and we now discuss more general models for the target data 
distribution. The sum-of-squares error is easily extended to allow each output to 
be described by its own variance parameter a^. More generally, we might wish to 
determine how the variance of the data depends on the input vector x (Nix and 
Weigend, 1994). This can be done by adopting a more general description for the 
conditional distribution of the target data, and then writing down the negative 
log-likelihood in order to obtain a suitable error function. Thus, we write the 
conditional distribution of the target variables in the form 

Forming the negative logarithm of the likelihood function as before, and omitting 
additive constants, we obtain 

If we now multiply by 1/N as before, and take the infinite-data limit, we obtain 
the error function in the form 

E = J2JJ ( ln^(x) + {VkiS(J)k}2) P^lxMx)^d x- (6-65) 

The functions er,t(x) can be modelled by adding further outputs to the neural 
network. We shall not consider this approach further, as it is a special case of 
a much more general technique for modelling the full conditional distribution, 
which will be discussed shortly. 

An alternative approach to determining an input-dependent variance (Satch-
well, 1994) is based on the result (6.46) that the network mapping which mini­
mizes a sum-of-squares error is given by the conditional expectation of the target 
data. First a network is trained in the usual way by minimizing a sum-of-squares 
error in which the t% form the targets. The outputs of this network, when pre­
sented with the training data input vectors x n , correspond to the conditional 
averages of the target data. These averages are subtracted from the target val­
ues and the results are then squared and used as targets for a second network 
which is also trained using a sum-of-squares error function. The outputs of this 
network then represent the conditional averages of {tk — (tk\x)}2 and thus ap­
proximate the variances er|(x) given by (6.55). 

This procedure can be justified directly as follows. Consider the infinite data 
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limit again, for which we can write the error function in the form (6.65). If we 
again assume that the functions 2/jt(x) and o>(x) have unlimited flexibility then 
we can first minimize E with respect to the yk by functional differentiation to 
give 

which, after some rearrangement, gives the standard result 

yk(x) = (tk\x) (6.67) 

as before. We can similarly minimize E independently with respect to the func­
tions o>(x) to give 

r ^ f v = 0 = p(x) / ( * - ( y t ( x ) - * * > ' ) rffc|x) dtk (6.68) 
<W(x) J \<Tk(x) 0-fc(x)3 ) 

which is easily solved for ff|(x) to give 

4(x) = {{tk - (t*|x»3|x) (6.69) 

where we have used (6.67). We can then interpret (6.69) in terms of the two-stage 
two-network approach described above. This technique is simple and can make 
use of standard neural network software. Its principal limitation is that it still 
assumes a Gaussian form for the distribution function (since it makes use only 
of the second-order statistics of the target data). 

Since these approaches are based on maximum likelihood, they will give a 
biased estimate of the variances as discussed above, and so will tend to under­
estimate the true variance. In extreme cases, such methods can discover patho­
logical solutions in which the variance goes to zero, corresponding to an infinite 
likelihood, as discussed in the context of unconditional density estimation in 
Section 2.5.5. 

6.4 Model l ing conditional distributions 

We can view the basic goal in training a feed-forward neural network as that 
of modelling the statistical properties of the generator of the data, expressed in 
terms of a conditional distribution function p(t\x). For the sum-of-squares error 
function, this corresponds to modelling the conditional distribution of the target 
data in terms of a Gaussian distribution with a global variance parameter and an 
x-dependent mean. However, if the data has a complex structure, as for example 
in Figure 6.3, then this particular choice of distribution can lead to a very poor 
representation of the data. We therefore seek a general framework for modelling 
conditional probability distributions. 
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Figure 6.6. We can represent general conditional probability densities p(t|x) 
by considering a parametric model for the distribution of t whose parameters 
are determined by the outputs of a neural network which takes x as its input 
vector. 

In Chapter 2 we discussed a number of parametric techniques for modelling 
unconditional distributions. Suppose we use one of these techniques to model the 
distribution p(t\0) of target variables t, where 0 denotes the set of parameters 
which govern the model distribution. If we allow the parameters 0 to be functions 
of the input vector x, then we can model conditional distributions. We can 
achieve this by letting the components of 0(x) be given by the outputs of a 
feed-forward neural network which takes x as input. This leads to the combined 
density model and neural network structure shown in Figure 6.6. Provided we 
consider a sufficiently general density model, and a sufficiently flexible network, 
we have a framework for approximating arbitrary conditional distributions. 

For different choices of the parametric model, we obtain different represen­
tations for the conditional densities. For example, a single Gaussian model for 
p(t\0) corresponds to the procedure described above in Section 6.3. Another pos­
sibility is to use a linear combination of a fixed set of kernel functions. In this 
case the outputs of the network represent the coefficients in the linear combina­
tion (Bishop and Legleye, 1995), and we must ensure that the coefficients are 
positive and sum to one in order to preserve the positivity and normalization of 
the conditional density. We do not discuss this approach further as it is a special 
case of the more general technique which we consider next. 

A powerful, general framework for modelling unconditional distributions, 
based on the use of mixture models, was introduced in Section 2.6. Mixture 
models represent a distribution in terms of a linear combination of adaptive ker­
nel functions. If we apply this technique to the problem of modelling conditional 
distributions we have 
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M 

p(t |x) = ^ Q j ( x ) ^ ( t | x ) (6.70) 
j = i 

where M is the number of components, or kernels, in the mixture. The parame­
ters Oj(x) are called mixing coefficients, and can be regarded as prior probabil­
ities (conditioned on x) of the target vector t having been generated from the 
j t h component of the mixture. Note that the mixing coefficients are taken to be 
functions of the input vector x. The function (j)j(t\x) represents the conditional 
density of the target vector t for the j t h kernel. Various choices for the kernel 
functions are possible. As in Chapter 2, however, we shall restrict attention to 
kernel functions which are Gaussian of the form 

^(t|x) = w ^ w e x p ( — ^ T j (6-71) 

where the vector fiAx) represents the centre of the j t h kernel, with components 
fijk, and c is the dimensionality oft . In (6.71) we have assumed that the compo­
nents of the output vector are statistically independent within each of the kernel 
functions, and can be described by a common variance <T?(X). This assumption 
can be relaxed in a straightforward way by introducing full covariance matrices 
for each Gaussian kernel, at the expense of a more complex formalism. In prin­
ciple, however, such a complication is not necessary, since a Gaussian mixture 
model, with kernels given by (6.71), can approximate any given density function 
to arbitrary accuracy, provided the mixing coefficients and the Gaussian parame­
ters (means and variances) are correctly chosen (McLachlan and Basford, 1988). 
Thus, the representation given by (6.70) and (6.71) is completely general. In 
particular, it does not assume that the components of t are statistically inde­
pendent, in contrast to the single-Gaussian representation used in (6.6) and (6.9) 
to derive the sum-of-squares error. 

For any given value of x, the mixture model (6.70) provides a general for­
malism for modelling an arbitrary conditional density function p(t |x) . We now 
take the various parameters of the mixture model, namely the mixing coefficients 
Qj(x), the means (J.j(x) and the variances <T?(X), to be governed by the outputs 
of a conventional neural network which takes x as its input. This technique was 
introduced in the form of the mixture-of-experts model (Jacobs et al., 1991) de­
scribed in Section 9.7, and has since been discussed by other authors (Bishop, 
1994a; Liu, 1994; Neuneier et al, 1994). By choosing a mixture model with a suf­
ficient number of kernel functions, and a neural network with a sufficient number 
of hidden units, this model can approximate as closely as desired any conditional 
density function p( t |x) . The original motivation for the mixture-of-experts model 
was to provide a mechanism for partitioning the solution to a problem between 
several networks. This was achieved by using a separate network to determine 
the parameters of each kernel function, with a further network to determine the 



6.4: Modelling conditional distributions 215 

mixing coefficients. For some applications this modular approach offers a number 
of advantages, and is discussed further in Section 9.7. 

The neural network in Figure 6.6 can be any standard feed-forward network 
structure with universal approximation capabilities. Here we consider a multi­
layer perceptron, with a single hidden layer of sigmoidal units and an output 
layer of linear units. For M components in the mixture model (6.70), the network 
will have M outputs denoted by z? which determine the mixing coefficients, M 
outputs denoted by zj which determine the kernel widths Oj, and M x c outputs 
denoted by z^k which determine the components fijk of the kernel centres fij. 
The total number of network outputs is given by (c + 2) x M, as compared with 
the usual c outputs for a network used with a sum-of-squares error function. 

In order to ensure that the mixing coefficients otj(x) can be interpreted as 
probabilities, they must satisfy the constraints 

M 

£MX) = 1 (6-72) 
3 = 1 

0 < aj(x) < 1. (6.73) 

The first constraint also ensures that the distribution is correctly normalized, 
so that J p(t\x)dt = 1. These constraints can be satisfied by choosing «j(x) to 
be related to the corresponding networks outputs by a softmax function (Bridle, 
1990; Jacobs et al., 1991) 

exp(zj) 

°j = £Eiexp(*?)' 

We shall encounter the softmax function again in the next section when we 
discuss error functions for classification problems. 

The variances Oj represent scale parameters and so it is convenient to repre­
sent them in terms of the exponentials of the corresponding network outputs 

a, = exp(zj). (6.75) 

In a Bayesian framework (Exercise 10.13) this would correspond to the choice 
of a non-informative prior, assuming the corresponding network outputs zj had 
uniform probability distributions (Jacobs et al, 1991; Nowlan and Hinton, 1992). 
This representation also has the additional benefit of helping to avoid patholog­
ical configurations in which one or more of the variances goes to zero, since this 
would require the corresponding zj -+ —oo. The possibility of such results is 
discussed in Section 2.6.1 in the context of mixture models for unconditional 
density estimation. 
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The centres (Xj represent location parameters, and again the notion of a non-
informative prior (Exercise 10.12) suggests that these be represented directly by 
the network outputs 

Hk = 4- (6.76) 

As before, we can construct an error function from the likelihood by using 
(6.5) to give 

n [j=l J 

with (f>j(t\x) given by (6.71). The minimization of this error function with respect 
to the parameters of the neural network leads to a model for the conditional den­
sity of the target data. From this density function, any desired statistic involving 
the output variables can in principle be computed. 

In order to minimize the error function, we need to calculate the derivatives 
of the error E with respect to the weights in the neural network. These can be 
evaluated by using the standard back-propagation procedure, provided we obtain 
suitable expressions for the derivatives of the error with respect to the outputs 
of the network. Since the error function (6.77) is composed of a sum of terms 
E = Yin E", o n e f° r e a c n pattern, we can consider the derivatives <5£ = dEn/dzk 
for a particular pattern n and then find the derivatives of E by summing over 
all patterns. Note that, since the network output units have linear activation 
functions g(a) = a, the quantities <5£ can also be written as dEn/dak, and so are 
equivalent to the 'errors' introduced in the discussion of error back-propagation 
in Section 4.8. These errors can be back-propagated through the network to find 
the derivatives with respect to the network weights. 

We have already remarked that the 4>j can be regarded as conditional density 
functions, with prior probabilities <Xj. As with the mixture models discussed in 
Section 2.6, it is convenient to introduce the corresponding posterior probabili­
ties, which we obtain using Bayes' theorem, 

* J ( M ) = f f * J " , (6.78) 

as this leads to some simplification of the subsequent analysis. Note that , from 
(6.78), the posterior probabilities sum to unity: 

M 

5 > J = 1- (6.79) 
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Consider first the derivatives of En with respect to those network outputs 
which correspond to the mixing coefficients ctj. Using (6.77) and (6.78) we obtain 

^ = - * . (6.80) 
dak ak 

We now note that, as a result of the softmax transformation (6.74), the value 
of ak depends on all of the network outputs which contribute to the mixing 
coefficients, and so differentiating (6.74) we have 

dak 
dz? 

= 6jkak-ajak. (6.81) 

From the chain rule we have 

9E1 = ydE1da!L 

•a L^i F,n, f\?<x < . " • " ' dzf Y dak dzJ 

Combining (6.80), (6.81) and (6.82) we then obtain 

dEn 

-g-a=<*j- *j (6-83) 

where we have used (6.79). 
For the derivatives corresponding to. the Oj parameters we make use of (6.77) 

and (6.78), together with (6.71), to give 

dEn / H t - M . i l 2 c. , „ . . . 

Using (6.75) we have 

dzj 
aj. (6.85) 

Combining these together we then obtain 

= -*i\!L—p}i--°}- (686) 
d £ ^ _ _ j | | t - f i j i 
dzf ~ "*> \ a) 

Finally, since the parameters fijk are given directly by the z^k network out­
puts, we have, using (6.77) and (6.78), together with (6.71), 

-M.il2
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Figure 6.7. Plot of the contours of the conditional probability density of the 
target data obtained from a multi-layer perceptron network trained using the 
same data as in Figure 6.3, but using the error function (6.77). The network has 
three Gaussian kernel functions, and uses a two-layer multi-layer perceptron 
with five 'tanh' sigmoidal units in the hidden layer, and nine outputs. 

An example of the application of these techniques to the estimation of con­
ditional densities is given in Figure 6.7, which shows the contours of conditional 
density corresponding to the data set shown in Figure 6.3. 

The outputs of the neural network, and hence the parameters in the mixture 
model, are necessarily continuous single-valued functions of the input variables. 
However, the model is able to produce a conditional density which is unimodal for 
some values of x and trimodal for other values, as in Figure 6.7, by modulating 
the amplitudes of the mixing components, or priors, ctj(x). This can be seen in 
Figure 6.8 which shows plots of the three priors a , (x) as functions of x. It can 
be seen that for x = 0.2 and x = 0.8 only one of the three kernels has a non-zero 
prior probability. At x = 0.5, however, all three kernels have significant priors. 

Once the network has been trained it can predict the conditional density 
function of the target data for any given value of the input vector. This con­
ditional density represents a complete description of the generator of the data, 
so far as the problem of predicting the value of the output vector is concerned. 
From this density function we can calculate more specific quantities which may 
be of interest in different applications. One of the simplest of these is the mean, 
corresponding to the conditional average of the target data, given by 
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Figure 6.8. Plot of the priors aj(x) as a function of a; for the three kernel func­
tions from the network used to plot Figure 6.7. At both small and large values 
of x, where the conditional probability density of the target data is unimodal, 
only one of the kernels has a prior probability which differs significantly from 
zero. At intermediate values of x, where the conditional density is trimodal, 
the three kernels have comparable priors. 

(t |x) = / tp( t |x) dt 

= X > j ( x ) | t < ^ ( t | x ) d t 

(6.88) 

(6.89) 

= X!a;>(xWx) (6.90) 

where we have used (6.70) and (6.71). This is equivalent to the function com­
puted by a standard network trained by least squares, and so this network can 
reproduce the conventional least-squares result as a special case. We can likewise 
evaluate the variance of the density function about the conditional average, to 
give 

S
2(x) = < | | t - ( t | x ) | | 2 | x> (6.91) 

£>,(xW ^(x)2 + 
I 

(6.92) 

where we have used (6.70), (6.71) and (6.90). This is more general than the 
corresponding least-squares result since this variance is allowed to be a general 
function of x. Similar results can be obtained for other moments of the condi-
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Figure 6.9. This shows a plot of (t\x) against x (solid curve) calculated from 
the conditional density in Figure 6.7 using (6.90), together with corresponding 
plots of (t\x) ± s(x) (dashed curves) obtained using (6.92). 

tional distribution. Plots of the mean and variance, obtained from the conditional 
distribution in Figure 6.7, are shown in Figure 6.9. 

For some applications, the distribution of the target data will consist of a lim­
ited number of distinct branches, as is the case for the data shown in Figure 6.3. 
In such cases we may be interested in finding an output value corresponding to 
just one of the branches (as would be the case in many control applications for 
example). The most probable branch is the one which has the greatest associated 
'probability mass'. Since each component of the mixture model is normalized, 
j<pj(t\x.)dt = 1, the most probable branch of the solution, assuming the com­
ponents are well separated and have negligible overlap, is given by 

arg max {aj(x)} . (6.93) 
i 

In the mixture-of-experts model (Jacobs et ai, 1991) this corresponds to selecting 
the output of one of the component network modules. The required value of t is 
then given by the corresponding centre fij. Figure 6.10 shows the most probable 
branch of the solution, as a function of x, for the same network as used to plot 
Figure 6.7. 

Again, one of the limitations of using maximum likelihood techniques to 
determine variance-like quantities such as the aj, is that it is biased (Section 2.2). 
In particular, it tends to underestimate the variance in regions where there is 
limited data. 
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Figure 6.10. Plot of the central value of the most probable kernel as a function 
of x from the network used to plot Figure 6.7. This gives a discontinuous 
functional mapping from I to f which at every value of x lies well inside a 
region of significant probability density. The diagram should be compared with 
the corresponding continuous mapping in Figure 6.3 obtained from standard 
least squares. 

6.4.1 Periodic variables 

So far we have considered the problem of 'regression' for variables which live 
on the real axis (—00,00). However, a number of applications involve angle-like 
output variables which live on a finite interval, usually (0,2JT) and which are in­
trinsically periodic. Due to the periodicity, the techniques described so far cannot 
be applied directly. Here we show how the general framework discussed above 
can be extended to estimate the conditional distribution p(0\x) of a periodic 
variable 9, conditional on an input vector x (Bishop and Legleye, 1995). 

The approach is again based on a mixture of kernel functions , but in this case 
the kernel functions themselves are periodic, thereby ensuring that the overall 
density function will be periodic. To motivate this approach, consider the prob­
lem of modelling the distribution of a velocity vector v in two dimensions. Since 
v lives in a Euclidean plane, we can model the density function p(v) using a 
mixture of conventional spherical Gaussian kernels, where each kernel has the 
form 

*,«») = ̂ « P { - ^ - ^ } <*•«> 
where (vx,vy) are the Cartesian components of v, and (fix,fiy) are the compo­
nents of the centre /i of the kernel. From this we can extract the conditional 
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distribution of the polar angle 9 of the vector v, given a value for t; = ||v||. This 
is easily done with the transformation vx = vcos#, vy = usin#, and defining 
0o to be the polar angle of fj,, so that fix = fi cos 0o and fiv = fisinffo, where 
\i = ||/LI||. This leads to a distribution which can be written in the form 

# ? ) = ; r — V - r e x p { m c o s ( 0 - 0 o ) } <6-95) 

where the normalization coefficient has been expressed in terms of the zeroth-
order modified Bessel function of the first kind, Io(m). The distribution (6.95) 
is known as a circular normal or von Mises distribution (Mardia, 1972). The 
parameter m (which depends on v in our derivation) is analogous to the (in­
verse) variance parameter in a conventional normal distribution. Since (6.95) is 
periodic, we can construct a general representation for the conditional density 
of a periodic variable by considering a mixture of circular normal kernels, with 
parameters governed by the outputs of a neural network. The weights in the 
network can again be found by maximizing the likelihood function defined over 
a set of training data. 

An example of the application of these techniques to the determination of 
wind direction from satellite radar scatterometer data is given in Bishop and 
Legleye (1995). This is an inverse problem in which the target data is multi­
valued. For problems involving periodic variables in which the target data is 
effectively single-valued with respect to the input vector, then a single circular 
normal kernel can be used. 

An alternative approach to modelling conditional distributions of periodic 
variables is discussed in Exercise 6.8. 

6.5 Est imating posterior probabilities 

So far in this chapter we have focused on 'regression' problems in which the 
target variable are continuous. We now turn to a consideration of error functions 
for classification problems in which the target variables represent discrete class 
labels (or, more generally, the probabilities of class membership). 

When we use a neural network to solve a classification problem, there are two 
distinct ways in which we can view the objectives of network training. At the sim­
pler level, we can arrange for the network to represent a non-linear discriminant 
function so that, when a new input vector is presented to the trained network, 
the outputs provide a classification directly. The second approach, which is more 
general and more powerful, is to use the network to model the posterior proba­
bilities of class membership. Typically there is one output unit for each possible 
class, and the activation of each output unit represents the corresponding pos­
terior probability p(Cfc(x), where Ck is the kth class, and x is the input vector. 
These probabilities can then be used in a subsequent decision-making stage to 
arrive at a classification. 

By arranging for the network outputs to approximate posterior probabilities, 
we can exploit a number of results which are not available if the network is 
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used simply as a non-linear discriminant (Richard and Lippmann, 1991). These 
include: 

Minimum error-rate decisions 
From the discussion of optimal classification in Section 1.9 we know that, to 
minimize the probability of misclassification, a new input vector should be 
assigned to the class having the largest posterior probability. Note that the 
network outputs need not be close to 0 or 1 if the class-conditional density 
functions are overlapping. Heuristic procedures, such as applying extra 
training using those patterns which fail to generate outputs close to the 
target values, will be counterproductive, since this alters the distributions 
and makes it less likely that the network will generate the correct Bayesian 
probabilities. 

Outputs sum to 1 
Since the network outputs approximate posterior probabilities they should 
sum to unity. This can be enforced explicitly as part of the choice of network 
structure as we shall see. Also, the average of each network output over 
all patterns in the training set should approximate the corresponding prior 
class probabilities, since 

P(Ck) = / P(Cfc|x)p(x) dx ~ 1 J2 P(Ck\x
n)- (6.96) 

n 

These estimated priors can be compared with the sample estimates of the 
priors obtained from the fractions of patterns in each class within the 
training data set. Differences between these two estimates are an indication 
that the network is not modelling the posterior probabilities accurately 
(Richard and Lippmann, 1991). 

Compensating for different prior probabilities 
In some of the conventional approaches to pattern classification discussed 
in Chapter 1, the posterior probabilities were expressed through Bayes' 
theorem in the form 

m | x ) = rfxKym) (6 97) 
p(x) 

and the prior probabilities P(Ck) and class-conditional densities p(x\Ck) 
were estimated separately. The neural network approach, by contrast, pro­
vides direct estimates of the posterior probabilities. Sometimes the prior 
probabilities expected when the network is in use differ from those repre­
sented by the training set. It is then it is a simple matter to use Bayes' 
theorem (6.97) to make the necessary corrections to the network outputs. 
This is achieved simply by dividing the network outputs by the prior prob­
abilities corresponding to the training set, multiplying them by the new 
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prior probabilities, and then normalizing the results. Changes in the prior 
probabilities can therefore be accommodated without re-training the net­
work. The prior probabilities for the training set may be estimated simply 
by evaluating the fraction of the training set data points in each class. 
Prior probabilities corresponding to the network's operating environment 
can often be obtained very straightforwardly since only the class labels are 
needed and no input data is required. As an example, consider the prob­
lem of classifying medical images into 'normal' and 'tumour'. When used 
for screening purposes, we would expect a very small prior probability of 
'tumour'. To obtain a good variety of tumour images in the training set 
would therefore require huge numbers of training examples. An alternative 
is to increase artificially the proportion of tumour images in the training 
set, and then to compensate for the different priors on the test data as 
described above. The prior probabilities for tumours in the general popu­
lation can be obtained from medical statistics, without having to collect the 
corresponding images. Correction of the network outputs is then a simple 
matter of multiplication and division. 

Combining the outputs of several networks 
Rather than using a single network to solve a complete problem, there is 
often benefit in breaking the problem down into smaller parts and treating 
each part with a separate network. By dividing the network outputs by 
the prior probabilities used during training, the network outputs become 
likelihoods scaled by the unconditional density of the input vectors. These 
scaled likelihoods can be multiplied together on the assumption that the 
input vectors for the various networks are independent. Since the scaling 
factor is independent of class, a classifier based on the product of scaled 
likelihoods will give the same results as one based on the true likelihoods. 
This approach has been successfully applied to problems in speech recog­
nition (Bourlard and Morgan, 1990; Singer and Lippmann, 1992). 

Minimum risk 
As discussed in Chapter 1, the goal of a classification system may not 
always be to minimize the probability of misclassification. Different mis-
classifications may carry different penalties, and we may wish to minimize 
the overall loss or risk (Section 1.10). Again the medical screening appli­
cation provides a good example. It may be far more serious to mis-classify 
a tumour image as normal than to mis-classify a normal image as that of 
a tumour. In this case, the posterior probabilities from the network can 
be combined with a suitable matrix of loss coefficients to allow the mini­
mum risk decision to be made. Again, no network re-training is required to 
achieve this. However, if the required loss matrix elements are known before 
the network is trained, then it may be better to modify the, error function 
as will be discussed for the case of a sum-of-squares error in Section 6.6.2. 
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Rejection thresholds 
In Section 1.10.1 we introduced the concept of a rejection threshold, which 
is such that if all of the posterior probabilities fall below this threshold then 
no classification decision is made. Alternative classification techniques can 
then be applied to the rejected cases. This reflects the costs associated 
with making the wrong decisions balanced against the cost of alternative 
classification procedures. In the medical image classification problem, for 
instance, it may be better not to try to classify doubtful images automati­
cally, but instead to have a human expert provide a decision. Rejection of 
input vectors can be achieved in a principled way, provided the network 
outputs represent posterior probabilities of class membership. 

In subsequent sections of this chapter we show how the outputs of a network can 
be interpreted as approximations to posterior probabilities, provided the error 
function used for network training is carefully chosen. We also show that some 
error functions allow networks to represent non-linear discriminants, even though 
the output values themselves need not correspond to probabilities. 

6.6 Sum-of-squares for classification 

In the previous section we showed that, for a network trained by minimizing a 
sum-of-squares error function, the network outputs approximate the conditional 
averages of the target data 

Vk(x) = (*fc|x> = ftkp(tk\x)dtk. (6.98) 

In the case of a classification problem, every input vector in the training set is 
labelled by its class membership, represented by a set of target values ££. The 
targets can be chosen according to a variety of schemes, but the most convenient 
is the 1-of-c coding in which, for an input vector x n from class Ci, we have 
^k ~ &M where fikt is the Kronecker delta symbol defined on page xiii. In this 
case the target values are precisely known and the density function in target 
space becomes singular and can be written as 

c 

p(*fc|x) = J26(tk - Sk,)P(C,\x) (6.99) 

since P(C[\x) is the probability that x belongs to class C;. If we now substitute 
(6.99) into (6.98) we obtain 

»fc(x) = P(Cfc|x) (6.100) 

so that the outputs of the network correspond to Bayesian posterior probabilities 
(White, 1989; Richard and Lippmann, 1991). 
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If the network outputs represent probabilities, then they should lie in the 
range (0,1) and should sum to 1. For a network with linear output units, trained 
by minimizing a sum-of-squares error function, it was shown in Section 6.1.2 
that if the target values satisfy a linear constraint, then the network outputs will 
satisfy the same constraint for an arbitrary input vector. In the case of a 1-of-c 
coding scheme, the target values sum to unity for each pattern, and so the net­
work outputs will also always sum to unity. However, there is no guarantee that 
they will lie in the range (0,1). In fact, the sum-of-squares error function is not 
the most appropriate for classification problems. It was derived from maximum 
likelihood on the assumption of Gaussian distributed target data. However, the 
target values for a 1-of-c coding scheme are binary, and hence far from having 
a Gaussian distribution. Later we discuss error measures which are more ap­
propriate for classification problems. However, there are advantages in using a 
sum-of-squares error, including the fact that the determination of the output 
weights in a network represents a linear optimization problem. The significance 
of this result for radial basis function networks was described in Chapter 5. We 
therefore discuss the use of a sum-of-squares error for classification problems in 
more detail before considering alternative choices of error function. 

For a two-class problem, the 1-of-c target coding scheme described above 
leads to a network with two output units, one for each class, whose activations 
represent the corresponding probabilities of class membership. An alternative 
approach, however, is to use a single output y and a target coding which sets 
tn = 1 if x™ is from class C\ and tn = 0 if x n is from class Ci- In this case, the 
distribution of target values is given by 

p(tfc|x) = 6(t - l )P(Ci |x) + 6(t)P(C2\x). (6.101) 

Substituting this into (6.98) gives 

y(x) = P(C1\x) (6.102) 

and so the network output j/(x) represents the posterior probability of the input 
vector x belonging to class C\. The corresponding probability for class C2 is then 
given by P(C2 |x) = 1 - y(x). 

6.6.1 Interpretation of hidden units 

In Section 6.1.1 we derived the expression (6.29) for the final-layer weights which 
minimizes a sum-of-squares error, for networks with linear output units. By sub­
stituting this result back into the error function we obtain an expression in which 
the only adaptive parameters are those associated with hidden units, which we 
denote by w. This expression sheds light on the nature of the hidden unit rep­
resentation which a network learns, and indicates why multi-layer non-linear 
neural networks can be effective as pattern classification systems (Webb and 
Lowe, 1990). 
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Writing (6.25) in matrix notation we obtain 

E = ^ T r { ( Z W T - T) (ZW T - T ) T } (6.103) 

where Z, W and T are defined on page 199. We now substitute the solution 
(6.29) for the optimal weights into (6.103) to give 

E = ^TY{(ZztT - T)(ZZtT - T ) T } . (6.104) 

By using some matrix manipulation (Exercise 6.9) we can write this in the form 

£ = ^ { T ^ T - S B S ^ 1 } (6.105) 

Here S r is given by 

S r = Z T Z = ^ ( z n - z)(z" - z ) T (6.106) 
n 

and the components of z are defined by (6.24). We see that this can be interpreted 
as the total covariance matrix for the activations at the output of the final layer 
of hidden units with respect to the training data set. Similarly, Sg in (6.105) is 
given by 

S B = Z T TT T Z (6.107) 

which can be interpreted (as we shall see) as a form of between-class covariance 
matrix. 

Since the first term in the curly brackets in (6.105) depends only on the 
target data it is independent of the remaining weights w in the network. Thus, 
minimizing the sum-of-squares error is equivalent to maximizing a particular 
discriminant function defined with respect to the activations of the final-layer 
hidden units given by 

J = i T r { S B S ^ } . (6.108) 

Note that, if the matrix ST is ill-conditioned, then the inverse matrix S^.1 should 

be replaced by the pseudo-inverse ST. The criterion (6.108) has a clear similarity 
to the Fisher discriminant function which is discussed in Section 3.6. Nothing 
here is specific to the multi-layer perceptron, or indeed to neural networks. The 
same result is obtained regardless of the functions Zj (x; w) and applies to any 
generalized linear discriminant in which the basis functions contain adaptive 
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parameters. 
The role played by the hidden units can now be stated as follows. The weights 

in the final layer are adjusted to produce an optimum discrimination of the 
classes of input vectors by means of a linear transformation. Minimizing the 
error of this linear discriminant requires that the input data undergo a non­
linear transformation into the space spanned by the activations of the hidden 
units in such a way as to maximize the discriminant function given by (6.108). 

Further insight into the nature of the matrix S B is obtained by considering 
a particular target coding scheme. For the 1-of-c target coding scheme we can 
write (6.107) in the form (Exercise 6.10) 

SB = £ Nk&h - SK** - *)T (6-109) 
k 

where Nk is the number of patterns in class Ck and zk is the mean activation 
vector of the hidden units for all training patterns in class Ck, and is defined by 

* = A £z"- (6110) 

* neck 

Note that Si? in (6.109) differs from the conventional between-class covariance 
matrix introduced in Section 3.6 by having factors of N% instead of Nk in the sum 
over classes. This represents a strong weighting of the feature extraction criterion 
in favour of classes with larger numbers of patterns. If there is a significant 
difference between the prior probabilities for the training and test data sets, 
then this effect may be undesirable, and we shall shortly see how to correct for it 
by modifying the sum-of-squares error measure. As discussed in Section 3.6, there 
are several ways to generalize Fisher's original two-class discriminant criterion to 
several classes, all of which reduce to the original Fisher result as a special case. 
In general, there is no way to decide which of these will yield the best results. For 
a two-class problem, the between-class covariance matrix given in (6.109) differs 
from the conventional one only by a multiplicative constant, so in this case the 
network criterion is equivalent to the original Fisher expression. 

In earlier work, Gallinari et al. (1988, 1991) showed that, for a network of 
linear processing units with a 1-of-c target coding, the minimization of a sum-of-
squares error gave a set of input-to-hidden weights which maximized a criterion 
which took the form of a ratio of determinants of between-class and total covari­
ance matrices defined at the outputs of the hidden units. The results of Webb 
and Lowe (1990) contain this result as a special case. 

6.6.2 Weighted sum-of-squares 

We have seen that, for networks with linear output units, minimization of a 
sum-of-squares error at the network outputs maximizes a particular non-linear 
feature extraction criterion 
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J=-TI{SBST1} (6.111) 

at the hidden units. For the 1-of-c coding scheme, the corresponding between-
class covariance matrix, given by (6.109), contains coefficients which depend on 
JVJt, the number of patterns in class Ck- Thus, the hidden unit representation 
obtained by maximizing this discriminant function will only be optimal for a 
particular set of prior probabilities N^/N. If the prior probabilities differ between 
training and test sets, then the feature extraction need not be optimal. 

A related difficulty arises if there are different costs associated with different 
misclassifications, so that a general loss matrix needs to be considered. It has 
been suggested (Lowe and Webb, 1990, 1991) that modifications to the form of 
the sum-of-squares error to take account of the loss matrix can lead to improved 
feature extraction by the hidden layer, and hence to improved classification per­
formance. 

To deal with different prior probabilities between the training set and the 
test set, Lowe and Webb (1990) modify the sum-of-squares error by introducing 
a weighting factor nn for each pattern n so that the error function becomes 

where the weighting factors are given by 

Kn — for pattern n in class C& (6.113) 

where P(Ck) is the prior probability of class Ck for the test data, and Pk = N^/N 
is the corresponding (sample estimate of the) prior probability for the training 
data. It is straightforward to show (Exercise 6.12) that the total covariance 
matrix ST then becomes 

fe k nee* 

which is the sample-based estimate of the total covariance matrix for data with 
prior class probabilities P(C^). In (6.114) the z are given by 

* " n€Ck 

which again is the sample-based estimate of the value which z would take for 
data having the prior probabilities P{Ck). Similarly, assuming a 1-of-c target 
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coding scheme, the between-class covariance matrix is modified to become 

SB = £ N2P(Ckf(z
k - z)(zk - z)T (6.116) 

k 

which is the sample-based estimate of the between-class covariance matrix for 
data with prior probabilities P(Ck)-

The effects of an arbitrary loss matrix can similarly be taken into account 
by modifying the target coding scheme so that, for a pattern n which is labelled 
as belonging to class Cj, the target vector has components Vfc — 1 — L ^ , where 
L(fc represents the loss in assigning a pattern from class C; to class Cfc. The 
total covariance matrix is unaltered, while the between-class covariance matrix 
becomes (Exercise 6.13) 

sB = ^{E(1--L" t)A r '^-^}{E(1-L ' ' f c)J V ' '^'- z)T} (6117) 
which reduces to the usual expression when Lik = 1 — b~ik- Examples of the 
application of these techniques to a problem in medical prognosis are given in 
Lowe and Webb (1990). 

6.7 Cros s - en t ropy for two classes 

We have seen that , for a 1-of-c target coding scheme, the outputs of a network 
trained by minimizing a sum-of-squares error function approximate the posterior 
probabilities of class membership, conditioned on the input vector. However, the 
sum-of-squares error was obtained from the maximum likelihood principle by 
assuming the target data was generated from a smooth deterministic function 
with added Gaussian noise. This is clearly a sensible starting point for regression 
problems. For classification problems, however, the targets are binary variables, 
and the Gaussian noise model does not provide a good description of their dis­
tribution. We therefore seek more appropriate choices of error function. 

To start with, we consider problems involving two classes. One approach to 
such problems would be to use a network with two output units, one for each 
class. This type of representation is discussed in Section 6.9. Here we discuss an 
alternative approach in which we consider a network with a single output y. We 
would like the value of y to represent the posterior probability P(Ci |x) for class 
C\. The posterior probability of class C<i will then by given by P(C2|x) — \—y. 
This can be achieved if we consider a target coding scheme for which t = 1 if 
the input vector belongs to class C\ and t = 0 if it belongs to class &. We can 
combine these into a single expression, so that the probability of observing either 
target value is 

p(*|x) = j , ' ( l - y ) 1 - ' (6.118) 
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which is a particular case of the binomial distribution called the Bernoulli dis­
tribution. With this interpretation of the output unit activations, the likelihood 
of observing the training data set, assuming the data points are drawn indepen­
dently from this distribution, is then given by 

nyn1-*/")1-4"- (6-iig) 
As usual, it is more convenient to minimize the negative logarithm of the like­
lihood. This leads to the cross-entropy error function (Hopfield, 1987; Baum 
and Wilczek, 1988; Solla et al, 1988; Hinton, 1989; Hampshire and Pearlmutter, 
1990) in the form 

E = -J2 {tn I" yn + (1 - *n) ln(l - yn)} . (6.120) 

We shall discuss the meaning of the term 'entropy' in Section 6.10. For the 
moment let us consider some elementary properties of this error function. 

Differentiating the error function with respect to yn we obtain 

« £ = fr"-'") (6 121) 
dy" yn{l-yn)' 

The absolute minimum of the error function occurs when 

yn = tn for all n. (6.122) 

In Section 3.1.3 we showed that, for a network with a single output y — g(a) 
whose value is to be interpreted as a probability, it is appropriate to consider 
the logistic activation function 

9(a) = , , 1 . . (6.123) 
1 + exp(—a) 

which has the property 

g'(a) = g(a)(l-g(a)). (6.124) 

Combining (6.121) and (6.124) we see that the derivative of the error with respect 
to o takes the simple form 

6» = ~=y»-tn. (6.125) 
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Here 6" is the 'error' quantity which is back-propagated through the network in 
order to compute the derivatives of the error function with respect to the network 
weights (Section 4.8). Note that (6.125) has the same form as obtained for the 
sum-of-squares error function and linear output units. We see that there is a 
natural pairing of error function and output unit activation function which gives 
rise to this simple form for the derivative. Use of the logistic form of activation 
function also leads to corresponding simplifications when evaluating the Hessian 
matrix (the matrix of second derivatives of the error function). 

From (6.120) and (6.122), the value of the cross-entropy error function at its 
minimum is given by 

Emin = - £ { i " l n * " + (1 - t")Hl - *»)}. (6.126) 
n 

For the 1-of-c coding scheme this vanishes. However, the error function (6.120) 
is also the correct one to use when tn is a continuous variable in the range (0,1) 
representing the probability of the input vector xn belonging to class C\ (see 
Section 6.10 and Exercise 6.15). In this case the minimum value (6.126) of the 
error need not vanish, and so it is convenient to subtract off this value from the 
original error function to give a modified error of the form 

E = - E {*"ln £ + o - nln fr^j} • (6-127) 

Since (6.126) is independent of the network outputs this does not affect the 
location of the minimum and so has no effect on network training. The modified 
error (6.127) always has its minimum at 0, irrespective of the particular training 
set. 

As a simple illustration of the interpretation of network outputs as probabili­
ties, we consider a simple two-class problem with one input variable in which the 
class-conditional densities are given by the Gaussian mixture functions shown 
in Figure 6.11. A multi-layer perceptron with five hidden units having 'tanh' 
activation functions, and one output unit having a logistic sigmoid activation 
function, was trained by minimizing a cross-entropy error using 100 cycles of 
the BFGS quasi-Newton algorithm (Section 7.10). The resulting network map­
ping function is shown, along with the true posterior probability calculated using 
Bayes' theorem, in Figure 6.12. 

6.7.1 Sigmoid activation functions 

In Section 3.1.3, the logistic sigmoid activation function was motivated for a 
single-layer network by the goal of ensuring that the network outputs represent 
posterior probabilities, with the assumption that the class-conditional densities 
can be approximated by normal distributions. We can apply a similar argument 
to the network outputs in the case of multi-layered networks (Rumelhart et 
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Figure 6.11. Plots of the class-conditional densities used to generate a data set 
to demonstrate the interpretation of network outputs as posterior probabilities. 
A total of 2000 data points were generated from these densities, using equal 
prior probabilities. 

al., 1995). In this case we need to consider the distributions of the outputs of 
the hidden units, represented here by the vector z for the two classes. We can 
generalize the discussion by assuming that these class-conditional densities are 
described by 

p(z\Ck) = exp [A{ek) + B(z, cj>) + 8jz} (6.128) 

which is a member of the exponential family of distributions (which includes 
many of the common distributions as special cases such as Gaussian, binomial, 
Bernoulli, Poisson, and so on). The parameters Qk and 4> control the form of the 
distribution. In writing (6.128) we are implicitly assuming that the distributions 
differ only in the parameters &k and not in <f>. An example would be two Gaussian 
distributions with different means, but with common covariance matrices. 

Using Bayes' theorem, we can write the posterior probability for class C\ in 
the form 

P(Ci|z) = 
p(z|C1)P(C1 

p(z|C1)P(C1)+p(z|C2)P(C2) 

1 + exp(— a) 
(6.129) 

which is a logistic sigmoid function, in which 
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Figure 6.12. The result of training a multi-layer perception on data generated 
from the density functions in Figure 6.11. The solid curve shows the output 
of the trained network as a function of the input variable x, while the dashed 
curve shows the true posterior probability P{C\ \x) calculated from the class-
conditional densities using Bayes' theorem. 

a = In 
p(z\C2)P(C2) 

(6.130) 

Using (6.128) we can write this in the form 

a = w z + wo (6.131) 

where we have defined 

w = 0i - 0 2 (6.132) 

w0 = A(Gl)-A(02) +In-P(Ci) 

PW 
(6.133) 

Thus the network output is given by a logistic sigmoid activation function acting 
on a weighted linear combination of the outputs of those hidden units which send 
connections to the output unit. 

It is clear that we can apply the above arguments to the activations of hidden 
units in a network. Provided such units use logistic sigmoid activation functions, 
we can interpret their outputs as probabilities of the presence of corresponding 
'features' conditioned on the inputs to the units. 

ggps?-- "T"^>'J$SS 
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6.7.2 Properties of the cross-entropy error 

Suppose we write the network output, for a particular pattern n, in the form 
yn = tn + en. Then the cross-entropy error function (6.127) can be written as 

E = - ] T {tn ln(l + en/tn) + (1 - tn) ln(l - e n / ( l - tn))} (6.134) 
n 

so that the error function depends on the relative errors of the network outputs. 
This should be compared with the sum-of-squares error function which depends 
on the (squares of the) absolute errors. Minimization of the cross-entropy error •> 
function will therefore tend to result in similar relative errors on both small 
and large target values. By contrast, the sum-of-squares error function tends to 
give similar absolute errors for each pattern, and will therefore give large relative 
errors for small output values. This suggests that the cross-entropy error function 
is likely to perform better than sum-of-squares at estimating small probabilities. 

For binary targets, with tn = 1 for an input vector x n from class C\ and 
tn = 0 for inputs from class C2, we can write the cross-entropy error function 
(6.134) in the form 

E = - ^2 l n(1+e") - Y, ln(1 - e") (6135) 
neCi n€C2 

where we have used 2 In 2 —» 0 for z —> 0. If we suppose that e" is small, then 
the error function becomes 

n 

where we have expanded the logarithms using ln(l + z) ~ z and noted that if 
y e (0,1) then en < 0 for inputs from class C\ and en > 0 for inputs from class 
C%. The result (6.136) has the form of the Minkowski-/? error function for R=l, 
discussed earlier. Compared to the sum-of-squares error function, this gives much 
stronger weight to smaller errors. 

We have obtained the cross-entropy function by requiring that the network 
output y represents the probability of an input vector x belonging to class C\. We 
can now confirm the consistency of this requirement by considering the minimum 
of the error function for an infinitely large data set, for which we can write (6.120) 
in the form 

E = - f f {tlny{x) + (l-t)ln(l-y(x))}p(t\x)p(x)dtdx. (6.137) 

Since the network function t/(x) is independent of the target value t we can write 
(6.137) in the form 
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E=-J {(t |x)lny(x) + (1 - (t\x))ln(l - y(x))}p(x)dx (6.138) 

where, as before, we have defined the conditional average of the target data as 

(t\x) = I tp(t\x)dt. (6.139) 

If we now set the functional derivative (Appendix D) of (6.138) with respect 
to ^(x) to zero we see that the minimum of the error function occurs when 

y(x) = (f|x) (6.140) 

so that, as for the sum-of-squares error, the output of the network approximates 
the conditional average of the target data for the given input vector. For the 
target coding scheme which we have adopted we have 

p(t\x) = 6(t - l )P(Ci |x) + S(t)P(C2\x). (6.141) 

Substituting (6.141) into (6.139) we find 

y(x) = P(Ci\x) (6.142) 

as required. 

6.8 M u l t i p l e i n d e p e n d e n t a t t r i b u t e s 

In all of the classification problems which we have considered so far, the aim has 
been to assign new vectors to one of c mutually exclusive classes. However, in 
some applications we may wish to use a network to determine the probabilities 
of the presence or absence of a number of attributes which need not be mutually 
exclusive. In this case the network has multiple outputs, and the value of the 
output variable yk represents the probability that the kth attribute is present. 
If we treat the attributes as independent, then the distribution of target values 
will satisfy 

c 

p(tix)=np(*fcix)- (6-i43> 
A.=I 

We can now use (6.118) for each of the conditional distributions to give 

c 

p(t |x) = n ^ ( l - j / f c ) U - (6-144) 
k=l 
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If we now construct the likelihood function and take the negative logarithm in 
the usual way, we obtain the error function in the form 

c 

E = - Y, £ M ln*£ + C1 - *k) ln(1 - Wfc)> • (6-145) 

With this choice of error function, the network outputs should each have a lo­
gistic sigmoidal activation function of the form (6.123). Again, for binary target 
variables tjj, this error function vanishes at its minimum. If the ££ are probabil­
ities in the range (0,1), the minimum of the error will depend on the particular 
data set, and so it is convenient to subtract off this minimum value to give 

which always has an absolute minimum value with respect to the {y%} of zero. 

6.9 Cross-entropy for multiple classes 

We now return to the conventional classification problem involving mutually 
exclusive classes, and consider the form which the error function should take 
when the number of classes is greater than two. Consider a network with one 
output yfc for each class, and target data which has a 1-of-c coding scheme, so 
that t% = Ski for a pattern n from class C/. The probability of observing the set 
of target values tjj = Ski, given an input vector x n , is just p(Cj|x) = yt. The value 
of the conditional distribution for this pattern can therefore be written as 

c 

p( t» ix»)=n (»*)*• (6-147) 

If we form the likelihood function, and take the negative logarithm as before, we 
obtain an error function of the form 

£ = -£X>£lny£ . (6.148) 
n fc=l 

The absolute minimum of this error function with respect to the {y^} occurs 
when y% = t% for all values of A; and n. At the minimum the error function takes 
the value 

c 

^nin = -5Z5Z'2L a**- (6149) 
n fc=l 
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For a 1-of-c coding scheme this minimum value is 0. However, the error function 
(6.148) is still valid, as we shall see, when t% is a continuous variable in the 
range (0,1) representing the probability that input x n belongs to class Cfc. In 
this case the minimum of the error function need not vanish (it represents the 
entropy of the distribution of target variables, as will be discussed shortly). It is 
then convenient to subtract off this minimum value, and hence obtain the error 
function in the form 

* = -££*;> (f) (615°) 
which is non-negative, and which equals zero when y% = t% for all k and n. 

We now consider the corresponding activation function which should be used 
for the network output units. If the output values are to be interpreted as prob­
abilities they must lie in the range (0,1), and they must sum to unity. This can 
be achieved by using a generalization of the logistic sigmoid activation function 
which takes the form 

Vk = ^ —, 7 (6.151) 
XJfc,exp(afc.) 

which is known as the normalized exponential, or softmax activation function 
(Bridle, 1990). The term softmax is used because this activation function rep­
resents a smooth version of the winner-takes-all activation model in which the 
unit with the largest input has output +1 while all other units have output 0. 
If the exponentials in (6.151) are modified to have the form exp(/?ajt), then the 
winner-takes-all activation is recovered in the limit /? —* oo. The softmax activa­
tion function can be regarded as a generalization of the logistic function, since 
it can be written in the form 

Vk = L — — (6.152) 
yk l + e x p ( - ^ f c ) v ; 

where vtfc is given by 

M = ak - In < ^2 exp(ajfc<) > . (6.153) 
[k'^k J 

As with the logistic sigmoid, we can give a very general motivation for the 
softmax activation function by considering the posterior probability that a hid­
den unit activation vector z belongs to class Cjt, in which the class-conditional 
densities are assumed to belong to the family of exponential distributions of the 
general form 
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p(z|Cfc) = exp { A(0fc) + B(z, <£) + 0^z} . (6.154) 

From Bayes' theorem, the posterior probability of class Ck is given by 

P(Cfc z) = v- „(„\r wir v 6.155 

Substituting (6.154) into (6.155) and re-arranging we obtain 

P(C*W = ^ e X P ( af ) , (6-156) 
£ f c ,exp(a f c ,) 

where 

and we have defined 

Ofc = WfcZ +w f c 0 (6.157) 

wfc = 0k (6.158) 

Wfco = ^(^fc) + In P(Ck). (6.159) 

The result (6.156) represents the final layer of a network with softmax activation 
functions, and shows that (provided the distribution (6.154) is appropriate) the 
outputs can be interpreted as probabilities of class membership, conditioned on 
the outputs of the hidden units. 

In evaluating the derivatives of the softmax error function we need to consider 
the inputs to all output units, and so we have (for pattern n) 

dEn - ^ dEn dyk 

•EES- <"»> 

From (6.151) we have 

while from (6.150) we have 

dak ^f dyk> dak 

-zr~ = Vk'hk' - Vk'Vk (6.161) 

8En
 = _ < f e 1 

dyk' Vk' 
(6.162) 

Substituting (6.161) and (6.162) into (6.160) we find 
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9En 

-Z—=Vk-tk (6.163) 
oak 

which is the same result as found for both the sum-of-squares error (with a 
linear activation function) and the two-class cross-entropy error (with a logistic 
activation function). Again, we see that there is a natural pairing of error function 
and activation function. 

6.10 E n t r o p y 

The concept of entropy was originally developed by physicists in the context of 
equilibrium thermodynamics and later extended through the development of sta­
tistical mechanics. It was introduced into information theory by Shannon (1948). 
An understanding of basic information theory leads to further insights into the 
entropy-based error measures discussed in this section. It also paves the way for 
an introduction to the minimum description length framework in Section 10.10. 
Here we consider two distinct but related interpretations of entropy, the first 
based on degree of disorder and the second based on information content. 

Consider a probability density function p(x) for a single random variable x. 
It is convenient to represent the density function as a histogram in which the 
x-axis has been divided into bins labelled by the integer i. Imagine constructing 
the histogram by putting a total of TV identical discrete objects into the bins, 
such that the i th bin contains TV,- objects. We wish to count the number of 
distinct ways in which objects can be arranged, while still giving rise to the 
same histogram. Since there are TV ways of choosing the first object, (TV — 1) 
ways of choosing the second object, and so on, there a total of TV! ways to select 
the TV objects. However, we do not wish to count rearrangements of objects 
within a single bin. For the ith bin there are TVj! such rearrangements and so the 
total number of distinct ways to arrange the objects, known as the multiplicity, 
is given by 

^ = f W (6164) 

The entropy is defined as (a constant times) the negative logarithm of the mul­
tiplicity 

S = ~j-\nW = -jj{\nN\-J2lnNi'-}- (6-165) 
i 

We now consider the limit TV —+ oo, and make use of Stirling's approximation 
In TV! ~ TV In TV - TV together with the relation J2i ^» — N< to S i v e 
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Figure 6.13. Examples of two histograms, together with their entropy values 
defined by (6.166). The histograms were generated by sampling two Gaussian 
functions with variance parameters a = 0.4 and a = 0.08, and each contain 
1000 points. Note that the more compact distribution has a lower entropy. 

where pi = Ni/N (as N —> oo) represents the probability corresponding to the ith 
bin. The entropy therefore gives a measure of the number of different microstates 
(arrangements of objects in the bins) which can give rise to a given macrostate 
(i.e. a given set of probabilities pi). A very sharply peaked distribution has a very 
low entropy, whereas if the objects are spread out over many bins the entropy is 
much higher. The smallest value for the entropy is 0 and occurs when all of the 
probability mass is concentrated in one bin (so that one of the pj is 1 and all 
the rest are 0). Conversely the largest entropy arises when all of the bins contain 
equal probability mass, so that pi = \/M where M is the total number of bins. 
This is easily seen by maximizing (6.166) subject to the constraint YliPi — 1 
using a Lagrange multiplier (Appendix C). An example of two histograms, with 
their respective entropies, is shown in Figure 6.13. 

For continuous distributions (rather than histograms) we can take the limit 
in which the number M of bins goes to infinity. If A is the width of each bin, 
then the probability mass in the ith bin is pi = p(a;i)A, and so the entropy can 
be written in the form 

5 = Urn y^p(xi)Aln{p(xi)A} (6.167) 

- / 
p(x) \np(x) dx -f lim In A (6.168) 
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where we have used Jp(x)dx = 1. The second term on the right-hand side 
diverges in the limit M —> oo. In order to define a meaningful entropy measure 
for continuous distributions we discard this term, since it is independent of p(x), 
and simply use the first term on the right-hand side of (6.168), which is called 
the differential entropy. This is reasonable, since if we measure the difference in 
entropy between two distributions, the second term in (6.168) would cancel. For 
distributions which are functions of several variables, we define the entropy to 
be 

5 = - / p ( x ) l n p ( x ) d x (6.169) 

where x = (xi,... , £,;)T. 
It is interesting to consider the form of distribution which gives rise to the 

maximum of the entropy function. In order to find a meaningful maximum it is 
necessary to constrain the variance of the distribution. For the case of a single 
variable x on the infinite axis (—00,00), we maximize 

/

oo 

p(x)lnp(x)dx (6.170) 

-CO 

subject to the constraints that the distribution be normalized and that the mean 
and variance of the distribution have specified values 

/

oo 

p(x)dx = l (6.171) 

-00 

/

oo 
xp{x)dx = n (6.172) 

-CO 

/

OO 

(x-n)2p(x)dx = a2. (6.173) 

-00 

Introducing Lagrange multipliers Ai, A2 and A3 (Appendix C) for each of the 
constraints, we can use calculus of variations (Appendix D) to maximize the 
functional 

/

oo 
p(x) {lnp(.r) -r A, + A2.r + A.3(.r - A*)2} dx - Aj - \2fi - \3cr2 (6.174) 

-00 

which leads to 

p{x) = exp {-1 - Aj - \2x - X3(x - fx)2} . (6.175) 
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We can solve for the Lagrange multipliers by back-substituting this expression 
into the constraint equations. This finally gives the expression for the maximizing 
distribution in the form 

^)=(d^exp{-^}. < 6 - 1 7 6 ) • 
Thus we see that the distribution having maximum entropy, for given mean and 
variance, is the Gaussian. 

