2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) CVPR 2020

Table of Contents

Organizers	ccix
Area Chairs	ccxi
Reviewers	ccxvi

Oral 1-1A: 3D From a Single Image and Shape-From-X (1)

Unsupervised Learning of Probably Symmetric Deformable 3D Objects From Images in the Wilc	t
' Shangzhe Wu (Visual Geometry Group, University of Oxford), Christian Rupprecht (Visual Geometry Group, University of Oxford), and Andrea Vedaldi (Visual Geometry Group, University of Oxford)	
Footprints and Free Space From a Single Color Image Jamie Watson (Niantic), Michael Firman (Niantic), Aron Monszpart (Niantic), and Gabriel J. Brostow (Niantic)	11
Dynamic Fluid Surface Reconstruction Using Deep Neural Network Simron Thapa (Louisiana State University, Baton Rouge, LA, USA), Nianyi Li (Louisiana State University, Baton Rouge, LA, USA), and Jinwei Ye (Louisiana State University, Baton Rouge, LA, USA)	21
CvxNet: Learnable Convex Decomposition Boyang Deng (Google Research), Kyle Genova (Google Research), Soroosh Yazdani (Google Hardware), Sofien Bouaziz (Google Hardware), Geoffrey Hinton (Google Research), and Andrea Tagliasacchi (Google Research)	31
BSP-Net: Generating Compact Meshes via Binary Space Partitioning Zhiqin Chen (Simon Fraser University), Andrea Tagliasacchi (Google Research), and Hao Zhang (Simon Fraser University)	42
Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes From a Single Image Yinyu Nie (Bournemouth University; The Chinese University of Hong Kong, Shenzhen; Shenzhen Research Institute of Big Data), Xiaoguang Han (The Chinese University of Hong Kong, Shenzhen; Shenzhen Research Institute of Big Data), Shihui Guo (Xiamen University), Yujian Zheng (The Chinese University of Hong Kong, Shenzhen; Shenzhen Research Institute of Big Data), Jian Chang (Bournemouth University), and Jian Jun Zhang (Bournemouth University)	52

Generating and Exploiting Probabilistic Monocular Depth Estimates	62
Neural Cages for Detail-Preserving 3D Deformations Wang Yifan (ETH Zurich), Noam Aigerman (Adobe Research), Vladimir G. Kim (Adobe Research), Siddhartha Chaudhuri (Adobe Research; IIT Bombay), and Olga Sorkine-Hornung (ETH Zurich)	72
PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization	81
A Lighting-Invariant Point Processor for Shading Kathryn Heal (Harvard University), Jialiang Wang (Harvard University), Steven J. Gortler (Harvard University), and Todd Zickler (Harvard University)	91
Active MacConstruction of Mission start Collections from Active Ultraneous Martines Constructions	
ActiveMoCap: Optimized Viewpoint Selection for Active Human Motion Capture	00

Oral 1-1B: Action and Behavior

Multi-Modal Domain Adaptation for Fine-Grained Action Recognition
Evolving Losses for Unsupervised Video Representation Learning
Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition 140 Ziyu Liu (The University of Sydney; The University of Sydney, SenseTime Computer Vision Research Group, Australia), Hongwen Zhang (University of Chinese Academy of Sciences & CASIA), Zhenghao Chen (The University of Sydney), Zhiyong Wang (The University of Sydney), and Wanli Ouyang (The University of Sydney; The University of Sydney, SenseTime Computer Vision Research Group, Australia)
A Multigrid Method for Efficiently Training Video Models

Ego-Topo: Environment Affordances From Egocentric Video
Generative Hybrid Representations for Activity Forecasting With No-Regret Learning
 Skeleton-Based Action Recognition With Shift Graph Convolutional Network
Predicting Goal-Directed Human Attention Using Inverse Reinforcement Learning
X3D: Expanding Architectures for Efficient Video Recognition
Dynamic Multiscale Graph Neural Networks for 3D Skeleton Based Human Motion Prediction 211
Maosen Li (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University), Siheng Chen (Mitsubishi Electric Research Laboratories), Yangheng Zhao (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University), Ya Zhang (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University), Yanfeng Wang (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University), and Qi Tian (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University)
Use the Force, Luke! Learning to Predict Physical Forces by Simulating Effects