As a second viewpoint on the interpretation of entropy, let us consider the 
amount of information, or equivalently the 'degree of surprise', which is obtained 
when we learn that a particular event has occurred. We expect that the informa­
tion will depend on the probability p of the event, since if p = 1 then the event is 
certain to occur, and there is no surprise when the event is found to occur (and 
so no information is received). Conversely, if the probability is low, then there 
is a large degree of surprise in learning that it has occurred. We are therefore 
looking for a measure of information s(p) which is a continuous, monotonically 
increasing function of p and which is such that s(l) = 0. An appropriate ex­
pression can be obtained as follows. Consider two independent events A and B, 
with probabilities PA and ps • If we know that both events have occurred then 
the total information is S(PAPB)- If, however, we are first told that A has oc­
curred, then the residual information on learning that B has occurred must be 
S(PAPB) ~ S(PA), which must equal S(PB) since knowledge that A has occurred 
should not affect the information resulting from learning that B occurred (since 
the events are independent). This leads to the following condition 

S(PAPB) - S{PA) + S(PB)- (6.177) 

Prom this we can deduce that s(p2) = 2s(p) and by induction that s(pN) = 
Ns(p) for integer N. Similarly, s(p) = s([p1 / N]w) = Ns(pl'N) and by extension 
s(pM/jV) = (M/N)s(p). This implies that 

s{px) = xs(p) (6.178) 

for rational x and hence, by continuity, for real x. If we define z = — log2 p, so 
t h a t p = (1/2)*, then 

s(p) = S(( l /2)*) = Z S ( l /2 ) = - 8 ( l / 2 ) log2(p). (6.179) 

It is conventional to choose s ( l /2) = 1. The information is then expressed in 
bits (binary digits). From now on we shall consider logarithms to base e (natural 
logarithms) in which case the information is expressed in nats. We see that the 
amount of information is proportional to the logarithm of the probability. This 
arises essentially because, for independent events, probabilities are multiplicative, « 
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while information is additive. 
Consider a random variable a which can take values a^ with probabilities 

p{ctk)- If a sender wishes to transmit the value of a to a receiver, then the amount 
of information (in bits) which this requires is — lnp(ajt) if the variable takes the 
value ctk- Thus, the expected (average) information needed to transmit the value 
of a is given by 

S{a) = -J2 p(aib) In p(ak) (6.180) 

which is the entropy of the random variable a. Thus S(a) as the average amount 
of information received when the value of a is observed. The average length of 
a binary message (in nats) needed to transmit the value of a is at least equal to 
the entropy of a. This is known as the noiseless coding theorem (Shannon, 1948; 
Viterbi and Omura, 1979). 

Returning to the case of continuous variables, denoted by the vector x, we 
note that in practice we do not know the true distribution p(x). If we encode the 
value of x for transmission to a receiver, then we must (implicitly or explicitly) 
choose a distribution q(x) from which to construct the coding. The information 
needed to encode a value of x under this distribution is just — lng(x). If the 
variable x is drawn from a true distribution p(x) then the average information 
needed to encode x is given by 

/ 
p(x)\nq(x)dx (6.181) 

which is the cross-entropy between the distributions q(x) and p(x). Comparison 
with (2.68) shows that this equals the negative log likelihood under the model 
distribution q(x) when the true distribution is p(x). It is also equal to the sum of 
the Kullback-Leibler distance between p(x) and q(x), given by (2.70), and the 
entropy of p(x) since 

- f p(x) In q(x)dx = - fp(x)ln^-dx- f p(x) In p(x)dx. (6.182) 

We can easily show that, of all possible distributions q(x), the choice which 
gives the smallest average information, i.e. the smallest value for the cross-
entropy, is the true distribution p(x) (Exercise 6.21). Since the entropy of p(x) 
is independent of the distribution q(x), we see from (6.182) that minimization of 
the cross-entropy is equivalent to minimization of the Kullback-Leibler distance. 

We can apply the concept of cross-entropy to the training of neural networks. 
For a variable a which takes a discrete set of values a^ we can write (6.181) in 
the form 
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- £ P ( a f c ) I n Q ( a f c ) . (6.183) 
fc 

Consider first a network with c outputs yk(x) representing the model probabili­
ties for x to belong to the corresponding classes C^. We shall suppose that we also 
have a set of target variables tk representing the corresponding true probabilities. 
Then the cross-entropy becomes 

c 

-J2tkiayk(x). (6.184) 
k=i 

For a set of N data points which are assumed to be drawn independently from 
a common distribution, the information is additive and hence the total cross-
entropy is given by 

- E E * g I n y f c ( x » ) (6.185) 

which can be used as an error function for network training. We see that this 
form of error function is valid not only when the targets ijj have a one-of-c coding 
(representing precise knowledge of the true classes of the data) but also when 
they lie anywhere in the range 0 < t% < 1, subject to the constraint J^fc *fc = *> 
corresponding to probabilities of class membership. 

For two classes, we can consider a network with a single output y represent­
ing the model probability for membership of class C\, with corresponding true 
probability t. The model probability for membership of class C? is then 1 — y, and 
the corresponding true probability is 1 — t. Following the same line of argument 
as above we then arrive at the cross-entropy error function for two classes and 
N data points in the form 

N 

- J2 {tn lny(x") + (1 - t") ln(l - y{xn))} . (6.186) 
n=l 

6.11 General conditions for outputs to be probabilities 

So far, we have considered three different error measures (sum-of-squares, cross-
entropy for a single output, and cross-entropy for softmax networks) all of which 
allow the network outputs to be interpreted as probabilities. We may therefore 
wonder what conditions an error measure should satisfy in order that the net­
work outputs have this property. The discussion given here is based on that of 
Hampshire and Pearlmutter (1990). 
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All of the error measures we are considering take the form of a sum over 
patterns of an error term for each pattern E = Y2n ^n- We s n a " a ' s o *a '<e * n e 

error to be a sum over terms for each output unit separately. This corresponds 
to the assumption that the distributions of different target variables are statis­
tically independent (which is not satisfied by the Gaussian mixture based error 
considered earlier, or by the softmax error, for instance). Thus we write 

c 

# " = £ / ( « ) (6-187) 
fc=i 

where /(• ,•) is some function to be determined. We shall also assume that / 
depends only on the magnitude of the difference between y^ and tk, so that 
f(Vki^k) ~ /(Is/? ~~ **!)• *n * n e limit of an infinite data set, we can write the 
average (or expected) per-pattern error in the form 

(E) = J2 f[f(\Vk - fc|)p(t|x)p(x)dtdx. (6.188) 
k=lJ J 

If we use a 1-of-c target coding scheme, then from (6.99) we can write the con­
ditional distribution of the target variables in the form 

P(t|x) = f l J J2 S(tk - 6ki)P(Ct\x) 1 . (6.189) 
k=i 11=1 J 

We now substitute (6.189) into (6.188) and evaluate the integrals over the tk 
variables (which simply involves integrals of 6-functions) to give 

W = E / (M ~ yk)P(Ck\x) + /fa) [1 - P(C fc |x)J}p(x)dx (6.190) 

where we have used J^n, •?*(£* M = 1, and assumed that 0 < ? / * ; < 1 so that 
the modulus signs can be omitted. The condition that the average per-pattern 
error in (6.190) be minimized with respect to the j/fc(x) is given by setting the 
functional derivative of (E) (Appendix D) to zero 

6{E) - - / ' ( l - ! f c ) m | x ) + / ' ( y f c ) [ l - m | x ) ] = 0 (6.191) 
<5?/fc(x) 

which gives 

/-fa) - m w • *""> 
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If the outputs of the network are to represent probabilities, so that yjt(x) = 
P(Ck\~x), then the function / must satisfy the condition 

^ ~ ^ = ^ - (6.193) 
f (y) v 

A class of functions / which satisfies this condition is given by 

/ (y) = / j / r ( l - y ) r _ 1 # - (6.194) 

This includes two important error functions which we have encountered already. 
For r = 1 we obtain f(y) — y2/2 which gives the sum-of-squares error function. 
Similarly, for r = 0 we obtain f(y) — — ln(l — y) = - ln(l - \y\) which gives rise 
to the cross-entropy error function. To see this, consider a single output and note 
that f(y, t) = - ln(l - \y -1\) = - ln(y) if t = 1 and f(y, t) = - ln(l - \y -1\) = 
— ln(l — y) if t — 0. These can be combined into a single expression of the form 

~{t\ny + (l-t)ln(l-y)}. (6.195) 

Summing over all outputs, as in (6.187), and then over all patterns gives the 
cross-entropy error for multiple independent attributes in the form (6.145). 

As an example of an error function which does not satisfy (6.193), consider 
the Minkowski-.?? error measure which is given by f(y) — yR. Substituting this 
into (6.193) gives 

y * - a = ( l - y ) * - 2 (6.196) 

which is only satisfied if R = 2, corresponding to the sum-of-squares error. For 
R j= 2, the outputs of the network do not correspond to posterior probabilities. 
They do, however, represent non-linear discriminant functions, so that the min­
imum probability of mis-classification is obtained by assigning patterns to the 
class for which the corresponding network output is largest. To see this, substi­
tute f(y) — yR into the condition (6.192) satisfied by the network outputs at 
the minimum of the error function, to give 

, * _ P(Ck\x)W-» 

We see that the y^ only represent the posterior probabilities when R = 2, cor­
responding to the sum-of-squares error. However, the decision boundaries cor­
respond to the minimum mis-classification rate discriminant for all values of R 
since the yk are monotonic functions of the posterior probabilities P(Ck|x). 
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Exercises 

6.1 (*) Throughout this chapter we have considered data in which the input 
vectors x are known exactly, but the target vectors t are noisy. Consider 
instead the situation in which the target data is generated from a smooth 
function h(x) but where the input data is corrupted by additive noise 
(Webb, 1994). Show that the sum-of-squares error, in the infinite data 
limit, can be written as 

E=\jJ Hy(x + « - h(x)||2p(x,£)dxd$. (6.198) 

By changing variables to z = x + £, and using functional differentiation 
(Appendix D), show that the least squares solution is given by 

y ( z ) = y " h ( Z - £ ) p ( € | z ) ^ (6.199) 

so that the optimum solution is again given by the conditional expectation 
of the target data. 

6.2 (*) Consider a model in which the target data is taken to have the form 

t n = y ( x n ; w ) + e" (6.200) 

where en is drawn from a zero mean Gaussian distribution having a fixed 
covariance matrix E . Derive the likelihood function for a data set drawn 
from this distribution, and hence write down the error function. The use 
of such an error function is called generalized least squares, and the usual 
sum-of-squares error function corresponds to the special case £ = <j2I 
where I is the identity matrix. 

6.3 (*) Consider a network with linear output units whose final-layer weights 
are obtained by minimization of a sum-of-squares error function using the 
pseudo-inverse matrix. Show that, if the target values for each training 
pattern satisfy several linear constraints of the form (6.31) simultaneously, 
then the outputs of the trained network will satisfy the same constraints 
exactly for an arbitrary input vector. 

6.4 (*) Verify the normalization of the probability density function in (6.58). 
Use the result T( l /2) = 1/7F to show that the Gaussian distribution is a 
special case corresponding to R = 2. 

6.5 (*) Write down an expression for the Minkowski-./? error function (6.59) with 
R = 1 in infinite data limit, and hence show that the network mapping 
which minimizes the error is given by the conditional median of the target 
data. 

6 .6(**) Write down an expression for the conditional mixture density error 
function (6.77) in the limit of an infinite data set. Hence, by using functional 
differentiation (Appendix D), find expressions satisfied by the quantities 
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a j (x) , /ij(x) and c?(x), in terms of conditional averages, at the minimum 
of this error. Note that the constraint ]T a , = 1 should be enforced by 
using a Lagrange multiplier (Appendix C). Discuss the interpretation of 
these expressions. 

6.7 (*) Consider the circular normal distribution given by (6.95) and show that, 
for 9 — 8Q <§; 1, the shape of the distribution is approximately Gaussian. 

6.8 (**) In Section 6.4.1 we discussed a technique for modelling the conditional 
density p(#|x) of a periodic variable 9 based on a mixture of circular normal 
distributions. Here we investigate an alternative approach which involves 
finding a transformation from the periodic variable 9 € (0,2ir) to a Eu­
clidean variable \ G (—oo>oo), and then applying the Gaussian mixture 
technique of Section 6.4 to the estimation of the conditional density p{9\x) 
in x-space (Bishop and Legleye, 1995). Consider the density function de­
fined by the transformation 

oo 

P(0|X) = Yl p(9+L2?rix) (6-201) 
L=—oo 

where p(x|x) is a density function in x-space. Show that (6.201) satisfies 
the periodicity requirement p(9 + 27r|x) = p(9\x). Also, show that, if the 
density function p(xl x) ' s normalized on the interval (—00,00), then the 
density p(9\x) will be normalized on (0, 27r). The density function p(x|x) 
can now be modelled using a mixture of Gaussians </>j(x|x) of the form 

M 

P(x|x) = £ a y ( x ) ^ - ( x | x ) . (6.202) 
j= i 

Write down the error function given by the negative logarithm of the like­
lihood of a set of data points {x™, #"}, and find expressions for the deriva­
tives of the error function with respect to the means and variances of the 
Gaussian components. Assuming that the mixing coefficients ctj are deter­
mined by a softmax function of the form (6.74), find the derivatives of the 
error function with respect to the corresponding network output variables 
Zj1. Note that, in a practical implementation, it is necessary to restrict 
the summation over I to a limited range. Since the Gaussian functions 
(j>j(x\'x.) have exponentially decaying tails, this can represent an extremely 
good approximation in almost all cases. 

6.9 (*) Using the definition of the pseudo-inverse matrix given by (6.30), verify 
that the result (6.105) follows from the pseudo-inverse formula (6.104). 

6.10 (*) Verify that, for a 1-of-c target coding scheme, the between-class covari-
ance matrix given by (6.107) reduces to the form (6.109). 

6.11 (*) The result (6.108) shows that minimizing a sum-of-squares error func­
tion for a network with linear output units, maximizes a particular non­
linear discriminant function defined over the space of activations of the 
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hidden units. Show that if, instead of using 0 and 1 as the network targets, 
the values 0 and l/^/A^t are used, where Nk is the number of patterns in 
class Ck, then the between-class covariance matrix, given by (6.107) be­
comes 

S B = £ Nk(z
k - z)(zfc - z ) T (6.203) 

k 

where zk is defined by (6.110). This is now the standard between-class 
covariance matrix as introduced in Section 3.6. 

6.12 (**) Consider a weighted sum-of-squares error function of the form (6.112) 
in which the network outputs y^ are given by (6.21). Show that the solution 
for the biases which minimizes the error function is given by 

M 

wko =*k-J2 Wki*J (6.204) 

where we have introduced the following weighted averages 

h = £&«&, I i = l p ^ * L (6.205) 

Use this result to show that the error function, with the biases set to their 
optimal values, can be written in the form 

E= ~Tt{(ZWT - T ) T K T K ( Z W T - T )} (6.206) 

1 II ~ 
where K = diag(K„' ), (T)nfc = t%, (W)fcj- = wkj and (Z)nj - 2J\ and we 
have defined 

%=%-h, z? = z?-zJ. (6.207) 

Show that (6.206) has the same form as the error function in (6.103) but 
with Z and T pre-multiplied by K. Hence show that the value of W which 
minimizes this error function is given by 

W T = ( K Z ) t K T (6.208) 

Hence show that minimization of the error (6.206) is equivalent to maxi­
mization of a criterion of the form 

J = i T r f S s S y 1 } (6.209) 

in which 

SB = Z T K T T T K Z (6.210) 
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S T = ZTKZ. (6.211) 

Show that, for a 1-of-c target coding scheme, and for weighting factors nn 

given by (6.113), the total covariance matrix S T is given by (6.114) and 
the between-class covariance matrix S B is given by (6.116). 

6.13 (*) Suppose that, in Exercise 6.11, the target values had been set to ££ = 
1 — Liu for a pattern n belonging class Cj, where Lik represents the loss 
associated with assigning such a pattern to class Ck (loss matrices are 
introduced in Section 1.10). Show that the between-class covariance matrix 
given by (6.107) takes the form (6.117). Verify that this reduces to the form 
(6.109) when L ^ = l - 5 ! f c . 

6.14 (*) Consider the Hessian matrix for the cross-entropy error function (6.120) 
for two classes and a single network output. Show that, in the limit of an 
infinite data set, the terms involving second derivatives of the network 
outputs, as well as some of the terms involving first derivatives, vanish 
at the minimum of the error function as a consequence of the fact that 
the network outputs equal the conditional averages of the target data. Ex­
tend this result to the cross-entropy error (6.145) corresponding to several 
independent attributes. 

6.15 (*) Show that the entropy measure in (6.145), which was derived for targets 
i t = 0 ,1 , applies also in the case where the targets are probabilities with 
values in the range (0,1). Do this by considering an extended data set in 
which each pattern ij? is replaced by a set of M patterns of which a fraction 
Mffe are set to 1 and the remainder are set to 0, and then applying (6.145) 
to this extended data set. 

6.16 (*) Consider the error function (6.148), together with a network whose 
outputs are given by a softmax activation function (6.151), in the limit of 
an infinite data set. Show that the network output functions t/fe(x) which 
minimize the error are given by the conditional averages of the target data 
(£jb|x). Hint: since the {yk} are not independent, as a result of the constraint 
J2k Vk = 1) consider the functional derivative (Appendix D) with respect 
to ajt(x) instead. 

6.17 (*) Consider the Hessian matrix for the error function (6.148) and a net­
work with a softmax output activation function (6.151) so that J^k Vk(x) — 
1. Show that the terms involving second derivatives of the network outputs 
vanish in the limit of infinite data, provided the network has been trained 
to a minimum of the error function. Hint: make use of the result of Exer­
cise 6.16. 

6.18 (*) Consider a classification network in which the targets for training are 
given by tfe = 1 — Lik for an input vector x n from class Ci, where Lik 
are the elements of a loss matrix, as discussed in Section 1.10. Use the 
general result ?/fc(x) = (tfc|x) for the network outputs at the minimum of 
the error function to show that the outputs are given by weighted posterior 
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probabilities such that selection of the largest output corresponds to the 
minimum-risk classification. 

6.19 (**) Generate histograms of the kind shown in Figure 6.13 for a dis­
crete variable by sampling from a distribution consisting of a mixture of 
two Gaussians. Evaluate numerically the entropy of the histograms using 
(6.166) and explore the dependence of the entropy on the parameters of 
the mixture model. 

6.20 (*) Using the technique of functional differentiation (Appendix D), to­
gether with Lagrange multipliers (Appendix C), show that the probability 
density function p(x) which maximizes the entropy 

S = f p{x) lnp( i ) dx (6.212) 

subject to the constraints 

'p(x)dx = l (6.213) 
/ ' 

/ 

xp(x)dx = fi (6.214) 

\x - n\Rp{x) dx = aR , (6.215) 

PW = olWi/^ exP (JlRpr-) <6-2 1 6) 

is given by 

2oT(\/R) 

where T(a) is the gamma function defined on page 28. 
6.21 (*) Show that the choice of distribution q(x) which minimizes the cross-

entropy (6.181) is given by q(x) = p(x). To do this, consider the functional 
derivative (Appendix D) of (6.181) with respect to q(x). This derivative 
needs to be evaluated subject to the constraint 

/ 
g ( x ) d x = l (6.217) 

which can be imposed by using a Lagrange multiplier (Appendix C). 
6.22 (*) By substituting (6.189) into (6.188) and evaluating the integral over t, 

derive the result (6.190). 
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PARAMETER OPTIMIZATION ALGORITHMS 

In previous chapters, the problem of learning in neural networks has been for­
mulated in terms of the minimization of an error function E. This error is a 
function of the adaptive parameters (weights and biases) in the network, which 
we can conveniently group together into a single W-dimensional weight vector 
w with components W\... w\y-

In Chapter 4 it was shown that, for a multi-layer perceptron, the derivatives 
of an error function with respect to the network parameters can be obtained in a 
computationally efficient way using back-propagation. We shall see that the use 
of such gradient information is of central importance in finding algorithms for 
network training which are sufficiently fast to be of practical use for large-scale 
applications. 

The problem of minimizing continuous, differentiable functions of many vari­
ables is one which has been widely studied, and many of the conventional ap­
proaches to this problem are directly applicable to the training of neural net­
works. In this chapter we shall review several of the most important practical 
algorithms. One of the simplest of these is gradient descent, which has been de­
scribed briefly in earlier chapters. Here we investigate gradient descent in more 
detail, and discuss its limitations. We then describe a number of heuristic modifi­
cations to gradient descent which aim to improve its performance. Next we review 
an important class of conventional optimization algorithms based on the con­
cept of conjugate gradients, including a relatively recent variation called scaled 
conjugate gradients. We then describe the other major class of conventional op­
timization algorithms known as quasi-Newton methods. Finally, we discuss the 
powerful Levenberg-Marquardt algorithm which is applicable specifically to a 
sum-of-squares error function. There are many standard textbooks which cover 
non-linear optimization techniques, including Polak (1971), Gill et at. (1981), 
Dennis and Schnabel (1983), Luenberger (1984), and Fletcher (1987). 

It is sometimes argued that learning algorithms for neural networks should 
be local (in the sense of the network diagram) so that the computations needed 
to update each weight can be performed using information available locally to 
that weight. This requirement may be motivated by interest in modelling biolog­
ical neural systems or by the desire to implement network algorithms in parallel 
hardware. Although the locality issue is relevant both to biological plausibility 
and to hardware implementation, it represents only one facet of these issues, 
and much more careful analyses are required. Since our goal is to find the most 
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Figure 7.1. Geometrical picture of the error function -E(w) as a surface sitting 
above weight space. Points A and B represent minima of the error function. 
At any point C, the local gradient of the error surface is given by the vector 
V £ . 

effective techniques for pattern recognition, there is little point in introducing un­
necessary restrictions. We shall therefore regard the issue of locality as irrelevant 
in the present context. 

Most of the algorithms which are described in this chapter are ones which have 
been found to have good performance in a wide range of applications. However, 
different algorithms will perform best on different problems and it is therefore 
not possible to recommend a single universal optimization algorithm. Instead, 
we highlight the relative advantages and limitations of different algorithms as 
they are discussed. 

7.1 E r r o r surfaces 

The problem addressed in this chapter is to find a weight vector w which min­
imizes an error function E(w). It is useful to have a simple geometrical picture 
of the error minimization process, which can be obtained by viewing E(w) as 
an error surface sitting above weight space, as shown in Figure 7.1. For net­
works having a single layer of weights, linear output-unit activation functions, 
and a sum-of-squares error, the error function will be a quadratic function of 
the weights. In this case the error surface will have a general multidimensional 
parabolic form. There is then a single minimum (or possibly a single continuum 
of degenerate minima), which can be located by solution of a set of coupled linear 
equations, as discussed in detail in Section 3.4.3. 

However, for more general networks, in particular those with more than one 
layer of adaptive weights, the error function will typically be a highly non-linear 
function of the weights, and there may exist many minima all of which satisfy 

VE = 0 (7.1) 
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E 

w 

Figure 7.2. A schematic error function for a single parameter w, showing four 
stationary points at which the local gradient of the error function vanishes. 
Point A is a local minimum, point B is a local maximum, point C is a saddle-
point, and point D is the global minimum. 

where VE denotes the gradient of E in weight space. The minimum for which 
the value of the error function is smallest is called the global minimum- while 
other minima are called local minim.a. There may also be other points which 
satisfy the condition (7.1) such as local maxima or saddlepoints. Any vector w 
for which this condition is satisfied is called a stationary point, and the different 
kinds of stationary point are illustrated schematically in Figure 7.2. 

As a consequence of the non-linearity of the error function, it is not in general 
possible to find closed-form solutions for the minima. Instead, we consider algo­
rithms which involve a search through weight space consisting of a succession of 
steps of the form 

w(r+l) = w(r) + A W ( T ) (7_2) 

where r labels the iteration step. Different algorithms involve different choices 
for the weight vector increment Aw'7"'. For some algorithms, such as conjugate 
gradients and the quasi-Newton algorithms discussed later, the error function is 
guaranteed not to increase as a result of a change to the weights (and hopefully 
will decrease). One potential disadvantage of such algorithms is that if they reach 
a local minimum they will remain there forever, as there is no mechanism for 
them to escape (as this would require a temporary increase in the error function). 
The choice of initial weights for the algorithm then determines which minimum 
the algorithm will converge to. Also, the presence of saddlepoints, or regions 
where the error function is very flat, can cause some iterative algorithms to 
become 'stuck' for extensive periods of time, thereby mimicking local minima. 

Different algorithms can exhibit different behaviour in the neighbourhood 
of a minimum. If e'T ' denotes the distance to the minimum at step r , then 
convergence often has the general form 
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e 
(r + D Q, (£(r))L ( 7 3) 

where L governs the order of convergence. Values of L = 1 and L — 2 are known 
respectively as linear and quadratic convergence. 

In Section 4.4 we discussed the high degree of symmetry which exists in 
the weight space of a multi-layered neural network. For instance, a two-layer 
network with M hidden units exhibits a symmetry factor of M\2M. Thus, for 
any point in weight space, there will be M\2M equivalent points which generate 
the same network mapping, and which therefore give rise to the same value for the 
error function. Any local or global minimum will therefore be replicated a large 
number of times throughout weight space. Of course, in a practical application it 
is irrelevant which of these many equivalent solutions we use. Furthermore, the 
algorithms we shall be discussing make use of a local stepwise search through 
weight space, and will be completely unaffected by the presence of the numerous 
equivalent points elsewhere in weight space. 

In Section 6.1.3 we showed that the sum-of-squares error function, in the 
limit of an infinite data set, can be written as the sum of two terms 

k J 

+ ~ £ / { < ^ | x } - ( t f c | x ) 2 } p ( x ) d x (7.4) 

where yk(x;w) denotes the activation of output unit k when the network is 
presented with input vector x, and (£jt|x) denotes the conditional average of the 
corresponding target variable given by 

(t fc |x>= ftkp(tk\x)dtk. (7.5) 

Since only the first term in (7.4) depends on the network weights, the global 
minimum of the error is obtained when j/fc(x;w) = (ife|x). This can be regarded 
as the optimal solution, as discussed in Section 6.1.3. In practice we must deal 
with finite data sets, however. If the network is relatively complex (for instance 
if it has a large number of adaptive parameters) then the best generalization per­
formance might be obtained from a local minimum, or from some other point in 
weight space which is not a minimum of the error. This leads to a consideration 
of techniques in which the generalization performance is monitored as a func­
tion of time during the training, and the training is halted when the optimum 
generalization is achieved. Such methods are discussed briefly in Section 9.2.4. 
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7.2 Local quadratic approximation 

A considerable degree of insight into the optimization problem, and into the 
various techniques for solving it, can be obtained by considering a local quadratic 
approximation to the error function. Consider the Taylor expansion of E(w) 
around some point w in weight space 

E(w) = E(w) + (w - w ) T b + - ( w - w ) T H ( w - w) (7.6) 

where b is defined to be the gradient of E evaluated at w 

b = V £ | ~ (7.7) 

and the Hessian matrix H is defined by 

dE 
(H)« = (7.8) 

dwiduij 

From (7.6), the corresponding local approximation for the gradient is given by 

Vfi = b + H ( w - w ) . (7.9) 

For points w which are close to w, these expressions will give reasonable approx­
imations for the error and its gradient, and they form the basis for much of the 
subsequent discussion of optimization algorithms. 

Consider the particular case of a local quadratic approximation around a 
point w* which is a minimum of the error function. In this case there is no linear 
term, since VE = 0 at w*, and (7.6) becomes 

E{w) = £(w*) + i ( w - w*) T H(w - w*) (7.10) 

where the Hessian is evaluated at w*. In order to interpret this geometrically, 
consider the eigenvalue equation for the Hessian matrix 

H U i = A iU i (7.11) 

where the eigenvectors Uj form a complete orthonormal set (Appendix A) so 
that 

nJn^Sij. (7.12) 

We now expand (w — w*) as a linear combination of the eigenvectors in the form 
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w - w * = ] T a i U i . (7.13) 
i 

Substituting (7.13) into (7.10), and using (7.11) and (7.12), allows the error 
function to be written in the form 

JS(w) = 2S(w*) + i 5 > a ? . (7.14) 
i 

Equation (7.13) can be regarded as a transformation of the coordinate system 
in which the origin is translated to the point w*, and the axes are rotated to 
align with the eigenvectors (through the orthogonal matrix whose columns are 
the u;) . This transformation is discussed in more detail in Appendix A. 

A matrix I I is said to be positive definite if 

v T H v > 0 for all v. (7.15) 

Since the eigenvectors {u;} form a complete set, an arbitrary vector v can be 
written 

v = £ / ? 4 u , (7.16) 
i 

From (7.11) and (7.12) we then have 

v T H v = ^ A 2 A , - (7.17) 
i 

and so H will be positive definite if all of its eigenvalues are positive. In the new 
coordinate system whose basis vectors are given by the eigenvectors {uj}, the 
contours of constant E are ellipses centred on the origin, whose axes are aligned 
with the eigenvectors and whose lengths are inversely proportional to the square 
roots of the eigenvalues, as indicated in Figure 7.3. For a one-dimensional weight 
space, a stationary point w* will be a minimum if 

dE/dw\w. > 0. (7.18) 

The corresponding result in d-dimensions is that the Hessian matrix, evaluated 
at w*, should be positive definite (Exercise 7.1). 

7.2.1 Use of gradient information 

For most of the network models and error functions which are discussed in earlier 
chapters, it is possible to evaluate the gradient of the error function relatively 
efficiently, for instance by means of the back-propagation procedure. The use of 
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W2 

Figure 7.3. In the neighbourhood of a minimum w*, the error function can 
be approximated by a quadratic function. Contours of constant error are then 
ellipses whose axes are aligned with the eigenvectors U; of the Hessian ma­
trix, with lengths that are inversely proportional to the square roots of the 
corresponding eigenvectors A*. 

this gradient information can lead to significant improvements in the speed with 
which the minima, of the error function can be located. We can easily see why 
this is so, as follows. 

In the quadratic approximation to the error function, given in (7.6), the 
error surface is specified by the quantities b and H, which contain a total of 
W(W + 3}/2 independent terms (since the matrix H is symmetric), where W 
is the dimensionality of w (i.e. the total number of adaptive parameters in the 
network). The location of the minimum of this quadratic approximation therefore 
depends on 0(W2) parameters, and we should not expect to be able to locate the 
minimum until we have gathered C?(W2) independent pieces of information. If 
we do not make use of gradient information, we would expect to have to perform 
at least 0(W2) function evaluations, each of which would require 0(W) steps. 
Thus, the computational effort needed to find the minimum would scale like 
0(WZ). 

Now compare this with an algorithm which makes use of the gradient infor­
mation. Since each evaluation of VE brings W items of information, we might 
hope to find the minimum of the function in 0{W) gradient evaluations. Using 
back-propagation, each such evaluation takes only 0(W) steps and so the min­
imum could now be found in 0(W2) steps. This dramatically improved scaling 
with W strongly suggests that gradient information should be exploited, as is 
the case for the optimization algorithms discussed in this chapter. 

7.3 Linear output units 

As discussed at length in Section 3.4.3, if a sum-of-squares error function is used, 
and the network mapping depends linearly on the weights, then the minimization 
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of the error function represents a linear problem, which can be solved exactly in 
a single step using singular value decomposition (SVD). If we consider a more 
general multi-layer network with linear output units, then the dependence of the 
network mapping on the final-layer weights will again be linear. This means that 
the partial optimization of a sum-of-squares error function with respect to these 
weights (with all other parameters held fixed) can again be performed by linear 
methods, as discussed in Section 3.4.3. The computational effort involved in SVD 
is often very much less than that required for general non-linear optimization, 
which suggests that it may be worthwhile to use linear methods for the final-
layer weights, and non-linear methods for all other parameters. This leads to the 
following hybrid procedure for optimizing the weights in such networks (Webb 
and Lowe, 1988). 

Suppose the final-layer weights are collected together into a vector wr,, with 
the remaining weights forming a vector w. The error function can then be ex­
pressed as E(wr,, w), which is a quadratic function of W£,. For any given value 
of w we can perform a one-step exact minimization with respect to the WL using 
SVD, in which w is held fixed. We denote the optimum Wr, by W L ( W ) . A con­
ventional non-linear optimization method (such as conjugate gradients, or the 
quasi-Newton methods to be described later) is used to minimize E with respect 
to w. Every time the value of w is changed, the weights w/, are recomputed. We 
can therefore regard the final layer weights w t as evolving on a fast time-scale 
compared to the remaining weights w. Effectively, the non-linear optimization is 
attempting to minimize a function E(wr,('w), w) with respect to w. An obvious 
advantage of this method is that the dimensionality of the effective search space 
for the non-linear algorithm is reduced, and we might hope that this would re­
duce the number of training iterations which is required to find a good solution. 
However, this is offset to some extent by the greater computational effort re­
quired at each such step. Webb and Lowe (1988) show that, for some problems, 
this hybrid approach can yield better solutions, or can require less computational 
effort, than full non-linear optimization of the complete network. 

7.4 Op t imiza t i on in p rac t i ce 

In order to apply the algorithms described in this chapter to real problems, 
we need to address a variety of practical issues. Here we discuss procedures for 
initializing the weights in a network, criteria used to terminate training, and 
normalized error functions for assessing the performance of trained networks. 

All of the training algorithms which we consider in this chapter begin by 
initializing the weights in the network to some randomly chosen values. We have 
already seen that optimization algorithms which proceed by a steady monotonic 
reduction in the error function can become stuck in local minima. A suitable 
choice of initial weights is therefore potentially important in allowing the train­
ing algorithm to produce a good set of weights, and in addition may lead to 
improvements in the speed of training. Even stochastic algorithms such as gradi­
ent descent, which have the possibility of escaping from local minima, can show 
strong sensitivity to the initial conditions. The initialization of weights for radial 
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basis function networks has already been dealt with in Chapter 6. Here we shall 
concern ourselves with multi-layer perceptions having sigmoidal hidden-unit ac­
tivation functions. 

The majority of initialization procedures in current use involve setting the 
weights to randomly chosen small values. Random values are used in order to 
avoid problems due to symmetries in the network. The initial weight values are 
chosen to be small so that sigmoidal activation functions are not driven into 
the saturation regions where g'(a) is very small (which would lead to small 
VE, and consequently a very flat error surface). If the weights are too small, 
however, all of the sigmoidal activation functions will be approximately linear, 
which can again lead to slow training. This suggests that the summed inputs 
to the sigmoidal functions should be of order unity. A random initialization of 
the weights requires that some choice be made for the distribution function from 
which the weights are generated. We now examine the choice of this distribution 
in a little more detail. 

We shall suppose that the input values to the network Xi,... X4 have been 
rescaled so as to have zero mean (xi) = 0 and unit variance (xf) = 1, where the 
notation (•) will be used to denote an average both over the training data set and 
over all the choices of initial network weights. The pre-processing of input data 
prior to network training, in order to achieve this normalization, is discussed 
in more detail in Section 8.2. The weights are usually generated from a simple 
distribution, such as a spherically symmetric Gaussian, for convenience, and this 
is generally taken to have zero mean, since there is no reason to prefer any other 
specific point in weight space. The choice of variance a2 for the distribution can 
be important, however. For a unit in the first hidden layer, the activation is given 
by V — 9(a) where 

d 

a = V uiiXi. (719) 
i=0 

Since the choice of weight values is uncorrelated with the inputs, the average of 
a is zero 

d d 

(a) = ̂ (wiXi) = X>*><^> = 0 (7.20) 
i=0 1=0 

since (XJ) = 0. Next consider the variance of a 

(fl2> = ( (X>**) ( X > A J ) = £>?><*?> = °*d (7.21) 
\ \i=0 ) \j=0 J I «=0 

where a1 is the variance of the distribution of weights, and we have used the fact 
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that the weight values are uncorrected and hence (WJ/WJ) = <5y<72, together with 
(a:2) = 1. As we have discussed already, we would like a to be of order unity so 
that the activations of the hidden units are determined by the non-linear part 
of the sigmoids, without saturating. From (7.21) this suggests that the standard 
deviation of the distribution used to generate the initial weights should scale like 
a cc d^1/2. A similar argument can be applied to the weights feeding into any 
other unit in the network, if we assume that the outputs of hidden units are 
appropriately distributed. 

Since a particular training run is sensitive to the initial conditions for the 
weights, it is common practice to train a particular network many times using 
different weight initializations. This leads to a set of different networks whose 
generalization performance can be compared by making use of independent data. 
In this case it is possible to keep the best network and simply discard the remain­
der. However, improved prediction capability can often be achieved by forming 
a committee of networks from amongst the better ones found during the training 
process, as discussed in Section 9.6. The use of multiple training runs also plays 
a related role in building a mixture model for the distribution of weight values 
in the Bayesian framework, as discussed in Section 10.7. 

When using non-linear optimization algorithms, some choice must be made of 
when to stop the training process. Some of the possible choices are listed below: 

1. Stop after a fixed number of iterations. The problem with this approach 
is that it is difficult to know in advance how many iterations would be 
appropriate, although an approximate idea can be obtained from some 
preliminary tests. If several networks are being trained (e.g. with various 
numbers of hidden units) then the appropriate number of iterations may 
be different for different networks. 

2. Stop when a predetermined amount of CPU (central processing unit) time 
has been used. Again, it is difficult to know what constitutes a suitable 
time unless some preliminary tests are performed first. Some adjustment 
for different architectures may again be necessary. 

3. Stop when the error function falls below some specified value. This suffers 
from the problem that the specified value may never be reached, so some 
limit on CPU time may also be required. 

4. Stop when the relative change in error function falls below some speci­
fied value. This may lead to premature termination if the error function 
decreases relatively slowly during some part of the training run. 

5. Stop training when the error measured using an independent validation 
set starts to increase. This approach is generally used as part of a strategy 
to optimize the generalization performance of the network, and will be 
discussed further in Section 9.2.4. 

In practice some combination of the above methods may be employed as part of 
a largely empirical process of parameter optimization. 

Since the value of the error function depends on the number of patterns, it is 
useful to consider a normalized error function for the purposes of assessing the 
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performance of a trained network. For a sum-of-squares error, an appropriate 
choice would be the normalized error function given by 

E = ^ * " > - ? 2 (7.22) 
\ £»l|t-t»|. 

where t is the mean of the target data over the test set (Webb et o?., 1988). 
This error function equals unity when the model is as good a predictor of the 
target data as the simple model y = t, and equals zero if the model predicts 
the data values exactly. A value of E of 0.1 will often prove adequate for simple 
classification problems, while for regression applications a significantly smaller 
value may be needed. For reasons introduced in Chapter 1, and discussed at 
greater length in Chapter 9, the performance of the trained network should be 
assessed using a data set which is independent of the training data. 

For classification problems, it is appropriate to test the performance of the 
trained network by assessing the number of misclassifications, or more generally 
the value of the total loss (Section 1.10). 

7.5 G r a d i e n t descent 

One of the simplest network training algorithms, and one which we have already 
encountered several times in previous chapters, is gradient descent, sometimes 
also known as steepest descent. In the batch version of gradient descent, we start 
with some initial guess for the weight vector (which is often chosen at random) 
denoted by w^0 '. We then iteratively update the weight vector such that, at step 
r , we move a short distance in the direction of the greatest rate of decrease of 
the error, i.e. in the direction of the negative gradient, evaluated at w*-T>: 

Aw< r ' = -r, VE\wM . (7.23) 

Note that the gradient is re-evaluated at each step. In the sequential, or pattern-
based, version of gradient descent, the error function gradient is evaluated for 
just one pattern at a time, and the weights updated using 

Aw<T> = -n V £ n | w ( T , (7.24) 

where the different patterns n in the training set can be considered in sequence, or 
selected at random. The parameter i] is called the learning rate, and, provided its 
value is sufficiently small, we expect that, in the batch version (7.23) of gradient 
descent, the value of E will decrease at each successive step, eventually leading 
to a weight vector at which the condition (7.1) is satisfied. 

For the sequential update (7.24) we might also hope for a steady reduction 
in error since, for sufficiently small t], the average direction of motion in weight 
space should approximate the negative of the local gradient. In order to study this 
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more carefully, we note that sequential gradient descent (7.24) is reminiscent of 
the Robbins-Monro procedure (Section 2.4.1) for finding the zero of a regression 
function (in this case the error function gradient). The analogy becomes precise, 
and we are assured of convergence, if the learning rate parameter r\ is made to 
decrease at each step of the algorithm in accordance with the requirements of the 
theorem (Luo, 1991). These can be satisfied by choosing rfT^ ex 1/r, although 
such a choice leads to very slow convergence. In practice, a constant value of r\ is 
often used as this generally leads to better results even though the guarantee of 
convergence is lost. There is still a serious difficulty with this approach, however. 
If j) is too large, the algorithm may overshoot leading to an increase in E and 
possibly to divergent oscillations resulting in a complete breakdown in the algo­
rithm. Conversely, if T) is chosen to be too small the search can proceed extremely 
slowly, leading to very long computation times. Furthermore, the optimum value 
for T] will typically change during the course of the minimization. 

An important advantage of the sequential approach over batch methods arises 
if there is a high degree of redundant information in the data set. As a simple ex­
ample, suppose that we create a larger training set from the original one simply 
by replicating the original data set ten times. Every evaluation of E then takes 
ten times as long, and so a batch algorithm will take ten times as long to find a 
given solution. By contrast, the sequential algorithm updates the weights after 
each pattern presentation, and so will be unaffected by the replication of data. 
Later in this chapter we describe a number of powerful optimization algorithms 
(such as conjugate gradients and quasi-Newton methods) which are intrinsically 
batch techniques. For such algorithms it is still possible to gain some of the 
advantages of sequential techniques by grouping the data into blocks and pre­
senting the blocks sequentially as if each of them was representative of the whole 
data set. Some experimentation may be needed to determine a suitable size for 
the blocks. 

Another potential advantage of the sequential approach is that, since it is a 
stochastic algorithm, it has the possibility of escape from local minima. Later 
in this chapter we shall discuss a number of algorithms which have the property 
that each step of the algorithm is guaranteed not to produce an increase in the 
error function. If such an algorithm finds its way into a local minimum it will 
typically remain there indefinitely. 

7.5.1 Convergence 

As we have already indicated, one of the limitations of the gradient descent 
technique is the need to choose a suitable value for the learning rate parameter 
r). The problems with gradient descent do not stop there, however. Figure 7.4 
depicts the contours of E, for a hypothetical two-dimensional weight space, in 
which the curvature of E varies significantly with direction. At most points on the 
error surface, the local gradient does not point directly towards the minimum. 
Gradient descent then takes many small steps to reach the minimum, and is 
clearly a very inefficient procedure. 

We can gain deeper insight into the nature of this problem by considering 
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Figure 7.4. Schematic illustration of fixed-step gradient descent for an error 
function which has substantially different curvatures along different directions. 
Ellipses depict contours of constant E, so that the error surface has the form of 
a long valley. The vectors ui and U2 represent the eigenvectors of the Hessian 
matrix. Note that, for most points in weight space, the local negative gradient 
vector —V£ does not point towards the minimum of the error function. Suc­
cessive steps of gradient descent can oscillate across the valley, with very slow 
progress along the valley towards the minimum. 

the quadratic approximation to the error function in the neighbourhood of the 
minimum, discussed earlier in Section 7.2. From (7.10), (7.11) and (7.13), the 
gradient of the error function in this approximation can be written as 

V-E = ] T a i A i U i . (7.25) 
i 

From (7.13) we also have 

Aw=^AaiUi. (7.26) 
i 

Combining (7.25) with (7.26) and the gradient descent formula (7.23), and using 
the orthonormality relation (7.12) for the eigenvectors of the Hessian, we obtain 
the following expression for the change in aj at each step of the gradient descent 
algorithm 

from which it follows that 

Aaj = -rjXiCti (7.27) 

= (1 - n\i)afd (7.28) 

where 'old' and 'new' denote values before and after a weight update. Using the 
orthonormality relation (7.12) for the eigenvectors, together with (7.13), we have 
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u T ( w - w * ) = o i (7.29) 

and so a; can be interpreted as the distance to the minimum along the direction 
u,. From (7.28) we see that these distances evolve independently such that, at 
each step, the distance along the direction of u; is multiplied by a factor (1 —7/Aj). 
After a total of T steps we have 

aP = (1 - „A,) V " (7-30) 

and so, provided |1 — ??Aj| < 1, the limit T —> oo leads to a,- = 0, which from 
(7.29) shows that w = w* and so the weight vector has reached the minimum 
of the error. Note that (7.30) demonstrates that gradient descent leads to linear 
convergence in the neighbourhood of a minimum. Also, convergence to the sta­
tionary point requires that all of the A, be positive, which in turn implies that 
the stationary point is indeed a minimum (Exercise 7.1). 

By making n larger we can make the factor (1 — r/Aj) smaller and hence 
improve the speed of convergence. There is a limit to how large r\ can be made, 
however. We can permit (1 — r\\i) to go negative (which gives oscillating values of 
tti) but we must ensure that | l - r /A, | < 1 otherwise the a , values will diverge. This 
limits the value of rj to 7? < 2/Am a x where Amax is the largest of the eigenvalues. 
The rate of convergence, however, is dominated by the smallest eigenvalue, so 
with r} set to its largest permitted value, the convergence along the direction 
corresponding to the smallest eigenvalue (the long axis of the ellipse in Figure 7.4) 
will be governed by 

A _ "^A (7.3i) 

where Am;n is the smallest eigenvalue. If the ratio Amjn/Amax (whose reciprocal 
is known as the condition number oi the Hessian) is very small, corresponding to 
highly elongated elliptical error contours as in Figure 7.4, then progress towards 
the minimum will be extremely slow. From our earlier discussion of quadratic 
error surfaces, we might expect to be able to find the minimum exactly using as 
few as W(W + 3)/2 error function evaluations. Gradient descent is an extremely 
inefficient algorithm for error function minimization, since the number of function 
evaluations can easily be very much greater than this. Later we shall encounter 
algorithms which are guaranteed to find the minimum of a quadratic error surface 
exactly in a small, fixed number of steps which is 0(W2). 

The gradient descent procedure we have described so far involves taking a 
succession of finite steps through weight space. We can instead imagine the evolu­
tion of the weight vector taking place continuously as a function of time r. The 
gradient descent rule is then replaced by a set of coupled non-linear ordinary 
differential equations of the form 
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dWi r, 9 E (7 Ml 

17 = ^ (7'32) 

where w^ represents any weight parameter in the network. These equations cor­
respond to the motion of a massless particle with position vector w moving in a 
potential field E(w) subject to viscous drag with viscosity coefficient t]~1. They 
represent a set of ^^differential equations (ones characterized by several widely 
differing time-scales) as a consequence of the fact that the Hessian matrix of­
ten has widely differing eigenvalues. The simple gradient descent formula (7.23) 
represents a 'fixed-step forward Euler' technique for solving (7.32), which is a 
particularly inefficient approach for stiff equations. Application of specialized 
techniques for solving stiff ordinary differential equations (Gear, 1971) to the 
system in (7.32) can give significant improvements in convergence time (Owens 
and Filkin, 1989). 

7.5.2 Momentum 

One very simple technique for dealing with the problem of widely differing eigen­
values is to add a momentum term to the gradient descent formula (Plaut et al, 
1986). This effectively adds inertia to the motion through weight space (Exer­
cise 7.3) and smoothes out the oscillations depicted in Figure 7.4. The modified 
gradient descent formula is given by 

Aw<r> = -TJ VE\wM + / / A w ^ - 1 ) (7.33) 

where \i is called the momentum parameter. 
To understand the effect of the momentum term, consider first the motion 

through a region of weight space for which the error surface has relatively low 
curvature, as indicated in Figure 7.5. If we make the approximation that the 
gradient is unchanging, then we can apply (7.33) iteratively to a long series of 
weight updates, and then sum the resulting arithmetic series to give 

Aw=-t]VE{l + (i + fi2 + ...} (7.34) 

1 /x 

and we see that the result of the momentum term is to increase the effective 
learning rate from rj to tj/(l — /t). 

By contrast, in a region of high curvature in which the gradient descent is 
oscillatory, as indicated in Figure 7.6, successive contributions from the momen­
tum term will tend to cancel, and the effective learning rate will be close to TJ. 
Thus, the momentum term can lead to faster convergence towards the minimum 
without causing divergent oscillations. A schematic illustration of the effect of 
a momentum term is shown in Figure 7.7. From (7.35) we see that \i must lie 
between in the range 0 < n < 1. 
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Figure 7.5. With a fixed learning rate parameter, gradient descent down a 
surface with low curvature leads to successively smaller steps (linear conver­
gence). In such a situation, the effect of a momentum term is similar to an 
increase in the effective learning rate parameter. 

Figure 7.6. For a situation in which successive steps of gradient descent are 
oscillatory, a momentum term has little influence on the effective value of the 
learning rate parameter. 

The inclusion of momentum generally leads to a significant improvement in 
the performance of gradient descent. Nevertheless, the algorithm remains rela­
tively inefficient. The inclusion of momentum also introduces a second parameter 
/i whose value needs to be chosen, in addition to that of the learning rate pa­
rameter T). 

7.5.3 Enhanced gradient descent 

As we have seen, gradient descent, even with a momentum term included, is not a 
particularly efficient algorithm for error function minimization. There have been 
numerous attempts in recent years to improve the performance of basic gradient 
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Figure 7.7. Illustration of the effect of adding a momentum term to the gradient 
descent algorithm, showing the more rapid progress along the valley of the error 
function, compared with the unmodified gradient descent shown in Figure 7.4. 

descent for neural network training by making various ad hoc modifications. 
We shall not attempt to review them all here as the literature is much too 
extensive, and we will shortly be considering several robust, theoretically well-
founded optimization algorithms. Instead we consider a few illustrative examples 
of such techniques which attempt to address various deficiencies of the basic 
gradient descent procedure. 

One obvious problem with simple gradient descent plus momentum is that 
it contains two parameters, r\ and p., whose values must be selected by trial and 
error. The optimum values for these parameters will depend on the particular 
problem, and will typically vary during training. We might therefore seek some 
procedure for setting these automatically as part of the training algorithm. One 
such approach is the bold driver technique (Vogl et al., 1988; Battiti, 1989). 
Consider the situation without a momentum term first. The idea is to check 
whether the error function has actually decreased after each step of the gradient 
descent. If it has increased then the algorithm must have overshot the minimum 
(i.e. the minimum along the direction of the weight change) and so the learning 
rate parameter must have been too large. In this case the weight change is 
undone, and the learning rate is decreased. This process is repeated until a 
decrease in error is found. If, however, the error decreased at a given step, then 
the new weight values are accepted. However, the learning rate might have been 
too small, and so its value is increased. This leads to the following prescription 
for updating the learning rate parameter: 

_ f prm if A £ < 0 . . 
Vn™ ~ \atUM i(AE>0. (1-6b) 

The parameter p is chosen to be slightly larger than unity (a typical value might 
be p = 1.1) in order to avoid frequent occurrences of an error increase, since 
in such cases the error evaluation is wasted. The parameter a is taken to be 
significantly less than unity (a = 0.5 is typical) so that the algorithm quickly 
reverts to finding a step which decreases the error, again to minimize wasted 
computation. Many variations of this heuristic are possible, such as increasing Tj 

file:///atUM


270 7: Parameter Optimization Algorithms 

linearly (by a fixed increment) rather than exponentially (by a fixed factor). If we 
include momentum in the bold driver algorithm, the momentum coefficient can 
be set to some fixed value (selected in an ad hoc fashion), but the weight update 
is usually reset along the negative gradient direction after every occurrence of an 
error function increase, which is equivalent to setting the momentum coefficient 
temporarily to zero (Vogl et al, 1988). 

A more principled approach to setting the optimal learning rate parameter 
was introduced by Le Cun et al. (1993). In Section 7.5.1 we showed that the 
largest value which can be used for the learning rate parameter was given by 
??max = 2/Am a x , where Amax is the largest eigenvalue of the Hessian matrix. It is 
easily shown (Exercise 7.5) that if an arbitrary vector is alternately normalized 
and then multiplied by the Hessian, it eventually converges to Amax times the 
corresponding eigenvector. The length of this vector then gives Amax itself. Eval­
uation of the product of the Hessian with a vector can be performed efficiently by 
using the 7?.{}-operator technique discussed in Section 4.10.7. Once a suitable 
value for the learning rate has been determined, the standard gradient descent 
technique is applied. 

We have already noted that the (negative) gradient vector need not point 
towards the error function minimum, even for a quadratic error surface, as in­
dicated in Figure 7.4. In addition, we have seen that long narrow valleys in the 
error function, characterized by a Hessian matrix with widely differing eigenval­
ues, can lead to very slow progress down the valley, as a consequence of the need 
to keep the learning rate small in order to avoid divergent oscillations across 
the valley. One approach that has been suggested for dealing with this problem 
(Jacobs, 1988) is to introduce a separate learning rate for each weight in the 
network, with procedures for updating these learning rates during the training 
process. The gradient descent rule then becomes 

M r ) = - r f r ) ^ - (7-37) 

Heuristically, we might wish to increase a particular learning rate when the 
derivative of E with respect to the corresponding parameter has the same sign 
on consecutive steps since this weight is moving steadily in the downhill direction. 
Conversely, if the sign of the gradient changes on consecutive steps, this signals 
oscillation, and the learning rate parameter should be decreased. 

One way to implement this is to take 

Ar4 r ) = i g ^ g ^ (7-38) 

where 

glT) = - ^ (7-39) 
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and 7 > 0 is a step-size parameter. This prescription is called the delta-delta 
rule (since, in Jacobs (1988) the notation 5{ was used instead of <?j to denote 
the components of the local gradient vector). For the case of a quadratic error 
surface, it can be derived by minimizing the error with respect to the learning 
rate parameters (Exercise 7.6). This rule does not work well in practice since it 
can lead to negative values for the learning rate, which results in uphill steps, 
unless the value of 7 is set very small, in which case the algorithm exhibits 
little improvement over conventional gradient descent. A modification to the 
algorithm, known as the delta-bar-delta rule is to take 

At7(T) - i K i f 3«T-1)SiT) > ° (7 AQ\ 
I -Hi »f 91 91 < 0 

where 

&(T) = ( l - % i T ) + * 3 , ( r - 1 ) (7.41) 

so that g is an exponentially weighted average of the current and previous val­
ues of g. This algorithm appears to work moderately well in practice, at least 
for some problems. One of its obvious drawbacks, however, is that it now con­
tains four parameters (0, d>, K and (i) if we include momentum. A more serious 
difficulty is that the algorithm rests on the assumption that we can regard the 
weight parameters as being relatively independent. This would be the case for a 
quadratic error function if the Hessian matrix were diagonal (so that the major 
axes of the ellipse in Figure 7.3 were aligned with the weight axes). In practice, 
the weights in a typical neural network are strongly coupled, leading to a Hessian 
matrix which is often far from diagonal. The solution to this problem lies in a 
number of standard optimization algorithms which we shall discuss shortly. 

Another heuristic scheme, known as quickprop (Fahlman, 1988), also treats 
the weights as if they were quasi-independent. The idea is to approximate the 
error surface, as a function of each of the weights, by a quadratic polynomial (i.e. 
a parabola), and then to use two successive evaluations of the error function, and 
an evaluation of its gradient, to determine the coefficients of the polynomial. At 
the next step of the iteration, the weight parameter is moved to the minimum of 
the parabola. This leads to an expression for the weight update at step r given 
by (Exercise 7.7) 

A - i T + 1 ) = ( . i f (T)A"4T). (7-42) 
91 ~9i 

The algorithm can be started using a single step of gradient descent. This assumes 
that the result of the local quadratic fit is to give a parabola with a minimum. 
If instead it leads to a parabola with a maximum, the algorithm can take an 

i 
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uphill step. Also, some bound on the maximum size of step needs to be imposed 
to deal with the problem of a nearly flat parabola, and several other fixes are 
needed in order to get the algorithm to work in practice. 

7.6 Line search 

The algorithms which are described in this chapter involve taking a sequence of 
steps through weight space. It is convenient to consider each of these steps in 
two parts. First we must decide the direction in which to move, and second, we 
must decide how far to move in that direction. With simple gradient descent, the 
direction of each step is given by the local negative gradient of the error func­
tion, and the step size is determined by an arbitrary learning rate parameter. 
We might expect that a better procedure would be to move along the direction 
of the negative gradient to find the point at which the error is minimized. More 
generally we can consider some search direction in weight space, and then find 
the minimum of the error function along that direction. This procedure is re­
ferred to as a line search, and it forms the basis for several algorithms which 
are considerably more powerful than gradient descent. We first consider how line 
searches can be implemented in practice. 

Suppose that at step r in some algorithm the current weight vector is w'7"^, 
and we wish to consider a particular search direction d'T ' through weight space. 
The minimum along the search direction then gives the next value for the weight 
vector: 

w ( r + l ) = w ( r ) + A ( r ) d ( T ) (743) 

where the parameter X^ is chosen to minimize 

E(X) = £ ( w ( r ) + A d ^ ) . (7.44) 

This gives us an automatic procedure for setting the step length, once we have 
chosen the search direction. 

The line search represents a one-dimensional minimization problem. A simple 
approach would be to proceed along the search direction in small steps, evalu­
ating the error function at each new position, and stop when the error starts to 
increase (Hush and Salas, 1988). I t is possible, however, to find very much more 
efficient approaches (Press et ai, 1992). Consider first the issue of whether to 
make use of gradient information in performing a line search. We have already 
argued that there is generally a substantial advantage to be gained from using 
gradient information for the general problem of seeking the minimum of the er­
ror function E in the W-dimensional weight space. For the sub-problem of line 
search, however, the argument is somewhat different. Since this is now a one-
dimensional problem, both the value of the error function and the gradient of the 
error function each represent just one piece of information. An error function cal­
culation requires one forward propagation and hence needs ~ 2JVW operations, 
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Figure 7.8. An example of an error function which depends on a parameter A 
governing distance along the search direction, showing a minimum which has 
been bracketed. The three points a < b < c are such that E(a) > E(b) and 
E(c) > E(b). This ensures that the minimum lies somewhere in the interval 
(a,c). 

where N is the number of patterns in the data set. An error function gradient 
evaluation, however, requires a forward propagation, a backward propagation, 
and a set of multiplications to form the derivatives. It therefore needs ~ 5NW 
operations, although it does allow the error function itself to be evaluated as 
well. On balance, the line search is slightly more efficient if it makes use of error 
function evaluations only. 

Each line search proceeds in two stages. The first stage is to bracket the 
minimum by finding three points a < 6 < c along the search direction such that 
E(a) > E(b) and E(c) > E(b), as shown in Figure 7.8. Since the error function 
is continuous, this ensures that there is a minimum somewhere in the interval 
(a, c) (Press et al., 1992). The second stage is to locate the minimum itself. Since 
the error function is smooth and continuous, this can be achieved by a process of 
parabolic interpolation. This involves fitting a quadratic polynomial to the error 
function evaluated at three successive points, and then moving to the minimum 
of the parabola, as illustrated in Figure 7.9. The process can be repeated by 
evaluating the error function at the new point, and then fitting a new parabola 
to this point and two of the previous points. In practice, several refinements are 
also included, leading to the very robust Brent's algorithm (Brent, 1973). Line-
search algorithms, and termination criteria, are reviewed in Luenberger (1984). 

An important issue concerns the accuracy with which the line searches are 
performed. Depending on the particular algorithm in which the line search is to 
be used, it may be wasteful to invest too much computational time in evaluating 
the minimum along each search direction to high accuracy. We shall return to 
this point later. For the moment, we make one comment regarding the limit of 
accuracy which can be achieved in a line search. Near a minimum at XQ, t n e 

error function along the search direction can be approximated by 
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Figure 7.9. An illustration of the process of parabolic interpolation used to 
perform line-search minimization. The solid curve depicts the error as a func­
tion of distance A along the search direction, and the error is evaluated at 
three points a < b < c which are such that E(a) > E(b) and E(c) > E{b). 
A parabola (shown dotted) is fitted to the three points a, b, c. The minimum 
of the parabola, at d, gives an approximation to the minimum of E(X). The 
process can be repeated by fitting another parabola through three points given 
by d and whichever of two of the previous points have the smallest error values 
(6 and c in this example). 

E{\) E(\0) + ^E"(A0)(A - A0)2. (7.45) 

Thus A — Ao must typically be at least of the order of the square root of the 
machine precision before the difference between E(X) and JB(AO) is significant. 
This limits the accuracy with which the minimum can be found. For double-
precision arithmetic this implies that the minimum can only be found to a relative 
accuracy of approximately 3 x 10~8. In practice is may be better to settle for 
much lower accuracy than this. 

7.7 C o n j u g a t e g rad ien t s 

In the previous section we considered procedures for line-search minimization 
along a specified search direction. To apply line search to the problem of error 
function minimization we need to choose a suitable search direction at each stage 
of the algorithm. Suppose we have already minimized along a search direction 
given by the local negative gradient vector. We might suppose that the search 
direction at the next iteration should be given by the negative gradient vector 
at the new position. However, the use of successive gradient vectors turns out in 
general not to represent the best choice of search direction. To see why, we note 
that at the minimum of the line search we have, from (7.44) 

d_ 
£(w<T> + Ad(T)) = 0 (7.46) 
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contours of 
constant E 

(T-l) 

Figure 7.10. After a line minimization, the new gradient is orthogonal to the 
line-search direction. Thus, if the search directions are always chosen to co­
incide with the negative gradients of the error function, as indicated here, 
then successive search directions will be orthogonal, and the error function 
minimization will typically proceed very slowly. 

which gives 

g <*-+l>Td(r) = 0 (7.47) 

where g = VE. Thus, the gradient at the new minimum is orthogonal to the 
previous search direction, as illustrated geometrically in Figure 7.10. Choosing 
successive search directions to be the local (negative) gradient directions can 
lead to the problem already indicated in Figure 7.4 in which the search point 
oscillates on successive steps while making little progress towards the minimum. 
The algorithm can then take many steps to converge, even for a quadratic error 
function. 

The solution to this problem lies in choosing the successive search directions 
d^ such that, at each step of the algorithm, the component of the gradient 
parallel to the previous search direction, which has just been made zero, is un­
altered (to lowest order). This is illustrated in Figure 7.11. Suppose we have 
already performed a line minimization along the direction d ' T \ starting from 
the point w^T\ to give the new point w( T + 1 ' . Then at the point w^T+1 ' we have 

g ( w ( - + l ) ) T d ( r ) = 0 . (7.48) 

We now choose the next search direction d 'T + 1 ' such that, along this new direc­
tion, we retain the property that the component of the gradient parallel to the 
previous search direction remains zero (to lowest order). Thus we require that 

g(w<T+1> + Ad<T+1>)Td<T> = 0 (7.49) 
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Figure 7.11. This diagram illustrates the concept of conjugate directions. Sup­
pose a line search has been performed along the direction d^T' starting from 
the point w ' T \ to give an error minimum along the search path at the point 
•w^+i). The direction d'T+1) is said to be conjugate to the direction d^ if 
the component of the gradient parallel to the direction d'T^, which has just 
be made zero, remains zero (to lowest order) as we move along the direction 
d(T+1>. 

as shown in Figure 7.11. If we now expand (7.49) to first order in A, and note 
that the zeroth-order term vanishes as a consequence of (7.48), we obtain 

d ( T + D T H d ( r ) = 0 ( 7 6 0 ) 

where H is the Hessian matrix evaluated at the point w ' T + 1 ) . If the error surface 
is quadratic, this relation holds for arbitrary values of A in (7.49) since the 
Hessian matrix is constant, and higher-order terms in the expansion of (7.49) 
in powers of A vanish. Search directions which satisfy (7.50) are said to be non-
interfering or conjugate. In fact, we shall see that it is possible to construct a 
sequence of successive search directions d^ such that each direction is conjugate 
to all previous directions, up to the dimensionality W of the search space. This 
leads naturally to the conjugate gradient optimization algorithm. 

7.7.1 Quadratic error function 

In order to introduce the conjugate gradient algorithm, we follow Johansson et 
al. (1992) and consider first the case of a quadratic error function of the form 

E(w) = E0 + b T w + | w T H w (7.51) 

in which the parameters b and H are constant, and H is assumed to be positive 
definite. The local gradient of this error function is given by 

g(w) = b + H w (7.52) 

w-* ig i j iB;Wi^*W)»»g^»*"' 3 J 3 » '^ , i K W - y • 
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and the error function (7.51) is minimized at the point w* given, from (7.52), by 

b + Hw* = 0. (7.53) 

Suppose we can find a set of W vectors (where W is the dimensionality of 
the weight space) which are mutually conjugate with respect to H so that 

d j H d i = 0 j ^ i (7.54) 

then it is easily shown that these vectors will be linearly independent if H is 
positive definite (Exercise 7.8). Such vectors therefore form a complete, but non-
orthogonal, basis set in weight space. Suppose we are starting from some point 
wi, and we wish to get to the minimum w* of the error function. The difference 
between the vectors Wi and w* can be written as a linear combination of the 
conjugate direction vectors in the form 

w 
W* _ W l = Y^aidi- (7-55) 

i = l 

Note that, if we define 

Wj = w i + ^ ] oii&i (7.56) 
i = l 

then (7.55) can be written as an iterative equation in the form 

w J + i = Wj +atjdj. (7-57) 

This represents a succession of steps parallel the conjugate directions, with step 
lengths controlled by the parameters otj. 

In order to find expressions for the a ' s we multiply (7.55) by d j H and make 
use of (7.53) to give 

w 
- d j ( b + H w i ) = ^ O i d j H d i . (7.58) 

i = i 

We now see the significance of using mutually conjugate directions, since (7.54) 
shows that the terms on the right-hand side of (7.58) decouple, allowing an 
explicit solution for the a 's in the form 

df(b + Hwi) 
djHd3 

(7.59) 
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U i U 
C^P 

Figure 7.12. Schematic illustration of the application of the conjugate gradient 
algorithm to the minimization of a two-dimensional quadratic error function. 
The algorithm moves to the minimum of the error after two steps. This should 
be compared with Figures 7.4 and 7.7. 

Without this property, (7.58) would represent a set of coupled equations for the 
at. 

We can write (7.59) in a more convenient form as follows. From (7.56) we 
have 

d j H w j = d j H w i (7.60) 

where we have again used the conjugacy condition (7.54). This allows the nu­
merator on the right-hand side of (7.59) to be written in the form 

d j ( b + Hwj) = d j ( b + H W J ) = djgj (7.61) 

where gj = g(wj) , and we have made use of (7.52). Thus, a , can be written in 
the form 

a, = -*$£-. (7.62) 

We now give a simple inductive argument to show that, if the weights are 
incremented using (7.57) with the a,- given by (7.62) then the gradient vector 
gj at the j ' th step is orthogonal to all previous conjugate directions. It therefore 
follows that after W steps the components of the gradient along all directions 
have been made zero, and so we will have arrived at the minimum of the quadratic 
form. This is illustrated schematically for a two-dimensional space in Figure 7.12. 
To derive the orthogonality property, we note from (7.52) that 

Sj+i - gj = H ( w J + i - wj) = atjHdj (7.63) 

where we have used (7.57). We now take the scalar product of this equation with 
dj, and use the definition of ctj given by (7.62), to give 
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d jg j+ i = 0. (7.64) 

Similarly, from (7.63), we have 

d £ ( g j + i - g j ) = o y d j H d j = 0 for all fc < j < W. (7.65) 

Applying the technique of induction to (7.64) and (7.65) we obtain the result 
that 

d j g j = 0 for all k < j < W (7.66) 

as required. 
The next problem is how to construct a set of mutually conjugate directions. 

This can be achieved by selecting the first direction to be the negative gradient 
di = —gi, and then choosing each successive direction to be a linear combination 
of the current gradient and the previous search direction 

d i + i = - 5 H i + 0 j d j . (7-67) 

The coefficients 0j can be found by imposing the conjugacy condition (7.54) 
which gives 

* = Iffer (7-68) 
In fact, it is easily shown by induction (Exercise 7.9) that successive use of the 
construction given by (7.67) and (7.68) generates a set of W mutually conjugate 
directions. 

From (7.67) it follows that d^ is given by a linear combination of all previous 
gradient vectors 

fc-i 

dfc = -gfc + ^ 7 l » - (7-69) 
( = i 

Using (7.66) we then have 

fc-i 
gfc Sj = E W B * for all k < j < W. (7.70) 

( = i 

Since the initial search direction is just dj = —gj, we can use (7.66) to show that 
gjgj — 0, so that the gradient at step j is orthogonal to the initial gradient. If 
we apply induction to (7.70) we find that the current gradient is orthogonal to 
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all previous gradients 

SkSj = 0 for all k<j<W. (7.71) 

We have now developed an algorithm for finding the minimum of a general 
quadratic error function in at most W steps. Starting from a randomly chosen 
point Wi, successive conjugate directions are constructed using (7.67) in which 
the parameters f3j are given by (7.68). At each step the weight vector is incre­
mented along the corresponding direction using (7.57) in which the parameter 
aj is given by (7.62). 

7.7.2 The conjugate gradient algorithm 

So far our discussion of conjugate gradients has been limited to quadratic error 
functions. For a general non-quadratic error function, the error in the neighbour­
hood of a given point will be approximately quadratic, and so we may hope that 
repeated application of the above procedure will lead to effective convergence 
to a minimum of the error. The step length in this procedure is governed by 
the coefficient <x, given by (7.62), and the search direction is determined by the 
coefficient fij given by (7.68). These expressions depend on the Hessian matrix 
H. For a non-quadratic error function, the Hessian matrix will depend on the 
current weight vector, and so will need to be re-evaluated at each step of the 
algorithm. Since the evaluation of H is computationally costly for non-linear 
neural networks, and since its evaluation would have to be done repeatedly, we 
would like to avoid having to use the Hessian. In fact, it turns out that the co­
efficients aj and /% can be found without explicit knowledge of H. This leads to 
the conjugate gradient algorithm (Hestenes and Stiefel, 1952; Press et al., 1992). 

Consider first the coefficient f3j. If we substitute (7.63) into (7.68) we obtain 

_ g j + i ( g j + i - g j ) . . 
Pi~ dj(g,+ 1-g j . )

 (7-?2) 

which is known as the Hestenes-Stiefel expression. From (7.66) and (7.67) we 
have 

djgj = -gjgj (7.73) 

which, together with a further use of (7.66), allows (7.72) to be written in the 
Polak-Ribiere form 

0j = g ^ ' ' f t ) . (7.74) 
Sj Sj 

Similarly, we can use the orthogonality property (7.71) for the gradients to sim­
plify (7.74) further, resulting in the Fletcher-Reeves form 
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= g ^ £ ± i . (7.75) 

Note that these three expressions for fij are equivalent provided the error function 
is exactly quadratic. In practice, the error function will not be quadratic, and 
these different expressions for f3j can give different results. The Polak-Ribiere 
form is generally found to give slightly better results than the other expressions. 
This is probably due to the fact that, if the algorithm is making little progress, 
so that successive gradient vectors are very similar, the Polak-Ribiere form gives 
a small value for /3, so that the search direction in (7.67) tends to be reset to 
the negative gradient direction, which is equivalent to restarting the conjugate 
gradient procedure. 

We also wish to avoid the use of the Hessian matrix to evaluate a_,. In fact, 
in the case of a quadratic error function, the correct value of ct, can be found by 
performing a line minimization along the search direction. To see this, consider a 
quadratic error (7.51) as a function of the parameter a along the search direction 
d j , starting at the point Wj, given by 

E{v/j + adj) = E0 + b T (w j + adj) + -(w,, + Qd J ) T H(w J + adj). (7.76) 

If we set the derivative of this expression with respect to a equal to zero we 
obtain 

">-$&; (7-77) 

where we have used the expression in (7.52) for the local gradient in the quadratic 
approximation. We see that the result in (7.77) is equivalent to that found in 
(7.62). Thus, we can replace the explicit evaluation of a.} by a numerical proce­
dure involving a line minimization along the search direction dj. 

We have seen that, for a quadratic error function, the conjugate gradient 
algorithm finds the minimum after at most W line minimizations, without cal­
culating the Hessian matrix. This clearly represents a significant improvement 
on the simple gradient descent approach which could take a very large number of 
steps to minimize even a quadratic error function. In practice, the error function 
may be far from quadratic. The algorithm therefore generally needs to be run 
for many iterations until a sufficiently small error is obtained or until some other 
termination criterion is reached. During the running of the algorithm, the conju-
gacy of the search directions tends to deteriorate, and so it is common practice 
to restart the algorithm after every W steps by resetting the search vector to the 
negative gradient direction. More sophisticated restart procedures are described 
in Powell (1977). 

The conjugate gradient algorithm has been derived on the assumption of a 
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quadratic error function with a positive-definite Hessian matrix. For general non­
linear error functions, the local Hessian matrix need not be positive definite. The 
search directions defined by the conjugate gradient algorithm need not then be 
descent directions (Shanno, 1978). In practice, the use of robust line minimiza­
tion techniques ensures that the error can not increase at any step, and such 
algorithms are generally found to have good performance in real applications. 

As we have seen, the conjugate gradient algorithm provides a minimization 
technique which requires only the evaluation of the error function and its deriva­
tives, and which, for a quadratic error function, is guaranteed to find the mini­
mum in at most W steps. Since the derivation has been relatively complex, we 
now summarize the key steps of the algorithm: 

1. Choose an initial weight vector W). 
2. Evaluate the gradient vector g i , and set the initial search direction d i = 

- g i -
3. At step j , minimize E(WJ + ad.,) with respect to a to give Wj+i = Wj + 

4. Test to see if the stopping criterion is satisfied. 
5. Evaluate the new gradient vector gj+j. 
6. Evaluate the new search direction using (7.67) in which 0j is given by the 

Hestenes-Stiefel formula (7.72), the Polak-Ribiere formula (7.74) or the 
Fletcher-Reeves formula (7.75). 

7. Set j = j + 1 and go to 3. 

Empirical results from the training of multi-layer perceptron networks using 
conjugate gradients can be found in Watrous (1987), Webb et al. (1988), Kramer 
and Sangiovanni-Vincentelli (1989), Makram-Ebeid et al. (1989), Barnard (1992) 
and Johansson et al. (1992). 

The batch form of gradient descent with momentum, discussed in Section 7.5, 
involves two arbitrary parameters A and /x, where A determines the step length, 
and fi controls the momentum, i.e. the fraction of the previous step to be included 
in the current step. A major problem with gradient descent is how to determine 
values for A and n, particularly since the optimum values will typically vary 
from one iteration to the next. The conjugate gradient method can be regarded 
as a form of gradient descent with momentum, in which the parameters A and 
/x are determined automatically at each iteration. The effective learning rate is 
determined by line minimization, while the momentum is determined by the 
parameter fy in (7.72), (7.74) or (7.75) since this controls the search direction 
through (7.67). 

7.8 Scaled con juga te g rad ien t s 

We have seen how the use of a line search allows the step size in the conjugate 
gradient algorithm to be chosen without having to evaluate the Hessian matrix. 
However, the line search itself introduces some problems. In particular, every line 
minimization involves several error function evaluations, each of which is com­
putationally expensive. Also, the line-search procedure itself necessarily involves 
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some parameter whose value determines the termination criterion for each line 
search. The overall performance of the algorithm can be sensitive to the value 
of this parameter since a line search which is insufficiently accurate implies that 
the value of ct,- is not being determined correctly, while, an excessively accurate 
line search can represent a good deal of wasted computation. 

M0ller (1993b) introduced the scaled conjugate gradient algorithm as a way 
of avoiding the line-search procedure of conventional conjugate gredients. First, 
note that the Hessian matrix enters the formula (7.62) for ctj only in the form 
of the Hessian multiplied by a vector d j . We saw in Section 4.10.7 that, for the 
multi-layer perceptron, and indeed for more general networks, the product of the 
Hessian with an arbitrary vector could be computed efficiently, in 0(W) steps 
(per training pattern), by using central differences or, more accurately, by using 
the 7?.{-}-operator technique. 

This suggests that, instead of using line minimization, which typically in­
volves several error function evaluations, each of which takes 0{W) operations, 
we simply evaluate H d j using the methods of Section 4.10.7. This simple ap­
proach fails, however, because, in the case of a non-quadratic error function, the 
Hessian matrix need not be positive definite. In this case, the denominator in 
(7.62) can become negative, and the weight update can lead to an increase in 
the value of the error function. The problem can be overcome by modifying the 
Hessian matrix to ensure that it is positive definite. This is achieved by adding 
to the Hessian some multiple of the unit matrix, so that the Hessian becomes 

H + AI (7.78) 

where I is the unit matrix, and A > 0 is a scaling coefficient. Provided A is 
sufficiently large, this modified Hessian is guaranteed to be positive definite. The 
formula for the step length is then given by 

dTg-
aj = ~djH,d/+A,||d,|P (7-79) 

where the suffix j on Aj reflects the fact that the optimum value for this param­
eter can vary from one iteration to the next. For large values of Aj the step size 
becomes small. Techniques such as this are well known in standard optimization 
theory, where they are called model trust region methods, because the model is 
effectively only trusted in a small region around the current search point. The 
size of the trust region is governed by the parameter Aj, so that for large Aj 
the trust region is small. The model-trust-region technique is considered in more 
detail in the context of the Levenberg-Marquardt algorithm later in this chapter. 

We now have to find a way to choose an appropriate value for A j . From the 
discussion in Section 7.7.2 we know that the expression (7.79) with Aj = 0 will 
move the weight vector to the minimum along the search direction provided (i) 
the error function can be represented by a quadratic form, and (ii) the denomi-
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nator is positive (corresponding to a positive-definite Hessian). If either of these 
conditions is not satisfied then the value of Aj needs to be increased accordingly. 

Consider first the problem of a Hessian which is not positive definite. The 
denominator in the expression (7.79) for the a , can be written as 

6j=djHjdj + Xj\\djf. (7.80) 

For a positive-definite Hessian we have 6j > 0. If, however, 6j < 0 then we can 
increase the value of Aj in order to make 6j > 0. Let the raised value of Aj be 
called Xj. Then the corresponding raised value of 6j is given by 

^ • = ^ + (A J -A J ) | | d J | | 2 . (7.81) 

This will be positive if Aj > Xj - <5j/||dj||2. M0ller (1993b) chooses to set 

*- J(A ' - i&)- (7S2) 

Substituting (7.82) into (7.81) gives 

Sj = ~6j + XjUdjf = -djHj-d,- (7.83) 

which is therefore now positive. This value is used as the denominator in (7.79) 
to compute the value of the step-size parameter a,-. 

We now consider the effects of the local quadratic assumption. In regions 
where the quadratic approximation is good, the value of Xj should be reduced, 
while if the quadratic approximation is poor, Aj should be increased, so that the 
size of the trust region reflects the accuracy of the local quadratic approxima­
tion. This can be achieved by considering the comparison parameter defined by 
(Fletcher, 1987) 

E(\Vj) - E(\Vj + ctjdj) 
E(WJ) - EQ(WJ + otjdj) Aj = £"» „*zi,ri\ (7-84) 

where EQ(W) is the local quadratic approximation to the error function in the 
neighbourhood of the point Wj, given by 

EQ(WJ + Qjdj) = £(Wj) + a j d j g j + ±a$djHjdj. (7.85) 

From (7.84) we see that Aj gives a measure of the accuracy ol the quadratic 
approximation. If Aj is close to 1 then the approximation is a good one and the 
value of Aj can be decreased. Conversely a small value of Aj is an indication that 
Aj should be increased. Substituting (7.85) into (7.84), and using the definition 

«*itaiS6î «ii" /*W"^i* 
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(7.62) for atj, we obtain 

= 2{E^)-Ep+a]dj)} 

The value of \j can then be adjusted using the following prescription (Fletcher, 
1987): 

if Aj > 0.75 then A J+1 = Aj/2 (7.87) 

if Aj < 0.25 then Xj+1 = 4A-, (7.88) 

otherwise set A J+i = Aj. Note that, if Aj < 0 so that the step would actually 
lead to an increase in the error, then the weights are not updated, but instead 
the value of Aj is increased in accordance with (7.88), and Aj is re-evaluated. 
Eventually an error decrease will be obtained since, for sufficiently large Aj, the 
algorithm will be taking a small step in the direction of the negative gradient. 
The two stages of increasing Aj (if necessary) to ensure that <5j is positive, and 
adjusting Aj according to the validity of the local quadratic approximation, are 
applied in succession after each weight update. 

Detailed step-by-step descriptions of the algorithm can be found in M0ller 
(1993b) and Williams (1991). Results from software simulations indicate that 
this algorithm can sometimes offer a significant improvement in speed compared 
to conventional conjugate gradient algorithms. 

7.9 N e w t o n ' s m e t h o d 

In the conjugate gradient algorithm, implicit use was made of second-order in­
formation about the error surface, represented by the local Hessian matrix. We 
now turn to a class of algorithms which make explicit use of the Hessian. 

Using the local quadratic approximation, we can obtain directly an expression 
for the location of the minimum (or more generally the stationary point) of the 
error function. From (7.10) the gradient at any point w is given by 

g = V £ = H ( w - w*) (7.89) 

and so the weight vector w* corresponding to the minimum of the error function 
satisfies 

w* = w - H - 1 g . (7.90) 

The vector —H _ 1g is known as the Newton direction or the Newton step, and 
forms the basis for a variety of optimization strategies. Unlike the local gradient 
vector, the Newton direction for a quadratic error surface, evaluated at any w, 
points directly at the minimum of the error function, as illustrated in Figure 7.13. 
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- H ' g 

Figure 7.13. Illustration of the Newton direction for a quadratic error surface. 
The local negative gradient vector —g(w) does not in general point towards 
the minimum of the error function, whereas the Newton direction —H~'g(w) 
does. 

Since the quadratic approximation used to obtain (7.90) is not exact it would 
be necessary to apply (7.90) iteratively, with the Hessian being re-evaluated at 
each new search point. From (7.90), we see that the gradient descent procedure 
(7.23) corresponds to one step of the Newton formula (7.90), with the inverse 
Hessian approximated by the unit matrix times rj, where n is the learning rate 
parameter. 

There are several difficulties with such an approach, however. First, the exact 
evaluation of the Hessian for non-linear networks is computationally demanding, 
since it requires 0(NW2) steps, where W is the number of weights in the net­
work and N is the number of patterns in the data set. This evaluation would be 
prohibitively expensive if done at each stage of an iterative algorithm. Second, 
the Hessian must be inverted, which requires 0(W3) steps, and so is also com­
putationally demanding. Third, the Newton step in (7.90) may move towards a 
maximum or a saddlepoint rather than a minimum. This occurs if the Hessian is 
not positive definite, so that there exist directions of negative curvature. Thus, 
the error is not guaranteed to be reduced at each iteration. Finally, the step size 
predicted by (7.90) may be sufficiently large that it takes us outside the range of 
validity of the quadratic approximation. In this case the algorithm could become 
unstable. 

Nevertheless, by making various modifications to the full Newton rule it can 
be turned into a practical optimization method. Note first that, if the Hessian is 
positive definite (as is the case close to a minimum), then the Newton direction 
always represents a descent direction, as can be seen by considering the local 
directional derivative of the error function in the Newton direction evaluated at 
some point w 

= d T g = - g T E T ' g < 0 (7.91) 
A=0 d\ 

E(w + Ad) 
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where we have used the Newton step formula d = —H_ 1g. 
Away from the neighbourhood of a minimum, the Hessian matrix need not 

be positive definite. The problem can be resolved by adopting the model trust 
region approach, discussed earlier in Section 7.8, and described in more detail in 
Section 7.11. This involves adding to the Hessian a positive-definite symmetric 
matrix which comprises the unit matrix I times a constant factor A. Provided A 
is sufficiently large, the new matrix 

H + AI (7.92) 

will be positive definite. The corresponding step direction is a compromise be­
tween the Newton direction and the negative gradient direction. For very small 
values of A we recover the Newton direction, while for large values of A the 
direction approximates the negative gradient 

_ ( H + A I ) - 1 g ~ - i g . (7.93) 

This still leaves the problem of computing and inverting the Hessian matrix. 
One approach is to approximate the Hessian by neglecting the off-diagonal terms 
(Becker and Le Cun, 1989; Ricotti et al, 1988). This has the advantages that the 
inverse of the Hessian is trivial to compute, and the Newton update equations 
(7.90) decouple into separate equations for each weight. The problem of negative 
curvatures is dealt with by the simple heuristic of taking the modulus of the 
second derivative. This gives a Newton update for a weight w, in the form 

Au>i 
( 92E \ _ 1 

£ 
where A is treated as a small positive constant. For the multi-layer perceptron, the 
diagonal terms in the Hessian matrix can be computed by a back-propagation 
procedure as discussed in Section 4.10.1. A major drawback of this approach, 
however, is that the Hessian matrix for many neural network problems is typically 
far from diagonal. 

7.10 Quasi -Newton m e t h o d s 

We have already argued that a direct application of the Newton method, as given 
by (7.90), would be computationally prohibitive since it would require 0(NW2) 
operations to evaluate the Hessian matrix and 0(W3) operations to compute 
its inverse. Alternative approaches, known as quasi-Newton or variable metric 
methods, are based on (7.90), but instead of calculating the Hessian directly, 
and then evaluating its inverse, they build up an approximation to the inverse 
Hessian over a number of steps. As with conjugate gradients, these methods can 
find the minimum of a quadratic form in at most W steps, giving an overall 
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computational cost which is 0(NW2). 
The quasi-Newton approach involves generating a sequence of matrices G ' r ) 

which represent increasingly accurate approximations to the inverse Hessian 
H _ 1 , using only information on the first derivatives of the error function. The 
problems arising from Hessian matrices which are not positive definite are solved 
by starting from a positive-definite matrix (such as the unit matrix) and ensuring 
that the update procedure is such that the approximation to the inverse Hessian 
is guaranteed to remain positive definite. 

From the Newton formula (7.90) we see that the weight vectors at steps r 
and r + 1 are related to the corresponding gradients by 

w ( r+ i ) _ w ( r ) = _ H - 1 ( g ( r + 1 ) - gW) (7.95) 

which is known as the quasi-Newton condition. The approximation G of the 
inverse Hessian is constructed so as to satisfy this condition also. 

The two most commonly used update formulae are the Davidson-Fletcher-
Powell (DFP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) procedures. 
Here we give only the BFGS expression, since this is generally regarded as being 
superior: 

G(r+1) = G ( r ) + P P ! _ ( G ( T M ^ G ( r ) + ( V T G W V ) U U T ( 7 . 96) 
p T v v T G W v 

where we have defined the following vectors: 

p = w
( r + 1 ) - w ( r ) (7.97) 

v = g( r+1> - g M (7.98) 

p G M 
u = p T v vTG<T (7.99) 

Derivations of this expression can be found in many standard texts on optimiza­
tion methods such as Polak (1971), or Luenberger (1984). It is straightforward 
to verify by direct substitution that (7.96) does indeed satisfy the quasi-Newton 
condition (7.95). 

Initializing the procedure using the identity matrix corresponds to taking the 
first step in the direction of the negative gradient. At each step of the algorithm, 
the direction — Gg is guaranteed to be a descent direction, since the matrix G 
is positive definite. However, the full Newton step given by (7.90) may take the 
search outside the range of validity of the quadratic approximation. The solution 
is to use a line-search algorithm (Section 7.6), as used with conjugate gradients, 
to find the minimum of the error function along the search direction. Thus, the 
weight vector is updated using 
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w ( r + l ) = w ( r ) + a ( r ) G ( r ) g ( r ) ^ 1 Q 0 ) 

where a<T> is found by line minimization. 
A significant advantage of the quasi-Newton approach over the conjugate 

gradient method is that the line search does not need to be performed with 
such great accuracy since it does not form a critical factor in the algorithm. For 
conjugate gradients, the line minimizations need to be performed accurately in 
order to ensure that the system of conjugate directions and orthogonal gradients 
is set up correctly. 

A potential disadvantage of the quasi-Newton method is that it requires the 
storage and update of a matrix G of size W x W. For small networks this is of 
little consequence, but for networks with more than a few thousand weights it 
could lead to prohibitive memory requirements. In such cases, techniques such 
as conjugate gradients, which require only 0(W) storage, have a significant ad­
vantage. 

For an VF-dimensional quadratic form, the sequence of matrices G*T) is guar­
anteed to converge exactly to the true Hessian after W steps, and the quasi-
Newton algorithm would find the exact minimum of the quadratic form after W 
steps, assuming the line minimizations were performed exactly. Results from the 
application of quasi-Newton methods to the training of neural networks can be 
found in Watrous (1987), Webb et al. (1988), and Barnard (1992). 

7.10.1 Limited memory quasi-Newton methods 

Shanno (1978) investigated the accuracy needed for line searches in both conju­
gate gradient and quasi-Newton algorithms, and concluded that conjugate gra­
dient algorithms require relatively accurate line searches, while quasi-Newton 
methods remain robust even if the line searches are only performed to relatively 
low accuracy. This implies that, for conjugate gradient methods, significant com­
putational effort needs to be expended on each line minimization. 

The advantage of conjugate gradient algorithms, however, is that they require 
0(W) storage rather than the 0(W2) storage needed by quasi-Newton methods. 
The question therefore arises as to whether we can find an algorithm which uses 
0(W) storage but which does not require accurate line searches (Shanno, 1978). 
One way to reduce the storage requirement of quasi-Newton methods is to replace 
the approximate inverse Hessian matrix G at each step by the unit matrix. If 
we make this substitution into the BFGS formula in (7.96), and multiply the 
resulting approximate inverse Hessian by the current gradient g ' T + 1 \ we obtain 
the following expression for the search direction 

d<T+x) = - g ( T + 1 ) + Ap + Bv (7.101) 

where the scalars A and B are defined by 
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VT_(T+1) v T. ( r+ l ) 
1 + ^ ) * ^ + ^ - (T.102) p T v p T v 

DTE(r+l) 
B = i—% (7.103) 

and the vectors p and v are defined in (7.97) and (7.98). If exact line searches are 
performed, then (7.101) produces search directions which are mutually conjugate 
(Shanno, 1978). The difference compared with standard conjugate gradients is 
that if approximate line searches are used, the algorithm remains well behaved. 
As with conjugate gradients, the algorithm is restarted in the direction of the 
negative gradient every W steps. This is known as the limited memory BFGS 
algorithm, and has been applied to the problem of neural network training by 
Battiti (1989). 

7.11 T h e L e v e n b e r g - M a r q u a r d t a lgor i thm 

Many of the optimization algorithms we have discussed up to now have been 
general-purpose methods designed to work with a wide range of error functions. 
We now describe an algorithm designed specifically for minimizing a sum-of-
squares error. 

Consider the sum-of-squares error function in the form 

£=^]>>n)2=4NI2 (7.104) 

where en is the error for the ?ith pattern, and e is a vector with elements en. 
Suppose we are currently at a point w0id in weight space and we move to a point 
w n e w . If the displacement w n e w — w0id is small then we can expand the error 
vector e to first order in a Taylor series 

e(wn e w) = 6(w0id) + Z(w n e w - w0id) (7.105) 

where we have defined the matrix Z with elements 

(Z)ni = f£ . (7.106) 

The error function (7.104) can then be written as 

E=\ | |e(woW) + Z(wn e w - w o I d ) | | 2 . (7.107) 

If we minimize this error with respect to the new weights w n e w we obtain 
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w n e w = Wdd - (Z T Z) - 1 Z T c (w o l d ) . (7.108) 

Note that this has the same structure as the pseudo-inverse formula for linear 
networks introduced in Section 3.4.3, as we would expect, since we are indeed 
minimizing a sum-of-squares error function for a linear model. 

For the sum-of-squares error function (7.104), the elements of the Hessian 
matrix take the form 

m\ _ _ ^ L _ = v ! — — cn d2£" ] (7 109̂  
dwidwk ^ \ dwi dwk dwtdwk J 

If we neglect the second term, then the Hessian can be written in the form 

H = Z T Z. (7.110) 

For a linear network (7.110) is exact. We therefore see that (7.108) involves the 
inverse Hessian, as we might expect since it corresponds to the Newton step 
applied to the linearized model in (7.105). For non-linear networks it represents 
an approximation, although we note that in the limit of an infinite data set 
the expression (7.110) is exact at the global minimum of the error function, 
as discussed in Section 6.1.4. Recall that in this approximation the Hessian is 
relatively easy to compute, since first derivatives with respect to network weights 
can be obtained very efficiently using back-propagation as shown in Section 4.8.3. 

In principle, the update formula (7.108) could be applied iteratively in order 
to try to minimize the error function. The problem with such an approach is that 
the step size which is given by (7.108) could turn out to be relatively large, in 
which case the linear approximation (7.107) on which it is based would no longer 
be valid. In the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 
1963), this problem is addressed by seeking to minimize the error function while 
at the same time trying to keep the step size small so as to ensure that the linear 
approximation remains valid. This is achieved by considering a modified error 
function of the form 

E = g ll6(Wold) + Z(wnew - W o l d ) | | 2 + A | |w n e w - W o ! d | | 2 (7.111) 

where the parameter A governs the step size. For large values of A the value of 
| |wn e w — w0id||2 will tend to be small. If we minimize the modified error (7.111) 
with respect to w n e w , we obtain 

w n e w = w o l d - ( Z T Z + AI)-1ZT€(wo l d) (7.112) 

where I is the unit matrix. For very small values of the parameter A we recover 
the Newton formula, while for large values of A we recover standard gradient 
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descent. In this latter case the step length is determined by A - 1 , so that it is 
clear that, for sufficiently large values of A, the error will necessarily decrease 
since (7.112) then generates a very small step in the direction of the negative 
gradient. The Levenberg-Marquardt algorithm is an example of a model trust 
region approach in which the model (in this case the linearized approximation 
for the error function) is trusted only within some region around the current 
search point. The size of this region is governed by the value of A. 

In practice a value must be chosen for A and this value should vary appropri­
ately during the minimization process. One common approach for setting A is to 
begin with some arbitrary value such as A = 0.1, and at each step monitor the 
change in error E. If the error decreases after taking the step predicted by (7.112) 
the new weight vector is retained, the value of A is decreased by a factor of 10, 
and the process repeated. If, however, the error increases, then A is increased 
by a factor of 10, the old weight vector is restored, and a new weight update 
computed. This is repeated until a decrease in E is obtained. Comparisons of 
the Levenberg-Marquardt algorithm with other methods for training multi-layer 
perceptrons are given in Webb et al. (1988). 

Exerc i ses 

7.1 (*) Show that the stationary point w* of quadratic error surface of the form 
(7.10) is a unique global minimum if, and only if, the Hessian matrix is 
positive definite, so that all of its eigenvalues are positive. 

7.2 (* *) Consider a quadratic error error function in two-dimensions of the form 

E=±\iwl + ±\iwl (7.113) 

Verify that Aj and A2 are the eigenvalues of the Hessian matrix. Write a 
numerical implementation of the gradient descent algorithm, and apply it 
to the minimization of this error function for the case where the ratio of the 
eigenvalues A2/A1 is large (say 10:1). Explore the convergence properties 
of the algorithm for various values of the learning rate parameter, and 
verify that the largest value of TJ which still leads to a reduction in E is 
determined by the ratio of the two eigenvalues, as discussed in Section 7.5.1. 
Now include a momentum term and explore the convergence behaviour as 
a function of both the learning rate and momentum parameters. For each 
experiment, plot trajectories of the evolution of the weight vector in the 
two-dimensional weight space, superimposed on contours of constant error. 

7.3 (*) Take the continuous-time limit of (7.33) and show that leads to the 
following equation of motion 

md£+ud™ = _VE ( 7 U 4 ) 
&Tl dr 

where 
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m = ~ , v = ^ ^ - (7.115) 

and r is the continuous time variable. The equation of motion (7.114) 
corresponds to the motion of a massive particle (i.e. one having inertia) 
with mass m moving downhill under a force — V-E1, subject to viscous drag 
with viscosity coefficient v. This is the origin of the term 'momentum' in 
(7.33). 

7.4 (*) In (7.35) we considered the effect of a momentum term on gradient de­
scent through a region of weight space in which the error function gradient 
could be taken to be approximately constant. This was based on summing 
an arithmetic series after an infinite number of steps. Repeat this analysis 
more carefully for a finite number L of steps, by expressing the resulting 
finite series as the difference of two infinite series. Hence obtain an expres­
sion for the weight vector w ^ in terms of the initial weight vector w ' 0 ' , 
the error gradient VE (assumed constant) and the parameters 7] and /i. 
Show that (7.35) is obtained in the limit L —» oo. 

7.5 (*) Consider an arbitrary vector v and suppose that we first normalize v so 
that | |vj| = 1 and then multiply the resulting vector by a real symmetric 
matrix H. Show that, if this process of normalization and multiplication 
by H is repeated many times, the resulting vector will converge towards 
AmaxUmax where Amax is the largest eigenvalue of H and u m a x is the corre­
sponding eigenvector. (Assume that the initial vector v is not orthogonal 
to u m a x ) . 

7.6 (*) Consider a single-layer network having a mapping function given by 

yk = Y. WkiXi (7.116) 

and a sum-of-squares error function of the form 

E = 5E£(^-^)2 (7-117) 
n k 

with n labels the patterns, and k labels the output units. Suppose the 
weights are updated by a gradient descent rule in which each weight tujt; 
has its own learning rate parameter rjki, so that the value of Wki at time 
step r is given by 

(T) ( r - l ) (T) 9E , , „ „ > 
wki ~wki ~%i' <r-l)- ( 7 - 1 1 8 ) 

Use the above equations to find an expression for the error at step r in 
terms of the weight values at step r — 1 and the learning rate parameters 
rffo '. Show that the derivative of the error function with respect to 1]^ is 
given by the delta-delta expression 
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dE _ _„(r)J.T-\) 
(r) 

where 
(T) -

PL- = 
dw 

-9$&-1} (7-119) 

9$ - 4^-y <"*» 

7.7 (*) Derive the quickprop weight update formula (7.42) by following the dis­
cussion given in the text. 

7.8 (*) Consider a symmetric, positive-definite W xW matrix H, and suppose 
there exists a set of W mutually conjugate directions dj satisfying 

djHd4 =0 , j? *• (7121) 

Show that the vectors dj must be linearly independent (i.e. that dj cannot 
be expressed as a linear combination of {dj} where j — l,...,W with 
3 ¥= i). 

7.9 (*) The purpose of this exercise is to show by induction that if successive 
search directions are constructed from (7.67) using the conjugacy condition 
(7.68), that the first W such directions will all be mutually conjugate. We 
know by construction that d jHdi = 0. Now suppose that djHdj = 0 for 
some given j < W and for all i satisfying i < j . Since dJ+1Hd^ = 0 by 
construction, we need to show that dJ+1Hdj = 0 for ali i < j + 1. Using 
(7.67) we have 

dJ+1Hdj = -g7+ ,Hd, + PjdjHdi. (7.122) 

The second term in (7.122) vanishes by assumption. Show that the first 
term also vanishes, by making use of (7.63) and (7.71). This completes the 
proof. 

7.10 (*) Verify by direct substitution that the BFGS update formula (7.96) 
satisfies the Newton condition (7.95). 

7.11 (*) Verify that replacement of the approximate inverse Hessian matrix G ' r ' 
by the unit matrix I in the BFGS formula (7.96) leads to a Newton step 
_Q(r+i)g g} v e n by t n e limited memory BFGS expression (7.101). 
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PRE-PROCESSING AND FEATURE EXTRACTION 

Since neural networks can perform essentially arbitrary non-linear functional 
mappings between sets of variables, a single neural network could, in principle, 
be used to map the raw input data directly onto the required final output values. 
In practice, for all but the simplest problems, such an approach will generally 
give poor results for a number of reasons which we shall discuss below. For most 
applications it is necessary first to transform the data into some new represen­
tation before training a neural network. To some extent, the general-purpose 
nature of a neural network mapping means that less emphasis has to be placed 
on careful optimization of this pre-processing than would be the case with simple 
linear techniques, for instance. Nevertheless, in many practical applications the 
choice of pre-processing will be one of the most significant factors in determining 
the performance of the final system. 

In the simplest case, pre-processing may take the form of a linear transforma­
tion of the input data, and possibly also of the output data (where it is sometimes 
termed post-processing). More complex pre-processing may involve reduction of 
the dimensionality of the input data. The fact that such dimensionality reduction 
can lead to improved performance may at first appear somewhat paradoxical, 
since it cannot increase the information content of the input data, and in most 
cases will reduce it. The resolution is related to the curse of dimensionality dis­
cussed in Section 1.4. 

Another important way in which network performance can be improved, 
sometimes dramatically, is through the incorporation of prior knowledge, which 
refers to relevant information which might be used to develop a solution and 
which is additional to that provided by the training data. Prior knowledge can 
either be incorporated into the network structure itself or into the pre-processing 
and post-processing stages. It can also be used to modify the training process 
through the use of regularization, as discussed in Sections 9.2 and 10.1.2. 

A final aspect of data preparation arises from the fact that real data often 
suffers from a number of deficiencies such as missing input values or incorrect 
target values. 

In this chapter we shall focus primarily on classification problems. It should 
be emphasized, however, that most of the same general principles apply equally 
to regression problems. 
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Figure 8.1. Schematic illustration of the use of data pre-processing and post­
processing in conjunction with a neural network mapping. 

8.1 Pre -p rocess ing and pos t -process ing 

In Chapter 1 we formulated the problem of pattern recognition in terms of a 
non-linear mapping from a set of input variables to a set of output variables. We 
have already seen that a feed-forward neural network can in principle represent an 
arbitrary functional mapping between spaces of many dimensions, and so it would 
appear that we could use a single network to map the raw input data directly 
onto the required output variables. In practice it is nearly always advantageous 
to apply pre-processing transformations to the input data before it is presented 
to a network. Similarly, the outputs of the network are often post-processed to 
give the required output values. These steps are indicated in Figure 8.1. The pre­
processing and post-processing steps may consist of simple fixed transformations 
determined by hand, or they may themselves involve some adaptive processes 
which are driven by the data. For practical applications, data pre-processing is 
often one of the most important stages in the development of solution, and the 
choice of pre-processing steps can often have a significant effect on generalization 
performance. 

Since the training of the neural network may involve an iterative algorithm, 
it will generally be convenient to process the whole training set using the pre­
processing transformations, and then use this transformed data set to train the 
network. With applications involving on-line learning, each new data point must 
first be pre-processed before it is passed to the network. If post-processing of 
the network outputs is used, then the target data must be transformed using 
the inverse of the post-processing transformation in order to generate the target 
values for the network outputs. When subsequent data is processed by the trained 
network, it must first be passed through the pre-processing stage, then through 
the network, and finally through the post-processing transformation. 
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One of the most important forms of pre-processing involves a reduction in 
the dimensionality of the input data. At the simplest level this could involve 
discarding a subset of the original inputs. Other approaches involve forming 
linear or non-linear combinations of the original variables to generate inputs for 
the network. Such combinations of inputs are sometimes called features, and the 
process of generating them is called feature extraction. The principal motivation 
for dimensionality reduction is that it can help to alleviate the worst effects 
of the curse of dimensionality (Section 1.4). A network with fewer inputs has 
fewer adaptive parameters to be determined, and these are more likely to be 
properly constrained by a data set of limited size, leading to a network with 
better generalization properties. In addition, a network with fewer weights may 
be faster to train. 

As a rather extreme example, consider the hypothetical character recognition 
problem discussed in Section 1.1. A 256 x 256 image has a total of 65 536 pixels. 
In the most direct approach we could take each pixel as the input to a single large 
neural network, which would give 65537 adaptive weights (including the bias) 
for every unit in the first hidden layer. This implies that a very large training 
set would be needed to ensure that the weights were well determined, and this 
in turn implies that huge computational resources would be needed in order to 
find a suitable minimum of the error function. In practice such an approach is 
clearly impractical. One technique for dimensionality reduction in this case is 
pixel averaging which involves grouping blocks of pixels together and replacing 
each of them with a single effective pixel whose grey-scale value is given by the 
average of the grey-scale values of the original pixels in the block. It is clear that 
information is discarded by this process, and that if the blocks of pixels are too 
large, then there will be insufficient information remaining in the pixel averaged 
image for effective classification. These averaged pixels are examples of features, 
that is modified inputs formed from collections of the original inputs which might 
be combined in linear or non-linear ways. For an image interpretation problem 
it will often be possible to identify more appropriate features which retain more 
of the relevant information in the original image. For a medical classification 
problem, such features might include various measures of textures, while for a 
problem involving detecting objects in images, it might be more appropriate to 
extract features involving geometrical parameters such as the lengths of edges 
or the areas of contiguous regions. 

Clearly in most situations a reduction in the dimensionality of the input vec­
tor wili result in loss of information. One of the main goals in designing a good 
pre-processing strategy is to ensure that as much of the relevant information as 
possible is retained. If too much information is lost in the pre-processing stage 
then the resulting reduction in performance more than offsets any improvement 
arising from a reduction in dimensionality. Consider a classification problem in 
which an input vector x is to be assigned to one of c classes C^ where k = 1 , . . . , c. 
The minimum probability of misclassification is obtained by assigning each input 
vector x to the class 0% having the largest posterior probability P(Ck\x). We can 
regard these probabilities as examples of features. Since there are c such features, 
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and since they satisfy the relation J2k -P(£fclx) — *i w e s e e that i n principle c— 1 
independent features are sufficient to give the optimal classifier. In practice, of 
course, we will not be able to obtain these probabilities easily, otherwise we would 
already have solved the problem. We may therefore need to retain a much larger 
number of features in order to ensure that we do not discard too much useful in­
formation. This discussion highlights the rather artificial distinction between the 
pre-processing stage and the classification or regression stage. If we can perform 
sufficiently clever pre-processing then the remaining operations become trivial. 
Clearly there is a balance to be found in the extent to which data processing is 
performed in the pre-processing and post-processing stages, and the extent to 
which it is performed by the network itself. 

8.2 Input normalization and encoding 

One of the most common forms of pre-processing consists of a simple linear 
rescaling of the input variables. This is often useful if different variables have 
typical values which differ significantly. In a system monitoring a chemical plant, 
for instance, two of the inputs might represent a temperature and a pressure 
respectively. Depending on the units in which each of these is expressed, they 
may have values which differ by several orders of magnitude. Furthermore, the 
typical sizes of the inputs may not reflect their relative importance in determining 
the required outputs. 

By applying a linear transformation we can arrange for all of the inputs to 
have similar values. To do this, we treat each of the input variables independently, 
and for each variable Xi we calculate its mean x, and variance of with respect 
to the training set, using 

1 N 

Xi = ]v ^ X^ 
n=l 

n=l 

where n — 1 , . . . , TV labels the patterns. We then define a set of re-scaled variables 
given by 

x» = *Ll*i. (8.2) 

It is easy to see that the transformed variables given by the xf have zero mean 
and unit standard deviation over the transformed training set. In the case of 
regression problems it is often appropriate to apply a similar linear rescaling to 
the target values. 
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Note that the transformation in (8.2) is linear and so, for the case of a multi­
layer perceptron, it is in principle redundant since it could be combined with 
the linear transformation in the first layer of the network. In practice, however, 
input normalization ensures that all of the input and target variables are of order 
unity, in which case we expect that the network weights should also be of order 
unity. The weights can then be given a suitable random initialization prior to 
network training. Without the linear rescaling, we would need to find a solution 
for the weights in which some weight values had markedly different values from 
others. 

Note that, in the case of a radial basis function network with spherically-
symmetric basis functions, it is particularly important to normalize the input 
variables so that they span similar ranges. This is a consequence of the fact 
that the activation of a basis function is determined by the Euclidean distance I 
between the input vector x and the basis function centre fij given by 

<2 = ||x-^||2 = f;{x«-W4}2 (8.3) 
i=l 

where d is the dimensionality of the input space. If one of the input variables 
has a much smaller range of values than the others, the value of I2 will be very 
insensitive to this variable. In principle, an alternative to normalization of the 
input data is to use basis functions with more general covariance matrices. 

The simple linear rescaling in (8.2) treats the variables as independent. We 
can perform a more sophisticated linear rescaling, known as whitening, which 
allows also for correlations amongst the variables (Pukunaga, 1990). For conve­
nience we group the input variables Xi into a vector x = (xi,..., Xd)T, which has 
sample mean vector and covariance matrix with respect to the N data points of 
the training set given by 

1 N 

n=l 

E = A F Z l I > n - S ) ( x n - X ) T <8'4) 
n=l 

If we introduce the eigenvalue equation for the covariance matrix 

Suj- = XjUj (8.5) 

then we can define a vector of linearly transformed input variables given by 

5 " = A - 1 / 2 U T ( x n - x ) (8.6) 
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Figure 8.2. Schematic illustration of the use of the eigenvectors Uj (together 
with their corresponding eigenvalues Xj) of the covariance matrix of a distri­
bution to whiten the distribution so that its covariance matrix becomes the 
unit matrix. 

where we have defined 

A = diag(A1 , . . . ,Ad). 

(8.7) 

(8.8) 

Then it is easy to verify that, in the transformed coordinates, the data set has 
zero mean and a covariance matrix which is given by the unit matrix. This is 
illustrated schematically in Figure 8.2. 

8.2.1 Discrete data 

So far we have discussed data which takes the form of continuous variables. We 
may also have to deal with data taking on discrete values. In such cases it is con­
venient to distinguish between ordinal variables which have a natural ordering, 
and categorical variables which do not. An example of an ordinal variable would 
be a person's age in years. Such data can simply be transformed directly into 
the corresponding values of a continuous variable. An example of a categorical 
variable would be a measurement which could take one of the values red, green 
or blue. If these were to be represented as, for instance, the values 0.0, 0.5 and 
1.0 of a single continuous input variable, this would impose an artificial ordering 
on the data. One way around this is to use a 1-of-c coding for the input data, 
similar to that discussed for target data in classification problems in Section 6.6. 
In the above example this requires three input variables, with the three colours 
represented by input values of (1,0,0), (0,1,0) and (0,0,1). 
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8.3 Miss ing d a t a 

In practical applications it sometimes happens that the data suffers from defi­
ciencies which should be remedied before the data is used for network training. 
A common problem is that some of the input values may be missing from the 
data set for some of the pattern vectors (Little and Rubin, 1987; Little, 1992). If 
the quantity of data available is sufficiently large, and the proportion of patterns 
affected is small, then the simplest solution is to discard those patterns from 
the data set. Note that this approach is implicitly assuming that the mechanism 
which is responsible for the omission of data values is independent of the data 
itself. If the values which are missing depend on the data, then this approach 
will modify the effective data distribution. An example would be a sensor which 
always fails to produce an output signal when the signal value exceeds some 
threshold. 

When there is too little data to discard the deficient examples, or when the 
proportion of deficient points is too high, it becomes important to make full use 
of the information which is potentially available from the incomplete patterns. 
Consider first the problem of unconditional density estimation, for the case of a 
parametric model based on a single Gaussian distribution. A common heuristic 
for estimating the model parameters would be the following. The components \ii 
of the mean vector y, are estimated from the values of Xi for all of the data points 
for which this value is available, irrespective of whether other input values are 
present. Similarly, the (i, j) element of the covariance matrix £ is found using 
all pairs of data points for which values of both Xj and xj are available. Such an 
approach, however, can lead to poor results (Ghahramani and Jordan, 1994b), 
as indicated in Figure 8.3. 

Various heuristics have also been proposed for dealing with missing input 
data in regression and classification problems. For example, it is common to 'fill 
in' the missing input values first (Hand, 1981), and then train a feed-forward 
network using some standard method. For example, each missing value might 
be replaced by the mean of the corresponding variable over those patterns for 
which its value is available. This is prone to serious problems as discussed above. 
A more elaborate approach is to express any variable which has missing values in 
terms of a regression over the other variables using the available data, and then 
to use the regression function to fill in the missing values. Again, this approach 
tends to cause problems as it underestimates the covariance in the data since 
the regression function is noise-free. 

Missing data in density estimation problems can be dealt with in a princi­
pled way by seeking a maximum likelihood solution, and using the expectation-
maximization, or EM, algorithm to deal with missing data. In Section 2.6.2, the 
EM algorithm was introduced as a technique for finding maximum likelihood 
solutions for mixture models, in which hypothetical variables describing which 
component was responsible for generating each data point were introduced and 
treated as 'missing data' . The EM algorithm can similarly be applied to the prob­
lem of variables missing from the data itself (Ghahramani and Jordan, 1994b). 
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Figure 8.3. Schematic illustration of a set of data points in two dimensions. 
For some of the data points (shown by the crosses) the values of both variables 
are present, while for others (shown by the vertical lines) only the values of 
x\ are known. If the mean vector of the distribution is estimated using the 
available values of each variable separately, then the result is a poor estimate, 
as indicated by the square. 