Abhinav Gupta (FAIR; Carnegie Mellon University)

Oral 1-1C: Adversarial Learning

DaST: Data-Free Substitute Training for Adversarial Attacks
Towards Verifying Robustness of Neural Networks Against A Family of Semantic Perturbations 241
Jeet Mohapatra (MIT EECS), Tsui-Wei Weng (MIT EECS), Pin-Yu Chen (MIT-IBM Watson AI Lab, IBM Research), Sijia Liu (MIT-IBM Watson Al Lab, IBM Research), and Luca Daniel (MIT EECS)
The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks 250 Yuheng Zhang (Fudan University), Ruoxi Jia (University of California at Berkeley), Hengzhi Pei (Fudan University), Wenxiao Wang (Tsinghua University), Bo Li (University of Illinois at Urbana-Champaign), and Dawn Song (University of California at Berkeley)
A Self-supervised Approach for Adversarial Robustness
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
How Does Noise Help Robustness? Explanation and Exploration under the Neural SDE Framework
Unpaired Image Super-Resolution Using Pseudo-Supervision
Universal Litmus Patterns: Revealing Backdoor Attacks in CNNs

Robustness Guarantees for Deep Neural Networks on Videos Min Wu (Department of Computer Science, University of Oxford, UK) and Marta Kwiatkowska (Department of Computer Science, University of Oxford, UK)	308
 Benchmarking Adversarial Robustness on Image Classification	318
What It Thinks Is Important Is Important: Robustness Transfers Through Input Gradients Alvin Chan (Nanyang Technological University), Yi Tay (Nanyang Technological University), and Yew-Soon Ong (Nanyang Technological University; AI3, A*STAR, Singapore)	329
Transferable, Controllable, and Inconspicuous Adversarial Attacks on Person Re-identification With Deep Mis-Ranking Hongjun Wang (Sun Yat-sen University), Guangrun Wang (Sun Yat-sen University), Ya Li (Guangzhou University), Dongyu Zhang (Guangzhou University), and Liang Lin (Sun Yat-sen University; DarkMatter AI)	339
Poster 1-1P	
Video Modeling With Correlation Networks Heng Wang (Facebook AI), Du Tran (Facebook AI), Lorenzo Torresani (Facebook AI), and Matt Feiszli (Facebook AI)	349
Projection & Probability-Driven Black-Box Attack Jie Li (Department of Artificial Intelligence, School of Informatics, Xiamen University), Rongrong Ji (Department of Artificial Intelligence, School of Informatics, Xiamen University), Hong Liu (Department of Artificial Intelligence, School of Informatics, Xiamen University), Jianzhuang Liu (Noah's Ark Lab, Huawei Technologies), Bineng Zhong (Huaqiao University), Cheng Deng (Xidian University), and Qi Tian (Noah's Ark Lab, Huawei Technologies)	359
Auxiliary Training: Towards Accurate and Robust Models Linfeng Zhang (Tsinghua University; Institute for Interdisciplinary Information Core Technology), Muzhou Yu (Institute for Interdisciplinary Information Core Technology; Xi'an Jiaotong University), Tong Chen (Tsinghua University), Zuoqiang Shi (Tsinghua University), Chenglong Bao (Tsinghua University), and Kaisheng Ma (Tsinghua University)	369