In fact the two problems can be tackled together, so that the parameters of a 
mixture model can be estimated, even when there is missing data. Such tech­
niques can be applied to the determination of the basis function parameters in 
a radial basis function network, as discussed in Section 5.9.4. They can also be 
used to determine the density p(x, t ) in the joint input-target space. From this 
density, the conditional density p(t\x) can be evaluated, as can the regression 
function ( t |x) . 

In general, missing values should be treated by integration over the cor­
responding variables (Ahmad and Tresp, 1993), weighted by the appropriate 
distribution (Exercise 8.4). This requires that the input distribution itself be 
modelled. A related approach is to fill in the missing data points with values 
drawn at random from this distribution (Lowe and Webb, 1990). It is then pos­
sible to generate many different 'completions' of a given input pattern which has 
missing variables. This can be regarded as a simple Monte Carlo approximation 
to the required integration over the input distribution (Section 10.9). 

8.4 T i m e ser ies p red ic t ion 

Many potential applications of neural networks involve data x = x ( r ) which 
varies as a function of time r . The goal is often to predict the value of x a short 
time into the future. Techniques based on feed-forward networks, of the kind 
described in earlier chapters, can be applied directly to such problems provided 
the data is appropriately pre-processed first. Consider for simplicity a single 
variable x(r). One common approach is to sample X(T) at regular intervals to 
generate a series of discrete values xT^i,xT,xT+i and so on. We can take a set 
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Figure 8.4. Sampling of a time series at discrete steps can be used to generate 
a set of training data for a feed-forward network. Successive values of the 
time-dependent variable X(T), given by xr^d+i,- • • ,xr, form the inputs to a 
feed-forward network, and the corresponding target value is given by xT+i . 

of d such values x T _d+i , . . . ,xT to be the inputs to a feed-forward network, and 
use the next value xT+i as the target for the output of the network, as indicated 
in Figure 8.4. By stepping along the time axis, we can create a training data set 
consisting of many sets of input values with corresponding target values. Once 
the network has been trained, it can be presented with a set of observed values 
xT'_d+ii • • . , a v and used to make a prediction for av+i- This is called one step 
ahead prediction. If the predictions themselves are cycled around to the inputs 
of the network, then predictions can be made at further points av+2 ar*d so on. 
This is called multi-step ahead prediction, and is typically characterized by a 
rapidly increasing divergence between the predicted and observed values as the 
number of steps ahead is increased due to the accumulation of errors. The above 
approach is easily generalized to deal with several time-dependent variables in 
the form of a time-dependent vector x( r ) . 

One drawback with this technique is the need to choose the time increment 
between successive inputs, and this may require some empirical optimization. 
Another problem is that the time series may show an underlying trend, such as 
a steadily increasing value, with more complex structure superimposed. This can 
be removed by fitting a simple (e.g. linear) function of time to the data, and then 
subtracting off the predictions of this simple model. Such pre-processing is called 
de-trending, and without it, a trained network would be forced to extrapolate 
when presented with new data, and would therefore have poor performance. 

There is a key assumption which is implicit in this approach to time series 
prediction, which is that the statistical properties of the generator of the data 
(after de-trending) are time-independent. Provided this is the case, then the pre­
processing described above has mapped the time series problem onto a static 
function approximation problem, to which a feed-forward network can be applied. 
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If, however, the generator of the data itself evolves with time, then this approach 
is inappropriate and it becomes necessary for the network model to adapt to the 
data continuously so that it can 'track' the time variation. This requires on-line 
learning techniques, and raises a number of important issues, many of which are 
at present largely unresolved and lie outside the scope of this book. 

8.5 F e a t u r e select ion 

One of the simplest techniques for dimensionality reduction is to select a subset 
of the inputs, and to discard the remainder. This approach can be useful if 
there are inputs which carry little useful information for the solution of the 
problem, or if there are very strong correlations between sets of inputs so that 
the same information is repeated in several variables. It can be applied not only 
to the original data, but also to a set of candidate features constructed by some 
other means. For convenience we shall talk of feature selection, even though the 
features might simply be the original input variables. Many of the ideas are 
equally applicable to conventional approaches to pattern recognition, and are 
covered in a number of the standard books in this area including Hand (1981), 
Devijver and Kittler (1982) and Fukunaga (1990), and are reviewed in Siedlecki 
and Sklansky (1988). 

Any procedure for feature selection must be based on two components. First, 
a criterion must be defined by which it is possible to judge whether one subset of 
features is better than another. Second, a systematic procedure must be found 
for searching through candidate subsets of features. In principle the selection 
criterion should be the same as will be used to assess the complete system (such 
as misclassification rate for a classification problem or sum-of-squares error for 
a regression problem). Similarly, the search procedure could simply consist of 
an exhaustive search of all possible subsets of features since this is in general 
the only approach which is guaranteed to find the optimal subset. In a practical 
application, however, we are often forced to consider simplified selection criteria 
as well as non-exhaustive search procedures in order to limit the computational 
complexity of the search process. We begin with a discussion of possible selection 
criteria. 

8.5.1 Selection criteria 

It is clear that the optimal subset of features selected from a given starting set 
will depend, among other things, on the particular form of model (neural network 
or otherwise) with which they are to be used. Ideally the selection criterion would 
be obtained by training the network on the given subset of features, and then 
evaluating its performance on an independent set of test data. If the network 
training procedure involves non-linear optimization, such an approach is likely 
to be impractical since the training and testing process would have to be repeated 
for each new choice of feature subset, and the computational requirements would 
become too great. It is therefore common to use a simpler model, such as a linear 
mapping, in order to select the features, and then use these features with the 
more sophisticated non-linear model. The simplified model is chosen so that it can 
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be trained relatively quickly (using linear matrix methods for instance) thereby 
permitting a relatively large number of feature combinations to be explored. It 
should be emphasized, however, that the feature selection and the classification 
(or regression) stages should be ideally be optimized together, and that it is 
only because of practical constraints that we are often forced to treat them 
independently. 

For regression problems, we can take the simple model to be a linear mapping 
given by a single-layer network with linear output units, which is equivalent to 
matrix multiplication with the addition of a bias vector. If the error function 
for network training is given by a sum-of-squares, we can use this same mea­
sure for feature selection. In this case, the optimal values for the weights and 
biases in the linear mapping can be expressed in terms of a set of linear equa­
tions whose solution can be found quickly by using singular value decomposition 
(Section 3.4.3). 

For classification problems, the selection criterion should ideally be taken to 
be the probability of misclassification, or more generally as the expected total 
loss or risk. This could in principle be calculated by using either parametric or 
non-parametric techniques to estimate the posterior probabilities for each class 
(Hand, 1981). In practice, evaluation of this criterion directly is generally too 
complex, and we have to resort instead to simpler criteria such as those based 
on class separability. We expect that a set of variables in which the classes are 
best separated will be a good set of variables for input to a neural network or 
other classifier. Appropriate criteria for class separability, based on covariance 
matrices, were discussed in Section 3.6 in the context of the Fisher discriminant 
and its generalizations. 

If we were able to use the full criterion of misclassification rate, we would 
expect that, as we reduce the number of features which are retained, the gener­
alization performance of the system would improve (a consequence of the curse 
of dimensionality) until some optimal subset of features is reached, and that if 
fewer features are retained the performance will degrade. One of the limitations 
of many simple selection criteria, such as those based on class separability, is 
that they are incapable of modelling this phenomenon. For example, the Maha-
lanobis distance A 2 (Section 2.1.1) always increases as extra variables are added. 
In general such measures J satisfy a monotonicity property such that 

J(X+) > J{X) (8.9) 

where X denotes a set of features, and X+ denotes a larger set of features which 
contains the set X as a subset. This property is shared by criteria based on 
covariance matrices. The inequality simply says that deleting features cannot 
reduce the error rate. As a consequence, criteria which satisfy the monotonicity 
constraint cannot be used to determine the optimum size for a set of variables 
and so cannot be used to compare sets of different sizes. However, they do offer a 
useful way to compare sets of variables having the same number of elements. In 



306 8: Pre-processing and Feature Extraction 

practice the removal of features can improve the error rate when we take account 
of the effects of a finite size data set. One approach to the set size problem is to 
use conventional statistical tests to measure the significance of the improvement 
in discrimination resulting from inclusion of extra variables (Hand, 1981). An­
other approach is to apply cross-validation techniques (Section 9.8.1) to compare 
models trained using different numbers of features, where the particular feature 
subset used for each model is determined by one of the approaches discussed 
here. 

8.5.2 Search procedures 

If we have a total of d possible features, then since each feature can be present 
or absent, there are a total of 2d possible feature subsets which could be consid­
ered. For a relatively small number of features we might consider simply using 
exhaustive search. With 10 input variables, for example, there are 1024 possible 
subsets which it might be computationally feasible to consider. For large numbers 
of input variables, however, exhaustive search becomes prohibitively expensive. 
Thus with 100 inputs there are over 1030 possible subsets, and exhaustive search 
is impossible. If we have already decided that we want to extract precisely d 
features then the number of combinations of features is given by 

(8.10) 
(d - d)\d\ 

which can be significantly smaller than 2d , but which may still be impractically 
large in many applications. 

In principle it may be necessary to consider all possible subsets of features, 
since combinations of variables can provide significant information which is not 
available in any of the individual variables separately. This is illustrated for two 
classes, and two features xi and X2, in Figure 8.5. Either feature taken alone gives 
strong overlap between the two classes, while if the two features are considered 
together then the classes form well-separated clusters. A similar effect can occur 
with an arbitrary number of features so that, in the most general case, the only 
way to find the optimum subset is to perform exhaustive search. 

If we are using a criterion which satisfies the monotonicity relation in (8.9) 
then there exists an accelerated search procedure known as branch and bound 
(Narendra and Fukunaga, 1977). This method can also be applied in many other 
areas such as cluster analysis and searching for nearest neighbours. In the present 
context it will guarantee to find the best subset of given size, without needing 
to evaluate all possible subsets. To understand this technique, we begin by dis­
cussing the exhaustive search procedure, which we set out as a tree structure. 
Consider an original set of d features Xi where i = 1 , . . . , rf, and denote the 
indices of the M = d — d features which have been discarded by ZI,...,ZM, 
where each z* can take the value 1 , . . . ,d. However, no two Zk should take the 
same value, since that would represent a single feature being eliminated twice. 
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Figure 8.5. Example of data from two classes (represented by the crosses and 
the circles respectively) as described by two feature variables xi and xi. If the 
data was described by either feature alone then there would be strong overlap 
of the two classes, while with if both features are used, as shown here, then 
the classes are well separated. 

Also, the order of the Zfc's is irrelevant in defining the feature subset. A sufficient 
condition for satisfying these constraints is that the Zk should satisfy 

zi < z2 < ... <ZM- (8.11) 

This allows us to construct a search tree, as shown in Figure 8.6 for the case of 
five original features from which we wish to select a subset of two. The features 
are indexed by the labels 1, 2, 3, 4, 5, and the number next to each node denotes 
the feature which is eliminated at that node. Each possible subset of two features 
selected from a total of five is represented by one of the nodes at the bottom of 
the tree. At the first level down from the top of the tree, the highest value of Zk 
which is considered is 3, since any higher value would not allow the constraint 
(8.11) to be satisfied. Similar arguments are used to construct the rest of the 
tree. Now suppose that we wish to maximize a criterion J(d) and that the value 
of J corresponding to the node shown at A is recorded as a threshold. If at any 
point in the search an intermediate node is encountered, such as that shown 
at B, for which the value of J is smaller than the threshold, then there is no 
need to evaluate any of the sets which lie below this node on the tree, since, 
as a consequence of the monotonicity relation (8.9), such nodes necessarily have 
values of the criterion which are smaller than the threshold. Thus, the nodes 
shown as solid circles in Figure 8.6 need not be evaluated. If at any point in the 
search a final-layer node is encountered which has a larger value for the criterion, 
then this value becomes the new threshold. The algorithm terminates when every 
final-layer node has either been evaluated or excluded using the monotonicity^ 
relation. Note that, unlike exhaustive search applied to all possible subsets of d 
variables, this method requires evaluation of some of the intermediate sub-sots 

'rt 
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Figure 8.6. A search tree for feature subset selection, for the case of a set of 
five feature variables from which we wish to pick out the optimum subset of 
two variables. If a strictly monotonic selection criterion is being used, and a 
node such as that at B is found which has a lower value for the criterion than 
some final-level node such as that at A, then all nodes below B (shown as solid 
black nodes) can be eliminated from the search. 

which contain more than d variables. However, this is more than offset by the 
savings in not having to evaluate final-layer subsets which are excluded using the 
monotonicity property. The basic branch and bound algorithm can be modified 
to generate a tree in which nodes with smaller values of the selection criterion 
tend to have larger numbers of successive branches (Fukunaga, 1990). This can 
lead to improvements in computational efficiency since nodes with smaller values 
of the criterion are more likely to be eliminated from the search tree. 

8.5.3 Sequential search techniques 

The branch and bound algorithm for monotonic selection criteria is generally 
faster than exhaustive search but is still guaranteed to find the feature sub­
set (of given size) which maximizes the criterion. In some applications, such an 
approach is still computationally too expensive, and we are then forced to con­
sider techniques which are significantly faster but which may give suboptimal 
solutions. The simplest method would be to select those d features which are 
individually the best (obtained by evaluating the selection criterion using one 
feature at a time). This method, however, is likely to be highly unreliable, and 
would only be optimal for selection criteria which can be expressed as the sum, or 
the product, of the criterion evaluated for each feature individually, and it would 
therefore only be appropriate if the features were completely independent. 

A better approach, known as sequential forward selection, is illustrated in 
Figure 8.7. The procedure begins by considering each of the variables individually 
and selecting the one which gives the largest value for the selection criterion. At 
each successive stage of the algorithm, one additional feature is added to the set, 



8.5: Feature selection 309 

(1) (2) (3) (4) 

(13) ( 2 3 ) ( 3 4 ) 

A 
( 1 2 3 ) ( 2 3 4 ) 

Figure 8.7. Sequential forward selection illustrated for a set of four input fea­
tures, denoted by 1, 2, 3 and 4. The single best feature variable is chosen first, 
and then features are added one at a time such that at each stage the variable 
chosen is the one which produces the greatest increase in the criterion function. 

again chosen on the basis of which of the possible candidates at that stage gives 
rise to the largest increase in the value of the selection criterion. One obvious 
difficulty with this approach is that, if there are two feature variables of the kind 
shown in Figure 8.5, such that either feature alone provides little discrimination, 
but where both features together are very effective, then the forward selection 
procedure may never find this combination since either feature alone would never 
be selected. 

An alternative is to start with the full set of d features and to eliminate them 
one at a time. This gives rise to the technique of sequential backward elimination 
illustrated in Figure 8.8. At each stage of the algorithm, one feature is deleted 
from the set, chosen from amongst all available candidates as the one which gives 
the smallest reduction in the value of the selection criterion. This overcomes the 
problem with the forward selection approach highlighted above, but is still not 
guaranteed to be optimal. The backward elimination algorithm requires a greater 
number of evaluations, however, since it considers numbers of features greater 
than or equal to d while the forward selection procedure considers numbers of 
features less than or equal to d. 

These algorithms can be generalized in various ways in order to allow small 
subsets of features which are collectively useful to be selected (Devijver and 
Kittler, 1982). For example, at the kth stage of the algorithm, we can add I 
features using the sequential forward algorithm and then eliminate r features 
using the sequential backwards algorithm. Clearly there are many variations on 
this theme giving a range of algorithms which search a larger range of feature 
subsets at the price of increased computation. 
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Figure 8.8. Sequential backward elimination of variables, again illustrated for 
the case of four features. Starting with the complete set, features are eliminated 
one at a time, such that at each stage the feature chosen for elimination is 
the one corresponding to the smallest reduction in the value of the selection 
criterion. 

8.6 P r i n c i p a l c o m p o n e n t analysis 
We have already discussed the problems which can arise in attempts to perform 
pattern recognition in high-dimensional spaces, and the potential improvements 
which can be achieved by first mapping the data into a space of lower dimen­
sionality. In general, a reduction in the dimensionality of the input space will be 
accompanied by a loss of some of the information which discriminates between 
different classes (or, more generally, which determines the target values). The 
goal in dimensionality reduction is therefore to preserve as much of the relevant 
information as possible. We have already discussed one approach to dimension­
ality reduction based on the selection of a subset of a given set of features or 
inputs. Here we consider techniques for combining inputs together to make a 
(generally smaller) set of features. The procedures we shall discuss in this sec­
tion rely entirely on the input data itself without reference to the corresponding 
target data, and can be regarded as a form of unsupervised learning. While they 
are of great practical significance, the neglect of the target data information 
implies they can also be significantly sub-optimal, as we discuss in Section 8.6.3. 

We begin our discussion of unsupervised techniques for dimensionality re­
duction by restricting our attention to linear transformations. Our goal is to 
map vectors x n in a d-dimensional space (a: i , . . . ,Xd) onto vectors z n in an M-
dimensional space (z\,..., ZM), where M < d. We first note that the vector x 
can be represented, without loss of generality, as a linear combination of a set of 
d orthonormal vectors u , 

d 

x^J^znu (8.12) 
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where the vectors u< satisfy the orthonormality relation 

ujuj = 6ij (8.13) 

in which 5y is the Kronecker delta symbol defined on page xiii. Explicit expres­
sions for the coefficients z, in (8.12) can be found by using (8.13) to give 

Zi = uTx (8.14) 

which can be regarded as a simple rotation of the coordinate system from the 
original I ' S to a new set of coordinates given by the z's (Appendix A). Now 
suppose that we retain only a subset M < d of the basis vectors u j t so that 
we use only M coefficients z,. The remaining coefficients will be replaced by 
constants b, so that each vector x is approximated by an expression of the form 

M d 

x = Y^ZiUi+ Yl biUi. (8.15) 
t=l i=M+l 

This represents a form of dimensionality reduction since the original vector x 
which contained d degrees of freedom must now be approximated by a new 
vector z which has M < d degrees of freedom. Now consider a whole data set of 
N vectors x n where n = 1 , . . . , N. We wish to choose the basis vectors Uj and 
the coefficients bj such that the approximation given by (8.15), with the values 
of Zi determined by (8.14), gives the best approximation to the original vector x 
on average for the whole data set. The error in the vector x n introduced by the 
dimensionality reduction is given by 

d 

x n - x " = Y, (*?-fcK (816) 
t=M+l 

We can then define the best approximation to be that which minimizes the sum 
of the squares of the errors over the whole data set. Thus, we minimize 

n=l n = K = M + l 

where we have used the orthonormality relation (8.13). If we set the derivative 
of EM with respect to bi to zero we find 

bi = jjY, *<=*?* (8-18) 
71— 1 
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where we have denned the mean vector x to be 

x = lf>". (8.19) 

Using (8.14) and (8.18) we can write the sum-of-squares error (8.17) as 

E«=\ E i>7(*"-x)}2 

«=Af+ln=l 

= i J2 u?S u» (8-2°) 
i=M+l 

where £ is the covariance matrix of the set of vectors {x n} and is given by 

£ = ^ ( x n - x ) (x" - x ) T . (8.21) 
n 

There now remains the task of minimizing EM with respect to the choice of basis 
vectors Uj. It is shown in Appendix E that the minimum occurs when the basis 
vectors satisfy 

£u* = AjUi (8.22) 

so that they are the eigenvectors of the covariance matrix. Note that, since the 
covariance matrix is real and symmetric, its eigenvectors can indeed be chosen 
to be orthonormal as assumed. Substituting (8.22) into (8.20), and making use 
of the orthonormality relation (8.13), we obtain the value of the error criterion 
at the minimum in the form 

1 d 

i=M+l 

Thus, the minimum error is obtained by choosing the d—M smallest eigenvalues, 
and their corresponding eigenvectors, as the ones to discard. 

The linear dimensionality reduction procedure derived above is called the 
Karhunen-Loeve transformation or principal component analysis and is discussed 
at length in Jollife (1986). Each of the eigenvectors Uj is called a principal com­
ponent. The technique is illustrated schematically in Figure 8.9 for the case of 
data points in two dimensions. 

In practice, the algorithm proceeds by first computing the mean of the vectors 
x " and then subtracting off this mean. Then the covariance matrix is calculated 
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Figure 8.9. Schematic illustration of principal component analysis applied to 
data in two dimensions. In a linear projection down to one dimension, the 
optimum choice of projection, in the sense of minimizing the sum-of-squares 
error, is obtained by first subtracting off the mean x of the data set, and then 
projecting onto the first eigenvector m of the covariance matrix. 

and its eigenvectors and eigenvalues are found. The eigenvectors corresponding 
to the M largest eigenvalues are retained and the input vectors x n are projected 
onto the eigenvectors to give the components of the transformed vectors z" in 
the M-dimensional space. Thus, in Figure 8.9, each two-dimensional data point 
is transformed to a single variable Z\ representing the projection of the data 
point onto the eigenvector u i . 

The error introduced by a dimensionality reduction using principal compo­
nent analysis can be evaluated using (8.23). In some applications the original data 
has a very high dimensionality and we wish only to retain the first few principal 
components. In such cases use can be made of efficient algorithms which allow 
only the required eigenvectors, corresponding to the largest few eigenvalues, to 
be evaluated (Press et al., 1992). 

We have considered linear dimensionality reduction based on the sum-of-
squares error criterion. It is possible to consider other criteria including data 
covariance measures and population entropy. These give rise to the same re­
sult for the optimal dimensionality reduction in terms of projections onto the 
eigenvectors of S corresponding to the largest eigenvalues (Pukunaga, 1990). 

8.6.1 Intrinsic dimensionality 

Suppose we are given a set of data vectors in a d-dimensional space, and we 
apply principal component analysis and discover that the first d' eigenvalues have 
significantly larger values than the remaining d—d! eigenvalues. This tells us that 
the data can be represented to a relatively high accuracy by projection onto the 
first dl eigenvectors. We therefore discover that the effective dimensionality of 
the data is less than the apparent dimensionality d, as a result of correlations 
within the data. However, principal component analysis is limited by virtue of 
being a linear technique. It may therefore be unable to capture more complex 
non-linear correlations, and may therefore overestimate the true dimensionality 
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Figure 8.10. Example of a data set in two dimensions which has an intrinsic 
dimensionality d! = 1. The data can be specified not only in terms of the two 
variables xi wad xi, but also in terms of the single parameter n. However, a lin­
ear dimensionality reduction technique, such as principal component analysis, 
is unable to detect the lower dimensionality. 

of the data. This is illustrated schematically in Figure 8.10, for data points which 
lie around the perimeter of a circle. Principal component analysis would give two 
eigenvectors with equal eigenvalues (as a result of the symmetry of the data). In 
fact, however, the data could be described equally well by a single parameter 7] 
as shown. More generally, a data set in d dimensions is said to have an intrinsic 
dimensionality equal to d' if the data lies entirely within a rf'-dimensional sub-
space (Pukunaga, 1982). 

Note that if the data is slightly noisy, then the intrinsic dimensionality may 
be increased. Figure 8.11 shows some data in two dimensions which is corrupted 
by a small level of noise. Strictly the data now lives in a two-dimensional space, 
but can nevertheless by represented to high accuracy by a single parameter. 

8.6.2 Neural networks for dimensionality reduction 

Multi-layer neural networks can themselves be used to perform non-linear dimen­
sionality reduction, thereby overcoming some of the limitations of linear principal 
component analysis. Consider first a multi-layer perceptron of the form shown 
in Figure 8.12, having d inputs, d output units and M hidden units, with M < d 
(Rumelhart et al, 1986). The targets used to train the network are simply the 
input vectors themselves, so that the network is attempting to map each input 
vector onto itself. Due to the reduced number of units in the first layer, a perfect 
reconstruction of all input vectors is not in general possible. The network can be 
trained by minimizing a sum-of-squares error of the form 

£ = 5E2>*( x n ) -^} 2 (8.24) 
n = l f c = l 
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Figure 8.11. Addition of a small level of noise to data in two dimensions having 
an intrinsic dimensionality of 1 can increase its intrinsic dimensionality to 2. 
Nevertheless, the data can be represented to a good approximation by a single 
variable r\ and for practical purposes can be regarded as having an intrinsic 
dimensionality of 1. 

outputs 

inputs 

Figure 8.12. An auto-associative multi-layer perceptron having two layers of 
weights. Such a network is trained to map input vectors onto themselves by 
minimization of a sum-of-squares error. Even with non-linear units in the hid­
den layer, such a network is equivalent to linear principal component analysis. 
Biases have been omitted for clarity. 
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non-linear 

non-linear 

Figure 8.13. Addition of extra hidden layers of non-linear units to the network 
of Figure 8.12 gives an auto-associative network which can perform a general 
non-linear dimensionality reduction. Biases have been omitted for clarity. 

Such a network is said to form an auto-associative mapping. Error minimization 
in this case represents a form of unsupervised training, since no independent 
target data is provided. If the hidden units have linear activations functions, 
then it can be shown that the error function has a unique global minimum, and 
that at this minimum the network performs a projection onto the M-dimensional 
sub-space which is spanned by the first M principal components of the data 
(Bourlard and Kamp, 1988; Baldi and Hornik, 1989). Thus, the vectors of weights 
which lead into the hidden units in Figure 8.12 form a basis set which spans the 
principal sub-space. (Note, however, that these vectors need not be orthogonal 
or normalized.) This result is not surprising, since both principal component 
analysis and the neural network are using linear dimensionality reduction and 
are minimizing the same sum-of-squares error function. 

It might be thought that the limitations of a linear dimensionality reduction 
could be overcome by using non-linear (sigmoidal) activation functions for the 
hidden units in the network in Figure 8.12. However, it was shown by Bourlard 
and Kamp (1988) that such non-linearities make no difference, and that the mini­
mum error solution is again given by the projection onto the principal component 
sub-space. There is therefore no advantage in using two-layer neural networks to 
perform dimensionality reduction. Standard techniques for principal component 
analysis (based on singular value decomposition) are guaranteed to give the cor­
rect solution in finite time, and also generate an ordered set of eigenvalues with 
corresponding orthonormal eigenvectors. 

The situation is different, however, if additional hidden layers are permit­
ted in the network. Consider the four-layer auto-associative network shown in 
Figure 8.13. Again the output units are linear, and the M units in the second 
hidden layer can also be linear. However, the first and third hidden layers have 
sigmoidal non-linear activation functions. The network is again trained by min-
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S(¥2) 

Figure 8.14. Geometrical interpretation of the mappings performed by the 
network in Figure 8.13. 

imization of the error in (8.24). We can view this network as two successive 
functional mappings F i and F2. The first mapping F j projects the original d-
dimensional data onto an M-dimensional sub-space S defined by the activations 
of the units in the second hidden layer. Because of the presence of the first hidden 
layer of non-linear units, this mapping is essentially arbitrary, and in particular 
is not restricted to being linear. Similarly the second half of the network defines 
an arbitrary functional mapping from the M-dimensional space back into the 
original c/-dimensional space. This has a simple geometrical interpretation, as 
indicated for the case d = 3 and M = 2 in Figure 8.14. The function F2 maps 
from an M-dimensional space S into a d-dimensional space and therefore defines 
the way in which the space S is embedded within the original x-space. Since the 
mapping F2 can be non-linear, the sub-space S can be non-planar, as indicated 
in the figure. The mapping F x then defines a projection of points in the original 
d-dimensional space into the M-dimensional sub-space <S. 

Such a network effectively performs a non-linear principal component analy­
sis. It has the advantage of not being limited to linear transformations, although 
it contains standard principal component analysis as a special case. However, 
the minimization of the error function is now a non-linear optimization problem, 
since the error function in (8.24) is no longer a quadratic function of the network 
parameters. Computationally intensive non-linear optimization techniques must 
be used (Chapter 7), and there is the risk of finding a sub-optimal local minimum 
of the error function. Also, the dimensionality of the sub-space must be specified 
in advance of training the network, so that in practice it may be necessary to 
train and compare several networks having different values of M. An example of 
the application of this approach is given in Kramer (1991). 
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Figure 8.15. An example of a simple classification problem for which princi­
pal component analysis would discard the discriminatory information. Two-
dimensional data is taken from two Gaussian classes C\ and Ci depicted by the 
two ellipses. Dimensionality reduction to one dimension using principal com­
ponent analysis would give a projection of the data onto the vector ui which 
would remove all ability to discriminate the two classes. The full discrimina­
tory capability can be preserved if instead the data is projected onto the vector 
U2, which is the direction which would be obtained from linear discriminant 
analysis. 

8.6.3 Limitations of unsupervised techniques 

We have described both linear and non-linear unsupervised techniques for di­
mensionality reduction. These can lead to significant improvements in the per­
formance of subsequent regression or classification systems. It should be empha­
sized, however, that methods based on unsupervised techniques take no account 
of the target data, and can therefore give results which are substantially less 
than optimal. A reduction in dimensionality generally involves the loss of some 
information, and it may happen that this information is very important for the 
subsequent regression or classification phase, even though it is of relatively little 
importance for representation of the input data itself. 

As a simple example, consider a classification problem involving input data 
in two dimensions taken from two Gaussian-distributed classes as shown in Fig­
ure 8.15. Principal component analysis applied to this data would give the eigen­
vectors ui and U2 as shown. If the dimensionality of the data were to be reduced 
to one dimension using principal component analysis, then the data would be 
projected onto the vector Uj since this has the larger eigenvalue. However, this 
would lead to a complete loss of all discriminatory information, and the classes 
would have identical distributions in the one-dimensional space. By contrast, a 
projection onto the vector 112 would give optimal class separation with no loss of 
discriminatory information. Clearly this is an extreme example, and in practice 
dimensionality reduction by unsupervised techniques can prove useful in many 
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applications. 
Note that in the example of Figure 8.15, a reduction of dimensionality us­

ing Fisher's linear discriminant (Section 3.6) would yield the optimal projection 
vector U2. This is a consequence of the fact that it takes account of the class 
information in selecting the projection vector. However, as we saw in Section 3.6, 
for a problem with c classes, Fisher's linear technique can only find c — 1 inde­
pendent directions. For problems with few classes and high input dimensionality 
this may result in too drastic a reduction of dimensionality. Techniques such 
as principal component analysis do not suffer from this limitation and are able 
to extract any number of orthogonal directions up to the dimensionality of the 
original space. 

It is worth noting that there is an additional link between principal com­
ponent analysis and a class of linear neural network models which make use of 
modifications of the Hebb learning rule (Hebb, 1949). This form of learning in­
volves making changes to the value of a weight parameter in proportion to the 
activation values of the two units which are linked by that weight. Such net­
works can be made to perform principal component analysis of the data (Oja, 
1982, 1989; Linsker, 1988; Sanger, 1989), and furthermore it can be arranged 
that the weights converge to orthonormal vectors along the principal component 
directions. For practical applications, however, there would appear to be little 
advantage in using such approaches compared with standard numerical analysis 
techniques such as those described earlier. 

8.7 Invariances and prior knowledge 

Throughout this book we are considering the problem of setting up a multivariate 
mapping (for regression or classification) on the basis of a set of training data. 
In many practical situations we have, in addition to the data itself, some general 
information about the form which the mapping should take or some constraints 
which it should satisfy. This is referred to as prior knowledge, and its inclusion 
in the network design process can often lead to substantial improvements in 
performance. 

We have already encountered one form of prior knowledge expressed as prior 
probabilities of class membership in a classification problem (Section 1.8). These 
can be taken into account in an optimal way by direct use of Bayes' theorem, or by 
introducing weighting factors in a sum-of-squares error function (Section 6.6.2). 
Here we concentrate on forms of prior knowledge concerned with various kinds of 
invariance. As we shall see, the required invariance properties can be built into 
the pre-processing stage, or they can be included in the network structure itself. 
While the latter option does not strictly constitute part of the pre-processing, it 
is discussed in this chapter for convenience. 

8.7.1 Invariances 

In many practical applications it is known that the outputs in a classification or 
regression problem should be unchanged, or invariant, when the input is subject 
to various transformations. An important example is the classification of objects 



320 8: Pre-processing and Feature Extraction 

in two-dimensional images. A particular object should be assigned the same 
classification even if it is rotated or translated within the image or if it is linearly 
scaled (corresponding to the object moving towards or away from the camera). 
Such transformations produce significant changes in the raw data (expressed in 
terms of the intensities at each of the pixels in the image) and yet should give 
rise to the same output from the classification system. We shall use this object 
recognition example to illustrate the use of invariances in neural networks. It 
should be borne in mind, however, that the same general principles apply to any 
problem for which it is desired to incorporate invariance with respect to a set of 
transformations. 

Broadly we can identify three basic approaches to the construction of invari­
ant classification (or regression) systems based on neural networks (Barnard and 
Casasent, 1991): 

1. The first approach is to train a network by example. This involves includ­
ing within the training set a sufficiently large number of examples of the 
effects of the various transformations. Thus, for translation invariance, the 
training set should include examples of objects at many different positions. 
If suitable training data is not readily available then it can be generated by 
applying the transformations to the existing data, for example by translat­
ing a single image to generate several images of the same object at different 
locations. 

2. The second approach involves making a choice of pre-processing which in­
corporates the required invariance properties. If features are extracted from 
the raw data which are themselves invariant, then any subsequent regres­
sion or classification system will necessarily also respect these invariances. 

3. The final option is to build the invariance properties into the network struc­
ture itself. One way to achieve this is through the use of shared weights, 
and we shall consider two specific examples involving local receptive fields 
and higher-order networks. 

While approach 1 is relatively straightforward, it suffers from the disadvantage 
of being inefficient in requiring a substantially expanded data set. It will also 
result in a network which only approximately respects the invariance. Further­
more, the network will be unable to deal with new inputs in which the range of 
the transformation exceeds that encountered during training, as this represents 
an extrapolation of the network inputs. Methods 2 and 3 achieve the required 
invariance properties without needing unnecessarily large data sets. In the con­
text of translation invariance, for instance, a network which has been trained 
to recognize an object correctly at one position within an image can recognize 
the same object correctly at any position. In contrast to a network trained by 
method 1, such a network is able to extrapolate to new inputs if they differ from 
the training data primarily by virtue of one of the transformations. 

An alternative approach which also involves incorporating invariances through 
training, but which does not require artificial expansion of the data set, is the 
technique of tangent prop (Simard et al., 1992). Consider the effect of a trans-
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a 

M 

Figure 8.16. Illustration of a two-dimensional input space showing the ef­
fect of a continuous transformation on a particular input vector xn . A one-
dimensional transformation, parametrized by the continuous variable a, ap­
plied to x" causes it to sweep out a one-dimensional manifold M. Locally, the 
effect of the transformation can be approximated by the tangent vector T " . 

formation on a particular input pattern vector x n . Provided the transformation 
is continuous (such as translation or rotation, but not mirror reflection for in­
stance) then the transformed pattern will sweep out a manifold M within the 
d-dimensional input space. This is illustrated in Figure 8.16, for the case of d = 2 
for simplicity. Suppose the transformation is governed by a single parameter a 
(which might be rotation angle for instance). Then the sub-space M swept out 
by x" will be one-dimensional, and will be parametrized by a. Let the vector 
which results from acting on x n by this transformation be denoted by s(a , x n ) 
which is defined so that s(0, x") = x". Then the tangent to the curve M is given 
by the directional derivative T = ds/da, and the tangent vector at the point x n 

is given by 

T" = 
ds(a, xn) 

da 
(8.25) 

a=0 

Under a transformation of the input vector, the network output vector will, in 
general, change. The derivative of the activation of output unit k with respect 
to a is given by 

a d Q Q d 

oyk _ •sr^dy^dxi_ = ^ j 
da 4-i dxi da ^—' 

(8.26) 

where Jki is the (k,i) element of the Jacobian matrix J , as discussed in Sec­
tion 4.9. The result (8.26) can be used to modify the standard error function, so 
as to encourage local invariance in the neighbourhood of the data points, by the 
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addition to the usual error function E of a regularization function ft to give a 
total error function of the form 

E = E + M (8.27) 

where v is a regularization coefficient (Section 9.2) and 

n^££(X:W) • (8-28) 
n k \ t = l / 

The regularization function will be zero when the network mapping function is 
invariant under the transformation in the neighbourhood of each pattern vector, 
and the value of the parameter v determines the balance between the network 
fitting the training data and the network learning the invariance property. 

In a practical implementation, the tangent vector T " can be approximated by 
finite differences, by subtracting the original vector x " from the corresponding 
vector after transformation using a small value of a, and dividing by a. Some 
smoothing of the data may also be required. The regularization function depends 
on the network weights through the Jacobian J . A back-propagation formalism 
for computing the derivatives of the regularizer with respect to the network 
weights is easily obtained (Exercise 8.6) by extension of the techniques introduced 
in Chapter 4. 

If the *tt»nRfc-rmation is governed by L parameters (e.g. L — 2 for the case 
of translaflSh in a two-dimensional image) then* the space M will have dimen­
sionality Z^and the corresponding regularizer is given by the sum of terms of 
the form (8.28), one for each transformation. If several transformations are con­
sidered at the same time, and the network mapping is made invariant to each 
separately, then it will be (locally) invariant to combinations of the transforma­
tions (Simard et at, 1992). A related technique, called tangent distance, can be 
used to build invariance properties into distance-based methods such as nearest-
neighbour classifiers (Simard et al, 1993). 

8.7.2 Invariance through pre-processing 

The second approach which we shall consider for incorporating invariance prop­
erties into neural network mappings is by a suitable choice of pre-processing. 
One such technique involves the extraction of features from the original input 
data which are invariant under the required transformations. Such features are 
often based on moments of the original data. For inputs which consist of a two-
dimensional image, the moments are defined by 

x{u, v)K{u, v) du dv (8.29) 
/ / 
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where (u,v) are Cartesian coordinates describing locations within the image, 
x(u,v) represents the intensity of the image at location (u,v), and K(u,v) is 
called a kernel and is a fixed function whose form determines the particular 
moments under consideration. In practice, an image is specified in terms of a 
finite array of pixels, and so the integrals in (8.29) are replaced by discrete sums 

^^xiuuvrfKiuijV^AuiAvj. (8.30) 

When the kernel function takes the form of simple powers we have regular mo­
ments which, in continuous notation, can be written 

Mlm = [J x{u, v)u'vm du dv (8.31) 

where I and m are non-negative integers. We can define a corresponding set of 
translation-invariant features, called central moments, by first subtracting off the 
means of u and v 

Mlm = / / x{u, v)(u - u)l(v - v)m dudv (8.32) 

where u = Mio/Moo and v = MQI/MQQ. Under a translation of the image 
x(u,v) —> x(u + Au,v + Aw), and it is easy to verify that the moments de­
fined in (8.32) are invariant. Note that this neglects edge effects and assumes 
that the integrals in (8.32) run over (—00,00). In practice, the use of moments 
in the discrete form (8.30) will give only approximate invariance under such 
transformations. 

Similarly, under a change of scale we have x(u, v) —> x(au, av). We can make 
the central moments invariant to scale by normalizing them to give 

W™ = oi+(i+m)/a ( 8 - 3 ^ 
iWoo 

and again it is easy to verify that the normalized moments in (8.33) are simulta­
neously invariant to translations and scaling. Similarly, we can use the moments 
in (8.33) in turn to construct moments which are simultaneously invariant to 
translation, scale and rotation (Exercise 8.7). For instance, the quantity 

/*20 + M02 (8-34) 

has this property (Schalkoff, 1989). Other forms of moments can also be consid­
ered which are based on different forms for the kernel function K(u,v) (Khotan-
zad and Hong, 1990). 

S. 
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Figure 8.17. Illustration of a three-dimensional input space showing trajecto­
ries, such as M, which patterns sweep out under the action of transformations 
to which the network outputs should be invariant. A suitably chosen set of 
constraints will define a sub-space T which intersects each trajectory precisely 
once. If new inputs are mapped onto this surface using the transformations 
then invariance is guaranteed. 

One problem with the use of moments as input features is that considerable 
computational effort may be required for their evaluation, and this computation 
must be repeated for each new input image. A second problem is that a lot 
of information is discarded in evaluating any particular moment, and so many 
moments may be required in order to give good discrimination. 

An alternative, related approach to invariant pre-processing is to transform 
any new inputs so as to satisfy some appropriately chosen set of constraints 
(Barnard and Casasent, 1991). This is illustrated schematically in Figure 8.17 
for a set of one-parameter transformations. Under the action of the transforma­
tions, each input vector sweeps out a trajectory M as discussed earlier. Those 
patterns which satisfy the constraints live on a sub-space T which intersects the 
trajectories. Note that the constraints must be chosen so that each trajectory 
intersects the constraint surface at precisely one point. Any new input vector 
is first transformed (thus moving it along its trajectory) until it reaches the 
constraint surface. This transformed vector is then used as the input to the net­
work. As an example, suppose we wish to impose invariance to translations and 
changes of scale. The constraints might then take the form that the zeroth and 
first moments Moo, Afio and Moi, given by (8.31), should have specified values. 
Every image (for the training set or test set) is first transformed by translation 
and scaling until the constraints are satisfied. 

8.7.3 Shared weights 

The third approach to dealing with invariances, discussed above, involves struc­
turing the network itself in such a way that the network mapping respects the 



Figure 8.18. Schematic architecture of a network for translation-invariant ob­
ject recognition in two-dimensional images. In a practical system there may 
be more than two layers between the input image and the outputs. 

invariances. While, strictly, this is not a form of pre-processing, it is treated here 
for convenience. Again, we introduce this concept in the context of networks 
designed for object recognition in two-dimensional images. 

Consider the network structure shown in Figure 8.18. The inputs to the net­
work are given by the intensities at each of the pixels in a two-dimensional array. 
Units in the first and second layers are similarly arranged in two-dimensional 
sheets to reflect the geometrical structure of the problem. Instead of having full 
interconnections between adjacent layers, each hidden unit receives inputs only 
from units in a small region in the previous layer, known as a receptive field. 
This reflects the results of experiments in conventional image processing which 
have demonstrated the advantage of extracting local features from an image and 
then combining them together to form higher-order features. Note that it also 
imitates some aspects of the mammalian visual processing system. The network 
architecture is typically chosen so that there is some overlap between adjacent 
receptive fields. 

The technique of shared weights can then be used to build in some degree 
of translation invariance into the response of the network (Rumelhart et al, 
1986; Le Cun et al, 1989; Lang et al., 1990). In the simplest case this involves 
constraining the weights from each receptive field to be equal to the correspond­
ing weights from all of the receptive fields of the other units in the same layer. 
Consider an object which falls within receptive field shown at A in Figure 8.18, 
corresponding to a unit in hidden layer 1, and which produces some activation 
level in that unit. If the same object falls at the corresponding position in re­
ceptive field B, then, as a consequence of the shared weights, the corresponding 
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unit in hidden layer 1 will have the same activation level. The units in the second 
i layer have fixed weights chosen so that each unit computes a simple average of 
; the activations of the units that fall within its receptive field. This allows units 

in the second layer to be relatively insensitive to moderate translations within 
the input image. However, it does preserve some positional information thereby 
allowing units in higher layers to detect more complex composite features. Typi­
cally each successive layer has fewer units than previous layers, as information on 
the spatial location of objects is gradually eliminated. This corresponds to the 
use of a relatively high resolution to detect the presence of a feature in an earlier 
layer, while using a lower resolution to represent the location of that feature in 
a subsequent layer. 

In a practical network there may be several pairs of layers, with alternate 
layers having fixed and adaptive weights. These gradually build up increasing 
tolerance to shifts in the input image, so that the final output layer has a response 
which is almost entirely independent of the position of an object in the input 
field. 

As described so far, this network architecture has only one kind of receptive 
field in each layer. In order to be able to extract several different kinds of feature 
is necessary to provide several 'planes' of units in each hidden layer, with all 
units in a given plane sharing the same weights. Weight sharing can be enforced 
during learning by initializing corresponding weights to the same (random) values 
and then averaging the weight changes for all of the weights in one group and 
updating all of the corresponding weights by the same amount using the averaged 
weight change. 

Network architectures of this form have been used in the zip code recogni­
tion system of Le Cun et al. (1989), and in the neocognitron of Fukushima et al. 
(1983) and Fukushima (1988), for translation-invariant recognition of handwrit­
ten digits. 

i The use of receptive fields can dramatically reduce the number of weights 
present in the network compared with a fully connected architecture. This makes 

) it practical to treat pixel values in an image directly as inputs to a network. 
I In addition, the use of shared weights means that the number of independent 
j parameters in the network is much less than the number of weights, which allows 
' much smaller data sets to be used than would otherwise be necessary. 

8.7.4 Higher-order networks for encoding invariances 

In Section 4.5 we introduced the concept of a higher-order network based on 
units whose outputs are given by 

( d d d \ 

wi + Yl wHiXii + YU2 wJUi2xhxh + •••) (8-35) 
tl = l j 1 = l t 2 = l / 

where xt is an input, g(-) is a non-linear activation function and the w's rep­
resent the weights. We have already remarked that such networks can have a 
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Figure 8.19. We can impose translation invariance on a second-order network 
if we ensure that , for each hidden unit separately, weights from any pair of 
points ii and i% are constrained to equal those from any other pair i\ and i'2, 
where the line i'i-i'2 can be obtained from the line ii-12 by translation. 

proliferation of weight parameters and are therefore impractical for many appli­
cations. (The number of independent parameters per unit is the same as for the 
corresponding multivariate polynomial, and is discussed in Exercises 1.6-1.8.) 
However, we can exploit the structure of a higher-order network to impose in­
variances, and at the same time reduce significantly the number of independent 
weights in the network, by using a form of weight sharing (Giles and Maxwell, 
1987; Perantonis and Lisboa, 1992). Consider the problem of incorporating trans­
lation invariance into a higher-order network. This can be achieved by using a 
second-order network of the form 

zi = 9 [YlYiwihi2XiiXi2 I • (8-36) 
\ h «2 / 

Under a translation, the value of the intensity in pixel i\ will go from its original 
value XJI to a new value x'it given by x'tl = x^ where the translation can 
be described by a vector from pixel i\ to pixel i\. Thus the argument of the 
activation function g(-) in (8.36) will be invariant if, for each unit j in the first 
hidden layer, we have 

wjhi2 = Wj^. (8.37) 

This has a simple geometrical interpretation as indicated in Figure 8.19. Each 
unit in the first hidden layer takes inputs from two pixels in the image, such 
as those labelled i\ and i2 in the figure. The constraint in (8.37) requires that, 
for each unit in the first hidden layer, and for each possible pair of points in the 
image, the weights from any other pair of points, such as those at i'x and i'2 which 
can be obtained from i\ and i2 by translation, must be equal. Note that such 
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an approach would not work with a first-order network, since the constraint on 
the weights would force all weights into any given unit to be equal. Each unit 
would therefore take as input something proportional to the average of all of the 
input pixel values and, while this would be translation invariant, there would be 
no freedom left for the units to detect any structure in the image. Edge effects, 
as well as the discrete nature of the pixels, have been neglected here, and in 
practice the invariance properties will be only approximately realized. 

Higher-order networks can be made invariant to more complex transforma­
tions. Consider a general iifth-order unit 

/ _, ' ' ' 2__/
wji\,--,iKXh> ' ' ' !xix- (8.38) 

«1 I K 

Under a particular geometrical transformation, x^ —» x'it = Xi< where the pixel 
at i\ is replaced by the pixel at i\. It follows that the expression in (8.38) will be 
invariant provided 

Wjii ,->«'* =wHu-,iK- ( 8 - 3 9 ) 

As well as allowing invariances to be built into the network structure, the imposi­
tion of the constraints in (8.39) can greatly reduce the number of free parameters 
in the network, and thereby dramatically reduce the size of data set needed to 
determine those weights. 

Simultaneous translation and scale invariance can be built into a second-order 
network by demanding that, for each unit in the first hidden layer, and for each 
pair of inputs i\ and 12, the weights from i\ and %2 are constrained to equal those 
from any other pair i[ and i'2 where the pair i'y-i'i can be obtained from %\-ii 
by a combination of translation and scaling. This selects all pairs of points such 
that the line i'\-i'i is parallel to the line i\-i2- There is a slight complication in 
the case of scaling arising from the fact that the input image consists of discrete 
pixels. If a given geometrical object is scaled by a factor A then the number of 
pixels which it occupies is scaled by a factor A2. If the image consists of black 
pixels (value +1) on a white background (value 0) for instance, then the number 
of active pixels will be scaled by A2, which would spoil the scale invariance. The 
problem can be avoided by normalizing the image, e.g. to a vector of unit length. 
Note that this then gives fractional values for the inputs. 

If we consider simultaneous translation, rotation and scale invariance, we see 
that any pair of points can be mapped to any other pair by a combination of such 
transformations. Thus a second-order network would be constrained to have all 
weights to any hidden unit equal, which would again cause the activation of each 
unit to be simply proportional to the average of the input values. We therefore 
need to go to a third-order network. In this case, each unit takes inputs from 
three pixels in the image, and the weights must satisfy the constraint that, for 
every triplet of pixels, and for every hidden unit, the weights must equal those 
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Figure 8.20. Simultaneous translation, rotation and scale invariance can be 
built into a third-order network provided weights from triplets of points which 
correspond to similar triangles, such as those shown in (a) and (b), are con­
strained to be equal. 

emanating from any other triplet which can be obtained by any combination of 
translations, rotations and scalings (Reid et ah, 1989). This means that corre­
sponding triplets lie at the vertices of similar triangles, in other words triangles 
which have the same values of the angles encountered in the same order when 
traversing the triangle in, say, a clockwise direction. This is illustrated in Fig-

I ure 8.20. Although the incorporation of constraints greatly reduces the number 
of free parameters in higher-order networks, the use of such networks is not 
widespread. 

Exerc ises 

8.1 (*) Verify that the whitened input vector, given by (8.6), has zero mean and 
a covariance matrix given by the identity matrix. 

8.2 (*) Consider a radial basis function network with spherical Gaussian basis 
functions in which the jth basis function is governed by a mean /x and a 
variance parameter a? (Section 5.2). Show that the effect of applying the 
whitening transformation (8.6) to the original input data is equivalent to a 
special case of the same network with general Gaussian basis functions gov­
erned by a general covariance matrix S j in which the original un-whitened 
data is used. Obtain an expression for the corresponding mean Jlj and 
covariance matrix £ , in terms of the parameters of the original basis func­
tions and of the whitening transformation. 

8.3 (* *) Generate sets of data points in two dimensions using a variety of distri­
butions including Gaussian (with general covariance matrix) and mixtures 
of Gaussians. For each data set, apply the whitening transformation (Sec­
tion 8.2) and produce scatter plots of the data points before and after 
transformation. 

8.4 (*) Consider a trained classifier which can produce the posterior probabil­
ities P(Cfc|x) for a new input vector x. Suppose that some of the values 
of the input vector are missing, so that x can be partitioned into a sub-
vector x m of components whose values are missing, and a remaining vector 
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x whose values are present. Show that posterior probabilities, given only 
the data x, are given by 

P(Ck\Sc) = - L jP(Ck\x, x m ) p ( x , x m ) d x m . (8.40) 

8.5 (*) Consider the problem of selecting M feature variables from a total of d 
candidate variables. Find expressions for the number of criterion function 
evaluations which must be performed for (i) exhaustive search, (ii) sequen­
tial forward selection, and (iii) sequential backward elimination. Consider 
the case of choosing 10 features out of a set of 50 candidates, and evaluate 
the corresponding expressions for the number of evaluations by these three 
methods. 

8 .6(**) Consider a multi-layer perceptron with arbitrary feed-forward topol­
ogy, which is to be trained by minimizing the 'tangent prop' error function 
(8.27) in which the regularizing function is given by (8.28). Show that the 
regularization term il can be written as a sum over patterns of terms of 
the form 

1 ft 

where V is a differential operator defined by 

By acting on the forward propagation equations 

Zj = 9{a.j), a,j = J2wiizi (8-43) 
i 

with the operator V, show that fin can be evaluated by forward propaga­
tion using the following equations: 

£j=9'{aj)aj, aj=J2wJi^- (8-44) 

where we have defined the new variables 

ij=Vzj, ctj=Va,j. (8.45) 

Now show that the derivatives of fin with respect to a weight wrs in the 
network can be written in the form 

flnn 

!£; = £&{#*. + *&} <8-46> 
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where we have defined 

# = ^ , # = 2>tf. (8.47) cfc = dVk ,k _ ™ t 

Write down the back-propagation equations for 6$, and hence derive a set 
of back-propagation equations for the evaluation of the </>£. 

8.7 (*) We have seen that the normalized moments nim defined by (8.33) are 
simultaneously invariant to translation and scaling. It follows that any 
combination of such moments will also satisfy the same invariances. Show 
that the moment defined in (8.34) is, additionally, invariant under rotation 
$ —* 6 + A0. Hint: this is most easily done by representing the moments 
using polar coordinates centred on the point (u,v), so that the central 
moments become 

Mim = f fx{r,0)(rcos9)l(rsme)mrdrd0, (8.48) 

and then making use of the relation sin20 + cos20 = 1. Which of the 
following moments are rotation invariant? 

v (a) (M20 - Urn? + 4p?i (8.49) 

(b) (M20+^02) 2 -4/ i? 1 (8.50) 

(c) (/i3o + 3 M I 2 ) 2 - (3/iai + ^oa)2 (8.51) 

(d) (/x3o - 3 M I 2 ) 2 + (3^21 - m)2- (8-52) 
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LEARNING AND GENERALIZATION 

As we have emphasized in several other chapters, the goal of network training 
is not to learn an exact representation of the training data itself, but rather 
to build a statistical model of the process which generates the data. This is 
important if the network is to exhibit good generalization, that is, to make good 
predictions for new inputs. In Section 1.5, we introduced the simple analogy 
of curve fitting using polynomials, and showed that a polynomial with too few 
coefficients gives poor predictions for new data, i.e. poor generalization, since 
the polynomial function has too little flexibility. Conversely, a polynomial with 
too many coefficients also gives poor generalization since it fits too much of the 
noise on the training data. The number of coefficients in the polynomial controls 
the effective flexibility, or complexity, of the model. 

This highlights the need to optimize the complexity of the model in order to 
achieve the best generalization. Considerable insight into this phenomenon can 
be obtained by introducing the concept of the bias-variance trade-off, in which 
the generalization error is decomposed into the sum of the bias squared plus the 
variance. A model which is too simple, or too inflexible, will have a large bias, 
while one which has too much flexibility in relation to the particular data set 
will have a large variance. Bias and variance are complementary quantities, and 
the best generalization is obtained when we have the best compromise between 
the conflicting requirements of small bias and small variance. 

In order to find the optimum balance between bias and variance we need 
to have a way of controlling the effective complexity of the model. In the case 
of neural networks, the complexity can be varied by changing the number of 
adaptive parameters in the network. This is called structural stabilization. One 
way to implement this in practice is to compare a range of models having different 
different numbers of hidden units. Alternatively, we can start with a relatively 
large network and prune out the least significant connections, either by removing 
individual weights or by removing complete units. Similarly, we can start with 
a small network, and add units during the learning process, with the goal of 
arriving at an optimal network structure. Yet another way to reduce variance is 
to combine the outputs of several networks together to form a committee. 

The second principal approach to controlling the complexity of a model is 
through the use of regularization which involves the addition of a penalty term 
to the error function. We can control the degree of regularization, and hence 
the effective complexity of the model, by scaling the regularization term by an 
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adjustable multiplicative parameter. 
In a practical application, we have to optimize the model complexity for the 

given training data set. One of the most important techniques for doing this is 
called cross-validation. 