PaStaNet: Toward Human Activity Knowledge Engine Yong-Lu Li (Shanghai Jiao Tong University), Liang Xu (Shanghai Jiao Tong University), Xinpeng Liu (Shanghai Jiao Tong University), Xijie Huang (Shanghai Jiao Tong University), Yue Xu (Shanghai Jiao Tong University), Shiyi Wang (Shanghai Jiao Tong University), Hao-Shu Fang (Shanghai Jiao Tong University), Ze Ma (Shanghai Jiao Tong University), Mingyang Chen (Shanghai Jiao Tong University), and Cewu Lu (Shanghai Jiao Tong University)	379
A Hierarchical Graph Network for 3D Object Detection on Point Clouds Jintai Chen (Zhejiang University, Hangzhou, China), Biwen Lei (Zhejiang University, Hangzhou, China), Qingyu Song (Zhejiang University, Hangzhou, China), Haochao Ying (Zhejiang University, Hangzhou, China), Danny Z. Chen (Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA), and Jian Wu (Zhejiang University, Hangzhou, China)	389
Learning Generative Models of Shape Handles Matheus Gadelha (Umass Amherst), Giorgio Gori (Adobe Research), Duygu Ceylan (Adobe Research), Radomír Měch (Adobe Research), Nathan Carr (Adobe Research), Tamy Boubekeur (Adobe Research), Rui Wang (Umass Amherst), and Subhransu Maji (Umass Amherst)	399
One Man's Trash Is Another Man's Treasure: Resisting Adversarial Examples by Adversarial Examples Chang Xiao (Columbia University, New York) and Changxi Zheng (Columbia University, New York)	409
Toward a Universal Model for Shape From Texture Dor Verbin (Harvard University) and Todd Zickler (Harvard University)	419
HybridPose: 6D Object Pose Estimation Under Hybrid Representations Chen Song (The University of Texas at Austin), Jiaru Song (The University of Texas at Austin), and Qixing Huang (The University of Texas at Austin)	428
Boundary-Aware 3D Building Reconstruction From a Single Overhead Image Jisan Mahmud (University of North Carolina at Chapel Hill), TRUE Price	438
(University of North Carolina at Chapel Hill), Akash Bapat (University of North Carolina at Chapel Hill), and Jan-Michael Frahm (University of North Carolina at Chapel Hill)	
of North Carolina at Chapel Hill), and Jan-Michael Frahm (University	449

 Transformation GAN for Unsupervised Image Synthesis and Representation Learning	Э
 PPDM: Parallel Point Detection and Matching for Real-Time Human-Object Interaction Detection	Э
Height and Uprightness Invariance for 3D Prediction From a Single View	8
SCT: Set Constrained Temporal Transformer for Set Supervised Action Segmentation	8
3DV: 3D Dynamic Voxel for Action Recognition in Depth Video	8

 Adaptive Interaction Modeling via Graph Operations Search	3
Front2Back: Single View 3D Shape Reconstruction via Front to Back Prediction	3
SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation	3
Single-View View Synthesis With Multiplane Images	3
Deep Parametric Shape Predictions Using Distance Fields	3
Leveraging Photometric Consistency Over Time for Sparsely Supervised Hand-Object Reconstruction	3
Yana Hasson (Inria; Département d'informatique de l'ENS, CNRS, PSL Research University), Bugra Tekin (Microsoft), Federica Bogo (Microsoft), Ivan Laptev (Inria; Département d'informatique de l'ENS, CNRS, PSL Research University), Marc Pollefeys (ETH Zürich; Microsoft), and Cordelia Schmid (Inria; Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK)	
Ensemble Generative Cleaning With Feedback Loops for Defending Adversarial Attacks 578 Jianhe Yuan (University of Missouri, Columbia, MO) and Zhihai He (University of Missouri, Columbia, MO)	3
Temporal Pyramid Network for Action Recognition	3

FaceScape: A Large-Scale High Quality 3D Face Dataset and Detailed Riggable 3D Face Prediction
Haotian Yang (Nanjing University), Hao Zhu (Nanjing University; Baidu Research; National Engineering Laboratory for Deep Learning Technology and Applications, China), Yanru Wang (Nanjing University), Mingkai Huang (Nanjing University), Qiu Shen (Nanjing University), Ruigang Yang (Baidu Research; University of Kentucky; Inceptio Inc.; National Engineering Laboratory for Deep Learning Technology and Applications, China), and Xun Cao (Nanjing University)
Structure-Guided Ranking Loss for Single Image Depth Prediction
In Perfect Shape: Certifiably Optimal 3D Shape Reconstruction From 2D Landmarks
When NAS Meets Robustness: In Search of Robust Architectures Against Adversarial Attacks628 Minghao Guo (The Chinese University of Hong Kong), Yuzhe Yang (MIT CSAIL), Rui Xu (The Chinese University of Hong Kong), Ziwei Liu (The Chinese University of Hong Kong), and Dahua Lin (The Chinese University of Hong Kong)
Towards Transferable Targeted Attack
Self-Supervised Human Depth Estimation From Monocular Videos
Recursive Social Behavior Graph for Trajectory Prediction

Context-Aware and Scale-Insensitive Temporal Repetition Counting	
OASIS: A Large-Scale Dataset for Single Image 3D in the Wild	
 VPLNet: Deep Single View Normal Estimation With Vanishing Points and Lines	
 Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning	
Defending Against Universal Attacks Through Selective Feature Regeneration	
 Universal Physical Camouflage Attacks on Object Detectors	
Intra- and Inter-Action Understanding via Temporal Action Parsing	

Lightweight Photometric Stereo for Facial Details Recovery
Bundle Pooling for Polygonal Architecture Segmentation Problem
 AvatarMe: Realistically Renderable 3D Facial Reconstruction "In-the-Wild"
Defending Against Model Stealing Attacks With Adaptive Misinformation
Learning to Generate 3D Training Data Through Hybrid Gradient
Cascaded Refinement Network for Point Cloud Completion
Enhancing Intrinsic Adversarial Robustness via Feature Pyramid Decoder
Learning to Discriminate Information for Online Action Detection
Adversarial Examples Improve Image Recognition

PQ-NET: A Generative Part Seq2Seq Network for 3D Shapes	6
Actor-Transformers for Group Activity Recognition	6
SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans	6
Geometry-Aware Satellite-to-Ground Image Synthesis for Urban Areas	6
Action Modifiers: Learning From Adverbs in Instructional Videos	5
 ZSTAD: Zero-Shot Temporal Activity Detection	6
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery 88 Lei Jin (ShanghaiTech University), Yanyu Xu (ShanghaiTech University), Jia Zheng (ShanghaiTech University), Junfei Zhang (KooLab, Kujiale.com), Rui Tang (KooLab, Kujiale.com), Shugong Xu (Shanghai University), Jingyi Yu (ShanghaiTech University), and Shenghua Gao (ShanghaiTech University)	6

Deep Kinematics Analysis for Monocular 3D Human Pose Estimation Jingwei Xu (Shanghai Jiao Tong University, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University), Zhenbo Yu (Shanghai Jiao Tong University, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University), Bingbing Ni (Shanghai Jiao Tong University, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University; Huawei Hisilicon), Jiancheng Yang (Shanghai Jiao Tong University, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University), Xiaokang Yang (Shanghai Jiao Tong University, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University), and Wenjun Zhang (Shanghai Jiao Tong University, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University)	896
TEA: Temporal Excitation and Aggregation for Action Recognition Yan Li (Platform and Content Group (PCG), Tencent), Bin Ji (State Key Laboratory for Novel Software Technology, Nanjing University, China), Xintian Shi (Platform and Content Group (PCG), Tencent), Jianguo Zhang (Department of Computer Science and Engineering, Southern University of Science and Technology, China), Bin Kang (Platform and Content Group (PCG), Tencent), and Limin Wang (State Key Laboratory for Novel Software Technology, Nanjing University, China)	906
Oops! Predicting Unintentional Action in Video Dave Epstein (Columbia University), Boyuan Chen (Columbia University), and Carl Vondrick (Columbia University)	916
Scene Recomposition by Learning-Based ICP Hamid Izadinia (University of Washington) and Steven M. Seitz (University of Washington)	927
Enhancing Cross-Task Black-Box Transferability of Adversarial Examples With Dispersion Reduction	937
Single-Step Adversarial Training With Dropout Scheduling Vivek B.S. (Video Analytics Lab, Department of Computational and Data Sciences Indian Institute of Science, Bangalore, India) and R. Venkatesh Babu (Video Analytics Lab, Department of Computational and Data Sciences Indian Institute of Science, Bangalore, India)	947
Deep Non-Line-of-Sight Reconstruction Javier Grau Chopite (University of Bonn), Matthias B. Hullin (University of Bonn), Michael Wand (University of Mainz), and Julian Iseringhausen (University of Bonn)	957