In Chapter 10 we discuss the Bayesian framework which provides a com­
plimentary viewpoint to the one presented in this chapter. The bias-variance 
trade-off is then no longer relevant, and we can in principle consider networks of 
arbitrarily high complexity without encountering over-fitting. 

9.1 Bias and variance 

In Section 1.5 we discussed the problem of curve fitting using polynomial func­
tions, and we showed that there is an optimal number of coefficients for the 
polynomial, for a given training set, in order to obtain the best representation 
of the underlying systematic properties of the data, and hence to obtain the 
best generalization on new data. This represents a trade-off between achieving a 
good fit to the training data, and obtaining a reasonably smooth function which 
is not over-fitted to the data. Similar considerations apply to the problem of 
density estimation, discussed in Chapter 2, where various smoothing parameters 
arise which control the trade-off between smoothing the model density function 
and fitting the data set. The same issues also arise in the supervised training of 
neural networks. 

A key insight into this trade-off comes from the decomposition of error into 
bias and variance components (Geman et al, 1992). We begin with a mathemat­
ical treatment of the bias-variance decomposition, and then discuss its implica­
tions. 

It is convenient to consider the particular case of a model trained using a sum-
of-squares error function, although our conclusions will be much more general. 
Also, for notational simplicity, we shall consider a network having a single output 
y, although again this is not a significant limitation. We showed in Section 6.1.3 
that the sum-of-squares error, in the limit of an infinite data set, can be written 
in the form 

£ = ^ / M x ) - ( t | x ) } 2 p ( x ) d x 

+ \j{(t2\x)-(t\x)2}p(X)dx (9.1) 

in which p(x) is the unconditional density of the input data, and (i|x) denotes 
the conditional average, or regression, of the target data given by 

(t\x) s / tp(t\x) dt (9.2) 
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where p(t\x) is the conditional density of the target variable t conditioned on the 
input vector x. Similarly 

(t2\x) = f t2p(t\x) dt. (9.3) 

Note that the second term in (9.1) is independent, of the network function 
?/(x) and hence is independent of the network weights. The optimal network 
function y(x), in the sense of minimizing the sum-of-squares error, is the one 
which makes the first term in (9.1) vanish, and is given by y(x) = (t\x). The 
second term represents the intrinsic noise in the data and sets a lower limit on 
the error which can be achieved. 

In a practical situation we must deal with the problems arising from a finite-
size data set. Suppose we consider a training set D consisting of N patterns which 
we use to determine our network model y(x). Now consider a whole ensemble of 
possible data sets, each containing N patterns, and each taken from the same 
fixed joint distribution p(x, t). We have already argued that the optimal network 
mapping is given by the conditional average (t\x). A measure of how close the 
actual mapping function y(x) is to the desired one is given by the integrand of 
the first term in (9.1): 

{y(x) - (*|x)}2. (9.4) 

The value of this quantity will depend on the particular data set D on which it 
is trained. We can eliminate this dependence by considering an average over the 
complete ensemble of data sets, which we write as 

£D[{y(x) - (t\x)f] (9.5) 

where £js>\-] denotes the expectation, or ensemble average, and we recall that the 
function y(x) depends on the particular data set D which is used for training. 
Note that this expression is itself a function of x. 

If the network function were always a perfect predictor of the regression func­
tion (t\x) then this error would be zero. As we shall see, a non-zero error can 
arise for essentially two distinct reasons. It may be that the network function 
is on average different from the regression function. This is called bins. Alter­
natively, it may be that the network function is very sensitive to the particular 
data set D, so that, at a given x, it is larger than the required value for some 
data sets, and smaller for other data sets. This is called variance. We can make 
the decomposition into bias and variance explicit by writing (9.5) in somewhat 
different, but mathematically equivalent, form. First we expand the term in curly 
brackets in (9.5) to give 

{y(x) - ( t |x)} 2 = {y(x) - £D\y(x)} + £D[y(x)} - (t\x)}2 
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= (i,(x) - £D[t/(x)]}2 + {£D[y(x)\ - {t\x)f 

+2{y(x) - SD[y{x)]}{£D[y(x)) - ( t | x » . (9.6) 

In order to compute the expression in (9.5) we take the expectation of both sides 
of (9.6) over the ensemble of data sets D. We see that the third term on the 
right-hand side of (9.6) vanishes, and we are left with 

£D[{y(x) - <t.|x»2j 

= {£D[y(x)] - <<|x>}2 + £D[{y{x) - £D[y(x)}}2}. (9.7) 
v ' v v ' 

(bias)2 variance 

It is worth studying the expressions in (9.7) closely. The bias measures the extent 
to which the average (over all data sets) of the network function differs from the 
desired function (<|x). Conversely the variance measures the extent to which the 
network function y(x) is sensitive to the particular choice of data set. Note that 
the expressions for bias and variance are functions of the input vector x. We can 
also introduce corresponding average values for bias and variance by integrating 
over all x. By referring back to (9.1) we see that the appropriate weighting for 
this integration is given by the unconditional density p(x), so that 

(bias)2 = \ j{£D\y{x)\ - (<|x»2p(x) rfx (9.8) 

variance = i f £D[{y{x) ~ £D[y{x)}}2}p{x) dx. (9.9) 

The meaning of the bias and variance terms can be illustrated by considering 
two extreme limits for the choice of functional form for j/(x). We shall suppose 
that the target data for network training is generated from a smooth function 
/i(x) to which zero mean random noise e is added, so that 

tn = h(x.n) + en. (9.10) 

Note that the optimal mapping function in this case is given by (t|x) = h(x). One 
choice of model for y(x) would be some fixed function <?(x) which is completely 
independent of the data set D, as indicated in Figure 9.1. It is clear that the 
variance term in (9.7) will vanish, since £D[?/(X)] = p(x) = j/(x). However, the 
bias term will typically be high since no attention at all was paid to the data, and 
so unless we have some prior knowledge which helps us to choose the function 
g(x) we are making a wild guess. 
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Figure 9.1. A schematic illustration of the meaning of bias and variance. Circles 
denote a set of data points which have been generated from an underlying 
function h{x) (dashed curve) with the addition of noise. The goal is to try to 
approximate h(x) as closely as possible. If we try to model the data by a fixed 
function g(x), then the bias will generally be high while the variance will be 
zero. 

Figure 9.2. As in Figure 9.1, but in which a model is used which is a simple 
exact interpolant of the data points. In this case the bias is low but the variance 
is high. 

The opposite extreme is to take a function which fits the training data per­
fectly, such as the simple exact interpolant indicated in Figure 9.2. In this case 
the bias term vanishes at the data points themselves since 

£D\y(x)] = £D[h{x) + e} = ft(x) = (t\x) (9.11) 

and the bias will typically be small in the neighbourhood of the data points. The 
variance, however, will be significant since 



9.1: Bias and variance 337 

£D[{VW - £D[2/(X)]}2] = £D[{y(x) - h(X)}2} = £r>[e2} (9.12) 

which is just the variance of the noise on the data, which could be substantial. 
We see that there is a natural trade-off between bias and variance. A function 

which is closely fitted to the data set will tend to have a large variance and 
hence give a large expected error. We can decrease the variance by smoothing 
the function, but if this is taken too far then the bias becomes large and the 
expected error is again large. This trade-off between bias and variance plays a 
crucial role in the application of neural network techniques to practical problems. 
We shall give a simple example of the dependence of bias and variance on the 
effective model complexity in Section 9.8.1. 

9.1.1 Minimizing bias and variance 

We have seen that, for any given size of data set, there is some optimal balance 
between bias and variance which gives the smallest average generalization error. 
In order to improve the performance of the network further we need to be able 
to reduce the bias while at the same time also reducing the variance. One way 
to achieve this is to use more data points. As we increase the number of data 
points we can afford to use more complex models, and therefore reduce bias, 
while at the same time ensuring that each model is more heavily constrained 
by the data, thereby also reducing variance. If we increase the number of data 
points sufficiently rapidly in relation to the model complexity we can find a 
sequence of models such that both bias and variance decrease. Models such as 
feed-forward neural networks can in principle provide consistent estimators of 
the regression function, meaning that they can approximate the regression to 
arbitrary accuracy in the limit as the number of data points goes to infinity. 
This limit requires a subtle balance of network complexity against number of 
data points to ensure that at each step both bias and variance are decreased. 
Consistency has been widely studied in the context of conventional techniques 
for statistical pattern recognition. For feed-forward networks, White (1990) has 
shown how the complexity of a two-layer network must grow in relation to the 
size of the data set in order to be consistent. This does not, however, tell us the 
complexity required for any given number of data points. It also requires that the 
parameter optimization algorithms are capable of finding the global minimum of 
the error function. Note that, even if both bias and variance can be reduced to 
zero, the error on new data will still be non-zero as a result of the intrinsic noise 
on the data given by the second term in (9.1). 

In practice we are often limited in the number of training patterns available, 
and in many applications this may indeed be a severe limitation. An alternative 
approach to reducing both bias and variance becomes possible if we have some 
prior knowledge concerning the unknown function h(x). Such knowledge can be 
used to constrain the model function y(x) in a way which is consistent with h(x) 
and which therefore does not give rise to increased bias. Note that the bias-
variance problem implies that, for example, a simple linear model (single-layer 
network) might, in some applications involving relatively small data sets; give 
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superior performance to a more general non-linear model (such as a multi-layer 
network) even though the latter contains the linear model as a special case. 

9.2 Regu la r i za t ion 

In Section 1.5 we saw that a polynomial with an excess of free coefficients tends 
to generate mappings which have a lot of curvature and structure, as a result of 
over-fitting to the noise on the training data. Similar behaviour also arises with 
more complex non-linear neural network models. The technique of regulariza­
tion encourages smoother network mappings by adding a penalty Q. to the error 
function to give 

E = E + vQ. (9.13) 

Here E is one of the standard error functions as discussed in Chapter 6, and 
the parameter v controls the extent to which the penalty term Q influences 
the form of the solution. Training is performed by minimizing the total error 
function E, which requires that the derivatives of Q with respect to the network 
weights can be computed efficiently. A function y(x) which provides a good fit 
to the training data will give a small value for E, while one which is very smooth 
will give a small value for fi. The resulting network mapping is a compromise 
between fitting the data and minimizing Q. Regularization is discussed in the 
context of radial basis function networks in Section 5.4, and is given a Bayesian 
interpretation in Section 10.1. 

In this section we shall consider various forms for the regularization term il. 
Regularization techniques have been extensively studied in the context of linear 
models for y(x) . For the case of one input variable x and one output variable y, 
the class of Tikhonov regularizes takes the form 

^ E / M * ) ( 0 ) ^ (9-14) 

where hr > 0 for r = 0 , . . . ,R - 1, and h,R > 0 (Tikhonov and Arsenin, 1977). 
Regularization has also been widely studied in the context of vision systems 
(Poggio et at, 1985). 

9.2.1 Weight decay 

One of the simplest forms of regularizer is called weight decay and consists of the 
sum of the squares of the adaptive parameters in the network 

fi=±£>| (9.15) 
i 

where the sum runs over all weights and biases. In conventional curve fitting, 
the use of this form of regularizer is called ridge regression. It has been found 
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empirically that a regularizer of this form can lead to significant improvements 
in network generalization (Hinton, 1987). Some heuristic justification for the 
weight-decay regularizer can be given as follows. We know that to produce an 
over-fitted mapping with regions of large curvature requires relatively large values 
for the weights. For small values of the weights the network mapping represented 
by a multi-layer perceptron is approximately linear, since the central region of a 
sigmoidal activation function can be approximated by a linear transformation. 
By using a regularizer of the form (9.15), the weights are encouraged to be small. 

Many network training algorithms make use of the derivatives of the total 
error function with respect to the network weights, which from (9.13) and (9.15) 
are given by 

VE = VE + uw. (9.16) 

Suppose that the data term E is absent and we consider training by simple gra­
dient descent in the continuous-time limit. The weight vector W ( T ) then evolves 
with time r according to 

rfw 
— = - n V £ = -rjvvf (9.17) 
dr 

where 77 is the learning rate parameter. This equation has solution 

w(r ) = w(0) exp(-r?i/T) (9.18) 

and so all of the weights decay exponentially to zero, which is the reason for the 
use of the term 'weight decay'. 

We can gain some further insight into the behaviour of the weight-decay 
regularizer by considering the particular case of a quadratic error function. A 
general quadratic error can be written in the form 

% ) = £ 0 + b T w + - w T H w (9.19) 

where the Hessian H and the vector b are constants. The minimum of this error 
function occurs at the point w* which, by differentiating (9.19), satisfies 

b + Hw* = 0. (9.20) 

In the presence of the regularization term, the minimum moves to a point w 
which, from (9.13), satisfies 

b + H w + f/w = 0. (9.21) 
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We can better interpret the effect of the weight-decay term if we rotate the axes 
in weight space so as to diagonalize the Hessian matrix H (Appendix A). This 
is done by considering the eigenvector equation for the Hessian given by 

H U ^ A J U J . (9.22) 

We can now expand w* and w in terms of the eigenvectors to give 

w* -^WjUj, w = ^ « / , U j . (9.23) 

Combining (9.20), (9.21) and (9.23), and using the orthonormality of the {\ij}, 
we obtain the following relation between the minima of the original and the 
regularized error functions 

Wi = -r-^—u>!. (9.24) 

The eigenvectors u,- represent the principal directions of the quadratic error 
surface. Along those directions for which the corresponding eigenvalues are rela­
tively large, so that Xj S> u, (9.24) shows that uij c± wj , and so the minimum of 
the error function is shifted very little. Conversely, along directions for which the 
eigenvalues are relatively small, so that Aj -C v, (9.24) shows that \nij\ <$; \WJ\, 
and so the corresponding components of the minimum weight vector are sup­
pressed. This effect is illustrated in Figure 9.3. 

9.2.2 Consistency of weight decay 

One of the limitations of simple weight decay in the form (9.15) is that is incon­
sistent with certain scaling properties of network mappings. To illustrate this, 
consider a multi-layer perceptron network having a single hidden layer and linear 
output units, which performs a mapping from a set of input variables Xj to a set 
of output variables yk. The activation of a hidden unit in the first hidden layer 
is given by 

Zj: = g I ] P WjiXi + WJO j (9.25) 

while the activations of the output units are given by 

Vk = ^2 wkj ZJ + wk0. (9.26) 

Suppose we perform a linear transformation on the input data of the form 
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Figure 9.3. Illustration of the effect of a simple weight-decay regularizer on 
a quadratic error function. The circle represents a contour along which the 
weight-decay term is constant, and the ellipse represents a contour of constant 
unregularized error. Note that the axes in weight space have been rotated to be 
parallel with the principal axes of the original error surface, determined by the 
eigenvectors of the corresponding Hessian matrix. The effect of the regularizer 
is to shift the minimum of the error function from w* to w. This reduces the 
value of tui at the minimum significantly since this corresponds to a small 
eigenvalue, while the value of u>2> which corresponds to a large eigenvalue, is 
hardly affected. 

+ 6. (9.27) 

Then we can arrange for the mapping performed by the network to be unchanged 
by making a corresponding linear transformation of the weights and biases from 
the inputs to the units in the hidden layer of the form 

1 
-Wji 

Wjo -* WjQ = Wj0 y^Wjj. 

(9.28) 

(9.29) 

Similarly, a linear transformation of the output variables of the network of the 
form 

2/fc - • 2/k = cyk + d (9.30) 

can be achieved by making a transformation of the second-layer weights using 

v>kj -* wki = cwkj (9.31) 

Wko —* yJko = cwko + d. (9.32) 
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If we train one network using the original data and one network using data for 
which the input and/or target variables are transformed by one of the above lin­
ear transformations, then consistency requires that we should obtain equivalent 
networks which differ only by the linear transformation of the weights as given. 
Any regularizer should be consistent with this property, otherwise it arbitrarily 
favours one solution over another, equivalent one. Clearly, simple weight decay 
(9.15) which treats all weights and biases on an equal footing does not satisfy 
this property. 

We therefore look for a regularizer which is invariant under the linear trans­
formations (9.28), (9.29), (9.31) and (9.32). In particular, the weights should 
be scale-invariant and the biases should be shift-invariant. Such a regularizer is 
given by 

u ) 6 W i ui€VV2 

where W\ denotes the set of weights in the first layer, VV2 denotes the set of 
weights in the second layer, and biases are excluded from the summations. Under 
the linear transformations of the weights given by (9.28), (9.29), (9.31) and 
(9.32), the regularizer will remain unchanged provided the parameters v\ and v<i 
are suitably rescaled. 

In Section 3.4.3 we showed that the role of the biases in the final layer of 
a network with linear outputs, trained by minimizing a sum-of-squares error 
function, is to compensate for the difference between the mean (over the data 
set) of the output vector from the network and the corresponding mean of the 
target values. It is therefore reasonable to exclude the biases from the regularizer 
as we do not wish systematically to distort the mean network output. The output 
is then equal to the sample mean of the target data, and provides an unbiased 
estimate of the true target mean. 

Weight-decay regularizes can be motivated in the context of linear models by 
considering the sensitivity of the model predictions to noise on the input vectors. 
Minimization of this sensitivity leads naturally to a weight-decay regularizer, in 
which the biases are excluded from the sum over weights (Exercise 9.2). The more 
general case of non-linear networks is covered in detail later, when we consider 
the training of networks with additive noise on the inputs. 

9.2.3 A simple illustration of weight decay 

As an illustration of the use of weight decay, we return to the example used 
in Section 5.1 of modelling a noisy sine function using a radial basis function 
network. In Figure 9.4 we show an example of a data set together with the 
network function obtained by minimizing a sum-of-squares error. Here data was 
generated by sampling the function h(x) given by 

h{x) = 0.5 + 0.4sin(27rx) (9.34) 
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Figure 9.4. Example of data generated by sampling the function h(x), defined 
by (9.34), and adding Gaussian distributed random noise with standard devi­
ation of 0.05. The dashed curve shows the function h{x) and the solid curve 
shows the result of fitting a radial basis function network without regulariza­
tion. There is one Gaussian basis function for each of the 30 data points, and 
the result is a strongly over-fitted network mapping. (This figure is identical 
to Figure 5.1, and is reproduced here for ease of comparison.) 

and adding Gaussian distributed random noise with zero mean and standard 
deviation a — 0.05. There is one basis function centred on each data point, and 
consequently the network gives a strongly over-fitted solution. 

We now include a weight-decay regularizer of the form (9.15) with the bias 
parameter excluded from the summation, for reasons discussed above. Figure 9.5 
shows the effect of using a regularization coefficient of v — 40. The network 
mapping is now much smoother and gives a much closer representation of the 
underlying function from which the data was generated (shown by the dashed 
curve). The degree of smoothing is controlled by the regularization coefficient t/, 
and too large a value of v leads to over-smoothing, as illustrated for v = 1000 in 
Figure 9.6. 

9.2.4 Early stopping 

An alternative to regularization as a way of controlling the effective complexity of 
a network is the procedure of early stopping. The training of non-linear network 
models corresponds to an iterative reduction of the error function defined with 
respect to a set of training data. During a typical training session, this error 
generally decreases as a function of the number of iterations in the algorithm. 
For many of the algorithms described in Chapter 7 (such as conjugate gradients) 
the error is a monotonically decreasing function of the iteration index. However, 
the error measured with respect to independent data, generally called a validation 
set, often shows a decrease at first, followed by an increase as the network starts 
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Figure 9.5. As in Figure 9.4 but with a weight-decay regularizer and a reg-
ularization coefficient u = 40, showing the much smoother network mapping 
and the correspondingly closer agreement with the underlying generator of the 
data, shown by the dashed curve. 

Figure 9.6. As in Figure 9.5 but with v = 1000, showing the effect of having 
too large a value for the regularization coefficient. 

to over-fit. Training can therefore be stopped at the point of smallest error with 
respect to new data, as indicated in Figure 9.7, since this gives a network which 
is expected to have the best generalization performance. 

The behaviour of the network in this case is sometimes explained qualita­
tively in terms of the effective number of degrees of freedom in the network. 
This number is suppose to start out small and then to grow during the train-
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Figure 9.7. A schematic illustration of the behaviour of training and validation 
set errors during a typical training session, as a function of the iteration step 
T. The goal of achieving the best generalization performance suggests that 
training should be stopped at the point T corresponding to the minimum of 
the validation set error. 

ing process, corresponding to a steady increase in the effective complexity of the 
model. Halting training before a minimum of the training error has been reached 
then represents a way of limiting the effective network complexity. 

In the case of a quadratic error function, early stopping should give rise to 
similar behaviour to regularization using a simple weight-decay term. This can 
be understood from Figure 9.8. The axes in weight space have been rotated to 
be parallel to the eigenvectors of the Hessian matrix. If, in the absence of weight 
decay, the weight vector starts at the origin and proceeds during training along 
a path which follows the local negative gradient vector, then the weight vector 
will move initially parallel to the u>2 axis to a point corresponding roughly to 
w and then move towards the minimum of the error function w*. This follows 
from the shape of the error surface and the widely differing eigenvalues of the 
Hessian. Stopping at a point near w is therefore similar to weight decay. The 
relationship between early stopping and weight decay can be made quantitative, 
as discussed in Exercise 9.1, thereby showing that the quantity r n (where T is 
the iteration index, and r) is the learning rate parameter) plays the role of the 
reciprocal of the regularization parameter v. This exercise also shows that the 
effective number of parameters in the network (i.e. the number of weights whose 
values differ significantly from zero) grows during the course of training. 

9.2.5 Curvature-driven smoothing 

We have seen that over-fitted solutions are generally characterized by mappings 
which have a lot of structure and relatively high curvature. This provided some 
indirect motivation for weight-decay regularizes as a way of reducing the curva­
ture of the network function. A more direct approach is to consider a regularizer 
which penalizes curvature explicitly. Since the curvature is governed by the sec­
ond derivatives of the network function, we can consider a regularizer of the 
form 

validation 

training 
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W, 

Figure 9.8. A schematic illustration of why early stopping can give similar 
results to weight decay in the case of a quadratic error function. The ellipse 
shows a contour of constant error, and w* denotes the minimum of the error 
function. If the weight vector starts at the origin and moves according to 
the local negative gradient direction, then it will follow the path shown by 
the curve. By stopping training early, a weight vector w is found which is 
qualitatively similar to that obtained with a simple weight-decay regularizer 
and training to the new minimum of the error, as can be seen by comparing 
with Figure 9.3. A precise quantitative relationship between early stopping 
and weight-decay regularization can be demonstrated formally for the case of 
quadratic error surfaces (Exercise 9.1). 

n- 9J2Y1J2( dJ 
=i t = i ^=1 J 

(9.35) 

Note that this regularizer is a discrete version of the Tikhonov form (9.14). 
Regularizes involving second derivatives also form the basis of the conventional 
interpolation technique of cubic splines (Wahba and Wold, 1975; De Boor, 1978). 
The derivatives of (9.35) with respect to the weights for a multi-layer perceptron 
can be obtained by an extension of the back-propagation procedure (Bishop, 
1993). 

9.3 Training with noise 

We have discussed two approaches to controlling the effective complexity of a 
network mapping, based respectively on limiting the number of adaptive param­
eters and on regularization. A third approach is the technique of training with 
noise, which involves the addition of noise to the input vectors during the train­
ing process. For sequential training algorithms, this can be done by adding a new 
random vector to each input pattern before it is presented to the network, so 
that, if the patterns are being recycled, a different random vector is added each 
time. For batch methods, a similar effect can be achieved by replicating each 
data point a number of times and adding new random vectors onto each copy. 
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Heuristically, we might expect that the noise will 'smear out' each data point 
and make it difficult for the network to fit individual data points precisely, and 
hence will reduce over-fitting. In practice, it has been demonstrated that training 
with noise can indeed lead to improvements in network generalization (Sietsma 
and Dow, 1991). We now show that training with noise is closely related to the 
technique of regularization (Bishop, 1995). 

Suppose we describe the noise on the inputs by the random vector £, governed 
by some probability distribution p(£). If we consider the limit of an infinite 
number of data points, we can write the error function, in the absence of noise, 
in the form 

E = \ Y , JJiV^) - }̂2p(<fc|x)p(x) dxdtk (9.36) 

as discussed in Section 6.1.3. If we now consider an infinite number of copies of 
each data point, each of which is perturbed by the addition of a noise vector, 
then the mean error function defined over this expanded data set can be written 
as 

S = \ E jJJ{yk{x + ®~ *fc}aP(*k|x)p(x)p«) dxdtk d€. (9.37) 

We now assume that the noise amplitude is small, and expand the network 
function as a Taylor series in powers of £ to give 

yfc<x+o-vt<x)+5:* d£[y^Z^ S;|,=0-^3)- ^ dxi 

The noise distribution is generally chosen to have zero mean, and to be uncor­
rected between different inputs. Thus we have 

J tiP(Z) dt = 0 J &fcp(£) d£ = uStJ (9.39) 

where the parameter v represents the variance of the noise distribution. Sub­
stituting the Taylor series expansion (9.38) into the error function (9.37), and 
making use of (9.39) to integrate over the noise distribution, we obtain 

E = B + uQ (9.40) 

where E is the standard sum-of-squares error given by (9.36), and the extra term 
fi is given by 
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(9.41) 
This has the form of a regularization term added to the usual sum-of-squares 
error, with the coefficient of the regularizer determined by the noise variance v 
(Webb, 1994). 

Provided the noise amplitude is small, so that the neglect of higher-order 
terms in the Taylor expansion is valid, the minimization of the sum-of-squares 
error with noise added to the input data is equivalent to the minimization of 
the regularized sum-of-squares error (9.40), with a regularization term given 
by (941), without the addition of noise. It should be noted, however, that the 
second term in the regularization function (9.41) involves second derivatives of 
the network function, and so evaluation of the gradients of this error with respect 
to network weights will be computationally demanding. Furthermore, this term 
is not positive definite, and so the error function is not a priori bounded below, 
and is therefore unsuitable for use as the basis of a training algorithm. 

We now consider the minimization of the regularized error (9.40) with respect 
to the network function y(x), which allows us to show that the second deriva­
tive terms can be neglected. This result is analogous to the one obtained for the 
outer product approximation for the Hessian matrix in Section 6.1.4, in which 
we showed that similar second-derivative terms also vanish. Thus, we will see 
that the use of the regularization function (9.41) for network training is equiv­
alent, for small values of the noise amplitude, to the use of a positive-definite 
regularization function which is of standard Tikhonov form and which involves 
only first derivatives of the network function (Bishop, 1995). 

As discussed at length in Section 6.1.3, the network function which minimizes 
the sum-of-squares error is given by the conditional average (tfc|x) of the target 
values ifc. Prom (9.40) we see that, in the presence of the regularization term, 
the network function which minimizes the total error will have the form 

l/fc(x) = (ifc |x)+0(i/) . (9.42) 

Now consider the second term in equation (9.41) which depends on the second 
derivatives of the network function. Making use of the definition of the condi­
tional average of the target data, given in equation (9.2), we can rewrite this 
term in the form 

i £ E / ( t o M - < M * > } ^ r ) p ( x ) d x . (9.43) 

Using (9.42) we see that, to lowest order in v, this term vanishes at the minimum 
of the total error function. Thus, only the first term in equation (9.41) needs to 
be retained. It should be emphasized that this result is a consequence of the 
average over the target data, and so it does not require the individual terms 
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Vk — tk to be small, only that their (conditional) average over tk be small. 
The minimization of the sum-of-squares error with noise is therefore equiv­

alent (to first order in v) to the minimization of a regularized sum-of-squares 
error without noise, where the regularizer, given by the first term in equation 
(9.41), has the form •' 

where we have integrated out the tk variables. Note that the regularization func­
tion in equation (9.44) is not in general equivalent to that given in equation 
(9.41). However, the total regularized error in each case is minimized by the 
same network function y(x), and hence by the same set of network weight val­
ues. Thus, for the purposes of network training, we can replace the regularization 
term in equation (9.41) with the one in equation (9.44). In practice, we approx­
imate (9.44) by a sum over a finite set of N data points of the form 

i N /a n\2 

«^EEE(gf • (9'45) 
n = l k % v * ' 

Derivatives of this regularizer with respect to the network weights can be found 
using an extended back-propagation algorithm (Bishop, 1993). 

This regularizer involves first derivatives of the network mapping function. 
A related approach has been proposed by Drucker and Le Cun (1992) based 
on a sum of derivatives of the error function itself with respect to the network 
inputs. This choice of regularizer leads to a computationally efficient algorithm 
for evaluating the gradients of the regularization function with respect to the 
network weights. The algorithm is equivalent to forward and backward propa­
gation through an extended network architecture, and is termed double back-
propagation. 

9.4 Soft weight sharing 

One way to reduce the effective complexity of a network with a large number 
of weights is to constrain weights within certain groups to be equal. This is 
the technique of weight sharing which was discussed in Section 8.7.3 as a way 
of building translation invariance into networks used for image interpretation. 
It is only applicable, however, to particular problems in which the form of the 
constraints can be specified in advance. Here we consider a form of soft weight 
sharing (Nowlan and Hinton, 1992) in which the hard constraint of equal weights 
is replaced by a form of regularization in which groups of weights are encouraged 
to have similar values. Furthermore, the division of weights into groups, the mean 
weight value for each group, and the spread of values within the groups, are all 
determined as part of the learning process. 
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As discussed at length in Chapter 6, an error function can be regarded as 
the negative logarithm of a likelihood function. Thus, the simple weight-decay 
regularizer (9.15) represents the negative logarithm of the likelihood of the given 
set of weight values under a Gaussian distribution centred on the origin. To see 
this, consider a Gaussian of the form 

P(W) = /o-M/2 eXP \4\ <^> <2T) 

Then the likelihood of the set of weight values under this distribution is given 
by 

w 1 f l 1 

C = Y[P(Wi) = j — ; exp j - - X > * j (9.47) 

where W is the total number of weights. Taking the negative logarithm then 
gives the weight-decay regularizer, up to an irrelevant additive constant. As we 
have seen, the weight-decay term has the effect of encouraging the weight values 
to form a cluster with values close to zero. 

We can encourage the weight values to form several groups, rather than just 
one group, by considering a probability distribution which is a mixture of Gaus-
sians. An introduction to Gaussian mixture models and their basic properties is 
given in Section 2.6. The centres and variances of the Gaussian components, as 
well as the mixing coefficients, will be considered as adjustable parameters to be 
determined as part of the learning process. Thus, we have a probability density 
of the form 

M 

P(w) = 5 > ^ > ) (9.48) 

where aj are the mixing coefficients, and the component densities <f>j(w) are 
Gaussians of the form 

^=(^expj-i^J. (^9) 

Forming the likelihood function in the usual way, and then taking the negative 
logarithm, leads to a regularizing function of the form 

fi = -£ ln | f>^ . ( W i ) J . (9.50) 
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The total error function is then given by 

E = E + u9, (9.51) 

where v is the regularization coefficient. This error is minimized both with respect 
to the weights W{ and with respect to the parameters a,-, fij and Oj of the 
mixture model. If the weights were constant, then the parameters of the mixture 
model could be determined by using the EM re-estimation procedure discussed 
in Section 2.6.2. However, the distribution of weights is itself evolving during 
the learning process, and so to avoid numerical instability a joint optimization is 
performed simultaneously over the weights and the mixture model parameters. 
This can be done using one of the standard algorithms, such as the conjugate 
gradient or quasi-Newton methods, described in Chapter 7. The parameter v, 
however, cannot be optimized in this way, since this would give v -* 0 and an 
over-fitted solution, but must be found using techniques such as cross-validation 
to be discussed later. 

In order to minimize the total error function it is necessary to be able to 
evaluate its derivatives with respect to the various adjustable parameters. To do 
this it is convenient to regard the ctj 's as prior probabilities, and to introduce 
the corresponding posterior probabilities given by Bayes' theorem in the form 

The derivatives of the total error function with respect to the weights are then 
given by 

dE dE v-^ , Awi-fii) , „ „ , 

^r^+u^j{Wi)-^r- (953) 
3 J 

The effect of the regularization term is thus to pull each weight towards the 
centre of the j t h Gaussian, with a force proportional to the posterior probability 
of that Gaussian for the given weight. This is precisely the kind of effect which 
we are seeking. 

Derivatives of the error with respect to the centres of the Gaussians are also 
easily computed to give 

dE ^ (fii-Wj) , . 

dfij 
j 

which has a simple intuitive interpretation, since it drives /z,- towards an average 
of the weight values, weighted by the posterior probabilities that the respective 
weights were generated by component j . Similarly, the derivatives with respect 
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to the variances are given by 

dE ^ (\ {wi-jnf\ , .__. 

d7ruV3iWi){^—w~) { ] 

which drives OJ towards the weighted average of the squared deviations of the 
weights around the corresponding centre fij, where the weighting coefficients 
are again given by the posterior probability that each weight is generated by 
component j . Note that, in a practical implementation, new variables r\j defined 
by 

a? = exp(rjj) (9.56) 

are introduced, and the minimization is performed with respect to the i)j. This 
ensures that the parameters cr, remain positive. It also has the effect of dis­
couraging pathological solutions in which one or more of the Oj goes to zero, 
corresponding to a Gaussian component collapsing onto one of the weight pa­
rameter values. Such solutions are discussed in more detail in the context of 
Gaussian mixture models in Section 2.6. Prom a Bayesian perspective, the use 
of a transformation of the form (9.56) can be motivated by a consideration of 
non-informative priors (Section 10.4 and Exercise 10.13). 

For the derivatives with respect to the mixing coefficients Qj, we need to take 
account of the constraints 

J2ctj = l, 0<cti<l (9.57) 

which follow from the interpretation of the aj as prior probabilities. This can be 
done by expressing the mixing coefficients in terms of a set of auxiliary variables 
{jj} using the softmax function given by 

« * ( 7 , ) _ ( 9 5 8 ) 

£fc=iexp(7fc) 

We can now minimize the error function with respect to the {7,-}. To find the 

derivatives of E with respect to 7, we make use of 

~ = 6jkaj - ajctk (9.59) 

which follows from (9.58). Using the chain rule in the form 
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dE _ ^ dE dak 

dli ~ ^ dak dij 

together with (9.50), (9.52) and (9.59), we then obtain the required derivatives 
in the form 

^ E ^ - ^ ' W ) (9-61) 

where we have made use of £V. <Xj = 1. We see that Qj is therefore driven towards 
the average posterior probability for component j . 

In practice it is necessary to take some care over the initialization of the 
weights in order to ensure that good solutions are found. One approach is to 
choose the initial weights from a uniform distribution over a finite interval, and 
then initialize the components <j)j(w) to have means which are equally spaced over 
this interval, with equal priors, and variances equal to the spacing between the 
adjacent means. This ensures that, for most of the weights, there is little initial 
contribution to the error gradient from the regularization term, and so the initial 
evolution of the weights is primarily data-driven. Also, the posterior probabilities 
have roughly equal contributions over the complete set of weights, which helps 
to avoid problems due to priors going to zero early in the optimization. Results 
on several test problems (Nowlan and Hinton, 1992) show that this method can 
lead to significantly better generalization than simple weight decay. 

9.5 Growing and pruning algorithms 

The architecture of a neural network (number of units and topology of connec­
tions) can have a significant impact on its performance in any particular ap­
plication. Various techniques have therefore been developed for optimizing the 
architecture, in some cases as part of the network training process itself. It is 
important to distinguish between two distinct aspects of the architecture selec­
tion problem. First, we need a systematic procedure for exploring some space of 
possible architectures, and this forms the subject of this section. Second, we need 
some way of deciding which of the architectures considered should be selected. 
This is usually determined by the requirement of achieving the best possible 
generalization, and is discussed at length in Section 9.8. 

The simplest approach to network structure optimization involves exhaustive 
search through a restricted class of network architectures. We might for instance 
consider the class of multi-layer perceptrons having two layers of weights with 
full connectivity between adjacent layers and no direct input-output connections. 
The only aspect of the architecture which remains to be specified is the number 
M of hidden units, and so we train a set of networks having a range of values 
of M , and select the one which gives the best value for our performance crite­
rion. This approach can require significant computational effort and yet it only 
searches a very restricted class of network models. If we expand the range of 
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models (by having multiple hidden layers and partial connectivity for example) 
we quickly reach the point of having insufficient computational resources for a 
complete search. Note, however, that this is the approach which is most widely 
adopted in practice. Some justification can be found in the fact that, for the two-
layer architecture, we know that we can approximate any continuous functional 
mapping to arbitrary accuracy (Section 4.3) provided M is sufficiently large. 

An obvious drawback of such an approach is that many different networks 
have to be trained. This can in principle be avoided by considering a network 
which is initially relatively small and allowing new units and connections to be 
added during training. A simple example of this would be to consider the class of 
networks having two layers of weights with full connections in each layer, and to 
start with a few hidden units and then add one unit at a time. Such an approach 
was considered by Bello (1992) who used the weights from one network as the 
initial guess for training the next network (with the extra weights initialized 
randomly). Techniques of this form are called growing algorithms and we shall 
consider some examples for networks of threshold units, and then discuss the 
cascade correlation algorithm which uses sigmoidal units. 

An alternative approach is to start with a relatively large network and grad­
ually remove either connections or complete units. These are known as pruning 
algorithms and we shall consider several specific examples. Note that, if weight 
sharing is used, then several weights may be controlled by a single parameter, 
and if the parameter is set to zero then all the corresponding weights are deleted. 

A further possible approach to the design of network topology is to construct 
a complex network from several simpler network modules. We consider two im­
portant examples of this, called network committees and mixtures of experts. 
The latter allows a problem to be decomposed automatically into a number of 
sub-problems, each of which is tackled by a separate network. 

9.5.1 Exact Boolean classification 

As we emphasize at several points in this book, the goal in training a neural 
network is usually to achieve the best generalization on new data rather than to 
learn the training set accurately. However, for completeness we give here a brief 
review of two approaches to network construction algorithms which can learn 
a finite set of Boolean patterns exactly. We consider networks having threshold 
units and a single output, for binary input patterns belonging to two classes. 

Before discussing these algorithms in detail, we need first to consider a modi­
fication to the usual perceptron learning algorithm known as the pocket algorithm 
(Gallant, 1986b) designed to deal with data sets which are not linearly separable. 
The simple perceptron learning algorithm (Section 3.5) is guaranteed to find an 
exact classification of the training data set if it is linearly separable. If the data 
set is not linearly separable, then the algorithm does not converge. The pocket 
algorithm involves retaining a copy ('in one's pocket') of the set of weights which 
has so far survived unchanged for the longest number of pattern presentations. It 
can be shown that, for a sufficiently long training time, this gives, with probabil­
ity arbitrarily close to unity, the set of weight values which produces the smallest 
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Figure 9.9. The tiling algorithm builds a network in successive layers. In each 
layer, the first unit added is the master unit (shown as the heavier circle) 
which plays a special role. Successive layers are fully connected, and there are 
no other interconnections in the network. 

possible number of misclassifications. Note, however, that no upper bound on the 
training time needed for this to occur is known. 

The tiling algorithm (Mezard and Nadal, 1989) builds a network in successive 
layers with each layer having fewer units than the previous layer, as indicated 
in Figure 9.9. Note that the only interconnections in the network are between 
adjacent layers. When a new layer is constructed, a single unit, called the master 
unit, is added and trained using the pocket algorithm. One requirement for the 
network is that each layer must form a 'faithful' representation of the data set, 
in other words two input patterns which belong to different classes must not 
be mapped onto the same pattern of activations in any layer, otherwise it will 
be impossible for successive layers to separate them. This is achieved by adding 
further ancillary units to the layer, one at a time, leaving the weights to the 
master unit and any other ancillary units in that layer fixed. The geometrical 
interpretation of this procedure is indicated in Figure 9.10. If the representation 
at any stage is not faithful then there must exist patterns from different classes 
which give rise to the same set of activations in that layer. The group of all 
input patterns which give rise to those activations are identified and an extra 
ancillary unit is added and trained (again using the pocket algorithm) on that 
group. The process of searching for ambiguities, and adding ancillary units, is 
repeated until the representation is faithful. The whole process is repeated with 
the next layer. It can be shown that at each layer the master unit produces fewer 
misclassifications than the master unit in the previous layer. Thus, eventually 
one of the master units produces correct classification of all of the patterns, and 
so the algorithm converges with a network of finite size. 

We next consider the upstart algorithm (Frean, 1990) which is also guaranteed 
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Figure 9.10. Illustration of the role of the ancillary units in the tiling algo­
rithm. The circles and crosses represent the patterns of activations of units in 
a particular layer when the network is presented with input patterns from two 
different classes. The master unit in the next layer (whose decision boundary is 
represented by the solid line) is trained to And the best linear separator of the 
classes, and then ancillary units (with decision boundaries given by the dashed 
lines) are added so as to separate those patterns which are misclassified. 

to find a finite network which gives complete classification of a finite data set. 
However, it builds the network by adding extra units between existing units 
and the inputs, as indicated in Figure 9.11. All units take their inputs directly 
from the inputs to the network, and have binary threshold activation functions. 
The algorithm begins by training a single unit using the pocket algorithm. This 
'parent' unit will typically mis-classify some of the patterns, and so two 'offspring' 
units are added, one to deal with the patterns for which the parent is incorrectly 
off, and the other to deal with the patterns for which the parent is incorrectly 
on. These units are connected to their parent with sufficiently large negative and 
positive weights respectively that they can reverse the output of the parent when 
they are activated. The weights to the parent are frozen and the offspring are 
trained to produce the correct output for the corresponding incorrect patterns, 
while at the same time not spoiling the classification of the patterns which were 
correct. The algorithm is called upstart because the offspring correct the mistakes 
of their parents! We can always choose the weights and bias of an offspring unit 
such that it only generates a non-zero output for one particular pattern, and so it 
will then reduce the number of errors of the parent by one. In practice, the units 
are trained by the pocket algorithm and may do much better than just correct 
one pattern. Once trained, the offspring weights are frozen, and they become 
parents for another layer of offspring, and so on. 

Since the addition of each offspring unit reduces the number of errors of 
its parent by at least one, it is clear that the network must eventually classify 
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Figure 9.11. The upstart algorithm adds new offspring units, at A and B, 
to correct the mistakes made by the parent unit. The offspring themselves 
generate offspring units, leading eventually to a network having a binary tree 
structure. 

all patterns correctly using a finite number of units. This occurs because the 
number of mistakes which successive offspring have to correct diminishes until 
eventually an offspring gets all of its patterns correct, which implies that its 
parent produces the correct patterns, and so on all the way back up the network 
to the output unit. The final network has the form of a binary tree, although 
some branches might be missing if they are not needed. However, this architecture 
can be reorganized into a two-layer network by removing the output connections 
from the units and moving all units into a single hidden layer (leaving their input 
connections unchanged). A new output unit is then created, and new hidden-to-
output connections added. These connections can be learned with the perceptron 
algorithm or found by explicit construction in a way which guarantees correct 
classification of all patterns (Prean, 1990). In simulations it is found that the 
upstart algorithm produces networks having fewer units than those found with 
the tiling algorithm. Other algorithms for tackling the Boolean classification 
problem have been described by Gallant (1986a), Nadal (1989) and Marchand 
et al (1990). 

9.5.2 Cascade correlation 

A different approach to network construction, applicable to problems with con­
tinuous output variables, is known as cascade-correlation (Fahlman and Lebiere, 
1990) and is based on networks of sigmoidal hidden units. The form of the net­
work architecture is shown in Figure 9.12. To begin with there are no hidden 
units, and every input is connected to every output unit by adjustable con­
nections (the crosses in Figure 9.12). The output units may be linear or may 
have sigmoidal non-linearities depending on the application. At this stage the 
network has a single layer of weights and can be trained by a number of dif­
ferent algorithms, as discussed in Chapters 3 and 7. Fahlman and Lebiere use 
the quickprop algorithm (Section 7.5.3). The network is trained for a period of 
time governed by some user-defined parameter (whose value is set empirically) 
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Figure 9.12. Architecture of the cascade-correlation network. Large circles de­
note processing units, small circles denote inputs, and the bias input is shown 
in black. Squares represent weights which are trained and then frozen, while 
the crosses show weights which are retrained after the addition of each hidden 
unit. Hidden unit Hi is added first, and then hidden unit Hi% and so on. 

and then a sigmoidal hidden unit is added to the network. This is followed by 
further network training, alternating with the addition of hidden units, until a 
sufficiently small error is achieved. The addition of hidden units is done in such 
a way that , at each stage of the algorithm, only a single-layer system is being 
trained. Each new hidden unit takes inputs from all of the inputs to the network 
plus the outputs of all existing hidden units, leading to the cascade structure of 
Figure 9.12. The hidden unit weights are first determined, and then the unit is 
added to the network. These weights are found by maximizing the correlation 
between the output of the unit and the residual error of the network outputs 
prior to the addition of that unit. This correlation (actually the covariance) is 
defined by 

*=£ Y(z»-z)(e"k-ek) 
l 

(9.62) 

where ejt = (j//t — tk) is the error of network output k, and z denotes the output 
of the unit given by 

= 9{Ew<a (9.63) 
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where the sum runs over all inputs and all existing hidden units. In (9.62) the 
following average quantities are defined over the whole training set 

n = l n—1 

The derivative of S with respect to the weights of the new hidden unit are easily 
found in the form 

^ = ±EE^-^'< o.65) 
1 k n 

where the sign corresponds to the sign of the covariance inside the modulus bars 
in (9.62). These derivatives can then be used with the quickprop algorithm to 
optimize the weights for the new hidden unit. Once this has been done the unit 
is added to the network and is connected to all output units by adaptive weights. 
All output-layer weights are now retrained (with all hidden unit weights fixed). 
Again, this corresponds to a single-layer training problem, and is performed us­
ing quickprop. These single-layer training problems can be expected to converge 
very rapidly. For linear output units, the output-layer weights, which minimize 
a sum-of-squares elrror, can be found quickly by pseudo-inverse techniques (Sec­
tion 3.4.3). Note that, because the hidden unit weights are never changed, the 
activations of the hidden units (for each of the input vectors from the train­
ing set) can be evaluated once for the whole of the training set, and these values 
re-used repeatedly in the remainder of the algorithm, saving considerable compu­
tational effort. Benchmark results from this algorithm can be found in Fahlman 
and Lebiere (1990). 

9.5.3 Saliency of weights 

We turn now to pruning algorithms which start with a relatively large network 
and then remove connections in order to arrive at a suitable network architec­
ture. Several of the approaches to network pruning are based on the following 
general procedure. First, a relatively large network is trained using one of the 
standard training algorithms. This network might for instance have a high degree 
of connectivity. Then the network is examined to assess the relative importance 
of the weights, and the least important are deleted. Typically this is followed by 
some further training of the pruned network, and the procedure of pruning and 
training may be repeated for several cycles. Clearly, there are various choices to 
be made concerning how much training is applied at each stage, what fraction 
of the weights are pruned and so on. Usually these choices are made on a heuris­
tic basis. The most important consideration, however, is how to decide which 
weights should be removed. 

In the case of simple models it may be clear in which order the parameters 
should be deleted. With a polynomial, for instance, the higher-order coefficients 
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would generally be deleted first since we expect the function we are trying to 
represent to be relatively smooth. In the case of a neural network it is not obvious 
a priori which weights will be the least significant. We therefore need some 
measure of the relative importance, or saliency, of different weights. 

The simplest concept of saliency is to suppose that small weights are less 
important than large weights, and to use the magnitude \w\ of a weight value as 
a measure of its importance. Such an approach clearly requires that the input 
and output variables are normalized appropriately (Section 8.2). However, it 
has little theoretical motivation, and performs poorly in practice. We consider 
instead how to find a measure of saliency with a more principled justification. 

Since network training is defined in terms of the minimization of an error func­
tion, it is natural to use the same error function to find a definition of saliency. 
In particular, we could define the saliency of a weight as the change in the error 
function which results from deletion (setting to zero) of that weight. This could 
be implemented by direct evaluation, so that, for each weight in the (trained) 
network in turn, the weight is temporarily set to zero and the error function 
re-evaluated. However, such an approach would be computationally demanding 
(Exercise 9.7). 

Consider instead the change in the error function due to small changes in 
the values of the weights (Le Cun et cd., 1990). If the weight t«i is changed to 
Wi + 6wi then the corresponding change in the error function E is given by 

SE = 5 2 -Q-6wi + 2 H 5 2 H i i 6 w i 6 w i + alSw*) (9-66) 

where the Hy are the elements of the Hessian matrix 

*«=£Li (9-67) 
If we assume that the training process has converged, then the first term in 
(9.66) will vanish. Le Cun et al. (1990) approximate the Hessian by discarding 
the non-diagonal terms. Techniques for calculating the diagonal terms of the 
Hessian for a multi-layer perceptron were described in Section 4.10.1. Neglecting 
the higher-order terms in the expansion then reduces (9.66) to the form 

6E = ±jTlHii6v#. (9.68) 

If a weight having an initial value u>j is set to zero, then the increase in error 
will be given approximately by (9.68) with 6wt — tOj, and so the saliency values 
of the weights are given approximately by the quantities Hawf/2. A practical 
implementation would typically consist of the following steps: 
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1. Choose a relatively large initial network architecture. 
2. Train the network in the usual way until some stopping criterion is satisfied. 
3. Compute the second derivatives Ha for each of the weights, and hence 

evaluate the saliencies Hawf/2. 
4. Sort the weights by saliency and delete some of the low-saliency weights. 
5. Go to 2 and repeat until some overall stopping criterion is reached. 

This approach to weight elimination has been termed optimal brain damage 
(Le Cun et al, 1990). In an application to the problem of recognition of hand­
written zip codes, the technique allowed the number of free parameters in a 
network to be reduced by about a factor of 4 (from a network initially hav­
ing over 10 000 free parameters) while giving a small increase in generalization 
performance and a substantial increase in the speed of the trained network. 

The assumption that the Hessian for a network is diagonal, however, is fre­
quently a poor one. A procedure for determining the saliency of weights, known 
as optimal brain surgeon, which does not make the assumption of a diagonal Hes­
sian, was introduced by Hassibi and Stork (1993). This method also computes 
corrections to the remaining weights after deletion of a particular weight and 
so reduces the need for network retraining during the pruning phase. Suppose 
a weight uij is to be set to zero. The remaining weights are then adjusted so as 
to minimize the increase in error resulting from the deletion. We can write the 
total change in the weight vector in the form <5w. Again, assuming the network 
is already trained to a minimum of the error function, and neglecting third-order 
terms, the change in the error resulting from this change to the weight vector 
can be written 

6E = ^(5wTH<5w. (9.69) 

The change in the weight vector must satisfy 

ej6w + Wi = 0 (9.70) 

where e* is a unit vector in weight space parallel to the Wj axis. We need to 
find the <5w which minimizes 6E in (9.69), subject to the constraint (9.70). 
This is most easily done by introducing a Lagrange multiplier (Exercise 9.8 and 
Appendix C), giving the following result for the optimal change in the weight 
vector 

«w = - T ^ i r H - 1 e i (9.71) 
l " In 

and the corresponding value for the increase in the error in the form 

6Ei-lwk- (9-72) 
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Figure 9.13. A schematic illustration of the error contours for a network having 
a non-diagonal Hessian matrix, for two of the weights w\ and W2- The network 
is initially trained to the error minimum at w*. Weight pruning based on the 
magnitude of the weights would take the weight vector to the point A by 
elimination of the smaller weight wi. Conversely, optimal brain damage leads 
to removal of w\ and moves the weight vector to B. Finally, optimal brain 
surgeon removes wt and also computes a correction to the remaining weight 
»2 and hence moves the weight vector to C. 

Note that, if the Hessian is in fact diagonal, then these results reduce to the 
corresponding results for the optimal brain damage technique discussed above. 
The inverse Hessian is evaluated using the sequential technique discussed in 
Section 4.10.3 which is itself based on the outer product approximation for the 
Hessian, discussed in Section 4.10.2. In a practical implementation, the optimal 
brain surgeon algorithm proceeds by the following steps: 

1. Train a relatively large network to a minimum of the error function. 
2. Evaluate the inverse Hessian H _ 1 . 
3. Evaluate 6Ei for each value of i using (9.72) and select the value of i which 

gives the smallest increase in error. 
4. Update all of the weights in the network using the weight change evaluated 

from (9.71). 
5. Go to 3 and repeat until some stopping criterion is reached. 

A comparison of pruning by weight magnitude, optimal brain damage and opti­
mal brain surgeon is shown schematically in Figure 9.13. Note that the weight 
changes are evaluated in the quadratic approximation. Since the true error func­
tion will be non-quadratic, it will be necessary to retrain the network after a 
period of weight pruning. Simulation results confirm that the optimal brain sur­
geon technique is superior to optimal brain damage which is in turn superior to 
magnitude-based pruning (Le Cun et al., 1990; Hassibi and Stork, 1993). 
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9.5.4 Weight elimination 

In Section 9.2.1 we discussed the use of a simple weight-decay term as a form of 
regularization, to give a total error function of the form 

E = E+^wl (9.73) 

This regularization term favours small weights, and so network training based on 
minimization of (9.73) will tend to reduce the magnitude of those weights which 
are not contributing significantly to a reduction in the error E. One procedure for 
pruning weights from a network would therefore be to train the network using 
the regularized error (9.73), and then remove weights whose values fall below 
some threshold. 

One of the difficulties of the simple penalty term in (9.73), from the point of 
view of network pruning, is that it tends to favour many small weights rather 
than a few large ones. To see this, consider two weights Wi and u>2 feeding 
into a unit from identical inputs, so that the weights are performing redundant 
tasks. The unregularized error E will be identical if we have two equal weights 
Wi = wi = w/2, or if we have one larger weight W\ = w, and one zero weight 
W2 = 0. In the first case, the weight-decay term YJIW1 — w 2 /2 while in the 
second case Y^iw1 . = w 2 -

This problem can be overcome by using a modified decay term of the form 
(Hanson and Pratt , 1989; Lang and Hinton, 1990; Weigend et al, 1990) 

2 

E = E + vY ^ 7 2 (9-74) 
^ w2 + w2 ' 

where w i s a parameter which sets a scale and is usually chosen to be of order 
unity. Use of this form of regularizer has been called weight elimination. As shown 
in Exercise 9.9, for weight values somewhat larger than w this penalty term will 
tend favour a few large weights rather than many small ones, and so is more 
likely to eliminate weights from the network than is the simple weight-decay 
term in (9.73). This leads to a form of network pruning which is combined with 
the training process itself, rather than alternating with it. In practice weight 
values will typically not be reduced to zero, but it would be possible to remove 
weights completely if their values fell below some small threshold. Note that this 
algorithm involves the scale parameter w whose value must be chosen by hand. 

9.5.5 Node pruning 

Instead of pruning individual weights from a network we can prune complete 
units, and several techniques for achieving this have been suggested. Mozer and 
Smolensky (1989) adopt an algorithm based on alternate phases of training and 
removal of units. This requires a measure of the saliency st of a unit, of which 
the most natural definition would be the increase in the error function (measured 
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with respect to the training set) as a result of deleting a unit j 

Sj = ^(without unit j) — E(v/ith unit j). (9.75) 

As with individual weights, such a measure is relatively slow to evaluate since it 
requires a complete pass through the data set for each unit, although it is clearly 
less computationally expensive to repeat the error measurement for each unit 
than it is for each weight. To find a convenient approximation, we can introduce 
a factor a.,- which multiplies the summed input to each unit (except the output 
units), so that the forward propagation equations become 

I Ctj ] T WjiZi (9.76) 

where the activation function g(-) is defined such that g(Q) = 0, as would be the 
case for g(a) = tanha , for example. Then with ctj = 0 the unit is absent, and 
with Qj = 1 the unit is present. Then (9.75) can be written as 

Sj = E(otj = 1) - E(<XJ = 0) (9.77) 

which can then be approximated by the derivative with respect to ctj: 

dE 
Sj~ daj 

(9.78) 

These derivatives are easily evaluated using an extension of the back-propagation 
algorithm (Exercise 9.10). Note that the a,- do not actually appear in the forward 
propagation equations, but are introduced simply as a convenient way to define, 
and evaluate, the Sj. In order to make this approach work in practice, Mozer 
and Smolensky (1989) found they had to use a Minkowski-R error with R = 1 
(Section 6.2), together with an exponentially weighted running average estimate 
of Sj to smooth out fluctuations. Other forms of node-pruning algorithm have 
been considered by Hanson and Prat t (1989), Chauvin (1989) and Ji et al. (1990). 

9.6 Committees of networks 

It is common practice in the application of neural networks to train many differ­
ent candidate networks and then to select the best, on the basis of performance 
on an independent validation set for instance, and to keep only this network and 
to discard the rest. There are two disadvantages with such an approach. First, 
all of the effort involved in training the remaining networks is wasted. Second, 
the generalization performance on the validation set has a random component 
due to the noise on the data, and so the network which had best performance on 
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the validation set might not be the one with the best performance on new test 
data. 

These drawbacks can be overcome by combining the networks together to 
form a committee (Perrone and Cooper, 1993; Perrone, 1994). The importance of 
such an approach is that it can lead to significant improvements in the predictions 
on new data, while involving little additional computational effort. In fact the 
performance of a committee can be better than the performance of the best single 
network used in isolation. For notational convenience we consider networks with a 
single output y, although the generalization to several outputs is straightforward. 
Suppose we have a set of L trained network models j/j(x) where i = 1 , . . . ,L. 
This set might contain networks having different numbers of hidden units, or 
networks with the same architecture but trained to different local minima of 
the error function. It might even include different kinds of network models or 
a mixture of network and conventional models. We denote the true regression 
function which we are seeking to approximate by h(x). Then we can write the 
mapping function of each network as the desired function plus an error: 

tt(x) = h(x) + £ i(x) . (9.79) 

The average sum-of-squares error for model «/j(x) can be written as 

Ei = £[{Vi(x) - fc(x)}2] = €\t\\ (9.80) 

where £[•] denotes the expectation, and corresponds to an integration over x 
weighted by the unconditional density of x so that 

£[£?]= y£?(x)p(x)dx. (9.81) 

From (9.80) the average error made by the networks acting individually is given 
by 

E™ = ifiEi = ±Yd£[€}}. (9.82) 

We now introduce a simple form of committee. This involves taking the out­
put of the committee to be the average of the outputs of the L networks which 
comprise the committee. Thus, we write the committee prediction in the form 

1 L 

VCOM(X) = - £ 5 > ( X ) . (9.83) 
i=l 

The error due to the committee can then be written as 
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EcOM = £ J 5Z^W - h(x) &j (9.84) 

If we now make the assumption that the errors ej(x) have zero mean and are 
uncorrelated, so that 

£[ei}=0, £[uej]=° i{ J * * (9.85) 

then, using (9.82), we can relate the committee error (9.84) to the average error 
of the networks acting separately as follows: 

-ScoM = jz Yl^ iei] ~ T^AV- (9.86) 

This represents the apparently rather dramatic result that the sum-of-squares 
error can be reduced by a factor of L simply by averaging the predictions of 
L networks. In practice, the reduction in error is generally much smaller than 
this, because the errors e^(x) of different models are typically highly correlated, 
and so assumption (9.85) does not hold. However, we can easily show that the 
committee averaging process cannot produce an increase in the expected error 
by making use of Cauchy's inequality in the form 

which gives the result 

£« ^L£< (9.87) 

£cOM < EAy. (9.88) 

Typically, some useful reduction in error is generally obtained, and the method 
has the advantage of being trivial to implement. There is a significant reduction 
in processing speed for new data, but in many applications this will be irrelevant. 

The reduction in error can be viewed as arising from reduced variance due 
to the averaging over many solutions. This suggests that the members of the 
committee should not individually be chosen to have optimal trade-off between 
bias and variance, but should have relatively smaller bias, since the extra variance 
can be removed by averaging. 

The simple committee discussed so far involves averaging the predictions of 
the individual networks. However, we might expect that some members of the 
committee will typically make better predictions than other members. We would 
therefore expect to be able to reduce the error still further if we give greater 
weight to some committee members than to others. Thus, we consider a gener-
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alized committee prediction given by a weighted combination of the predictions 
of the members of the form 

2/GEN(X) = ^ Q i y < ( x ) (9.89) 
«=i 

= /i(x) + ^ a i £ i ( x ) (9.90) 
i = i 

where the parameters a* will be determined shortly. We now introduce the error 
correlation matrix C with elements given by 

CiS = £[ei(x)<y(x)]. (9.91) 

This allows the error due to the generalized committee to be written as 

£ G E N = £ [{2/GEN(X) - h(x)}2] (9.92) 

(J = £ 
i=l / Vj=l 

(9.93) 

h h 

t=l j= l 
(9.94) 

We can now determine optimal values for the a* by minimization of JBQEN- In 
order to find a non-trivial minimum (i.e. a solution other than a* = 0 for all i) 
we need to constrain the a,. This is most naturally done by requiring 

X> = i. (9.95) 
i = l 

The motivation for the form of this form of constraint will be discussed shortly. 
Using a Lagrange multiplier A (Appendix C) to enforce this constraint, we see 
that the minimum of (9.94) occurs when 

2j2ajCij + A = 0 
j = i 

(9.96) 

which has the solution 
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X L 

«, = - 7 D C " % - (9-97) 
ZJ=1 

We can find the value of A by substituting (9.97) into the constraint equation 
(9.95), which gives the solution for the a* in the form 

Qi = P=*f~%]ii . (9.98) 
E f c = i E j = i ( c x)fci 

Substituting (9.98) into (9.94) we find that the value of the error at the minimum 
is given by 

( 
L L \ 

£ G E N = £ £ ( 0 - % . (9.99) 

In summary, to set up this generalized committee, we train L network models, 
and then compute the correlation matrix C using a finite-sample approximation 
to (9.91) given by 

C « ~ Ji £ > ( * " ) - *")(w(xB) - *") \ (9100) 
n=\ 

where i n is the target value corresponding to input vector x n . We then find C _ 1 , 
evaluate the Qj using (9.98), and then use (9.89) to make new predictions. 

Since the generalized committee (9.89) is a special case of the simple average 
committee (9.83) we have the inequality 

£ G E N < Ecou- (9.101) 

The generalization error of a committee can be decomposed into the sum of 
two terms (Exercise 9.11) to give (Krogh and Vedelsby, 1995) 

£ [{J/GEN(X) - h(x)}2] = £ > £ [{yi(x) - /i(x)}2] 
i 

~Ylai£ [iv* M _ 2/QEN ( x ) >2] (9-1 0 2) 

which is somewhat analogous to the bias-variance decomposition discussed in 
Section 9.1. The first term depends only on the errors of individual networks, 
while the second term depends on the spread of predictions of the committee 



9.7: Mixtures of experts 369 

members relative to the committee prediction itself. As a result of the minus 
sign in front of the second term on the right-hand side of (9.102) we see that, 
if we can increase the spread of predictions of the committee members without 
increasing the errors of the individual members themselves, then the committee 
error will decrease. Furthermore, since this term is strictly negative, we can use 
(9.80), (9.82) and (9.102), together with a* = l/L, to give 

EGEN < EAV (9.103) 

in keeping with (9.88) and (9.101). 
One problem with the constraint (9.95) is that it does not prevent the weight­

ing coefficients in the committee from adopting large negative and positive values 
and hence giving extreme predictions from the committee even when each mem­
ber of the committee might be making sensible predictions. We might therefore 
seek to constrain the coefficients further by insisting that, for each value of x, we 
have i/min(x) < 2A3EN(X) < 2/max(x)- This condition can be satisfied in general 
by requiring that a, > 0 and ]T\ Ot = 1 (Exercise 9.12). The minimization of the 
committee error subject to these two constraints is now a more difficult problem, 
and can be tackled using techniques of linear programming (Press et al., 1992). 

The usefulness of committee averaging is not limited to the sum-of-squares 
error, but applies to any error function which is convex (Exercise 9.13). Sec­
tion 10.7 shows how the concept of a committee arises naturally in a Bayesian 
framework. 

9.7 M i x t u r e s of e x p e r t s 

Consider the problem of learning a mapping in which the form of the mapping is 
different for different regions of the input space. Although a single homogeneous 
network could be applied to this problem, we might expect that the task would 
be made easier if we assigned different 'expert' networks to tackle each of the 
different regions, and then used an extra 'gating' network, which also sees the 
input vector, to decide which of the experts should be used to determine the 
output. 

If the problem has an obvious decomposition of this form, then it may be 
possible to design the network architecture by hand. However, a more powerful 

f and more general approach would be to discover a suitable decomposition as 
f part of the learning process. This is achieved by the mixture-of-experts model 

(Jacobs et al., 1991), whose architecture is shown in Figure 9.14. All of the 
! expert networks, as well as the gating network, are trained together. The goal 

of the training procedure is to have the gating network learn an appropriate 
decomposition of the input space into different regions, with one of the expert 
networks responsible for generating the outputs for input vectors falling within 

' each region. 
The key is in the definition of the error function, which has a similar form 

to that discussed in Section 6.4 in the context of the problem of modelling con-

; 



9: Learning and Generalization 

output 

input 

Figure 9.14. Architecture of the mixture-of-experts modular network. The gat­
ing network acts as a switch and, for any given input vector, decides which of 
the expert networks will be used to determine the output. 

ditional distributions, and it will be assumed that the reader is already familiar 
with this material. The error function is given by the negative logarithm of the 
likelihood with respect to a probability distribution given by a mixture of M 
Gaussians of the form 

M 

£ = -ElniEa'(x"^(tn!xn) (9.104) 

where the <fo(t|x) are Gaussian functions given by 

*<(t|x) 
(27r)c/2 exp p-y>ll3}. (9.105) 

These Gaussian functions have means (Xj(x) which are functions of the input 
vector x, and are taken to have unit covariance matrices. There is one expert 
network for each Gaussian, and the output of the ith expert network is a vector 
representing the corresponding mean /^(x) where x is the input vector. The 
mixing coefficients a , (x) are determined by the outputs •ji of the gating network 
through a softmax activation function 

exp(7t) 

E^=i exp(7j) 
(9.106) 

Thus, the gating network has one output for each of the expert networks, as 
indicated in Figure 9.14. This model differs from that discussed in Section 6.4 in 
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two minor respects. First, the variance parameters of the Gaussians here are set 
to unity, whereas they were taken to be general functions of the input vector x 
in Section 6.4, although is it clearly straightforward to incorporate more general 
Gaussian functions into the present model. Second, different networks are used 
to model the ^i(x) and a*(x) here, whereas a single network was considered in 
Section 6.4. 

The mixture-of-experts network is trained by minimizing the error function 
(9.104) simultaneously with respect to the weights in all of the expert networks 
and in the gating network. When the trained network is used to make predictions 
for new inputs, the input vector is presented to the gating network and the largest 
output is used to select one of the expert networks. The input vector is then 
presented to this expert network whose output ^ ( x ) represents the prediction 
of the complete system for this input. This corresponds to the selection of the 
most probable branch of the conditional distribution on the assumption of weakly 
overlapping Gaussians, as discussed on page 220. 

It was also shown in Section 6.4 that the use of an error function based on a 
mixture of Gaussians leads to an automatic soft clustering of the target vectors 
into groups associated with the Gaussian components. In the context of the 
mixture-of-experts architecture it therefore leads to an automatic decomposition 
of the problem into distinct sub-tasks, each of which is effectively assigned to 
one of the network modules. 

Jacobs et dl. (1991) demonstrate the performance of this algorithm on a 
vowel recognition problem and show that it discovers a sensible decomposition 
of the mapping. Jordan and Jacobs (1994) extend the mixture-of-experts model 
by considering a hierarchical system in which each expert network can itself 
consist of a mixture-of-experts model complete with its own gating network. 
This can be repeated at any number of levels, leading to a tree structure. The 
hierarchical architecture then allows simple linear networks to be used for the 
experts at the leaves of the tree, while still allowing the overall system to have 
flexible modelling capabilities. Jordan and Jacobs (1994) have shown that the 
EM algorithm (Section 2.6.2) can be extended to provide an effective training 
mechanism for such networks. 

9.8 Model order selection 

In this book, we have focused on the minimization of an error function as the 
basic technique for determining values for the free parameters (the weights and 
biases) in a neural network. Such an approach, however, is unable to determine 
the optimum number of such parameters (or equivalently the optimum size of 
network), because an increase in the number of parameters in a network will 
generally allow a smaller value of the error to be found. Our goal is to find a 
network which gives good predictions for new data, and this is typically not 
the network which gives the smallest error with respect to the training data. In 
the trade-off between bias and variance discussed in Section 9.1, we saw that 
there is an optimal degree of complexity in a network model for a given data 
set. Networks with too little flexibility will smooth out some of the underlying 
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structure in the data (corresponding to high bias), while networks which are too 
complex will over-fit the data (corresponding to high variance). In either case, 
the performance of the network on new data will be poor. 

Similar considerations apply to the problem of determining the values of 
continuous parameters such as the regularization coefficient v in a regularized 
error function of the form 

E = E + vSl. (9.107) 

Too large a value for v leads to a network with large bias (unless the regulariza­
tion function happens to be completely consistent with the underlying structure 
of the data) while too small a value allows the network solution to have too 
high a variance. This was illustrated in Figures 9.4, 9.5 and 9.6. Again, direct 
minimization of E cannot be used to find the optimum value for v, since this 
gives v = 0 and an over-fitted solution. 

We shall assume that the goal is to find a network having the best general­
ization performance. This is usually the most difficult part of any pattern recog­
nition problem, and is the one which typically limits the practical application of 
neural networks. In some cases, however, other criteria might also be important. 
For instance, speed of operation on a serial computer will be governed by the 
size of the network, and we might be prepared to trade some generalization ca­
pability in return for a smaller network. We shall not discuss these possibilities 
further, but instead focus exclusively on the problem of generalization. 

9.8.1 Cross-validation 

Since our goal is to find the network having the best performance on new data, 
the simplest approach to the comparison of different networks is to evaluate the 
error function using data which is independent of that used for training. Various 
networks are trained by minimization of an appropriate error function defined 
with respect to a training data set. The performance of the networks is then 
compared by evaluating the error function using an independent validation set, 
and the network having the smallest error with respect to the validation set 
is selected. This approach is called the hold out method. Since this procedure 
can itself lead to some over-fitting to the validation set, the performance of the 
selected network should be confirmed by measuring its performance on a third 
independent set of data called a test set. 

The application of this technique is illustrated in Figure 9.15 using the same 
radial basis function example as used in plotting Figures 9.4, 9.5 and 9.6. Here 
we have plotted the error on the training set, as well as the generalization error 
measured with respect to an independent validation set, as functions of the 
logarithm of the regularization coefficient v. As expected, the training error 
decreases steadily with decreasing v while the validation error shows a minimum 
at a value of \xiv ~ 3.7, and thereafter increases with decreasing v. Figure 9.5 
was plotted using this optimum value of v, and confirms the expectation that the 
mapping with the best generalization is one which is closest to the underlying 
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Figure 9.15. Plot of training and validation set errors versus the logarithm 
of the regularization coefficient, for the example used to plot Figure 9.4. A 
validation set of 1000 points was used to obtain a good estimate of the gen­
eralization error. The validation error shows a minimum at \nv ~ 3.7, which 
was the value used to plot Figure 9.5. 

function from which the data was generated (shown by the dashed curve in 
Figure 9.5). 

This example also provides a convenient opportunity to demonstrate the de­
pendence of bias and variance on the effective network complexity. The values of 
the average bias and variance were estimated using knowledge of the true under­
lying generator of the data, given by the sine function h{x) in (9.34). For each 
value of In v, 100 data sets, each containing 30 points, were generated by sam­
pling h{x) and adding noise. A radial basis function network (with 30 Gaussian 
basis functions, one centred on each data point as before) was then trained on 
each of the data sets to give a mapping yi(x) where i = 1 , . . . , 100. The average 
response of the networks is given by 

1 IOO 

^HiooE^*)- (9-108) 

i— 1 

Estimates of the integrated (bias)2 and variance are then given by 

(bias)2 = J2{V(xn) - Mz")}2 (9-109) 
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Figure 9.16. Plots of estimated (bias)2 and variance as functions of the log­
arithm of the regularization coefficient v for the radial basis function model 
used to plot Figure 9.15. Also shown is the sum of (bias)2 and variance which 
shows a minimum at a value close to the minimum of the validation error in 
Figure 9.15. 

variance : 
1 loo 

(9.110) 

Figure 9.16 shows the (bias)2 and the variance of the radial basis function model 
as functions of ln^. The minimum of the sum of (bias)2 and variance occurs at 
a value of In v close to that at which the minimum validation error occurs in 
Figure 9.15 as expected. 

In practice, the availability of labelled data may be severely limited and 
we may not be able to afford the luxury of keeping aside part of the data set 
for model comparison purposes. In such cases we can adopt the procedure of 
cross-validation (Stone, 1974, 1978; Wahba and Wold, 1975). Here we divide the 
training set at random into S distinct segments. We then train a network using 
data from S — 1 of the segments and test its performance, by evaluating the error 
function, using the remaining segment. This process is repeated for each of the 
S possible choices for the segment which is omitted from the training process, 
and the test errors averaged over all S results. The partitioning of the data set is 
illustrated in Figure 9.17. Such a procedure allows us to use a high proportion of 
the available data (a fraction 1 — 1 /S) to train the networks, while also making 
use of all data points in evaluating the cross-validation error. The disadvantage 
of such an approach is that it requires the training process to be repeated S times 
which in some circumstances could lead to a requirement for large amounts of 
processing time. A typical choice for S might be S — 10, although if data is very 
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| run 1 

| run 2 

j I j"" j l§irunS 

Figure 9.17. Schematic illustration of the partitioning of a data set into S seg­
ments for use in cross-validation. A network is trained S times, each time using 
a version of the data set in which one of the segments (shown shaded) is omit­
ted. Each trained network is then tested on the data from the segment which 
was omitted during training, and the results averaged over all S networks. 

scarce we could go to the extreme limit of S = Â  for a data set with N data 
points, which involves N separate training runs per network, each using (N — 1) 
data points. This limit is known as the leave-one-out method. 

9.8.2 Stacked generalization 

In Section 9.6 we discussed the use of committees as a way of combining the pre­
dictions of several trained networks, and we saw how this could lead to reduced 
errors. The committee techniques are based only on the training data, however, 
and so do not directly address the issue of model complexity optimization. Con­
versely, techniques such as cross-validation represent a winner-takes-all strategy 
in which only the best network is retained. The method of stacked generalization 
(Wolpert, 1992) provides a way of combining trained networks together which 
uses partitioning of the data set (in a similar way to cross-validation) to find an 
overall system with usually improved generalization performance. 

Consider the modular network system shown in Figure 9.18. Here we see a set 
of M 'level-0' networks N® to A/^ whose outputs are combined using a 'level-1'' 
network A/1. The idea is to train the level-0 networks first and then examine their 
behaviour when generalizing. This provides a new training set which is used to 
train the level-1 network. 

The specific procedure for setting up the stacked generalization system is as 
follows. Let the complete set of available data be denoted by D. We first leave 
aside a single data point from D as a validation point, and treat the remainder 
of D as a training set. All level-0 networks are then trained using the training 
partition and their outputs are measured using the validation data point. This 
generates a single pattern for a new data set which will be used to train the 
level-1 network Af1. The inputs of this pattern consist of the outputs of all the 
level-0 networks, and the target value is the corresponding target value from the 
original full data set. This process is now repeated with a different choice for 
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Figure 9.18. Stacked generalization combines the outputs of several 'level-O' 
networks •A/?,... ,MM using a 'level-l' network Af1 to give the final output. 
The level-l network corrects for the biases exhibited by the level-0 networks. 

the data point which is kept aside. After cycling through the full data set of 
N points we have N patterns in the new data set, which is now used to train 
Ml. Finally, all of the level-0 networks are re-trained using the full data set D. 
Predictions on new data can now be made by presenting new input vectors to the 
level-0 networks and taking their outputs as the inputs to the level-l network, 
whose output constitutes the predicted output. Wolpert (1992) gives arguments 
to suggest that the level-0 networks should contain a wide variety of different 
models, while the level-l network should provide a relatively smooth function 
and hence should have a relatively simple structure. 

There are many possible variations of stacked generalization. For instance, if 
the data set is large, or if the level-0 networks are computationally intensive to 
train, we might leave aside a larger fraction of D than just a single data point 
when training the level-0 networks. Stacking can also be applied in a slightly 
modified form to improve the generalization of a single network, and it can also 
be extended to more than two levels of networks (Wolpert, 1992). 

9.8.3 Complexity criteria 

In conventional statistics, various criteria have been developed, often in the con­
text of linear models, for assessing the generalization performance of trained 
models without the use of validation data. These include the Cp-statistic (Mal­
lows, 1973), the final prediction error (Akaike, 1969), the Akaike information 
criterion (Akaike, 1973) and the predicted squared error (Barron, 1984). Such 
criteria take the general form of a prediction error (PE) which consists of the 
sum of two terms 

PE = training error + complexity term (9.111) 

where the complexity term represents a penalty which grows as the number of 
free parameters in the model grows. Thus, if the model is too simple it will give 
a large value for the criterion because the residual training error is large, while a 
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model which is too complex will have a large value for the criterion because the 
complexity term is large. The minimum value for the criterion then represents 
a trade-off between these two competing effects. For a sum-of-squares error a 
typical form for such a criterion would be 

P E = = ¥ + ir*a <9-1 1 2> 
where E is the value of the sum-of-squares error with respect to the training set 
after training is complete, N is the total number of data points in the training 
set, W is the number of adjustable parameters (weights) in the model, and a2 is 
the variance of the noise on the data (which must be estimated). 

Moody (1992) has generalized such criteria to deal with non-linear models 
and to allow for the presence of a regularization term. By performing a local 
linearization of the network mapping function he obtains a criterion, called the 
generalized prediction error, of the form 

GPE = ^ + ^ a 2 (9.113) 

where 7 is the effective number of parameters in the network, which for linear 
networks is given by 

7 = V _ ^ (9.114) 

where A, are the eigenvalues of the Hessian matrix of the unregularized error 
evaluated at the error minimum, and u is the regularization coefficient. The 
form of 7 in (9.114) should be compared to the expression for the minimum of 
the regularized error given by (9.24). The reason that 7 is the effective number 
of parameters is that eigenvalues which satisfy \ ~S> u contribute 1 to the sum 
in (9.114), while eigenvalues which satisfy Aj <C v contribute 0 to the sum. We 
shall not discuss the origin of this criterion here, since we give a more general 
discussion from the Bayesian perspective in Chapter 10. 

9.9 Vapnik—Chervonenkis dimension 

Some useful insight into generalization is obtained by considering the worst-
case performance for a particular trained network. The theory of this has been 
developed mainly in the context of networks with binary inputs (Baum and 
Haussler, 1989; Abu-Mostafa, 1989; Hertz et al., 1991). For simplicity we consider 
networks having a single binary output. 

Suppose that the input vectors are generated from some probability distri­
bution P(x) and that the target data is given by a (noiseless) function /i(x). For 
any given model y(x), we can define the average generalization ability g(y) to 
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be the probability that j/(x) = h(x) for the given distribution P(x). This says 
that, if we pick an input vector x at random from the distribution P(x) , then 
the probability that the two functions will agree is given by g(y). 

In practice, we cannot calculate g(y) directly because we do not know the 
true probability distribution -P(x), nor do we know the function h(x). What we 
typically do instead is to train a network using a set of N training patterns to 
give a network function j/(x; w), and then measure the fraction of the training 
set which the network correctly classifies, which we shall denote by gjv(y). In 
the limit of an infinite data set N -* oo we would expect to find gr<r(y) —* g(y), 
by definition of g{y). However, for a finite-size training set the network func­
tion y(x; w) will be partly tuned to the particular training set (the problem of 
over-fitting) and so we would expect gn(y) > <?(?/)• For instance, the network 
might learn the training set perfectly, so that gN(y) — 1, and yet the predictive 
performance on new data drawn from the same distribution might be poor so 
that g(y) -C 1. We say that gN(y) is a biased estimate of g(y), since it is system­
atically different from the true value. It gives an over-optimistic estimate of the 
generalization performance of the network. 

If we now consider the set of all functions {y} which the network can im­
plement, we can study the maximum discrepancy which can occur between the 
generalization performance estimated from the sample of size N and the true 
generalization g(y), given by 

max\gN(y) - g(y)\ (9.115) 
M 

as this gives a worst-case measure of generalization performance. Given a small 
quantity e, a theorem due to Vapnik and Chervonenkis (1971) gives an upper 
bound on the probability of the difference in (9.115) exceeding e, given by 

Pr (mt>x\gN(y) -g(y)\ > e j < 4A(2Ar)exp(-e27V/8) (9.116) 

where A(N) is known as the growth function and will be discussed shortly. 
Since this result applies to any of the functions y which can be implemented 

by the network, we can apply it to the particular function y(x; w) obtained from 
training the network on the given data set. Then (9.116) gives an upper bound 
on the discrepancy between our estimate g^iy) of the prediction error and the 
true generalization performance g(y). Our aim is to make this bound as small as 
possible (i.e. make the right-hand side of (9.116) as small as possible), and we 
can seek to do this by increasing the number JV of training patterns. Suppose 
for instance that we obtained perfect results (zero residual error) on the training 
data, so that grf(y) = 1. Then, for a given value of e if we could reduce the right-
hand side of (9.116) to a small value 6 = 0.05, say, we would be 95% certain that 

g(y) > i - e-
The function A(7V) in (9.116) gives the number of distinct binary functions 
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log2A 

Figure 9.19. General form of the growth function A(TV) shown as a plot of 
log2 A versus N. The function initially grows like 2N up to some critical num­
ber of patterns, given by N — dvc, at which point the growth slows to become 
a power law. The value dvc is called the Vapnik-Chervonenkis dimension. 

(dichotomies) which can be implemented by the network on a set of TV input 
vectors x n , where n = l,...,N. The number of potential different patterns is 
2N, and if our network could represent all of these then A(TV) = 2N. In this 
case, it is clear that we cannot make the right-hand side of (9.116) smaller by 
increasing TV. In practice, our network will have a finite capacity, and so for 
large enough TV it will not be capable of representing all possible 2N patterns. 
The general form of the function A(TV) is shown in Figure 9.19. For small TV it 
grows like 2 ^ , which says that the network can store exactly all of the training 
patterns. Beyond some critical number of patterns, however, the growth starts to 
slow down. This critical number of patterns, denoted dvc, is called the Vapnik-
Chervonenkis dimension, or VC dimension (Blumer et ai, 1989; Abu-Mostafa, 
1989) and is a property of the particular network. In fact, it can be shown 
(Cover, 1965; Vapnik and Chervonenkis, 1971) that the function A(TV) is either 
identically equal to 2N for all TV, or is bounded above by the relation 

A(TV) < Ndvc + 1. (9.117) 

Since this now has only polynomial growth, it is clear that we can make the 
right-hand side of (9.116) arbitrarily small by making TV sufficiently large. This 
is an intuitively reasonable result. If there are so few patterns that the network 
can store them all perfectly, we cannot expect it to generalize. Only when the 
network has successfully learned a number of patterns which is much larger than 
its intrinsic storage capacity for random patterns (as measured by dvc) will the 
network have captured some of the structure in the data, and only then can 
we expect it to generalize to new data. Consider a set of data points which are 
generated at random. The only way to learn all of the patterns in such a data 
set is for the network to store the training patterns individually, which requires 
a network with dye > N- For such data sets we cannot expect to find a network 
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which generalizes. 
The above results give us some idea of how many patterns we need to use to 

train a network in order to get good generalization performance in terms of the 
VC dimension of the network. Baum and Haussler (1989) considered multi-layer 
feed-forward networks of threshold units. For a network having a total of M 
units, and a total of W weights (including biases), they gave an upper bound on 
the VC dimension in the form 

dvc < 2Wlog2(eM) (9.118) 

where e is the base of natural logarithms. They used this to show that, if some 
number N of patterns, given by 

A T > - ^ l o g 2 ( M (9.119) 

can be learned by the network such that a fraction 1 — e/2 are correctly classified, 
where 0 < e < 1/8, then there is a high probability that the network will correctly 
classify a fraction 1 — e of future examples drawn from the same distribution. 

They also considered the case of networks having two layers of threshold 
units, and were able to find a lower bound on the VC dimension in the form 

dye > 2[M/2jd . (9.120) 

where [M/2] denotes the largest integer which is less than or equal to M/2 , 
and d is the number of inputs. For large two-layer networks we typically have 
Md ~ W (since most of the weights are in the first layer). From this they derived 
the approximate rule of thumb that to classify correctly a fraction 1 — e of new 
examples requires a number of patterns at least equal to 

2V.au. * W/e. (9.121) 

Thus, for e = 0.1 this suggests that we need around ten times as many training 
patterns as there are weights in the network. 

The VC dimension gives worst-case bounds on generalization. In particular, 
it only considers which functions can in principle be implemented by the net­
work. Thus, it does not depend, for instance, on the presence or absence of a 
regularizing function, since such a function does not completely rule out any set 
of weight values. We might hope that in practice we would achieve good gener­
alization with fewer training patterns than the number predicted using the VC 
dimension. 

Exerc ises 

9.1 (**) Consider a quadratic error function of the form 

2V.au
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£ = £ 0 + ^ ( w - w * ) T H ( w - w * ) (9.122) 

where w* represents the minimum, and the Hessian matrix H is positive 
definite and constant. Suppose the initial weight vector is w ' 0 ' is chosen 
to be at the origin, and is updated using simple gradient descent 

w{T) =w(>T~1) -TjVE (9.123) 

where T denotes the step number, and r) is the learning rate (which is 
assumed to be small). Show that, after r steps, the components of the 
weight vector parallel to the eigenvectors of H can be written 

w^) = { ! _ ( ! _ T )x j)
T} w] (9.124) 

where Wj — wTUj, and u7- and \j are the eigenvectors and eigenvalues 
respectively of H so that 

H u j = A ju j . (9.125) 

Show that , as T —» oo this gives w^T* —> w* as expected, provided |1 — 
rj\j\ < 1. Now suppose that training is halted after a finite number T 
of steps. Show that the components of the weight vector parallel to the 
eigenvectors of the Hessian satisfy 

w j r ) ~ w* when Â  » ( r ) r ) _ 1 (9.126) 

\w<jT)\ <C \w*\ when Xj <C (T/T)" 1 . (9.127) 

Compare this result to the corresponding result (9.24) obtained using reg-
ularization with simple weight decay, and hence show that (TJT) - 1 is anal­
ogous to the regularization parameter v. The above results also show that 
the effective number of parameters in the network, as defined by (9.114), 
grows as the training progresses. 

9.2 (*) Consider a linear network model with outputs 

Vk - ] P wkiXi + wk0 (9.128) 
i 

and a sum-of-squares error function of the form 

rt=l fc 

where n labels the patterns from the training set, and t% denotes the target 
values. Suppose that random noise, with components e*, is added to the 
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input vectors. By averaging over the noise and assuming (e<) = 0 and 
(ei£j) = 6ijV show that this is equivalent to the use of a weight-decay 
regularization term, with the biases wkQ omitted, and noise-free data. 

9.3 (* *) Chauvin (1989) considered a regularizer given by the sum of the squares 
of the activations of all the hidden units in the network. By using the chain 
rule of calculus, derive a back-propagation algorithm for computing the 
derivatives of such an error function with respect to the weights and biases 
in the network. 

9 .4(**) Consider the cross-entropy error function, in the limit of an infinite 
data set, given by 

E=~J2jJ^k l n ^ W + (1 - t fc)ln(l - yk(x))}p(tk\x)p(x)dxdtk. 

(9.130) 
Following a similar argument to that given in Section 9.3 for the case of a 
sum-of-squares error function, show that the addition of noise to the inputs 
during training is equivalent to the use of a regularizer of the form 

n = ivr ff!\ 1 (yk-tk)(i~2yk)-\/dVkY 
2
 k 

+ 
(Vk - h) 

.Vkii-Vk). 

dh)k 
dxJ 

\dxij 

p(tk\x)p(x)dxdtk. (9.131) 

In Section 6.7.2 it was shown that, at the minimum of the unregularized 
error function, the network output approximates the conditional average 
of the target data. Use this result to show that the second-derivative term 
in (9.131), as well as the second term in square brackets, vanishes. 

9.5 (**) Repeat Exercise 9.4 for the case of the log-likelihood error function of 
the form 

E=-Yl Iftklayk(x)p(tk\x)p{x)dxdtk (9.132) 

where the network outputs are given by the softmax function (Section 6.9) 
so that Ylk Vk(x) = 1. Again, derive the form of the regularizer, and show, 
using the result of Exercise 6.16, that the second-derivative term can be 
neglected when finding the minimum of the regularized error. Hence find 
the final form of the regularization function. 

9.6 (*) Consider a regularized error function of the form 

E = E + v9, (9.133) 

and suppose that the unregularized error E is minimized by a weight vector 
w*. Show that, if the regularization coefficient v is small, the weight vector 
w which minimizes the regularized error can be written in the form 

file:///dxij
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w = w * - ^ H _ 1 V n (9.134) 

where the gradient Vfi and the Hessian H = WE are evaluated at w = 
w*. 

9.7 (*) Consider a multi-layer perceptron network with W weights and a train­
ing set with N patterns. Find approximate expressions for the number of 
computational steps required to evaluate the saliency of the weights by 
(i) temporary deletion of each weight in turn followed by re-evaluation of 
the error function; (ii) use of the 'optimal brain damage' expression Hawf 
for the saliency of the weights in which the diagonal approximation for 
the Hessian matrix is used (Section 4.10.1); (iii) use of the 'optimal brain 
surgeon' expression (9.72) together with the sequential update procedure 
for evaluating the inverse of the Hessian (Section 4.10.3). Evaluate these 
expressions for the case W = 300 and N = 5000. 

9.8 (*) Use Lagrange multipliers (Appendix C) to verify that minimization of 
(9.69), subject to the constraint (9.70), leads to the results (9.71) and 
(9.72) for the change to the weight vector and the increase in error function 
respectively, for the 'optimal brain surgeon' technique. 

9.9 (**) Consider the modified weight-decay term in (9.74) for the case of two 
weights wj and w? which receive identical inputs and which feed the same 
unit (so that the weights perform redundant tasks). Change variables to 
s = (wi + W2)/w and a = ti^/wi- Show analytically that, for fixed s, the 
value a = 1 is a stationary point of the weight-decay term. Plot graphs of 
the value of the weight-decay term as a function of a for various values of 
s. Hence show that, for s = 1 the regularization term has a single minimum 
as a function of a at a ~ 0.5, while for s = 2 there «re two minima at 
a — 0 and a —> oo. We therefore see that, for weight values larger than 
the characteristic scale w, the modified weight-decay term in (9.74) has the 
desired effect of encouraging a few larger weights in preference to several 
smaller ones. 

9.10 (*) Derive a set of back-propagation equations for evaluation of the deriva­
tives in (9.78), for a network of general feed-forward topology having for­
ward propagation equations given by (9.76). 

9.11 (*) Consider a committee defined by (9.89) in which the coefficients satisfy 
the constraint (9.95). Verify the decomposition of the committee general­
ization error given by (9.102). 

9.12 (*) Consider a committee network of the form 

yc(x) = ^ « i j / i ( x ) (9.135) 
i 

where t/;(x) denote the functions corresponding to the individual networks 
in the committee. Suppose that, in order to ensure that the committee 
predictions remain within sensible limits, we require 
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l/min(x) < J/c(x) < 2/max(x) (9.136) 

where j/,nin(x) and j / m a x (x) are the minimum and maximum outputs of any 
members of the committee for that value of x. Show that, if the requirement 
(9.136) is to be satisfied for any set of network functions {yi(x)}, then the 
necessary and sufficient conditions on the a» are given by 

Q i > 0 , Y^ai = 1- (9-1 3 7) 
i 

9.13 (*) Use Jensen's inequality (Exercise 2.13) to show that any error function 
E(y) which is a convex function of the network output y will satisfy the 
following inequality for committees of networks 

^ C O M < -EAV (9.138) 

where .ECOM and Epu are defined in Section 9.6. 
9.14 (*) Use the result (9.119) to estimate typical numbers of patterns needed 

to get good generalization (better than, say, 95% correct on new data) in 
networks having d = 10 inputs and M = 30 threshold hidden units. 
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BAYESIAN TECHNIQUES 

In this chapter we consider the application of Bayesian inference techniques to 
neural networks. A simple example of the Bayesian approach was described in 
Section 2.3 where we considered the problem of inferring the mean of a one-
dimensional Gaussian distribution from a set of training data. In the context of 
neural networks, Bayesian methods offer a number of important features includ­
ing the following: 

1. The conventional training method of error minimization arises from a par­
ticular approximation to the Bayesian approach. 

2. Regularization can be given a natural interpretation in the Bayesian frame­
work. 

3. For regression problems, error bars, or confidence intervals, can be assigned 
to the predictions generated by a network. 

4. Bayesian methods allow the values of regularization coefficients to be se­
lected using only the training data, without the need to use separate train­
ing and validation data. Furthermore, the Bayesian approach allows rela­
tively large numbers of regularization coefficients to be used, which would 
be computationally prohibitive if their values had to be optimized using 
cross-validation. 

5. Similarly, the Bayesian approach allows different models (e.g. networks 
with different numbers of hidden units, or different network types such as 
multi-layer perceptrons and radial basis function networks) to be compared 
using only the training data. More generally, it provides an objective and 
principled framework for dealing with the issues of model complexity which 
avoids many of the problems which arise when using maximum likelihood. 

6. Bayesian methods allow choices to be made about where in input space new 
data should be collected in order that it be the most informative (MacKay, 
1992c). Such use of the model itself to guide the collection of data during 
training is known as active learning. 

7. The relative importance of different inputs can be determined using the 
Bayesian technique of automatic relevance determination (MacKay, 1994a, 
1995b; Neal, 1994), based on the use of a separate regularization coeffi­
cient for each input. If a particular coefficient acquires a large value, this 
indicates that the corresponding input is irrelevant and can be eliminated. 
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Note that, in order to focus on the more basic issues, topics 6 and 7 will not be 
discussed further. 

In earlier chapters network training was based on maximum likelihood which 
is equivalent to minimization of an error function. We emphasized that, within 
this framework, a more complex model is typically better able to fit the training 
data, but that this does not necessarily mean that it will give a smaller error 
with respect to new data. Models which are either too simple or too complex 
will give relatively poor approximations to the underlying process from which 
the data is generated. This was discussed in terms of the bias-variance trade­
off in Section 9.1. It is therefore not clear, from the training error alone, which 
model will give the best generalization, and so we resorted to partitioning of the 
data set to select an appropriate level of complexity, through such techniques 
as cross-validation (Section 9.8.1). The Bayesian approach, however, treats the 
issue of model complexity very differently, and in particular it allows all of the 
available data to be used for 'training'. 

To gain some insight into how this comes about, consider a hypothetical ex­
ample of three different models, Hi, H% and H3, which we suppose have steadily 
increasing flexibility, corresponding for instance to a steadily increasing number 
of hidden units. Thus, each model consists of a specification of the network archi­
tecture (number of units, type of activation function, etc.) and is governed by a 
number of adaptive parameters. By varying the values of these parameters, each 
model can represent a range of input-output functions. The more complex mod­
els, with a greater number of hidden units for instance, can represent a greater 
range of such functions. Suppose we have a set of input vectors ( x 1 , . . . , x.N), and 
a corresponding set of target vectors D = ( t 1 , . . . , tN). We can then consider the 
posterior probability for each of the models, given the observed data set D. From 
Bayes' theorem this probability can be written in the form 

rfW) = E<£^p. (10.i) 

The quantity p(Ki) represents a prior probability for model Hi. If we have no 
particular reason to prefer one model over another, then we would assign equal 
priors to all of the models. Since the denominator p(D) does not depend on 
the model, we see that different models can be compared by evaluating p(D\Hi), 
which is called the evidence for the model Hi (MacKay, 1992a). This is illustrated 
schematically in Figure 10.1, where we see that the evidence favours models which 
are neither too simple nor too complex. 

This indicates that the Bayesian approach could be used to select a particular 
model for which the evidence is largest. We might expect that the model with 
the greatest evidence is also the one which will have the best generalization per­
formance, and we shall discuss this issue in some detail in Section 10.6. However, 
as we shall see in Section 10.7, the correct Bayesian approach is to make use of 
the complete set of models. Predicted outputs for new input vectors are obtained 
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Figure 10.1. Schematic example of three models, Hi, H2 and H3, which have 
successively greater complexity, showing the probability (known as the evi­
dence) of different data sets D given each model Hi. We see that more com­
plex models can describe a greater range of data sets. Note, however, that the 
distributions are normalized. Thus, when a particular data set Do is observed, 
the model Hi has a greater evidence than either the simpler model H\ or the 
more complex model W3. 

by performing a weighted sum over the predictions of all the models, where the 
weighting coefficients depend on the evidence. More probable models therefore 
contribute more strongly to the predicted output. Since the evidence can be 
evaluated using the training data, we see that Bayesian methods are able to deal 
with the issue of model complexity, without the need to use cross-validation. 

An important concept in Bayesian inference is that of marginalization, which 
involves integrating out unwanted variables. Suppose we are discussing a model 
with two variables w and a. Then the most complete description of these variables 
is in terms of the joint distribution p(w,a). If we are interested only in the 
distribution of w then we should integrate out a as follows: 

p(w) = / p(w,a)da 

= p(w\a)p(a) da. (10.2) 

Thus the predictive distribution for w is obtained by averaging the conditional 
distribution p(w\a) with a weighting factor given by the distribution p{a). We 
shall encounter several examples of marginalization later in this chapter. 

10.1 Bayesian learning of ne twork weights 

The first problem we shall address is that of learning the weights in a neural 
network on the basis of a set of training data. In previous chapters we have 
used maximum likelihood techniques (equivalent to the minimization of an error 
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function) which attempt to find a single set of values for the network weights. 
By contrast, the Bayesian approach considers a probability distribution function 
over weight space, representing the relative degrees of belief in different values 
for the weight vector. This function is initially set to some prior distribution. 
Once the data has been observed, it can be converted to a posterior distribution 
through the use of Bayes' theorem. The posterior distribution can then be used 
to evaluate the predictions of the trained network for new values of the input 
variables, as will be discussed in Section 10.2. 

The use of Bayesian learning to infer parameter values from a set of training 
data was introduced in Section 2.3 in the context of parametric density esti­
mation. There we gave a simple illustration which involved inferring the mean 
of a Gaussian distribution. We shall see that the more complex problem of in­
ferring the weights in a neural network proceeds in an analogous manner. For 
simplicity of notation, we shall consider networks having a single output vari­
able y, although the extension to many output variables is straightforward. Most 
of the discussion in this chapter will concern function approximation problems, 
for the case of noise-free input data and noisy target data. The application 
of Bayesian methods to classification problems will be discussed briefly in Sec­
tion 10.3. Bayesian inference for noise-free data has been studied by Sibisi (1991), 
and the problem of interpolating data with noise on both dependent and inde­
pendent variables has been discussed in the context of straight-line fitting by 
Gull (1988a). 

10.1.1 Distribution of weights 

We begin by considering the problem of training a network in which the archi­
tecture (number of layers, number of hidden units, choice of activation functions 
etc.) is given. In the conventional maximum likelihood approach, a single 'best' 
set of weight values is determined by minimization of a suitable error function. 
In the Bayesian framework, however, we consider a probability distribution over 
weight values. In the absence of any data, this is described by a prior distribution 
which we shall denote by p(w), and whose form we shall discuss shortly. Here 
w = (u>i,... ,w\y) denotes the vector of adaptive weight (and bias) parameters. 
Let the target data from the training set be denoted by D = ( t 1 , . . . , tN). Once 
we observe the data D we can write down an expression for the posterior prob­
ability distribution for the weights, which we denote by p(w\D), using Bayes' 
theorem 

*w|J» = ^ ^ ^ do-3) 

where the denominator is a normalization factor which can be written 

p ( D ) = / p ( D | w ) p ( w ) d w (10.4) 
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and which ensures that the left-hand side of (10.3) gives unity when integrated 
over all weight space. As we shall see shortly, the quantity p(D\w), which rep­
resents a model for the noise process on the target data, corresponds to the 
likelihood function encountered in previous chapters. 

Since the data set consists of input as well as target data, the input values 
should strictly be included in Bayes' theorem (10.3) which should therefore be 
written in the form 

where X denotes the set of input vectors ( x 1 , . . . , xN). As we have already noted 
in earlier chapters, however, feed-forward networks trained by supervised learn­
ing do not in general model the distribution p(x) of the input data. Thus X 
always appears as a conditioning variable on the right-hand side of the proba­
bilities in (10.5). We shall therefore continue to omit it from now on in order to 
simplify the notation. 

The picture of learning provided by the Bayesian formalism is as follows. We 
start with some prior distribution over the weights given by p(w). Since we gen­
erally have little idea at this stage of what the weight values should be, the prior 
might express some rather general properties such as smoothness of the net­
work function, but will otherwise leave the weight values fairly unconstrained. 
The prior will therefore typically be a rather broad distribution, as indicated 
schematically in Figure 10.2. Once we have observed the data, this prior dis­
tribution can be converted to a posterior distribution using Bayes' theorem in 
the form (10.3). This posterior distribution will be more compact, as indicated 
in Figure 10.2, expressing the fact that we have learned something about the 
extent to which different weight values are consistent with the observed data. In 
order to evaluate the posterior distribution we need to provide expressions for 
the prior distribution p(w) and for the likelihood function p(D\w). 

10.1.2 Gaussian prior 

We first consider the prior probability distribution for the weights. This distri­
bution should reflect any prior knowledge we have about the form of network 
mapping we expect to find. In general, we can write this distribution as an ex­
ponential of the form 

P(w) = „ , , e x p ( - a £ i v ) (10.6) 

where Zw(a) is a normalization factor given by 

Zw(a)= exp(-aEw)dw (10.7) 
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p(wlD) 

Figure 10.2. Schematic plot of the prior distribution of weights p(w) and the 
posterior distribution p(w|D) which arise in the Bayesian inference of network 
parameters. The most probable weight vector WMP corresponds to the max­
imum of the posterior distribution. In practice the posterior distribution will 
typically have a complex structure with many local maxima. 

which ensures that J p ( w ) dw = 1. The role of the parameter a will be considered 
shortly. 

The discussion of bias and variance in Section 9.1 indicates that a smooth 
network function will typically have better generalization than one which is over-
fitted to the training data (assuming that the underlying function which we wish 
to approximate is indeed smooth). This is one of the motivations for regulariza-
tion techniques designed to encourage smooth network mappings. Such mappings 
can be achieved by favouring small values for the network weights, and this sug­
gests the following simple form for Ew 

Ew = d lw 
w 

- £».' (10.8) 
»=1 

where W is the total number of weights and biases in the network. This corre­
sponds to the use of a simple weight-decay regularizer, as we shall see shortly, 
and gives a prior distribution of the form 

p(w) = 
1 

Zw{ot) exp (-fllwf). (10.9) 

Thus, when ||w|| is large, Ew is large, and p(w) is small, and so this choice of 
prior distribution says that we expect the weight values to be small rather than 
large. 

Since the parameter a itself controls the distribution of other parameters 
(weights and biases), it is called a hyperparameter. To begin with, we shall as-
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Figure 10.3. A simple data set consisting of two points from class C\ (circles) 
and two points from class C2 (crosses), used to illustrate Bayesian learning in 
neural networks. The numbers show the order in which the data points are 
presented to the network. 

sume that the value of a is known. We shall discuss how to treat a as part of 
the learning process in Sections 10.4 and 10.5. A major advantage of the prior 
in (10.9) is that it is a Gaussian function, which simplifies some of the analy­
sis. Thus, the evaluation of the normalization coefficient Zw{<x) using (10.7) is 
straightforward, and gives 

ZW{«) = ^ - j (10.10) 

Many other choices for the prior p(w) can also be considered. Williams (1995) 
discusses a Laplacian prior of the form (10.6) with Ew = S i \wi\- Several 
other possibilities, including entropy-based priors, are discussed in Buntine and 
Weigend (1991). The appropriate selection of priors for very large networks is 
discussed by Neal (1994). 

10.1.3 Example of Bayesian learning 

We illustrate the concept of Bayesian learning in neural networks by considering 
a simple example of a single-layer network applied to a classification problem. 
The input vectors are two-dimensional x = (:ti,X2), and the data set consists of 
four data points, two from each of two classes, as illustrated in Figure 10.3. The 
network model has a single layer of weights, with a single logistic output given 
by 
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p(w) 

Figure 10.4. Plot of a Gaussian prior shown as a surface over a two-dimensional 
weight space (wi,u>2)-

V(x;w) = 7-T 7 T T • ( 1 ( U 1 ) 
l+exp(— w 1 x ) 

Note that the weight vector w = (u>i, 11*2) is two-dimensional, and that there is no 
bias parameter. We shall choose a Gaussian prior distribution for the weights, 
given by (10.9), in which the parameter a is given a fixed value of a = 1. A 
surface plot of this prior, as a function of the weight parameters u>\ and W2, is 
shown in Figure 10.4. 

From Section 6.7.1, we know that the output j/(x; w) of the network in (10.11) 
can be interpreted as the probability of membership of class C\, given the input 
vector x. The probability of membership of class C2 is then (1 — y). If we assume 
that the target values are independent and identically distributed, the likelihood 
function p(D\w) in Bayes' theorem (10.3) will be given by a product of factors, 
one for each data point, where each factor is either y or (1 — y) according to 
whether the data point is from class C\ or C2. 

First, suppose we just consider the data points labelled (i) and (ii) in Fig­
ure 10.3. Then we can calculate the posterior distribution of weights using Bayes' 
theorem (10.3). The resulting distribution is plotted in Figure 10.5. We can un­
derstand the form of this distribution by first noting that the network function 
in (10.11) represents a sigmoidal ridge in which the value y = 0.5 (the decision 
boundary for minimum probability of misclassification) is given by a line passing 
through the origin in Figure 10.3. The two weight parameters W\ and \x>2 control 
the orientation of this line and the slope of the sigmoid. Patterns (i) and (ii) 
cause weight vectors from approximately half of weight space to have extremely 
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Figure 10.5. Plot of the posterior distribution obtained from the prior in Fig­
ure 10.4, using patterns (i) and (ii) from Figure 10.3. (Note that there is a 
change of vertical scale compared to Figure 10.4.) 

p(w\D) 

Figure 10.6. Plot of the posterior distribution obtained after using all four 
patterns from Figure 10.3. (Note that for convenience there is again a change 
of vertical scale compared to previous figures.) 

small probabilities as they represent 'decision surfaces' with the wrong orienta­
tion. The remaining weight vectors are largely unaffected and so the shape of the 
posterior distribution in the corresponding region of weight space then reflects 
that of the prior distribution in Figure 10.4. 

If we now include all four patterns from Figure 10.3, we obtain the posterior 
distribution shown in Figure 10.6. As a result of the way patterns (iii) and 
(iv) are labelled, there is now no decision boundary which classifies all four 
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points perfectly. The most probable solution is one in which the sigmoid has a 
particular orientation and slope, and solutions which differ significantly from this 
have much lower probability. The posterior distribution of weights is therefore 
relatively narrow. 

10.1.4 Gaussian noise model 

We turn now to more general architectures of feed-forward network, and to a 
consideration of 'regression' problems. Later we shall return to a discussion of 
Bayesian methods for classification. 

In general, we can write the likelihood function in Bayes' theorem (10.3) in 
the form 

P(D\v) = ^ ~ exp(-pED) (10.12) 

where Ep is an error function, and 0 is another example of a hyperparameter 
which will be discussed shortly. The function ZD{(3) is a normalization factor 
given by 

ZDW) = Jexp(-pED)dD (10.13) 

where / dD = J dt1... dtN represents an integration over the target variables. 
As in Section 6.1, we shall assume that the target data is generated from a 

smooth function with additive zero-mean Gaussian noise, so that the probability 
of observing a data value t for a given input vector x would be 

p(t |x ,w) a exp ( - | { t f ( x ; w) - t } 2 ) (10.14) 

where j / (x;w) represents a network function governing the mean of the distribu­
tion, w represents the corresponding network weight vector, and the parameter 
0 controls the variance of the noise. Provided the data points are drawn inde­
pendently from this distribution, we have 

N 

p(D\w)=l[p(tn\xn,v,) 
n = l 

= ^W e x p ( - f£ { y ( x n ; w ) - < n } 2 ) (1(U5) 

The expression (10.13) for the normalization factor Zp(P) is then the product 
of N independent Gaussian integrals which are easily evaluated (Appendix B) 
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to give 

/2TT\N/2 

ZD(0) = (j) (10.16) 

For the moment we shall treat /? as a fixed, known constant. We shall return 
to the problem of determining this parameter as part of the learning process in 
Sections 10.4 and 10.5. 

10.1.5 Posterior distribution of weight values 

Once we have chosen a prior distribution, and an expression for the likelihood 
function, we can use Bayes' theorem in the form (10.3) and (10.4) to find the 
posterior distribution of the weights. Using our general expressions (10.6) and 
(10.12) we obtain the posterior distribution in the form 

p(w|D) = i - exp(-0ED - aEw) = ±- exp( -5(w)) (10.17) 
AS &S 

where 

and 

S(w) = 0ED + aEw (10.18) 

Zs{a, 0)= I exp( - /3£ D - aEw) dw. (10.19) 

Consider first the problem of finding the weight vector WMP corresponding to 
the maximum of the posterior distribution. This can be found by minimizing the 
negative logarithm of (10.17) with respect to the weights. Since the normalizing 
factor Zs in (10.17) is independent of the weights, we see that this is equivalent 
to minimizing S'(w) given by (10.18). For the particular prior distribution given 
by (10.9) and noise model given by (10.15), this can be written in the form 

ft N W 

We see that, apart from an overall multiplicative factor, this is precisely the 
usual sum-of-squares error function with a weight-decay regularization term, as 
discussed in Section 9.2.1. Note that, if we are only interested in finding the 
weight vector which minimizes this error function, the effective value of the 
regularization parameter (the coefficient of the regularizing term) depends only 
on the ratio a//3, since an overall multiplicative factor is unimportant. 

The most probable value for the weight vector, denoted by WMP, corresponds 
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to the maximum of the posterior probability, or equivalently to the minimum of 
the right-hand side in (10.20). If we consider a succession of training sets with 
increasing numbers N of patterns then we see that the first term in (10.20) 
grows with iV while the second term does not. If a and j3 are fixed, then as TV 
increases, the first term becomes more and more dominant, until eventually the 
second term becomes insignificant. The maximum likelihood solution is then a 
very good approximation to the most probable solution WMP- Conversely, for 
very small data sets the prior term plays an important role in determining the 
location of the most probable solution. 

10.1.6 Consistent priors 

We have seen that a quadratic prior, consisting of a sum over all weights (and 
biases) in the network, corresponds to a simple weight-decay regularizer. In Sec­
tion 9.2.2, we showed that this regularizer has an intrinsic inconsistency with 
the known scaling properties of network mappings. This led to a consideration 
of weight-decay regularizers in which there is a different regularization coefficient 
for weights in different layers, and in which biases are excluded. For a two-layer 
network, this suggests a prior of the form 

p(w) oc exp (-^ £ w* - ^ £ A (10.21) 

where Wi denotes the set of weights in the first layer, ) % denotes the set of 
weights in the second layer, and biases are excluded from the summations. Note 
that priors of this form are improper (they cannot be normalized) since the bias 
parameters are unconstrained. The use of improper priors can lead to difficul­
ties in selecting regularization coefficients and in model comparison within the 
Bayesian framework, since the corresponding evidence is zero. It is therefore 
common to include separate priors for the biases. 

More generally, we can consider priors in which the weights are divided into 
any number of groups W/t so that 

p(w) <x exp f - i £ > A | | w | | i J (10.22) 

where 

IMI2 = £ w2. (10.23) 
w€Wk 

For simplicity of exposition, we shall continue to use a Gaussian prior of 
the form (10.9). The extension of the Bayesian analysis to account for the more 
general prior (10.22) is straightforward, and the reader is led through the relevant 
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analysis in Exercises 10.5 to 10.8. 

10.1.7 Gaussian approximation to the posterior distribution 

Given our particular choices for the noise model and the prior, the expressions 
(10.17) and (10.20) defining the posterior distribution are exact (although in gen­
eral the normalization coefficient Zs{a,fi) cannot be evaluated analytically). In 
practice we wish to evaluate the probability distribution of network predictions, 
as well as the evidences for the hyperparameters and for the model. These re­
quire integrations over weight space, and in order to make these integrals analyt­
ically tractable, we need to introduce some simplifying approximations. MacKay 
(1992d) uses a Gaussian approximation for the posterior distribution. This is ob­
tained by considering the Taylor expansion of S(w) around its minimum value 
and retaining terms up to second order so that 

5(w) = S(w M p) + g(w - w M P ) T A (w - wMp) (10.24) 

where the linear term has vanished since we are expanding around a minimum 
of S(w). Here A is the Hessian matrix of the total (regularized) error function, 
with elements given by 

A = V V 5 M P 

= , 3 V V £ $ P + al. (10.25) 

A variety of exact and approximate methods for evaluating the Hessian of the 
error function ED were discussed in Section 4.10. 

The expansion (10.24) leads to a posterior distribution which is now a Gaus­
sian function of the weights, given by 

p(w|D) = ^ exp ( - S ( W M P ) - \ A w T A A w ) (10.26) 

where Aw = w — WMP, and Z*s is the normalization constant appropriate to 
the Gaussian approximation. Some partial justification for this approximation 
comes from the result of Walker (1969), which says that, under very general cir­
cumstances, a posterior distribution will tend to a Gaussian in the limit where 
the number of data points goes to infinity. For very large data sets we might 
then expect the Gaussian approximation to be a good one. However, the pri­
mary motivation for the Gaussian approximation is that it allows a great deal 
of progress to be made analytically. Later we shall discuss techniques based on 
Markov chain Monte Carlo integration which avoid this approximation. 

Using the results given in Appendix B, it is now straightforward to evaluate 
the normalization factor Z*s for this Gaussian approximation, in terms of the 
determinant of the matrix A, to give 
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Z*s(a,/3) = e - 5 ( W M p ) ( 2 7 r ) w / 2 | A r 1 / 2 . (10.27) 

For a general non-linear network mapping function y(x; w), e.g. a multi-layer 
perceptron, there may be numerous local minima of the error function, some of 
which may be associated with symmetries in the network. For instance, if we con­
sider a multi-layer perceptron with two layers of weights, M hidden units, and 
anti-symmetric hidden unit activation functions (e.g. the ' tanh' function), then 
each distinct local minimum belongs to a family of 2MM\ equivalent minima, as 
discussed in Section 4.4. The weight vectors corresponding to these different min­
ima are related by transformations which interchange the hidden units and reflect 
the signs of the weights associated with individual hidden units. There may be 
several families of such minima, where the different families are non-equivalent 
and are not related by symmetry transformations. The single-Gaussian approx­
imation given by (10.26) clearly does not take multiple minima into account. 
One approach is to approximate the posterior distribution by a sum of Gaus-
sians, once centred on each of the minima (MacKay, 1992d), and we shall see 
how to make use of this approximation in Section 10.7. 

10.2 Distribution of network outputs 

As we have seen, in the Bayesian formalism a 'trained' network is described in 
terms of the posterior probability distribution of weight values. If we present a 
new input vector to such a network, then the distribution of weights gives rise 
to a distribution of network outputs. In addition, there will be a contribution to 
the output distribution arising from the assumed Gaussian noise on the output 
variables. Here we shall calculate the distribution of output values, using the 
single-Gaussian approximation introduced above. 

Using the rules of probability, we can write the distribution of outputs, for a 
given input vector x, in the form 

p(t\x,D) = fp(t\x,w)p(w\D)dw (10.28) 

where p{w\D) is the posterior distribution of weights. The distribution p{t\x, w) 
is simply the model for the distribution of noise on the target data, for a fixed 
value of the weight vector, and is given by (10.14). 

In order to evaluate this distribution we shall make use of the Gaussian 
approximation (10.26) for the posterior distribution of weights, together with 
the expression (10.14) for the distribution of network outputs. This gives 

p(t\x,D) <x / e x p (~{t - y(x;w)}A exp ( - ^ A w T A A w j dw (10.29) 

where we have dropped any constant factors (i.e. factors independent of t). In 
addition, we shall assume that the width of the posterior distribution (determined 
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by the Hessian matrix A) is sufficiently narrow that we may approximate the 
network function j/(x; w) by its linear expansion around wjjp 

y(x; w) = y(x; w M P ) + g T A w (10.30) 

where 

8 = V-2/lwMP • (10-31) 

This allows us to write (10.29) in the form 

p(t\x,D) ex / e x p ( - | { t - J/MP - g T A w } 2 - ^ A w T A A w J dw (10.32) 

where J/MP = 2 / ( X ; W M P ) - The integral in (10.32) is easily evaluated (Exer­
cises 10.1 and 10.2) to give a Gaussian distribution of the form 

^ • ^ ( • ^ ^ - ^ H ^ ) ( i a 3 3 ) 

where we have restored the normalization factor explicitly. This distribution has 
a mean given by J/MP> and a variance given by 

(^i+gTA^g. (10.34) 

We can interpret the standard deviation at of the predictive distribution for t 
as an error bar on the mean value I/MP- This error bar has two contributions, one 
arising from the intrinsic noise on the target data, corresponding to the first term 
in (10.34), and one arising from the width of the posterior distribution of the 
network weights, corresponding to the second term in (10.34). When the noise 
amplitude is large, so that 0 is small, the noise term dominates, as indicated in 
Figure 10.7. For a small noise amplitude (large value of 0) the variance of the 
output distribution is dominated by the contribution from the variance of the 
posterior distribution of weights, as shown in Figure 10.8. 

We see that the Bayesian formalism allows us to calculate error bars on 
the network outputs, instead of just providing a single 'best guess' output. In 
a practical implementation, we first find the most probable weights WMP by 
minimizing the regularized error function S(w). We can then assign error bars 
to this network function by evaluating the Hessian matrix and using (10.34). 
Methods for the exact evaluation of the Hessian, as well as useful approximations, 
are discussed in Section 4.10. 
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p(t\x,D) 

)W 

v(x;w) 

Figure 10.7. The distribution of network outputs in the Bayesian formalism is 
determined both by the posterior distribution of network weights p(w|D) and 
by the variance /3 _ 1 due to the intrinsic noise on the data. When the posterior 
distribution of weights is very narrow in relation to the noise variance, as shown 
here, the width of the distribution of network outputs is determined primarily 
by the noise. 

p(t\x,D) 
y(x;w) 

Figure 10.8. As in Figure 10.7, but with a posterior distribution for the weights 
which is relatively broad in comparison with the intrinsic noise on the data, 
showing how the width of the distribution over network outputs is now domi­
nated by the distribution of network weights. 
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Figure 10.9. A simple example of the application of Bayesian methods to a 
'regression' problem. Here 30 data points have been generated by sampling 
the function (10.35), and the network consists of a multi-layer perceptron with 
four hidden units having 'tanh' activation functions, and one linear output 
unit. The solid curve shows the network function with the weight vector set 
to WMP corresponding to the maximum of the posterior distribution, and the 
dashed curves represent the ±2<r( error bars from (10.34). Notice how the error 
bars are larger in regions of low data density. 

10.2.1 Example of Bayesian regression 

As a simple illustration of the application of Bayesian techniques to a 'regression' 
problem, we consider a one-input one-output example involving data generated 
from the smooth function 

h(x) = 0.5 + 0.4 sin(27rx) (10.35) 

with additive Gaussian noise having a standard deviation of a = 0.05. Values for 
x were generated by sampling a Gaussian mixture distribution having two well-
separated components. A prior of the form (10.21) was used, and values of a and 
(3 were chosen by an on-line re-estimation procedure described in Section 10.4. 

The network mapping corresponding to the most probable weight values is 
shown in Figure 10.9, together with the ±2at error bars given by (10.34). We see 
that the width of the error bar depends on the local density of input data, with 
the error bars increasing in magnitude in regions of input space having low data 
density. In this example the Hessian matrix was evaluated using exact analytical 
techniques, as discussed in Section 4.10. 

T r 
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10.2.2 Generalized linear networks 

In Section 3.3 we discussed models having a single layer of adaptive weights, so 
that, for linear output units, the network mapping function is a linear function 
of the weights. Such models can be written in the form 

M 

t/(x; w) = £ wJ<t>j(x) = w T 0 ( x ) . (10.36) 

If we continue to use a Gaussian noise model and a Gaussian prior on the weights, 
then the total error function is given by 

5(w) = | E { ' n - w T ^ x n ) } 2 + ?iHi2 (10-37) 

and hence is a quadratic function of the weights. Thus, the posterior distribution 
of weights is exactly Gaussian, and only has a single maximum rather than the 
multiple maxima which can arise with non-linear models. The most probable 
weight vector WMP is described by a set of linear equations, which are easily 
solved using the techniques described in Section 3.4.3. The network function can 
then be written, without approximation, in the form 

y{x; w) - j/Mp + <£TAw (10.38) 

where A w = w — w ^ p as before. Also, the Hessian matrix A is given exactly 
by the outer product expression (Section 4.10.2) in the form 

A = VV5(w) | W M p = 0 £ <£(x")<Kx")T + al (10.39) 

where I is the unit matrix. The distribution of network outputs is then given by 
a Gaussian integral of the form 

p( t |x ,D)oc / e x p ( - | { ( - w T ( / ) ( x ) } 2 - i A w T A A w J rfw (10.40) 

which can be evaluated in the same way as (10.32) to give a distribution for t 
which is Gaussian with mean J/MP and variance 

<r? = i + * T A - V - (10.41) 



10.3: Application to classification problems 403 

10.3 Application to classification problems 

We now return briefly to a discussion of the application of Bayesian methods to 
classification problems. Following MacKay (1992b) we consider problems involv­
ing two classes. As discussed in Section 6.7, the likelihood function for the data 
given by 

p(%) = fI^T(l-!/(xn))M" 
n 

= exp (-G(D|w)) (10.42) 

where G is the cross-entropy error function, given by 

G(D|w) = - ]T{r" In y(xn) + (1 - tn) ln(l - ?/(xn))}. (10.43) 

The distribution (10.42) has the correct normalization since the target data tn 

take the values 0 or 1, and so the normalization 'integral' becomes a sum of 
terms each of which is the product of factors of the form 

, exp(ln y) + exp(ln(l - y)) = y + (1 - y) = 1. (10.44) 

Note that there is no equivalent of the constant /?. This is because the targets are 
assumed to provide perfect class labels, and so there is no uncertainty associated 
with their values. 

As discussed in Section 6.7.1, it is appropriate to choose an output activation 
function given by the logistic sigmoid of the form 

y-^^YT^ ( i a 4 5 > 

where a = J2j wjzj ls *n e weighted linear sum feeding into the output unit. This 
activation function allows the network output to be interpreted as the probability 
P{C\\x) that an input vector x belongs to class C\. 

Again, we can introduce a prior distribution for the network weights in terms 
of a regularization term Ewi so that the posterior distribution becomes 

p(w\D) = ~ exp (~G - aEw) = ^ exp (-S(w)). (10.46) 

As before, this distribution can be approximated by a Gaussian centred on the 
maximum posterior weight vector WMP 
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P ( w p ) = -^ exp (S{v,Mp) - \ A w T A Aw j (10.47) 

where Z*s is the normalization constant appropriate to the Gaussian approxima­
tion, and Aw = w — WMP-

The probability of membership of class C\ for a new input vector x is given 
in the Bayesian framework by an integration over the distribution of network 
weights of the form 

P(Ci\x,D)= f P(Ci\x.,vr)p{v/\D)dw (10.48) 

= / j / (x ;w)p(w|D)dw. (10.49) 

In the case of regression problems, the distribution of network outputs given 
by (10.33) is a Gaussian with mean J/MP(X) = 2/(X;WMP), so that the marginal­
ized output corresponding to (10.49) coincides with the predictions made by 
using the most probable weight vector alone (provided the posterior distribution 
is sufficiently narrow that we can approximate y as a function of w by a linear 
function in the neighbourhood of the most probable weight vector). For classifica­
tion problems, however, this result does not hold, since the network function can 
no longer be approximated by a linear function of the network weights as a con­
sequence of the sigmoidal activation function y = g(a) on the network outputs. 
The process of marginalization then introduces some important modifications to 
the predictions made by the network. 

MacKay (1992b) assumes that a (rather than y) is locally a linear function 
of the weights 

a(x; w) = aMp(x) + g T (x )Aw (10.50) 

where A w = w — WMP- The distribution of a then takes the form 

p(a\x,D) = f p(a\x,w)p(w\D)dw (10.51) 

= j 6(a - aMp - gTAw)p(w|£>) dw (10.52) 

where <5(-) is the Dirac delta-function. We now use the Gaussian approximation 
(10.47) for the posterior distribution p(w\D). Since the delta-function constraint 
requires that Aw be linearly related to a, and since the posterior weight distri­
bution is Gaussian, the distribution of a will also be Gaussian. The mean and 
variance of this Gaussian distribution are easily evaluated (Exercise 10.3) to give 
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where the variance s2 is given by 

s2(x) = g T A - 1 g . (10.54) 

We then have 

P ( C 1 | x , D ) = f P(Ci\a)p(a\x,D)da (10.55) 

= g{a)p(a\x, D) da (10.56) 

where p(a|x, D) is given by (10.53) and g(a) is given by (10.45). Since the in­
tegral (10.56) does not have an analytic solution, MacKay (1992b) suggests the 
following approximation 

P(Ci\x, D) ~ g(K(s)aMp) (10.57) 

where 

«(*) = (l + X J (10.58) 

and s2 is defined by (10.54). 
Now compare the classification decisions obtained using the marginalized 

output given by (10.56) with those obtained using the output yuv — giflup) 
corresponding to the most probable weight vector. If the output is used to classify 
the network input so as to minimize the probability of misclassification, then 
the decision boundary corresponds to a network output of 0.5 (Section 1.8.1). 
For the most probable output yup = g(a-Mp), the form of the logistic sigmoid 
activation function (10.45) shows that J/MP = 0.5 corresponds to O ( X , W M P ) = 0. 
For the marginalized output (10.56) the decision boundary P(Ci|x, D) = 0.5 also 
corresponds to a(x, WMP) = 0. This follows from (10.56) together with the fact 
that g(a) —0.5 is anti-symmetric while the Gaussian (10.53) is symmetric. Thus, 
if the marginalized outputs are used to classify new inputs directly on the basis 
of the most probable class they will give the same results as would be obtained 
by using most probable outputs alone. 

However, if a more complex loss matrix is introduced or if a 'reject option' 
is included (Section 1.10), then marginalization can have a significant effect on 
the decisions made by the network. The effects of marginalization for a simple 
two-class problem are shown schematically in Figures 10.10 and 10.11 for the 
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W, 

Figure 10.10. A schematic plot of the posterior distribution of weights showing 
the most probable weight vector WMP, and also two other weight vectors w'1 ' 
and w ( 2 ' taken from the posterior distribution. 

case of a single-layer network. Figure 10.10 shows the posterior distribution of 
network weights, and Figures 10.11 (a)-(c) show examples of the network out­
puts obtained by choosing weight vectors from various points in the posterior 
distribution. The effect of marginalization (integration of the predictions over 
the posterior distribution) is shown in Figure 10.11 (d). Note that the decision 
boundary (corresponding to the central y = 0.5 line) is the same as for Fig­
ure 10.11 (a). 

10.4 T h e ev idence f ramework for a a n d /? 

So far in this chapter, we have assumed that the values of the hyperparameters 
a and /? are known. For most applications, however, we will have little idea of 
suitable values for a and (3 (in some cases we may have an idea of the noise 
level /?). The treatment of hyperparameters involves Occam's razor (Section 1.6) 
since the values of hyperparameters which give the best fit to the training data 
in a maximum likelihood setting represent over-complex or over-flexible models 
which do not give the best generalization. 

As we have discussed already, the correct Bayesian treatment for parameters 
such as a and /?, whose values are unknown, is to integrate them out of any 
predictions. For example, the posterior distribution of network weights is given 
by 

p(w\D)= J J p(w,a,(3\D)dad0 

= f f p{vr\a,P,D)p(a,0\D) dad/3. (10.59) 
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(a) (b) 

(c) (d) 

Figure 10.11. Schematic illustration of data from two classes (represented by 
circles and crosses) showing the predictions made by a classifier with a single 
layer of weights and a logistic sigmoid output unit, (a) shows the predictions 
made by the network with the weights set to their most probable values WMP • 
The three lines correspond to network outputs of 0.1, 0.5 and 0.9. A point such 
as C, which is well outside the region containing the training data, is classified 
with great confidence by this network, (b) and (c) show predictions made by 
the weight vectors corresponding to w'1 ' and w'2 ' in Figure 10.10. Notice how 
the point C is classified differently by these two networks, (d) shows the effects 
of marginalizing over the distribution of weights given in Figure 10.10. We see 
that the probability contours spread out in regions where there is little data. 
The point C is now assigned a probability close to 0.5 as we would expect. 

Note that we have extended our notation to include dependencies on a and /? 
explicitly in the various probability densities. Two approaches to the treatment 
of hyperparameters have been discussed in the literature. One of these performs 
the integrals over a and /? analytically, and will be discussed in Section 10.5. 
An alternative approach, known as the evidence approximation, has been dis­
cussed by MacKay (1992a, 1992d) and will be considered first. This framework 
is based on techniques developed by Gull (1988b, 1989) and Skilling (1991). It is 
computationally equivalent to the type II maximum likelihood (ML-II) method 
of conventional statistics (Berger, 1985). 

Let us suppose that the posterior probability distribution p(a,P\D) for the 
hyperparameters in (10.59) is sharply peaked around their most probable values 
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aMP and /?MP- Then (10.59) can be written 

p(w|£>) ~ p(w\aUPtpMP,D) jjp(a,p\D) dad/3 (10.60) 

= p(w\aMp,pMP,D). (10.61) 

This says that we should find the values of the hyperparameters which maximize 
the posterior probability, and then perform the remaining calculations with the 
hyperparameters set to these values. We shall discuss the validity of this approx­
imation later, when we consider the alternative approach of exact integration. 

In order to find QMP and Pup, we need to evaluated the posterior distribution 
of a and 0. This is given by 

which requires a choice for the prior p(a, 0). Since this represents a prior over the 
hyperparameters, it is sometimes called a hyperprior. The distribution of weight 
parameters, for example, is governed by a parameter a which itself is described 
by a distribution. Schemes such as this are called hierarchical models and can be 
extended to any number of levels. If we have no idea of what would be suitable 
values for a and 0, then we should choose a prior which in some sense gives 
equal weight to all possible values. Such priors are called non:informative and are 
discussed at length in Berger (1985). They often have the characteristic that they 
cannot be normalized since the integral of the prior diverges. Priors for which 
this is the case are called improper. An example would be a prior for a parameter 
a which is taken to be uniform over an infinite interval (0, oo). In fact, a and 0 
are examples of scale parameters since they determine the scale of | |w||2 and of 
the noise respectively. Non-informative priors for scale parameters are generally 
chosen to be uniform on a logarithmic scale as discussed in Exercise 10.13. 

For the moment we shall suppose that the hyperprior p{a,3) is chosen to be 
very insensitive to the values of a and 0 to reflect the fact that we have little idea 
of suitable values for these quantities. Later we shall discuss more formally how 
to choose suitable hyperpriors. Since the denominator in (10.62) is independent 
of a and 0, we see that the maximum-posterior values for these hyperparameters 
are found by maximizing the likelihood term p(D\a,0). This term is called the 
evidence for a and 0. 

Note that the Bayesian analysis is proceeding in a hierarchical fashion. The 
first level involves the determination of the distribution of weight values. At 
the second level we are seeking the distribution of hyperparameter values. The 
evidence p(D\a,0) at this level of the hierarchy is given by the denominator in 
Bayes' theorem (10.3) from the previous level. 

We can easily express the evidence in terms of quantities which we have 
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evaluated already. If we make the dependences on a and /3 explicit, then we can 
write (10.4) in the form 

p(D\a,0) = jp(D\w,a,l3)P(v,\a,p)dw (10.63) 

= J p(D\w,/3)p(w\a)dw (10.64) 

where we have made use of the fact that the prior is independent of f3 and 
the likelihood function is independent of a. Using the exponential forms (10.6) 
and (10.12) for the prior and likelihood distributions, together with (10.18) and 
(10.19), we can then write this in the form 

ZD(f3)Zw(ay 
(10.65) 

For our particular choices of noise model and prior on the weights, we have 
already evaluated Zp and Zw in (10.16) and (10.10) respectively. If we make 
the Gaussian approximation for the posterior distribution of the weights, then 
Zs is given by (10.27). The log of the evidence is then given by 

lnp(£>|a, /3) = -aE%p - /3E%P - ^ In |A| (10.66) 

W N N 
+ — l n a + — l n £ - — ln(27r). (10.67) 

£t Ji £ 

We first consider the problem of finding the maximum with respect to a. In 
order to differentiate In | A| with respect to a we first write A = H + a l , where 
H = fiWEo is the Hessian of the unregularized error function. If {X,} (where 
% = 1 , . . . , W) denote the eigenvalues of H, then A has eigenvalues \ + a and 
we have 

£*w = &(llto+°)) 

= £z,w>*+a) 
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= Y " T - ! — = T r A - 1 (10.68) 

where the last step follows from the fact that the eigenvalues of A - 1 are (Aj + 
a ) - 1 . Note that this derivation has implicitly assumed that the eigenvalues A< 
do not themselves depend on a. For an error function ED which is exactly a 
quadratic function of the weights (as is the case for a linear network and a sum-
of-squares error function), the Hessian will be constant and this assumption will 
be exact. For non-linear network models, the Hessian H will be a function of w. 
Since the Hessian is evaluated at w ^ p , and since WMP depends on a, we see that 
the result (10.68) actually neglects terms involving d\l/da (MacKay, 1992a). 

With this approximation, the maximization of (10.67) with respect to a is 
then straightforward with the result that, at the maximum, 

w 
2aE%p = W - Y —— = 7 (10.69) 

•ft — ^ A • - 4 - r v 

i = 1
A ' + Q 

where the quantity 7 is defined by 

This result can be given a simple and elegant interpretation (Gull, 1989). In the 
absence of any data, the most probable weight vector would be zero, and Effi = 
0. The value of E$p represents the extent to which the weights are driven away 
from this value by the data. If we assume for the moment that the eigenvalues 
A; are positive then the quantity -yt = Aj/(Aj + a) is a quantity which lies in the 
range 0 to 1. This can be interpreted geometrically if we imagine rotating the axes 
of weight space to align them with the eigenvectors of H as shown schematically 
in Figure 10.12. Directions for which A; ;§> a will give a contribution close to 
one in the sum in (10.70) and the corresponding component of the weight vector 
is determined primarily by the data. Conversely, directions for which A; < a 
will make a small contribution to the sum, and the corresponding component of 
the weight vector is determined primarily by the prior and hence is reduced to 
a small value. (See also the discussions of weight-decay regularization and early 
stopping in Sections 9.2.1 and 9.2.4 respectively). Thus 7 measures the effective 
number of weights whose values are controlled by the data rather than by the 
prior. Such weights are called well-determined parameters. The quantity 2aE\yP 

can be regarded as a x2 (Press et al., 1992) for the weights since it can be written 
in the form J^i w'll(y'w where trjy = 1/a. The criterion (10.70) then says that 
x\y = 7 so that the \ '2 for the weights is given by the number of well-determined 
parameters. Note that, since WMP corresponds to the minimum of S(w) rather 
than the minimum of B D ( W ) , the Hessian H = 0WEr> is not evaluated at the 
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likelihood 
prior 

Figure 10.12. Schematic diagram of two directions in weight space after rota­
tion of the axes to align with the eigenvectors of H. The circle shows a contour 
of Ew while the ellipse shows a contour of ED • In the direction W\ the eigen­
value Ai is small compared with a and so the quantity Ai/(Ai + a) is close to 
zero. In the direction u>2 the eigenvalue A2 is large compared with a and so 
the quantity Aa/(A2 + a) is close to 1. 

minimum of ED, and so there is no guarantee that the eigenvalues Aj will be 
positive. 

We next consider the maximization of (10.67) with respect to f3. Since Aj are 
the eigenvalues of H = f3WEr> it follows that Aj is directly proportional to (3 
and hence 

rfAj Aj 
(10.71) 

Thus we have 

d^\A\ = fj2HXi + a) 
d/3 dP' 

ft Z_y 
Aj 

pZ^Xi + a 
(10.72) 

This leads to the following condition satisfied at the maximum of (10.67) with 
respect to /?: 

w Aj 
VEF-N-X^-N-i (10.73) 
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Again we can regard 2@ED = £ n = 1 ( £ n — 2/(xn ;w))2 /a | ) 1 where a2-, = 1//3, as a 
X2 for the data term. Thus at the optimum value of ft we have xh = TV — 7. For 
every well-determined parameter, the data error is reduced by one unit, and the 
weight error is increased by one unit. From (10.18), (10.69) and (10.73) we see 
that the total error S'(w), evaluated at WMP, satisfies the relation 2SMP = TV. 

So far our analysis has assumed that the posterior distribution is described 
by a single Gaussian function of the weights. As we have already observed, how­
ever, this is not an adequate description of the posterior distribution in the case 
of non-linear networks since there are many minima present in the regularized 
error function 5(w). The approach adopted by MacKay (1992d) is to note that 
we are using a particular set of weights WMP to make predictions, correspond­
ing to a particular local minimum of S(w). Thus, we can set the values of a 
and /3 appropriately for this particular solution, noting that different minima 
may require different values for these hyperparameters. The integral in (10.64) 
should therefore be interpreted not as an integral over the whole of weight space, 
but simply as an integral in the neighbourhood of the particular local minimum 
being considered. By considering a Gaussian approximation to the posterior dis­
tribution in the neighbourhood of this minimum, we then arrive at the formalism 
for determining a and /3 derived above. Later we shall discuss how to deal with 
multiple minima. 

In a practical implementation of this approach, we need to find the optimum 
a and /? as well as the optimum weight vector WMP- A simple approach to this 
problem is to use a standard iterative training algorithm, of the kind described 
in Chapter 7, to find WMP, while periodically re-estimating the values of a and 
P using 

an e w = i/2Ew (10.74) 

^new = (N_ 7 ) / 2 £ £ ) (10.75) 

which follow from (10.69) and (10.73). The current estimates of a and /3 are used 
to evaluate the quantities on the right-hand sides of (10.74) and (10.75), and the 
procedure is started by making some initial guess for the values of a and /3. 

The evidence approach to the determination of a and /? is illustrated using 
the same regression example as in Figure 10.9. The graph shown in Figure 10.13 
was obtained by fixing /3 to its known true value, and shows a plot of 7 and 2aE\y 
versus In a. The value of 7 was found by evaluating the Hessian matrix using 
exact analytic methods described in Section 4.10, and then finding its eigenvalue 
spectrum. Figure 10.14 shows the corresponding plot of the log evidence for a 
versus In a. Comparison of Figures 10.13 and 10.14 shows that the maximum of 
the evidence occurs approximately when the condition 2aEw = 7 is satisfied. 

As a very rough approximation, we can assume that all of the weight param­
eters are well determined so that 7 = W, as we would expect to be the case if 
we have large quantities of data so that TV 3> W. In this case the re-estimation 
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50.0 

25.0 

2.0 j n a 0.0 

Figure 10.13. This shows a plot of the quantities 7 and 2aEw versus In a for 
the example problem shown in Figure 10.9. The parameter j3 is set to its true 
value. 

200.0 

180.0 

160.0 

lna 

Figure 10.14. This shows a plot of the log evidence for a versus l n a , corre­
sponding to the plots in Figure 10.13. Comparison with Figure 10.13 shows 
that the maximum of the evidence occurs approximately when the condition 
2a.Ew = 7 is satisfied. Again the value of /3 is set to its true value. 
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formulae of (10.74) and (10.75) reduce to 

anew = W/2EW (10.76) 

/ ? " " = N/2ED (10.77) 

which are easily implemented and which avoid having to evaluate the Hessian 
and its eigenvalues, and are therefore computationally fast. 

Having found the values of a and (3 which maximize the evidence, we can 
construct a Gaussian approximation for the evidence p{D\\na,In/?), as a func­
tion of In a and In /?, centred on these maximum values. This will be useful later 
when we come to discuss model comparison. The evidence has been expressed in 
terms of In a and In 0 for reasons discussed on page 408. Here we shall assume 
that there is no correlation between a and 0 in the posterior distribution. Ex­
ercise 10.11 shows that the off-diagonal terms in the correlation matrix can be 
neglected in the Gaussian approximation. Considering 0 first, we write 

(m/?_-ln/?Mp)2 

2a, 
p(D\ln0)=p(D\\n0MP)exp [ - k ^ 0 2 , " M t ' ) . (10.78) 

' In /J 

Rom (10.78) it follows that the variance can be calculated using 

i=-4(4 l n p ( z ? | , n / ? ))' (1079) 

If we now substitute (10.67) into (10.79) and make use of (10.73) we obtain 

The second term in (10.80) consists of a sum of terms of the form aX{/(a + Aj)2. 
If Aj -C a then this reduces to Xi/a <§; 1, while if A< 3> a then this reduces to 
a/Xi <C 1. Significant contributions arise only if A,- ~ a. Since there will typically 
be few such eigenvalues, we see that the second term in (10.80) can be neglected, 
and we have 

J - = J(tf-7). (10.81) 
<p 2 

Similarly, we can evaluate the variance of the distribution for In a using 

4- = -oc^-(a~\np{D\\na)). (10.82) 
°in« da\ da J 
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Substituting (10.67) into (10.82) and make use of (10.69) we obtain 

M E ^ (l»-»3> 
<- 2 2 a <«+*•)' 

Again, the second term can be neglected, for the reasons outlined above, giving 

1 7 

yfna 2 
(10.84) 

10.5 Integration over hyperparameters 

The correct Bayesian treatment for hyperparameters involves marginalization, 
in other words integration over all possible values. So far we have considered the 
evidence framework in which this integration is approximated using (10.61), and 
so the hyperparameters are fixed to their most probable values. 

An alternative approach is to perform the integrations over a and 0 analyt­
ically (Buntine and Weigend, 1991; Wolpert, 1993; MacKay, 1994b; Williams, 
1995). This can be done by first writing the integral in the form 

p(xy\D) = Ij p(w,a,0\D)dad0 

= ^ JJp(D\w,0)p(w\a)p(a)p(0)dad0. (10.85) 

Here we have used Bayes' theorem in the form (10.3). We have then used 
p(D\w,a,0) = p(D\-w,0) since this is the likelihood term and is independent 
of a. Similarly, p(w|a, 0) = p(w|a) since this is the prior over the weights and 
hence is independent of 0. Finally, we have taken p(a, 0) = p(a)p(0) on the 
assumption that the two hyperparameters are independent. 

To evaluate the integral in (10.85) we need to make specific choices for the 
priors p(a) and p{0)- As discussed earlier, these priors should be expressed on 
logarithmic scales. Thus, we can choose (improper) priors of the form p(lna) = 1 
and p(ln/?) = 1 which imply 

p(a) = - , p(0) = i (10.86) 
a p 

This choice leads to straightforward analytic integrals over the hyperparameters. 
Consider the integral over a in (10.85). Using (10.6) and (10.10) we have 

/ •DO 

p(w) = / p(w|a)p(a) da 
Jo 
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/-oo 1 1 

Jo Zw(a) a 

/•OO 

= (2TT)~W'2 / exp {-aEw) aw'2~l da 
Jo 

TWV (10.87) 
(2irEw)W/i 

where T is the standard gamma function (defined on page 28). The integration 
over /3 can be performed in exactly the same way with the result 

«D™ = $^- (10'88) 
We can now write down the exact (rather than approximate) un-normalized 
posterior distribution of the weights. The negative logarithm of this posterior, 
corresponding to an error function, then takes the form 

JV W 
- l n p ( w | D ) ^—\nED + —-\nEw + const. (10.89) 

The form (10.89) should be contrasted with the form of the log posterior of 
the weights for the case in which a and /3 are assumed to be known. From (10.17) 
this latter form can be written 

- lnp(w|D) = (3ED + aEw + const. (10.90) 

Note that the gradient of (10.90) is given by 

- V l n p ( w | D ) = pVED + aVEW- (10.91) 

The gradient of (10.89) can be written in an analogous form as 

-Vlup(w|£>) = (3effV£D + <Xe«VEw (10.92) 

where we have denned 

aeff = W/2EW (10.93) 

&,! = N/2ED. (10.94) 

Thus, minimization of the error function of (10.89) could be implemented as 
a minimization of (10.90) in which the values of /3eR and aefi are continuously 
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updated using the re-estimation formulae (10.93) and (10.94) (MacKay, 1994b; 
Williams, 1995). Notice that this corresponds precisely to the approximation 
(10.76) and (10.77) to the evidence approach. 

10.5.1 Integration versus maximization 

Formally, Bayesian inference requires that we integrate over the hyperparame­
ters. In practice, one technique which we have considered above, which MacKay 
(1994b) refers to as the 'MAP' approach (for maximum posterior) is to perform 
this integration analytically. An alternative approach is to use the evidence ap­
proximation, which involves finding the values of the hyperparameters which 
maximize the evidence, and then performing subsequent analysis with the hy­
perparameters fixed to these values. Since the exact integration is so easily per­
formed, it might appear that this should be the preferred approach (Wolpert, 
1993). As well as being exact, it has the advantage of saving the significant com­
putational effort of the evidence approximation, which has to be repeated afresh 
for each new data set. 

However, MacKay (1994b) has argued that in practice the evidence approx­
imation will often be expected to give superior results. The reason that this 
could in principle be the case, even though formally we should integrate over 
the hyperparameters, is that in practice with exact integration the remainder 
of the Bayesian analysis cannot be carried through without introducing further 
approximations, and these subsequent approximations can lead to much greater-
inaccuracies than the evidence approach. 

Consider the regularization parameter a. We have already seen that the 'effec­
tive' value for this parameter differs between the evidence and MAP approaches 

' " " E i " ? ' eff " E i " ? ' ( } 

Thus, the MAP method effectively estimates an a based on the total number 
of parameters, while the evidence method makes use of the number of well-
determined parameters. MacKay (1994b) attributes this difference to a bias in 
the MAP approach which is analogous to the distinction between crjv and ffw-i 
(Section 2.2). 

The MAP approach gives an expression (10.89) for the exact posterior dis­
tribution of the weights. In order to make use of this expression in practice, 
however, it is necessary to make some approximations. Typically, this would 
involve finding the maximum posterior weight vector WMP by a standard non­
linear optimization algorithm, and then fitting a Gaussian approximation around 
this value (Buntine and Weigend, 1991). Clearly the MAP method is capable of 
finding a true value for W M P , and so the value found within the evidence ap­
proximation must be in error (to the extent that the two approaches differ). 
However, MacKay (1994b) has argued that the Gaussian approximation found 
by the evidence approach finds a better representation for most of the volume 
of the posterior probability distribution than does the MAP approach. Since 



418 10: Bayesian Techniques 

the error bars around the most probable a and 0 determined from the evidence 
approximation are given by (10.84) and (10.81), we expect the evidence approx­
imation to be valid when ) » 1 and N — 7 3> 1. A more thorough discussion 
of the conditions for the validity of the evidence approximation are given in 
MacKay (1994b). 

10.6 Bayesian model comparison 

So far we have considered Bayesian methods for finding the most probable out­
puts from a neural network, for estimating error bars on these outputs, and 
for setting the values of regularization coefficients and noise parameters. Our 
final application for Bayesian methods is to the comparison of different models. 
As we have already indicated, the Bayesian formalism automatically penalizes 
highly complex models and so is able to pick out an optimal model without re­
sorting to the use of independent data as in methods such as cross-validation 
(Section 9.8.1). 

Suppose we have a set of models Hi, which might for example include multi­
layer perceptron networks with various numbers of hidden units, radial basis 
function networks and linear models. From Bayes' theorem we can write down 
the posterior probabilities of the various models Hi, once we have observed the 
training data set D, in the form 

P(nm , rfWTO (10.96) 
p{D) 

where P(Hi) is the prior probability assigned to model Hi, and the quantity 
p(D\Hi), referred to as the evidence for Hi (MacKay, 1992a). This evidence is 
precisely the denominator in (10.62) in which we have made the conditional 
dependence on the model Hi explicit. If we have no reason to assign different 
priors to different models, then we can compare the relative probabilities of 
different models on the basis of their evidence. Again, we note the hierarchical 
nature of this Bayesian framework, with the evidence at this level being given 
by the denominator of Bayes' theorem at the previous level. 

We can provide a simple interpretation of the evidence, and the way it penal­
izes complex models, as follows (MacKay, 1992a). First, we write the evidence 
in the form 

p(D\Hi) = /p(£' |w,?t: i)p(w|W i)rfw. (10.97) 

Now consider a single weight parameter w. If the posterior distribution is sharply 
peaked in weight space around the most probable value WMP> then we can ap­
proximate the integral by the value at the maximum times the width Awposterior 
of the peak 

p(D\Hi) ~ p{D\WMP,ni)p(lVMp\Hi) AlUposterlor (10-98) 
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Figure 10.15. An illustration of the Occam factor which arises in the formal­
ism for Bayesian model comparison. The prior probability p(w\H) is taken 
to be uniform over some large region Au>prior. When the data arrives this col­
lapses to a posterior distribution p(w\D, H) with a width AtWposterior- The ratio 
Au>pOBterior/Attiprior represents the Occam factor which penalizes the model for 
having the particular posterior distribution of weights. 

as indicated in Figure 10.15. If we take the prior to be uniform over some large 
interval Atyprjor then (10.98) becomes 

p(D\Hi) * P P I U M P . W , ) ( A ^ t o i O T ) . (10.99) 

The first term on the right-hand side is the likelihood evaluated for the most 
probable weight values, while the second term, which is referred to as an Occam 
factor and which has value < 1, penalizes the network for having this particular 
posterior distribution of weights. For a model with many parameters, each will 
generate a similar Occam factor and so the evidence will be correspondingly 
reduced. Similarly a model in which the parameters have to be finely tuned will 
also be penalized with a small Occam factor. A model which has a large best-fit 
likelihood will receive a large contribution to the evidence. However, if the model 
is also very complex then the Occam factor will be very small. The model with 
the largest evidence will be determined by the balance between needing large 
likelihood (to fit the data well) and needing a relatively large Occam factor (so 
that the model is not too complex). 

We can evaluate the evidence more precisely as follows. We first write 

p{D\Hi)= 11p{D\a,p,Hi)p{a,p\Hi)dadf3. (10.100) 

The quantity p(D\a, (3, Hi) is just the evidence for a and /? which we considered 
earlier (with the dependence on the model again made explicit). Integration over 
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a and (i is easily performed using the Gaussian approximation for the distribution 
p(D\a,p,Hi) introduced in Section 10.4, in which the variance parameters are 
given by (10.81) and (10.84). Consider the integration over f3. Prom (10.78) this 
can be written in the form 

m m \ f ( ( M - l n / W P(D\PMP) J exp I —2 

iw^^w* (10101) 

where we have taken the prior distribution for In /3 to be constant over some large 
region In fl which encompasses /3MP as well as most of the probability mass of 
the Gaussian distribution. A similar argument applies to the parameter a. Thus 
we have 

p(D\Hi)^p(D\aUP,pUP,Hi)2n^li^£. (10.102) 

We can obtain an expression for lnp(D|aMP,/?MP> "Hi) by using (10.67) and set­
ting a = QMP and (3 = /?MP-

The result (10.67) was obtained by integrating over the posterior distribution 
p(w\D,Hi) represented by a single Gaussian. As we have already remarked, 
for any given configuration of the weights (corresponding to the mean of the 
Gaussian) there are many equivalent weight vectors related by symmetries of 
the network. Here we consider a two-layer network having M hidden units, so 
that the degree of redundancy is given by 2 M M ! as discussed in Section 4.4. The 
Occam factor which we are trying to estimate depends on the ratio of the volume 
of the posterior distribution in weight space to the volume of the prior. Since our 
expression for the prior (a Gaussian centred on the origin) already takes account 
of the many equivalent configurations, we must ensure that our expression for 
the posterior also takes these into account. Thus, we must include an extra factor 
of 2MM\ in (10.102). Note that this implicitly assumes that there is negligible 
overlap between the Gaussian functions centred on each such minimum. We shall 
discuss shortly what to do about the presence of other minima which cannot be 
related to the current minimum by symmetry transformations. 

Rather than evaluate the evidence (10.102) it is more convenient to consider 
its logarithm. Expressions for o\np and <Jina are given by (10.81) and (10.84) 
respectively. Omitting terms which are the same for different networks, we then 
obtain 

lnp(Z?|Wi) = -aupEffl - / 3 M p£$ P - \ ln |A | 

lnfi 
d\n0 = 
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+ —• In Q M P + -r- In PUP + In A/! + 2 In M 

+ ^ ln(') + 5ln(]v^)- < 1 0- 1 0 3) 

The new quantity which we need to evaluate here is the determinant of the 
Hessian matrix A. 

In practice the accurate evaluation of the evidence can prove to be very 
difficult. One of the reasons for this is that the Hessian is given by the product 
of the eigenvalues and so is very sensitive to such errors. This was not the case 
for the evaluation of 7 used in the optimization of a and P since 7 depends 
on the sum of the eigenvalues and so is less sensitive to errors in the small 
eigenvalues. Furthermore, the determinant of the Hessian, which measures the 
volume of the posterior distribution, will be dominated by the small eigenvalues 
since these correspond to directions in which the distribution is relatively broad. 
One approach is to take all eigenvalues which are below some (arbitrary) cut-off 
e and replace them by the value e. A check should then be made to determine if 
the resulting model comparisons are sensitive to the value of this cut-off. Clearly 
such an approach is far from satisfactory, and serves to highlight the difficulty of 
determining the model evidence within the Gaussian approximation framework. 

Since the Bayesian approach to model comparison incorporates a mechanism 
for penalizing over-complex models, we might expect that the model with the 
largest evidence would give the best results on unseen data, in other words that 
it would have the best generalization properties. MacKay (1992d) and Thodberg 
(1993) both report observing empirical (anti) correlation between model evidence 
and generalization error. However, this correlation is far from perfect. Although 
we expect some correlation between a model having high evidence and the model 
generalizing well, the evidence is not measuring the same thing as generalization 
performance. In particular, we can identify several distinctions between these 
quantities: 

1. The test error is measured on a finite data set and so is a noisy quantity. 
2. The evidence provides a quantitative measure of the relative probabilities 

of different models. Although one particular model may have the highest 
probability, there may be other models for which the probability is still 
significant. Thus the model with the highest evidence will not necessarily 
give the best performance. We shall return to this point shortly when we 
discuss committees of networks. 

3. If we had two different models which happened to give rise to the same 
most-probable interpolant, then they would necessarily have the same gen­
eralization performance, but the more complex model would have a larger 
Occam factor and hence would have a smaller evidence. Thus, for two mod­
els which make the same predictions, the Bayesian approach favours the 
simpler model. 
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4. The generalization error, in the form considered above, is measured using 
a network with weights set to the maximum of the posterior distribution. 
The evidence, however, takes account of the complete posterior distribution 
around the most probable value. (As we noted in Section 10.3, however, for 
the case of a Gaussian posterior distribution, and with a local linearization 
of the network function, the integration over the posterior has no effect on 
the network predictions.) 

5. The Bayesian analysis implicitly assumes that the set of models under 
consideration contains the ' truth' as a particular case. If all of the models 
are poorly matched to the problem then the relative evidences of different 
models may be misleading. MacKay (1992d) argues that a poor correlation 
between evidence and generalization error can be used to infer the presence 
of limitations in the models. 

An additional reason why the correlation between evidence and test error may 
be poor is that there will be inaccuracies in evaluating the evidence. These arise 
from the use of a Gaussian approximation to the posterior distribution, and 
are particularly important if the Hessian matrix has one or more very small 
eigenvalues, as discussed above. 

Further insight into the issue of model complexity in the Bayesian frame­
work has been provided by Neal (1994) who has argued that, provided the com­
plete Bayesian analysis is performed without approximation, there is no need 
to limit the complexity of a model even when there is relatively little training 
data available. Many real-world applications of neural networks (for example 
the recognition of handwritten characters) involve a multitude of complications 
and we do not expect them to be accurately solved by a simple network having 
a few hidden units. Neal (1994) was therefore led to consider the behaviour of 
priors over weights in the limit as the number of hidden units tends to infinity. 
He showed that, provided the parameters governing the priors are scaled appro­
priately with the number of units, the resulting prior distributions over network 
functions are well behaved in this limit. Such priors could in principle permit the 
use of very large networks. In practice, we may wish to limit the complexity in 
order to ensure that Gaussian assumptions are valid, or that Monte Carlo tech­
niques (discussed in Section 10.9) can produce acceptable answers in reasonable 
computational time. 

10.7 C o m m i t t e e s of ne tworks 

In Section 9.6 we discussed techniques for combining several network 'modules' 
together in order to obtain improved performance. Here we shall see how such 
committees of networks arise naturally in the Bayesian framework. When we 
evaluated the evidence in (10.103) we took account of the multiple solutions due 
to symmetries in the network. We did not, however, allow for the presence of 
multiple, non-equivalent minima. If we train our network several times starting 
from different random initial weight configurations then we will typically discover 
several such solutions. We can then model the posterior distribution using a set 



10.7: Committees of networks 423 

of Gaussians, one centred on each local minimum, in which we assume that there 
is negligible overlap between the Gaussians. 

Consider the predictions made by such a posterior distribution when the 
network is presented with a new input vector. The posterior distribution of the 
weights can be represented as 

p(w|D) = ^ p ( m 1 , w | D ) 
i 

= ^p(w\mhD)P(mi\D) (10.104) 
i 

where m» denotes one of the non-equivalent minima and all of its symmetric 
equivalents. This distribution is used to determine other quantities by integration 
over the whole of weight space. For instance, the mean output predicted by the 
committee is given by 

y = y(x;w)p(w\D)dw 

.. =y\P{mt\D) f i /(x;w)p(w|m J )I>)dw 
i Jr< 

= Y,p(mi\D)yi ( 1 0 1 0 5 ) 

where Fj denotes the region of weight space surrounding the ith local minimum, 
and yi is the corresponding network prediction averaged over this region. Here we 
have assumed that there is negligible overlap between the distributions centred 
on each minimum. From (10.105) we see that the predicted output is just a linear 
combination of the predictions made by each of the networks corresponding to 
distinct local minima, weighted by the posterior probability of that solution. 
Note that, strictly speaking, in a practical implementation the weighting for 
each minimum should be adjusted according to the probability of that minimum 
being found by the particular parameter optimization algorithm being used, 
with minima which are more likely to be discovered receiving less weight. For 
large problems such an approach is infeasible, however, since each minimum will 
typically only be seen once so that determination of the probabilities of finding 
the minima will not be possible. 

We can extend this result further by considering different models Hi, such as 
networks with different numbers of hidden units or different kinds of models. In 
the same way that variables such as hyperparameters are integrated out of the 
model, so if our model space consists of several distinct models, then Bayesian 
inference requires that, instead of just picking the most probable model, we 
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should sum over all models. The distribution of some quantity Q, given a data 
set D, can be written 

P(Q\D) = Y/p(Q,Hi\D) 
i 

= $ > ( Q | A « « ) p ( W « | 0 ) (10.106) 
i 

which again is a linear combination of the predictions made by each model sep­
arately, where the weighting coefficients are given by the posterior probabilities 
of the models. We can compute the weighting coefficients by evaluating the 
evidences, multiplying by the model priors, and then normalizing so that the 
coefficients sum to 1. 

Committees bring two advantages. First they can lead to improved general­
ization, as was noted in Section 9.6. This is to be expected since the extension 
from a single Gaussian to a Gaussian mixture provides a more accurate model 
for the posterior distribution of weights. The second benefit of considering a 
committee is that the spread of predictions between members of the committee 
makes a contribution to the estimated error bars on our predictions in addition 
to those identified already, leading to more accurate estimation of error bars. 

In practice, the direct application of such procedures generally leads to poor 
results since the integral over the Gaussian approximation to the posterior gives 
only a poor estimation of the evidence (Thodberg, 1993). A more pragmatic 
approach is to use the evidence simply as a rough indicator, and to select a 
committee of networks whose members have reasonably high evidence, and then 
form linear, or non-linear, combinations of the outputs of the committee mem­
bers using techniques discussed in Section 9.6. Indeed, the method of stacked 
generalization (Section 9.8.2) can be viewed here as a cross-validatory approach 
to estimating the posterior probabilities of the members of the committee. 

10.8 Practical implementation of Bayesian techniques 

Since we have covered a lot of ground in our discussion of Bayesian methods, 
we summarize here the main steps needed to implement these techniques for 
practical applications. We restrict attention to the evidence framework with the 
use of Gaussian approximations. 

1. Choose initial values for the hyperparameters a and /3. Initialize the weights 
in the network using values drawn from the prior distribution. 

2. Train the network using a standard non-linear optimization algorithm 
(Chapter 7) to minimize the total error function S(w). 

3. Every few cycles of the algorithm, re-estimate values for a and /3 using 
(10.74) and (10.75), with 7 calculated using (10.70). This requires evalua­
tion of the Hessian matrix (Section 4.10) and evaluation of its eigenvalue 
spectrum. 
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4. Repeat steps 1-3 for different random initial choices for the network weights 
in order to find different local minima. In principle, a check should be 
made that the different solutions are not simply related by a symmetry 
transformation of the network (Section 4.4). 

5. Repeat steps 1-4 for a selection of different network models, and compare 
their evidences using (10.103). Eigenvalues which are smaller than a cutoff 
value are omitted from the sum in evaluating the log determinant of the 
Hessian. If a committee of networks is to be used it is probably best to 
choose a selection of the better networks on the basis of their evidences, 
but then to use the techniques of Section 9.6 to compute suitable weighting 
coefficients. 

Examples of the practical application of Bayesian techniques are given in Thod-
berg (1993) and MacKay (1995b). 

10.9 Monte Carlo methods 

In the conventional (maximum likelihood) approach to network training, the bulk 
of the computational effort is concerned with optimization, in order to find the 
minimum of an error function. By contrast, in the Bayesian approach, the cen­
tral operations require integration over multi-dimensional spaces. For example, 
the evaluation of the distribution of network outputs involves an integral over 
weight space given by (10.28). Similarly, the evaluation of the evidence for the 
hyperparameters also involves an integral over weight space given by (10.64). So 
far in this chapter, we have concentrated on the use of a Gaussian approximation 
for the posterior distribution of the weights, which allows these integrals to be 
performed analytically. This also allows the problem of integration to be replaced 
again with one of optimization (needed to find the mean of the Gaussian dis­
tribution). If we wish to avoid the Gaussian approximation then we might seek 
numerical techniques for evaluating the corresponding integrals directly. 

Many standard numerical integration techniques, which can be used success­
fully for integrations over a small number of variables, are totally unsuitable for 
integrals of the kind we are considering, which involve integration over spaces 
of hundreds or thousands of weight parameters. For instance, if we try to sam­
ple weight space on some regular grid then, since the number of grid points 
grows exponentially with the dimensionality (see the discussion of the 'curse of 
dimensionality' in Section 1.4), the computational effort would be prohibitive. 
We resort instead to various forms of random sampling of points in weight space. 
Such methods are called Monte Carlo techniques. 

The integrals we wish to evaluate take the form 

/ = J F(w)p(w\D) dw (10.107) 

where p(w\D) represents posterior distribution of the weights, and F(w) is some 
integrand. The basic idea is to approximate (10.107) with the finite sum 
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1 h 

U) (10.108) 

where {w,} represents a sample of weight vectors generated from the distribution 
p(w|£>). The key difficulty is that in general it is very difficult to generate a set 
of vectors having the required distribution. 

One approach would be to consider some simpler distribution g(w) from 
which we can easily generate suitable vectors. We can then write 

w<>w (10109) 

which makes use of the fact that we can easily evaluate p(w\D), even though we 
cannot easily generate vectors having this distribution. In fact we cannot even 
normalize p(w|D) , and so we should modify (10.109) slightly and use 

Ef=i^K)p(wjp)/g(w i) 

£?=iP(w«|D)Mw4) 
i^^i=Xil .111, (io.uo) 

where p(wi\D) is the un-normalized distribution. This approach, which is called 
importance sampling, does not solve our problem, because for neural networks 
the value of p(w\D) is typically very small except in extremely narrow regions 
of weight space. Thus, for any simple choice of g(w), most of the vectors will fall 
in regions where p(w\D) is small, and so a prohibitively large sample of vectors 
would be required to build up an accurate approximation to the integral. 

We must therefore face the task of generating a sample of vectors w represen­
tative of the distribution p(w\D). To do this effectively, we must search through 
weight space to find regions where p(w\D) is reasonably large. This can be done 
by considering a sequence of vectors, where each successive vector depends on 
the previous vector as well as having a random component. Such techniques are 
called Markov chain Monte Carlo methods, and are reviewed in Neal (1993). The 
simplest example is a random walk in which at successive steps we have 

wnew = wo!d + e (10.111) 

where e is some small random vector, chosen for instance from a spherical Gaus­
sian distribution having a small variance parameter. Note that successive vectors 
generated in this way will no longer be independent. As a result of this depen­
dence, the number of vectors needed to achieve a given accuracy in approximat-

io.uo


10.9: Monte Carlo methods 427 

ing an integral using (10.108) may be much larger than if the vectors had been 
independent. 

As it stands, such an approach does not yet achieve the desired aim of sam­
pling preferentially the regions where p(w\D) is large. This can be achieved by 
a modification to the procedure, known as the Metropolis algorithm (Metropolis 
et al, 1953), which was developed to study the statistical mechanics of physical 
systems. The idea is to make candidate steps of the form (10.111), but to re­
ject a proportion of the steps which lead to a reduction in the value of p(w\D). 
This must be done with great care, however, in order to ensure that resulting 
sample of weight vectors represents the required distribution. In the Metropolis 
algorithm this is achieved by using the following criterion: 

i fp(w n e w |D) >p(woid|£>) accept 

if p(wnew|-D) < p(w0 |d |D) accept with probability , n e w
l r i / - ' 

p(vfo\d\IJ) 

In terms of an error function E — — Inp, this can be expressed as 

if Enevf < EoM accept 

if -Enew > Sold accept with probability exp {—(Enev! — Sold)} • 
(10.113) 

The candidate steps are generated in a way which satisfies the principle of de­
tailed balance. This requires that, if the current vector is wi , the probability of 
generating a candidate vector W2 must be the same as the probability of gener­
ating wi as the candidate vector if the current vector is W2- The random walk 
formula (10.111), for example, with e governed by spherical Gaussian distribu­
tion, clearly satisfies this property. The Metropolis algorithm has been used with 
great success in many applications. In the case of the Bayesian integrals needed 
for neural networks, however, it can still prove to be deficient due to the strong 
correlations in the posterior distribution, as illustrated in Figure 10.16. 

This problem can be tackled by taking account of information concerning the 
gradient of p(w\D) and using this to choose search directions which favour re­
gions of high posterior probability. For neural networks, the gradient information 
is easily obtained using back-propagation. Again, great care must be taken to 
ensure that the gradient information is used in such a way that the distribution 
of weight vectors which is generated corresponds to the required distribution. 
A procedure for achieving this, known as hybrid Monte Carlo, was developed 
by Duane et al. (1987), and was applied to the Bayesian treatment of neural 
networks by Neal (1992, 1994). 

One of the potential difficulties which still remains is the tendency for such 
algorithms to spend a long time in the neighbourhood of poor local maxima of 
the probability (corresponding to local minima of the regularized error function), 
and so fail to discover good maxima which make a much more significant contri­
bution to the integral. A standard technique for improving the situation is called 

i. 
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Figure 10.16. When the standard Metropolis algorithm is applied to the eval­
uation of integrals in the Bayesian treatment of neural networks, a large pro­
portion of the candidate steps are rejected due to the high correlations in the 
posterior distribution. Starting from the point w0ia, almost all potential steps 
(shown by the arrows) will lead to a decrease in p(w\D). This problem becomes 
even more severe in spaces of higher dimensionality. 

simulated annealing (following an analogy with physical systems) introduced by 
Kirkpatrick et al. (1983). For the standard Metropolis algorithm, this is achieved 
by modifying (10.113) to give 

if Enew < E0id accept 

if jBnew > Sold accept with probability exp 
f (Snew — Sold) 1 

I T J 
(10.114) 

where T is a parameter generally referred to as temperature. This algorithm 
leads to a sequence of vectors which asymptotically represent the distribution 
exp{~E(w\D)/T}. For T = 1 we recover the desired distribution. For T » 1, 
however, the system can explore weight space much more freely, and can readily 
escape from local error function minima. Simulated annealing involves starting 
with a large value for T and then gradually reducing its value during the course 
of the simulation, giving the system a much better chance to settle into a region 
of high probability. The application of simulated annealing to the Monte Carlo 
algorithm for the Bayesian treatment of neural networks has been considered by 
Neal (1992, 1994) although was not found to be essential. 

By using the hybrid Monte Carlo algorithm it is possible to generate a suitable 
sample of weight vectors w* for practical applications of neural networks in 
reasonable computational time. For a given test input vector x, the corresponding 
network predictions j/(x; Wj) represent a sample from the distribution p(«/|x, D). 
This allows the uncertainties on the network outputs, associated with a new 
input vector, to be assessed. The estimation of the evidence, however, remains a 
difficult problem. Another significant problem with Monte Carlo methods is the 
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difficulty in defining a suitable termination criterion. Despite these drawbacks, 
Monte Carlo techniques offer a promising approach to Bayesian inference in the 
context of neural networks. 

10.10 M i n i m u m descr ip t ion l eng th 

An alternative framework for discussing model complexity is provided by the 
minimum description length principle (Rissanen, 1978). Although conceptually 
very different, this approach leads to a formalism which is essentially identical to 
the Bayesian one. Imagine that a 'sender' wishes to transmit a data set D to a 
'receiver', as indicated in Figure 10.17, using a message of the shortest possible 
length (where the length of the message might be measured by the number of 
bits, for instance). One approach would be simply to transmit a suitably encoded 
form of the data set itself using some fixed coding scheme with the assumption 
that the data points are independent. However, if there are systematic aspects to 
the data, the details of which are not known to the receiver in advance of seeing 
the data, then we would expect to be able to use a shorter message if we first 
transmit information specifying some model % which captures those aspects, 
using a message of length L(H), and then send a second message specifying how 
the actual data set differs from that predicted by the model. We can regard 
L(H) as a measure of the complexity of the model, since a more complex model 
will require more information to describe it. The message needed to send the 
discrepancy information has length denoted by L(D\H), which can be viewed as 
an error term. We shall suppose that the input data values are known already to 
the receiver, since we are not trying to predict the input data, only the output 
data. Thus the total length of the message which is sent is given by 

description length = L{D\H) + L{H) (10.115) 

error complexity 

We can see that the goal of choosing the shortest description length leads to 
a natural form of Occam's razor. A very simple model will be a poor predictor 
of the data, and so the errors will be large and this will lead to a large error 
term in (10.115). Allowing for a more complex model can lead to a reduction in 
the error contribution, but too complex a model will require a lot of information 
to specify and hence will lead to a large complexity term in (10.115). Intuitively 
we expect the shortest description length to occur when the model H gives an 
accurate representation of the statistical process which generated the data, and 
we also expect that, on average, this model will have the best generalization 
properties. 

In Section 6.10 we showed that, to transmit information about a quantity x 
efficiently, a sender and receiver should agree on a suitable probability distribu­
tion p(x). The minimum amount of information, in bits, needed to transmit the 
value of a; is then given by — log2p(a;). If p(x) happens to be the true distribution 
for x then this minimum amount of information will take a smaller value than for 
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-^ L{DW) + L(J{) 

receiver 

Figure JO. 17. Illustration of the concept of minimum description length. A 
data set D can be transmitted from a sender to a receiver by first sending a 
prescription for a model "H, using a message of length L(H), and then transmit­
ting the discrepancies between the data predicted by H and the actual data, 
which represents a message of length L(D\H). The principle of minimum de­
scription length then selects as optimal that model which minimizes the total 
information transmitted. 

any other choice of distribution. For convenience we shall measure information 
using logarithms to base e in which case the information, given by — \np(x), is 
measured in 'nats ' . This allows us to write the description length in (10.115) in 
the form 

description length = - lnp(D\H) - lnp(H) = - lnp(H\D) - Inp{D) (10.116) 

so that the description length is equivalent, up to an additive constant — lnp(£>), 
to the negative logarithm of the posterior probability of the model given the data 
set. 

We now consider the problem of determining the values for the weights in 
a network model. Suppose that we consider a particular weight vector, which 
we can regard as a 'most probable' set of weights. The cost of transmitting the 
weights and the data given the model can be written as the sum of two terms 

L(w, D\H) = - lnp(D|w, H) - lnp(w|W) (10.117) 

where the second term on the right-hand side represents the cost of specifying 
the weights, and the first term is the cost of specifying the data for given values 
of the weights (i.e. the cost of specifying the errors between the true values for 
the data and the values predicted by the model with the weights set to the given 
values). In order to transmit this information, the sender and receiver need to 
agree on specific forms for the distributions. Suppose we model the distribution 
of the weights as a zero mean Gaussian with variance a"1 

p ( w | W ) = (~)W/2exp { - f H I 2 } (10.118) 

where W is the total number of weight parameters. Similarly let us suppose that 
we model the distribution of errors by a Gaussian with variance /? _ 1 centred on 
the prediction j/(x; w) made by the model 
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Figure 10.18. When a continuous variable x is encoded to some finite precision 
Sx under a distribution p{x), the information required to describe the value of 
the variable is given by the negative logarithm of the probability mass under 
the distribution, shown by the shaded region. 

P(^K«) = ( ^ ) (sr-Hs*-*} (10.119) 

Then the description length (10.117) can be written in the form 

^iw)=!i>n-*n)2+fi 
n = l 

iwlr +- const. (10.120) 

which we recognize as the standard sum-of-squares error function with a weight-
decay regularizer. 

An additional consideration for continuous variables, which we have so far 
ignored, is the precision with which they are encoded. We cannot specify a con­
tinuous quantity x exactly since that would require an infinite message length, 
so instead we specify its value to within some small tolerance Sx. The message 
length needed to do this is given by the negative logarithm of the probability 
mass within this range of uncertainty, as indicated in Figure 10.18. If the tol­
erance Sx is sufficiently small, then this probability mass is given to a good 
approximation by p(x)Sx. 

For the data term lnp(Djw, H) the additional contribution from the precision 
SD of the variables represents an irrelevant constant. For the weights, however, 
the precision plays an important role, since if the weights are specified to a low 
precision they can be transmitted with a shorter message, but the errors on 
the data will then typically be larger and hence will need a longer message to 
transmit them. Again, there is a trade-off, which leads to an optimal level of 
precision for the weights. For the case of Gaussian distributions, the calculations 
can be made explicitly (Wallace and Freeman, 1987). The optimal precision for 
the weights is related to the posterior uncertainty in the parameters given by 
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A - 1 where A = — Wp(w\D,H). The value of the description length with the 
parameters set to their optimal values, and the weight precision set to its optimal 
value, is then equivalent to the Bayesian evidence given by (10.67). 

So far we have considered the situation in which a 'most probable' set of 
weight values is transmitted. As we have seen, however, the Bayesian approach 
requires that we consider not just a single set of weights, but a posterior probabil­
ity distribution of weights. One way to see how this arises within the description-
length framework is through the 'bits back' argument of Hinton and van Camp 
(1993). Suppose the sender and receiver have already agreed on some prior dis­
tribution p(vf\H). The sender uses the data set D to compute the posterior dis­
tribution and then picks a weight vector from this distribution, to within some 
very fine tolerance <5w, using a string of random bits. This weight vector can be 
communicated to the receiver by encoding with respect to the prior, with a de­
scription length of — ln(p(w|W)«5w). Having sent the weight vector, the data can 
then be transmitted with description length — ln{p(D\w,'H)6D). Once the data 
has been received, the receiver can then run the same training algorithm as used 
by the sender and hence compute the posterior distribution. The receiver can 
then deduce the string of random bits which were used by the sender to pick the 
weight vector from the posterior distribution. Since these bits could be used to 
communicate some other, quite unrelated, message, they should not be included 
in the description length cost. Thus, there is a 'refund' in the description length 
given by +ln(p(w\D,H)6vr), which is just the length of the bit string needed 
to pick the weight vector from the posterior distribution with precision <5w. The 
net description length is therefore given by 

-ln(p(w|W)<5w) - \n(p(D\w,H)6D) + ln(p(w|D,W)<5w) 

= -]np(D\H)-\n6D (10.121) 

where we have used Bayes' theorem. This is the correct description length for 
encoding the data, given the model, to precision 6D. 

In this chapter we have considered two approaches to determining the poste­
rior distribution of the weights. The first is to find the maximum of the posterior 
distribution, and then to fit a Gaussian function centred on this maximum. The 
second approach is to express the posterior distribution in terms of a sample 
of representative vectors, generated using Monte Carlo techniques. We end this 
chapter by discussing briefly a third approach, known as ensemble learning, which 
again assumes a Gaussian distribution, but in which the mean and the variance 
are allowed to evolve during the learning process (Hinton and van Camp, 1993). 
Learning can be expressed in terms of a minimization of the Kullback-Leibler 
distance (Section 2.5.5) between the model distribution and the true posterior. 
In general this is not computationally tractable. However, for two-layer networks 
with linear output units, and with the assumption that the covariance matrix 
of the model distribution is diagonal, the required derivatives can be evaluated 
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to any desired precision. The hope is that the resulting distribution, which need 
no longer be centred on the most probable weights, might give a better repre­
sentation of the posterior distribution. A potentially important limitation of this 
approach, however, is the neglect of off-diagonal terms in the model distribution. 

Exerc ises 

10.1 (**) Consider a Gaussian distribution of the form 

and show that this distribution has mean i and variance a1 so that 

tp(t)dt = t (10.123) 

f (t - typ(t) dt = a2. (10.124) 

Using these results, show that the mean of the distribution (10.32) is given 
by 2/MP and that its variance is given by (10.34). (Hint: in each case evaluate 
the integral over t first, and then evaluate the integral over w using the 
techniques of Appendix B). 

10.2 (**) Use the results derived in Appendix B to evaluate the integral in 
(10.32) directly. Do this by expanding the square in the exponent and 
collecting together the terms which are quadratic in Aw. Then use the 
result (B.22) to show that the distribution can be written as a Gaussian 
of the form 

in which the mean is given by 

t = J/MP (10.126) 

and the variance is given by 

(10.127) 
/3 - / ? 2 gT(A + /3ggT)-ig-

Simplify this expression for the variance by multiplying numerator and 
denominator by the factor 

g ^ I + Z ^ A ^ g g ^ g (10.128) 



434 10: Bayesian Techniques 

where I is the unit matrix. Hence, using the general result (BC) x = 
C _ , B ~ ! , show that the variance can be written in the form 

^ 2 = ^ + g T A - 1 g . (10.129) 

10 .3(**) Use the results (10.123) and (10.124), together with the results ob­
tained in Appendix B, to show that the mean of the distribution (10.52), 
with p(w\D) given by (10.47), is given by OMP and that the variance is 
given by (10.54). 

10.4 (**) The expressions (10.126) and (10.129) for the mean and variance of 
the distribution of target values were derived after linearizing the network 
mapping function around the most probable weights, using (10.30). Con­
sider this expansion taken to next order: 

y(x\ w) = y{x\ w M P ) + g T A w + - A w T G A w (10.130) 

where G = W j / | W M P . By using (10.123) and (10.124) with p(t\D) given by 
(10.32), and neglecting terms which are quartic in Aw, derive the following 
results for the mean and variance of the distribution of target values: 

t = r/up + ^ T r f A - ' G ) (10.131) 

a? = I + g T A - 1 g - \ { T r t A - ' G ) } 2 . (10.132) 

10.5 (*) The next four exercises develop the extension of the Bayesian formalism 
to the case of more general prior distributions given by (10.22) in which 
the weights are partitioned into groups labelled by k. First, show that the 
prior (10.22) can be written 

p ( w ) = ^ e x p { 4 ^ a f c w T i * w f (io-i33) 

where Ifc is a matrix whose elements are all zero, except for some elements 
on the leading diagonal In — 1 where i corresponds to a weight from group 
k. Show that the normalization coefficient Zw is given by 

ZW = J] (~) dO-134) 

where W*. is the number of weights in group k. Verify that the distribution 
of network outputs is again given by (10.33), with variance given by (10.34) 
in which the Hessian matrix A is given by 
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A = / ?VV£ B + ] T Qfclfc. (10.135) 
fc 

10.6 (*) Consider a real, symmetric matrix A, whose elements depend on some 
parameter a. From the results given in Appendix A, we can diagonalize A 
by using the eigenvector equation in the form 

Av,- = t&v, (10.136) 

and then defining the matrix V = ( v i , . . . , v\y) so that V T A V = D where 
D = diag(j j i , . . . , T]w)- Use this result, together with the fact that V is an 
orthogonal matrix so that V T V = V V T = I, to show that 

A l n | A | = 1 V | A - ^ A } . (10.137) 

10.7 (**) For the weight prior (10.133) considered in Exercise 10.5, find an 
expression for the logarithm of the evidence p(D\{ak},0) analogous to 
the expression given by (10.67). Use the result (10.137) to show that the 
following conditions are satisfied when this log evidence is maximized with 
respect to (3 and ak: 

2(3ED = N - 7 (10.138) 

2akEWk = 7fc (10.139) 

where 7 = Efc 7fc> 2Ewk = wTI f cw, and 

Here r)j are the eigenvalues of A as in (10.136) with A given by (10.135). 
Verify that, if all of the weights are included in the prior, and all of the 
coefficients ak are constrained to a single common value a, then these 
results reduce to the ones presented in the text for the simple weight-
decay prior (10.9). We see that the use of the more general prior (10.133) 
requires the eigenvectors of the Hessian to be computed, as well as the 
eigenvalues. The use of the standard weight-decay prior (10.9) requires 
only the eigenvalues, leading to a saving of computational effort (Press et 
al, 1992). 

10.8 (**) By using the results of the previous exercise, together with (10.79) 
and analogous expressions for the variances ofn , show that the Gaussian 
approximation for the evidence p(D\{ak},l3) around the most probable 
values has variances given approximately by 

4 - = ( W - 7 ) / 2 (10.141) 
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-T- = 7fc/2- (10.142) 

Hence show that the contribution to the logarithm of the model evidence 
arising from the distribution of values of ctk and j3 is given by 

H ^ H ? > » ( 4 ) - (10-143) 
10.9 (*) Show that, for the logistic sigmoid g(a) given by (10.45), the function 

g(a) — 0.5 is anti-symmetric. Hence show that the marginalized network 
output P(Ci|x, D) given by (10.56) is equal to 0.5 when aMp(x) = 0. 

10.10 (***) Consider the approximation (10.57) to the integral in (10.56). In­
vestigate the accuracy of this approximation by evaluating (10.56) using 
numerical integration (Press et al, 1992) with g(a) given by (10.45) and 
p{a\D) given by (10.53). Plot a graph of P(Ci|x, D) versus aup for s2 = 4 
by numerical integration of (10.56). Similarly, plot a graph of P(Ci|x, D) 
obtained by evaluating the approximation (10.57), and also plot the differ­
ence between these two graphs on a suitably expanded vertical scale. 

10.11 (* *) Consider the Gaussian approximation for the distribution of ft given 
by (10.78), and the analogous result for p{D\ In a ) , in which the variances 
are given by (10.81) and (10.84). In these expressions, any correlation be­
tween a and /3 was neglected. Show that the reciprocal of the off-diagonal 
term in the inverse covariance matrix for the more general Gaussian dis­
tribution p(D\ In a, ln/3) is given by 

- / ? ^ ( a ^ l n p ( £ > | l n a , l n / 3 ) Y (10.144) 

Evaluate this term using the expression for the log evidence given by (10.67) 
together with the results (10.68) and (10.71). Show that this term is neg­
ligible compared to the diagonal terms, and hence that the assumption of 
separable distributions for In a and ln/3 is justified. 

10.12 (*) Consider a probability density for a vector x, which is parametrized 
by a vector 0. If the density takes the form 

p(x|0) = / ( x - 0) (10.145) 

then 0 is said to be a location parameter. An example would be the mean 
vector in a normal distribution. We can obtain a non-informative prior 
p(0) for the location parameter by the following argument (Berger, 1985). 
Suppose that instead of observing x we observed x ' = x + c where c is 
a constant (this corresponds to a simple shift of the origin of the coordi­
nate system). Then the density of this new variable is / ( x ' — 0') where 
0' = 0 + c. Since this has the same structure as the original density, it is 
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natural to require that the choice of prior be independent of this change in 
coordinates. Thus we have 

/ p{0)d9 = f p'(0')dO' (10.146) 
J A J A 

where p'(6') is the prior for 6', and A is an arbitrary region of 0-space. 
Show that (10.146) requires that the prior must have the form p(0) = 
const. This is an improper prior, since it cannot be normalized, and it is 
conventional to take p{0) = 1. 

13 (*) If a probability density can be written in the form 

p(x\s) = -J ( |) (10.147) 

then s is known as a scale parameter. An example would be the standard 
deviation parameter IT in a normal distribution of the form 

p(^ )=(2^exp{-Kf)2}- (ioi48) 

We wish to find a non-informative prior p(s) for the scale parameter s 
(Berger, 1985). Suppose that instead of observing x we observe x' — ex 
where c is a constant. Show that the density for x' takes the form 

?'(?) ( 1 ( U 4 9 > 

where s' = cs. Since this has the same structure as (10.147) we require 
that the prior for s\ which we denote by p'(s') be the same as the prior 
for s. Thus we have 

/ p(s)ds = I p'(s')ds' (10.150) 
JA J A 

where A = (o, 6) is any interval in (0, oo). Show that this implies that the 
prior should take the form p(s) oc 1/s. Hence show that the prior for Ins 
is constant. This is an improper prior, since it cannot be normalized, and 
it is conventional to take p(s) = 1/s. 

14 (*) Consider the predictive distribution for a network output variable 
given by (10.28) and suppose we approximate the integration over weight 
space by using the Monte Carlo expression (10.108). Show that, for a noise 
model given by the Gaussian (10.14), the mean and variance of the distri­
bution p(t\x, D) are given by 

1 L 

t = j X > ( x ; w O (10.151) 
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/(w) • - -y. 

_= =_>. 

Figure 10.19. An illustration of the technique of rejection sampling for gener­
ating values from a distribution p{w\D). Values are generated from a simpler 
distribution governed by the function f(w) which satisfies f(w) > p(w\D). 
These values are accepted with probability governed by the ratio p(w\D)/f(w) 
as described in the text. 

1 1 L 

,T*2==^ + Z^ { ! / ( X ; W i ) - * } 2 - ( 1 ° 1 5 2 ) 

10.15 (***) This exercise is concerned with the implementation of a simple 
Monte Carlo method for finding the most probable network interpolant 
and for estimating corresponding error bars. It is based on the technique 
of rejection sampling (Devroye, 1986; Press et at, 1992) for generating a 
random sample from a complex distribution. Consider the problem of gen­
erating values for a single variable w from a distribution p(w\D). We shall 
suppose that evaluating p(w\D) is straightforward, while generating values 
of w directly from this distribution is not. Consider a function f(w) which 
satisfies f(w) > p{w\D) for all w as shown in Figure 10.19, and suppose 
that values of w are generated at random with a distribution proportional 
to f(w). Verify that, if these values are accepted with probability given 
by the ratio p(w\D)/f(w) then the accepted values will be governed by 
the distribution p(w\D). (Hint: one way to do this is to use Figure 10.19 
and to show the result geometrically.) We now apply this technique to 
the generation of weight vectors from the posterior distribution of network 
weights. Suppose we choose / ( w ) = Ap(w) where A is a constant and 
p(w) is the prior weight distribution. Consider a likelihood function given 
by (10.12) and use Bayes' theorem in the form (10.3) to show that the con­
dition / ( w ) > p(w\D) can be satisfied by choosing A"1 — Zpp(D) where 
p(D) is the denominator in (10.3). Hence show that weight vectors can be 
generated from the posterior distribution simply by selecting them from 
the prior and then accepting them with probability given by exp(—/?£?£>). 
Implement this numerically for a simple regression problem by consider­
ing a single-input single-output two-layer network with sigmoidal hidden 
units and a linear output unit, together with a data set consisting of no 
more than ten data points. Generate weight vectors from a Gaussian prior 
given by (10.9) with a fixed suitably-chosen value of a, and select them 
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with a likelihood function exp(—PEp) having a fixed value of 0 and a 
sum-of-squares error ED until around 10 or 20 weight vectors have been 
accepted. Techniques for generating numbers with a Gaussian distribution 
are described in Press et al. (1992). Plot the corresponding set of network 
functions on the same graph, together with the original data points. Use 
the results of Exercise 10.14 to plot on a separate graph the Monte Carlo 
estimates of the mean of the predictive distribution, as well as the error 
bars, as functions of the input variable x. Note that rejection sampling is 
not suitable as a practical technique for large-scale problems since the time 
required by this algorithm grows exponentially with the number of data 
points. 
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SYMMETRIC MATRICES 

In several chapters we need to consider the properties of real, symmetric matri­
ces. Examples include Hessian matrices (whose elements are given by the second 
derivatives of an error function with respect to the network weights) and covari-
ance matrices for Gaussian distributions. Symmetric matrices have the property 
that Aij = Aji, or equivalently A T = A where A T denotes the transpose of A. 

The inverse of a symmetric matrix is also symmetric. To see this we start 
from the definition of the inverse given by A - 1 A = I where I is the unit matrix, 
and then use the general result that, for any two matrices A and B , we have 
( A B ) T = B T A T . This gives A T ( A _ 1 ) T = I which, together with the symmetry 
property A T = A, shows that ( A _ 1 ) T = A - 1 as required. 

E igenvec tor equa t ion 

We begin by considering the eigenvector equation for a symmetric matrix in the 
form 

Aufc = Afcufc (A.l) 

where A is a W x W matrix, and k = 1 , . . . , W. The eigenvector equations (A.l) 
represent a set of coupled linear algebraic equations for the components Uki of 
the eigenvectors, and can be written in matrix notation as 

(A - D)U = 0 (A.2) 

where D is a diagonal matrix whose elements consist of the eigenvalues Ajt 

D = ( ' . . ] (A.3) 

and U is a matrix whose columns consist of the eigenvectors u^. The necessary 
and sufficient condition for the set of simultaneous equations represented by 
(A.2) to have a solution is that the determinant of the matrix of coefficients 
vanishes, so that 

| A - D | = 0 . (A.4) 
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Since this is an W t̂h order equation it has precisely W roots. 
We can show that the eigenvectors can be chosen to form an orthonormal 

set, as follows. For any pair of eigenvectors Uj and u^, it follows from (A.l) that 

ujAujt = Afciijiifc (A.5) 

ujAuj = Aj-ujuj. (A.6) 

Subtracting these two equations, and using the symmetry property of A we find 

( A f c - A J ) u J u j = 0 . (A.7) 

Thus, for Ajt ^ Aj, the eigenvectors must be orthogonal. If Ajt = A ;, then any 
linear combination of the eigenvectors Uj and u^ will also be an eigenvector, and 
this can be used to choose orthogonal linear combinations. A total of W orthog­
onal eigenvectors can be found, corresponding to the W solutions of (A.4). Note 
that, if u* is an eigenvector with eigenvalue A^, then (5\ik is also an eigenvector, 
for any non-zero /?, and has the same eigenvalue. This property can be used to 
normalize the eigenvectors to unit length, so that they become an orthonormal 
set satisfying 

\iluj=6kj. (A.8) 

If we multiply (A.l) by A - 1 we obtain 

A - ^ / t = A^ luk (A.9) 

so we see that A - 1 has the same eigenvectors as A but with reciprocal eigenval­
ues. 

Diagonal iza t ion 

The matrix A can be diagonalized using the matrix U. From (A.l) and (A.8) it 
follows that 

U T A U = D (A.10) 

where D is defined by (A.3). From (A.8) it follows that the matrix U is orthog­
onal, in other words it satisfies 

U T U = U U T = I. (A. l l ) 

Consider a vector x which is transformed by the orthogonal matrix U to give 
a new vector 
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x = U T x . (A.12) 

As a consequence of the orthogonality property (A. l l ) , the length of the vector 
is preserved by this transformation: 

||x||2 = x T U U T x = | | x f . (A.13) 

Similarly, the angle between two vectors is also preserved 

xjx2 = x 7 U U T x 2 = xjx2. (A.14) 

Thus, the effect of multiplication by U T is equivalent to a rigid rotation of the 
coordinate system. 

General quadratic form 

There are several points in the book where we need to consider quadratic func­
tions of the form 

F ( x ) = x T A x (A. 15) 

where A is an arbitrary matrix. Note that we can, without loss of generality, 
assume that the matrix A is symmetric, since any anti-symmetric component 
would vanish on the right-hand side of (A.15). We can diagonalize this quadratic 
form by using the orthogonal matrix U, whose columns are the eigenvectors of 
A, as follows: 

F(x) = x T A x 

= x T U U T A U U T x 

= x T D x 

w 
= X>5' (A.16) 

t = i 

where we have used (A.10), (A.l l ) and (A.12). 
A matrix A is said to be positive definite if v T A v > 0 for any non-zero 

vector v. It follows from (A.l) and (A.8) that the eigenvalues of a positive-
definite matrix are all positive, since 

Afc = u^Atifc > 0 (A.17) 

If the matrix A in the quadratic form (A.15) is positive definite, then it follows 
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from (A. 16) that the surfaces of constant F(x) are hyperellipsoids, with principal 
axes having lengths proportional to A^ ' . 
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GAUSSIAN INTEGRALS 

One variable 

We begin by evaluating the following Gaussian integral 

1= f exp(-^xAdx. (B.l) 

This is easily done by considering the square of the integral, and then transform­
ing to polar coordinates: 

— I / exp f — — r2 j rdrdd 

— ir I exp I ——u I du 

2TT 

A 
(B.2) 

where we have changed variables first using x — rcos9,y = rsinO and then 
using r2 = u. Taking the square root we finally obtain 

£ > ( - H * - ( T ) • <B3» 
Several variables 

Consider the evaluation of the W-dimensional Gaussian integral 

Iw = / exp I ~ - w T A w j dw (B.4) 
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where A is a W x W real symmetric matrix, w is a VF-dimensional vector, and 
the integration is over the whole of w-space. In order to evaluate this integral it 
is convenient to consider the eigenvector equation for A in the form 

Aufc = \kuk. (B.5) 

Since A is real and symmetric, we can choose the eigenvectors to form a complete 
orthonormal set 

u£u , = 6U (B.6) 

as discussed in Appendix A. We can then expand the vector w as a linear com­
bination of the eigenvectors 

w 
w = ]Ta*ufc. (B.7) 

The integration over the weight values dw\... dwy/ can now be replaced by an 
integration over da.\.. .daw. The Jacobian of this change of variables is given 
by 

J = d e t f | ^ ) = d e t ( u w ) (B.8) 

where uki is the ith element of the vector Ufc, and 'det' denotes the determinant. 
The u^ are also the elements of a matrix U whose columns are given by the u^, 
and which is an orthogonal matrix, i.e. it satisfies U T U = I, since its columns 
are orthonormal. Thus 

J2 = {det(U)}2 = det(UT) det(U) = de t (U T U) = det(I) = 1 (B.9) 

and hence \J\ = 1. Using the orthonormality of the u^ we have 

w 
w T A w = ^ A t 4 (B.10) 

fc=i 

The various integrals over the Qjt now decouple, and so we can write 

V = n y e x p ( - ^ j d a f c . (B. l l ) 

Using the result (B.3) we obtain 
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W / 9 v 1/2 

iw=n m (B.i2) -m Since the determinant of a matrix is given by the product of its eigenvalues, 

w 
\A\ = l[Xk, (B.13) 

we finally obtain 

Iw = (2 7r)^ 2 |Ar 1 /2 . ( B . 1 4 ) 

Inclusion of linear term 

In deriving the distribution of network outputs within the Bayesian framework in 
Exercise 10.2, we need to consider a more general form of the Gaussian integral, 
which has an additional linear term, of the form 

Iw = I exp I - - w T A w + hTw J dw. (B.15) 

Again, it is convenient to work in terms of the eigenvectors of A. We first define 
hk to be the projections of h onto the eigenvectors 

hk = hTufc. (B.16) 

This again leads to a set of decoupled integrals over the ak of the form 

w f°° / >i.f>2 \ 
Iw = H exp(—^+hkak)dak. (B.17) 

Completing the square in the exponent, we have 

7r!i-+hkak = —— a f c - T - +^T"- (B.18) 
2 V W 2Afc 

If we now change integration variables to ak = ak — hk/Xk, we again obtain a 
product of integrals which can be evaluated using (B.3) to give 

IW = (2n)^\A\-^ exp f f ] &) . (B.19) 
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If we now apply A * to both sides of (B.5) we see that A 1 has the same 
eigenvectors as A, but with eigenvalues A^l: 

A !ufc = A^Ufe. 

Thus, using (B.6) and (B.16), we see that 

hi 

Using this result in (B.19) we obtain our final result: 

Iw = (27r)w/2|A|-1/2exp Q ^ A ^ h ) 

(B.20) 

(B.21) 

(B.22) 
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LAGRANGE MULTIPLIERS 

The technique of Lagrange multipliers, also sometimes called undetermined mul­
tipliers, is used to find the stationary points of a function of several variables 
subject to one or more constraints. 

Consider the problem of finding the minimum of a function f(xi,X2) subject 
to a constraint relating x\ and X2 which we write in the form 

g(xux2)=0. (C.l) 

One approach would be to solve the constraint equation (C.l) and thus express 
i 2 a s a function of xi in the form #2 = h(xi). This can then be substituted into 
f(xi,X'i) to give a function of x\ alone of the form f(xi,h(xi)). The maximum 
with respect to x\ could then be found by differentiation in the usual way, to 
give the stationary value x"u", with the corresponding value of a; 2 given by 
xfin = h(xf'm). 

One problem with this approach is that it may be difficult to find an analytic 
solution of the constraint equation which allows X2 to be expressed as an explicit 
function of X\. Also, this approach treats £1 and x% differently and so spoils the 
natural symmetry between these variables. 

A more elegant, and often simpler, approach is based on the introduction of 
a parameter A called a Lagrange multiplier. We motivate this technique from 
a geometrical perspective. Consider the case of d variables x\,... ,Xd which we 
can group into a vector x. The constraint equation g(x) = 0 then represents a 
surface in x-space as indicated in Figure C.l . At any point P on the constraint 
surface, the gradient of the function / ( x ) is given by the vector V / . To find 
the stationary point of / ( x ) within the surface we can compute the component 
V | | / of V / which lies in the surface, and then set V | j / = 0. Consider the Taylor 
expansion of the function g(x) when we move a short distance from the point x 
in the form 

g(x + e)=g(x) + eTVg(x). (C.2) 

If the point x + e is chosen to lie within the surface then we have g(x + e) = g(x) 
and hence eTVp(x) = 0. Thus we see that the vector Vg is normal to the surface 
g(x) = 0. We can then obtain the component Vy/ which lies in the surface by 
adding to V / some multiple of the normal vector Vg so that 
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v » / ^ \ s ( x ) = 0 

^ 

Figure C.l. A geometrical picture of the technique of Lagrange multipliers. 
The gradient of a function / (x) at a point P is given by a vector V / . We 
wish to find the component of this vector lying within the constraint surface 
g(x) — 0. This can be done by subtracting from Vf an appropriate multiple 
of the vector normal to the constraint surface, given by V<?. 

V( | / = V / + XVg (C.3) 

where A is a Lagrange multiplier. It is convenient to introduce the Lagrangian 
function given by 

i (x ,A) = / ( x ) + Ag(x). (C.4) 

We then see that the vector VL is given by the right-hand side of (C.3) and so 
the required stationarity condition is given by setting VL = 0. Furthermore, the 
condition 8L/8X = 0 leads to the constraint equation p(x) = 0. 

Thus to find the minimum of a function / ( x ) subject to the constraint 
g(x) = 0 we define the Lagrangian function given by (C.4) and we then find the 
stationary point of L(x, A) with respect both to x and A. For a d-dimensional 
vector x this gives d + 1 equations which determine both the stationary point 
x* and the value of A. If we are only interested in x* then we can eliminate A 
from the stationarity equations without needing to find its value (hence the term 
'undetermined multiplier'). 

As a simple example, suppose we wish to find the stationary point of the 
function / ( a ^ , ^ ) = X1X2 subject to the constraint g(xi,X2) = x\ + X2 — 1 = 0. 
The corresponding Lagrangian function is given by 

L(x, A) = Xix2 + \(x1 + X2 — 1). (C5) 

The conditions for (C.5) to be stationary with respect to Xi, x2, and A then give 
the following coupled equations: 
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£2 + A = 0 (C.6) 

xi + X = 0 (G.7) 

Zft-x2-l =0. (G.8) 

Solution of these equations gives the stationary point as (xi,xi) = ( | , | ) . 
This technique can be applied directly to functions of more than two variables. 

Similarly it can be applied when there are several constraints simply by using one 
Lagrange multiplier Xk for each of the constraints 5*(x) = 0 and constructing a 
Lagrangian function of the form 

L(x, {Xk}) = / (x) + £ Xkffk(x). (C.9) 
k 

This Lagrangian is then minimized with respect to x and {A*}. Extensions to 
constrained functional derivatives (Appendix D) are similarly straightforward. 

A more formal discussion of the technique of Lagrange multipliers can be 
found in Dixon (1972, pages 88-93). 



APPENDIX D 

CALCULUS OF VARIATIONS 

At several points in this book we make use of the technique of functional differ­
entiation, also known as calculus of variations. Here we give a brief introduction 
to this topic, using an analogy to conventional differentiation. We can regard a 
function f(x) as a transformation which takes x as input, and which generates 
/ as output. For this function we can define its derivative df/dx by considering 
the change in f(x) when the value of x is changed by a small amount Sx so that 

6f = -f-6x + 0{6x2). (D.l) 
ax 

A function of many variables f{%\,..., Xd) can be regarded as a transformation 
which depends on a discrete set of independent variables. For such a function we 
have 

Sf = ^2 ~Sxi + 0(6x2). (D.2) 

In the same way, we can consider a functional, written as B[f], which takes 
a function f{x) as input and returns a scalar value E. As an example of a 
functional, consider 

so that the value of E[f] depends on the particular choice of the function f(x). 
The concept of a functional derivative arises when we consider how much E\j] 
changes when we make a small change Sf(x) to the function f(x), where 6f(x) 
is a function of x which has small magnitude everywhere but which is otherwise 
arbitrary. We denote the functional derivative of E\f] with respect to f{x) by 
SE/Sf{x), and define it by the following relation: 

SE = E[f + Sf] - E[f) = f ^6f{x)dx + 0(6f2). (D.4) 
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This can be seen as a natural extension of (D.2) where now E[f] depends on 
a continuous set of variables, namely the values of / at all points x. As an 
illustration, we can calculate the derivative of the functional given in (D.3): 

E\f + Sf] = E[f] + 2J{^-^6f + f6A dx + °W2)' (D5) 

This can be expressed in the form (D.4) if we integrate by parts, and assume 
that the boundary term vanishes. We then obtain the following result for the 
functional derivative: 

6f(x) dx2 

Note that, from (D.4) we also have the following useful result: 

W)=6{x-x,) (DJ) 

where 6{x) is the Dirac delta function. This result is easily verified by taking 
E\f] = f(x) a n d t h e n substituting (D.7) into (D.4). 

If we require that, to lowest order in Sf(x), the functional E[f] be stationary 
then from (D.4) we have 

/ iTSS'/M** • »• P-s) 

Since this must hold for an arbitrary choice of 6f(x) we can choose 6f(x) = 
6(x — x') where 6{x) is the Dirac delta function. Hence it follows that 

6E .0 (D.9) 
6f(*) 

so that, requiring the functional to be stationary with respect to arbitrary vari­
ations in the function is equivalent to requiring that the functional derivative 
vanish. 

If we define a differential operator D = d/dx then (D.3) can be written as 

B= I{(Df)2+f}dx. (D.10) 

Following the same argument as before we see that the functional derivative 
becomes 
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jj^ = 2DDf(x) + 2/(i) (D.ll) 

where D = —d/dx is the adjoint operator to the operator D. Similar forms of ad­
joint operator arise in the discussion of radial basis functions and regularization 
in Section 5.4. 



APPENDIX E 

PRINCIPAL COMPONENTS 

In Section 8.6, we showed that the optimal linear dimensionality reduction pro­
cedure (in the sense of least squares) was determined by minimization of the 
following function: 

= l £ u^Eu, (E.l) 
i=M+l 

where S is the covariance matrix defined by (8.21). We now show that the solu­
tion to this problem can be expressed in terms of the eigenvectors and eigenvalues 
of S . 

It is clear that (E.l) has a non-trivial minimum with respect to the ut only if 
we impose some constraint. A suitable constraint is obtained by requiring the u, 
to be orthonormal, and can be taken into account by the use of a set of Lagrange 
multipliers /iy (Appendix C). We therefore minimize the function 

^ d ^ d d 

£M = - £ U ? S U ' " 2 E £ /*«(«7,«i-*«)- (E.2) 
t=M+l i=M+l j=M+l 

This is conveniently written in matrix notation in the form 

EM = ^ I > { U T S U } - ^Tr { M ( U T U - 1} (E.3) 

where M is a matrix with elements mj, U is a matrix whose columns consist of 
the eigenvectors Uj, and I is the unit matrix. If we minimize (E.3) with respect 
to U we obtain 

0 = (E + E T ) U - U ( M + M T ) . (E.4) 

By definition, the matrix £ is symmetric. Also, the matrix M can be taken to be 
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symmetric without loss of generality, since the matrix U U T is symmetric as is 
the unit matrix I, and hence any anti-symmetric component in M would vanish 
in (E.3). Thus, we can write (E.4) in the form 

S U = U M . (E.5) 

Since, by construction, U has orthonormal columns, it is an orthogonal matrix 
satisfying U T U = I. Thus we can write (E.5) in the equivalent form 

U T S U = M. (E.6) 

Clearly one solution of this equation is to choose M to be diagonal so that the 
columns of U are the eigenvectors of £ and the elements of M are its eigenvalues. 
However, this is not the only possible solution. Consider an arbitrary solution of 
(E.5). The eigenvector equation for M can be written 

M * = * A (E.7) 

where A is a diagonal matrix of eigenvalues. Since M is symmetric, the eigen­
vector matrix <l> can be chosen to have orthonormal columns. Thus * is an 
orthogonal matrix satisfying * T * = I. From (E.7) we then have 

A = * T M # . (E.8) 

Substituting (E.6) into (E.8) we obtain 

A = * T U T S U * 

= ( U # ) T £ ( U * ) 

= U T S U (E.9) 

where we have defined 

U = U * . (E.10) 

Using *&<&T = I we can write 

U = U * T . (E . l l ) 

Thus, an arbitrary solution to (E.6) can be obtained from the particular solution 
U by application of an orthogonal transformation given by SP. We now note that 
the value of the criterion EM is invariant under this transformation since 
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EM = ^Tr { U T E U } 

= i T r | * U T E U * T | 

= ^1> | U T E U ] (E.12) 

where we have used the fact that the trace is invariant to cyclic permutations 
of its argument, together with * T * = I. Since all of the possible solutions 
give the same value for the residual error EM, we can choose whichever is most 
convenient. We therefore choose the solution given by U since, from (E.9), this 
has columns which are the eigenvectors of E. 
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1-of-c coding scheme, 225, 300 

activation function, 82 
Heaviside, 84, 121-122 
logistic sigmoid, 82 
tanh, 127 

active learning, 385 
adajine, 98 
adaline learning rule, 97 
adaptive parameters, see weights 
additive models, 136-137 
adjoint operator, 173, 453 
Akaike information criterion, 376 
ARD, see automatic relevance determina­

tion 
asymmetric divergence, see Kullback-

Leibler distance 
auto-associative network, 316 
automatic relevance determination, 385 

back-propagation, 140-148 
efficiency, 146-147 
terminology, 141 

backward elimination, 309 
basis functions, 88, 165 
batch learning, 263 
Bayes' theorem, 17-23 
Bayesian inference, 42-46 
Bayesian statistics, 21 
Bernoulli distribution, 84 
best approximation property, 169 
between-class covariance matrix, 108 
BFGS algorithm, 288 
bias 

statistical, 41, 333-338, 373-374 
bias parameter, 78 

as extra weight, 80, 118 
bias-variance trade-off, 333-338, 373-374 
binomial distribution, 52 
biological models, 83-84 
bits, 243 
'bits back' argument, 432 
bold driver algorithm, 269 
bracketing a minimum, 273 
branch and bound algorithm, 306 
Brent's algorithm, 273 

CART, see classification and regression 
trees 

cascade correlation, 357-359 
categorical variables, 300 
central differences, 147, 154 
central limit theorem, 37 
central moments, 323 
chi-squared statistic, 410 
circular normal distribution, 222 
city-block metric, 209 
class-conditional probability, 18, 61 
classification, 5 
classification and regression trees, 137 
clustering algorithms, 187-189 
committees of networks, 364-369, 422-424 
complete data, 69 
complexity, 14-15 
complexity criteria, 376-377 
condition number, 266 
conditional average of target data, 202 
conditional median, 210 
conditional probability, 17, 194, 212-222 
confidence intervals, 385 
conjugate gradients, 274-282 
conjugate prior, 43 
consistent estimators, 337 
consistent priors, 396-397 
convex decision region, 80-81, 123 
convex function, 75, 369 
convex hull, 113 
covariance matrix, 35, 108, 111 
Cp-statistic, 376 
credit assignment problem, 140 
cross-entropy, 244 
cross-entropy error function 

independent attributes, 236-237 
multiple classes, 237-240 
two classes, 230-232 

cross-validation, 372-375 
curse of dimensionality, 7-9, 51, 297 
curvature, 15, 175 
curvature-driven smoothing, 345-346 

data set, 2 
Davidson-Fletcher-Powell algorithm, 288 
de-trending, 303 
decision boundary, 4 
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decision making, 20 
decision regions, 24 
decision surface, see decision boundary 
degrees of freedom, 11 
delta-bar-delta algori thm, 270 271 
density estimation 

and radial basis functions, 183-185 
kernel methods , 53-55, 177 
non-parametric, 33 
parametr ic , 33 
Parzen windows, 53 
semi-parametric , 33, 60 

detailed balance, 427 
diameter-l imited percept ion, 104 
dichotomy, 86 
differential entropy, 242 
dimensionality reduction, 296-298 
discrete da ta , 300 
discriminant function, 25-27 
distributed representation, 182 
double back-propagation, 349 

early stopping, 343-345 
relation to weight decay, 380-381 

effective number of parameters , 377, 410 
efficiency of back-propagation, 146-147 
EM algorithm, 65-72, 301 

relation to / f -means , 189-190 
ensemble learning, 432-433 
entropy, 240-245 

differential, 242 
equivalent minima, 133, 256, 398 
error back-propagation, 140-148 

efficiency, 146-147 
terminology, 141 

error bars , 189, 399 
error function 

convex, 369 
error surfaces, 254-256 
Euler-Lagrange equations, 173 
evidence, 386, 408, 418 
evidence approximation, 407 
exact interpolation, 164-166 
exclusive-OR, 86, 104 
expectation, 22, 46 
expectation maximizat ion algori thm, see 

EM algori thm 
expected loss, 27 

fast multiplication by Hessian, 158-160 
fast re-training, 150, 162-163 
feature extract ion, 6, 297 
features, 2 

feed-forward networks, 120-121 
final prediction error, 376 
finite differences, 147, 158 
Fisher 's discriminant, 105-112, 227 

relation to least-squares, 109-110 
Fletcher-Reeves formula, 280 
forward problems, 207 
forward propagation, 142 
forward selection, 308 
frcquentist statistics, 21 
function approximation, 6 
functional, 451 

Gaussian, 34-38 
basis functions, 165 
mixture model, 189-190, 350 
prior, 389-391 

generalization, 2, 11 
and evidence, 421-422 

generalized additive models, 136-137 
generalized least squares, 248 
generalized linear discriminant , 88-89 
generalized linear network, 402 
generalized prediction error, 377 
global minimum, 255 
gradient descent, 263-272 

batch, 263 
convergence, 264-267 
pat tern-based, 263 

Green's function, 173 
growing algori thms, 353-359 
growth function, 378 

Heaviside activation function, 121-122 
Heaviside step function, 84 
Hebb rule, 319 
Hessian matr ix , 150-160 

central differences, 154 
diagonal approximation, 151-152 
exact evaluation, 154-158, 160 
fast multiplication by, 158-160 
finite differences, 154 
inverse, 153-154 
outer product approximation, 152-153, 

206 
positive definite, 258 
two-layer network, 157-158 

Hestenes-Stiefel formula, 280 
hidden units, 16, 117 

interpretat ion, 226-228, 234 
hierarchical models, 408 
higher-order network, 133-135, 161, 326-

329 
Hinton diagram, 119 
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histograms, 3, 50-51 
hold out method, 372 
hybrid Monte Carlo, 427 
hybrid optimization algori thm, 259-260 
hyperparameter , 390 
hyperprior, 408 

ID3, 137 
importance sampling, 426 
improper prior, 396, 408 
incomplete da ta , 61 , 69 
inference, 20 
input normalization, 298-300 
intrinsic dimensionality, 313-314 
invariance, 6, 320, 323 
inverse Hessian, 153-154 
inverse problems, 207 

Jacobian matr ix , 148-150 
Jensen's inequality, 66, 75 
joint probability, 17 

/ ( -means algori thm, 187-189 
as limit of EM, 189-190 

/(-nearest-neighbours, 55-57 
classification rule, 57 

Karhunen-Loeve transformation, 312 
kernel density est imation, 53-55 
kernel function, 53 

periodic, 221 
kernel regression, 177-179 
Kiefer-Wolfowitz algori thm, 48 
Kohonen topographic mapping, 188 
Kolmogorov's theorem, 137-140 
Kullback-Leibler distance, 59, 244 

Lagrange multipliers, 448-450 
Laplacian distr ibut ion, 209, 391 
layered networks, 117-120 

counting convention, 119 
linear, 121 

learning, see t raining 
learning-rate parameter , 263 
leave-one-out method, 375 
Levenberg-Marquardt algori thm, 290-292 
Levenberg-Marquardt approximation, 

152, 206 
Levenberg-Marquardt approximation, 206 
likelihood function, 23, 40 

singularities, 58, 63 
limited memory BFGS algorithm, 289-290 
line search techniques, 272-274 
linear discriminants, 38, 77-85 
linear separability, 85-88 

linear sum rules, 200-201 
local learning algorithms, 253-254 
local minima, 255 
localized basis functions, 165 
location parameter , 216, 436-437 
logistic discrimination, 82-85 
logistic sigmoid, 82, 232-234 
loss matr ix , 27 
LR norm, 209 

madeline III learning rule, 148 
Mahalanobis distance, 35 
marginal distribution, 37 
marginalization, 387 
Markov chain Monte Carlo, 426 
MARS, see multivariate adaptive regres­

sion splines 
maximum likelihood, 195 

for Gaussian, 40-42 
for mixture model, 62-73 
ML-H, 407 
relation to Bayes, 45 

McCulloch and Pi t t s neuron model, 83-84 
mean of distribution, 34-35 
Metropolis algorithm, 427 
minimum description length, 429-433 
minimum risk decisions, 27, 224 
Minkowski error function, 208-210 
mislabelled da ta , 209 
missing data , 301-302 
missing values, 69 
mixing parameters , 60 
mixture models, 59-73, 212-222 
mixture of experts, 214, 369-371 
ML-H, 407 

MLP, see multi-layer perceptron 
model order selection, 371-377 
model t rust region, 283, 287, 291-292 
moments , 322-324 
momentum, 267-268 
Monte Carlo methods , 425-429 
multi-layer perceptron, 116 

and radial basis functions, 182-183 
multi-quadric function, 166 
multi-step ahead prediction, 303 
multivariate adaptive regression splines, 

137 

Nadaraya-Watson est imator , 178 
nats , 243, 430 
nearest-neighbour rule, 57 
neocognitron, 326 
network diagram, 62, 79, 117, 168 
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neuron, 83-84 
Newton direction, 285 
Newton's method, 285-287 
node perturbat ion, 148 
node pruning, 363-364 
noiseless coding theorem, 244 
non-informative prior, 408, 436-437 
non-interfering, see conjugate 
non-linear principal component analysis, 

317 
non-parametr ic density est imation, 33 
normal distr ibution, 34-38 
normal equations, 91 
normalized exponential , see softmax 
novelty, 189 
numerical differentiation, 147-148 

Occam factor, 419 
Occam's razor, 14, 406, 429 
one-step-ahead prediction, 303 
optimal brain damage, 361 
optimal brain surgeon, 361 
order of convergence, 256 
order-limited perceptron, 105 
ordinal variables, 300 
orthogonal least squares, 187 
outer product Hessian, 206 
outliers, 209 
over-fitting, 11 

parametr ic density est imation, 33 
Parzen est imator , 53, 177 
pat tern recognition, 1 

statist ical , 17 
pat tern-based learning, 263 
perceptron, 84, 98-105 

convergence theorem, 100-103 
diameter-l imited, 104 
learning algori thm, 100 
order-limited, 105 

perceptron criterion, 99 
periodic variables, 221-222 
pixel averaging, 297 
pocket algori thm, 103, 354 
Polak-Ribiere formula, 280 
polynomial 

curve fitting, 9-13 
higher-order, 16, 30 

positive-definite Hessian, 258 
post-processing, 296 
posterior dis t r ibut ion, 389 
posterior probability, 18 

in mixture model, 61 

potential functions, 182 
P P R , see projection pursuit regression 
pre-processing, 6, 296-298 
predicted squared error, 376 
principal components, 310-313, 454-456 
prior 

conjugate, 43 
consistency, 396-397 
entropic, 391 
improper, 396, 408 
in mixture model, 61 
knowledge, 6, 295 
non-informative, 408, 436-437 
probability, 17 

probability 
conditional, 17 
density, 21 
joint, 17 
posterior, 18 
prior, 17 

processing units, 80 
projection pursuit regression, 135-136 
prototypes, 39, 183 
pruning algorithms, 354 
pseudo-inverse, 92-95 

quasi-Newton methods, 287-290 
quickprop algorithm, 271-272 

72-operator, 158-160 
radial basis functions 

best approximation, 169 
clustering algorithms, 187-189 
density estimation, 177-179, 183-185 
exact interpolation, 164-166 
for classification, 179-182 
Gaussian mixtures, 189-190 
Hessian matr ix , 191 
Jacobian matr ix , 191 
network training, 170-171 
neural networks, 167-169 
noisy interpolation, 176-177 
orthogonal least squares, 187 
regularization, 171-175 
relation to multi-layer perceptron, 182-

183 
supervised training, 190-191 

random walk, 426 
R B F , see radial basis functions 
re-estimation formulae, 412, 417 
re-training of network, 150, 162-163 
receptive field, 104, 325 
regression, 5 
regression function, 47, 203 
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regular moments, 323 
regularization, 15, 171-175, 338-353, 385 

weight decay, 338-343, 395 
reinforcement learning, 10 
reject option, 28 
rejection sampling, 438-439 
rejection threshold, 28 
reproducing densities, 43 
ridge regression, 338 
risk, 27 
RMS error, 197 
Robbins-Monro algorithm, 46-49 
robot kinematics, 207 
robust statistics, 210 
root-mean-square error, 197 
rotation invariance, 320, 323 

saddlepoints, 255 
saliency of weights, 360 
sample, 2, 426 

average, 41 
scale invariance, 6, 320, 323 
scale parameter, 215, 408, 437 
scaled conjugate gradients, 282-285 
search direction, 272 

Fletcher-Reeves, 280 
Hestenes-Stiefel, 280 
Polak-Ribiere, 280 

self-organizing feature map, 188 
semi-parametric density estimation, 33, 60 
sequential backward elimination, 309 
sequential forward selection, 308 
sequential learning, 46-49, 263 
shared weights, 324-326 
sigmoid activation function, 82, 232-234 
simply-connected decision regions, 80-81 
simulated annealing, 428 
singular value decomposition, 93, 171, 260 
smoothing parameter, 57-59 
smoothness of mapping, 171-173 
soft weight sharing, 349-353 
softmax, 215, 238-240 
spectral analysis, 207 
spline function, 165 
stacked generalization, 375-376, 424 
standard deviation, 34 
stationary points, 255 
statistical bias, 41, 333-338, 373-374 
statistical independence, 36 
steepest descent, see gradient descent 
stiff differential equations, 267 
stochastic parameter estimation, 46-49, 

72-73 

stopping criteria, 262 
strict interpolation, see exact interpolation 
structural stabilization, 332 
sum-of-squares error function, 89-97, 195-

207 
for classification, 225-230 

supervised learning, 10 
radial basis functions, 190-191 

SVD, see singular value decomposition 
symmetries 

weight space, 133, 256 
synapses, 84 

tangent distance, 322 
tangent prop, 320-322 
tanh activation function, 127 
target values, 9 
temperature parameter, 428 
template, 39, 122 
test error functions, 262-263 
test set, 10, 372 
thin-plate spline function, 165 
threshold, 78 
threshold activation function, 121-122 
threshold logic functions, 87 
Tikhonov regularization, 338 
tiling algorithm, 355 
time-series prediction, 302-304 
tomography, 207 
topographic mapping, 188 
total covariance matrix, 111 
training set, 5, 372 
translation invariance, 6, 320, 323 
type II maximum likelihood, 407 

undetermined multipliers, see Lagrange 
multipliers 

unsupervised learning, 10, 318-319 
upstart algorithm, 355-357 

validation set, 372 
Vapnik-Chervonenkis dimension, see VC 

dimension 
variable-metric methods, 287-290 
variance 

parameter, 34-35, 73-74 
statistical, 333-338, 373-374 

VC dimension, 377-380 
von Mises distribution, 222 

weight decay, 338-343 
and pruning, 363 
consistency, 340-342 

weight elimination, 363 
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weight initialization, 260-262 
weight space, 254 

symmetr ies , 133, 256 
weight vector, 253 
weights, 5 
well-determined parameters , 410 

whitening transformation, 299-300 

Widrow-Hoff learning rule, 97 

within-class covariance matr ix , 108 

XOR, see exclusive-OR 