 SSRNet: Scalable 3D Surface Reconstruction Network	7
 Progressive Relation Learning for Group Activity Recognition	7
 Cooling-Shrinking Attack: Blinding the Tracker With Imperceptible Noises	7
 Adversarial Camouflage: Hiding Physical-World Attacks With Natural Styles	7
Weakly-Supervised Action Localization by Generative Attention Modeling	6

	017
Sravanti Addepalli (Video Analytics Lab, Department of Computational and Data Sciences Indian Institute of Science, Bangalore, India), Vivek B.S. (Video Analytics Lab, Department of Computational and Data	
Sciences Indian Institute of Science, Bangalore, India), Arya Baburaj	
(Video Analytics Lab, Department of Computational and Data Sciences Indian Institute of Science, Bangalore, India), Gaurang Sriramanan	
(Video Analytics Lab, Department of Computational and Data Sciences Indian Institute of Science, Bangalore, India), and R. Venkatesh Babu	
(Video Analytics Lab, Department of Computational and Data Sciences Indian Institute of Science, Bangalore, India)	
Polishing Decision-Based Adversarial Noise With a Customized Sampling	027
Towards Large Yet Imperceptible Adversarial Image Perturbations With Perceptual Color Distance	036
Zhengyu Zhao (Radboud University, Nijmegen, Netherlands), Zhuoran Liu (Radboud University, Nijmegen, Netherlands), and Martha Larson (Radboud University, Nijmegen, Netherlands)	
Something-Else: Compositional Action Recognition With Spatial-Temporal Interaction Networks	046
Joanna Materzynska (University of Oxford, TwentyBN), Tete Xiao (UC	
Berkeley), Roei Herzig (Tel Aviv University), Huijuan Xu (UC Berkeley), Xiaolong Wang (UC Berkeley), and Trevor Darrell (UC Berkeley)	
Learning Unsupervised Hierarchical Part Decomposition of 3D Objects From a Single RGB Image	057
Despoina Paschalidou (Max Planck Institute for Intelligent Systems Tübingen; Computer Vision Lab, ETH Zürich; Max Planck ETH Center for Learning Systems), Luc Van Gool (Computer Vision Lab, ETH Zürich; KU Leuven; Max Planck ETH Center for Learning Systems), and Andreas Geiger (Max Planck Institute for Intelligent Systems Tübingen; University of Tübingen; Max Planck ETH Center for Learning Systems)	
Focus on Defocus: Bridging the Synthetic to Real Domain Gap for Depth Estimation	068
Active Vision for Early Recognition of Human Actions	078

 SmallBigNet: Integrating Core and Contextual Views for Video Classification	89
Gate-Shift Networks for Video Action Recognition	99
 Semantics-Guided Neural Networks for Efficient Skeleton-Based Human Action Recognition 110 Pengfei Zhang (Xi'an Jiaotong University, Shaanxi, China), Cuiling Lan (Microsoft Research Asia, Beijing, China), Wenjun Zeng (Microsoft Research Asia, Beijing, China), Junliang Xing (National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China), Jianru Xue (Xi'an Jiaotong University, Shaanxi, China), and Nanning Zheng (Xi'an Jiaotong University, Shaanxi, China) 	09
Exploiting Joint Robustness to Adversarial Perturbations	19
 From Image Collections to Point Clouds With Self-Supervised Shape and Pose Networks 112 <i>K L Navaneet (Indian Institute of Science), Ansu Mathew (Indian Institute of Science), Shashank Kashyap (Indian Institute of Science), Wei-Chih Hung (University of California, Merced), Varun Jampani (Google Research), and R. Venkatesh Babu (Indian Institute of Science)</i> 	29
Searching for Actions on the Hyperbole	38
ColorFool: Semantic Adversarial Colorization	48

 Boosting the Transferability of Adversarial Samples via Attention
ActionBytes: Learning From Trimmed Videos to Localize Actions
Efficient Adversarial Training With Transferable Adversarial Examples
Alleviation of Gradient Exploding in GANs: Fake Can Be Real
On Isometry Robustness of Deep 3D Point Cloud Models Under Adversarial Attacks
Achieving Robustness in the Wild via Adversarial Mixing With Disentangled Representations 1208 Sven Gowal (DeepMind), Chongli Qin (DeepMind), Po-Sen Huang (DeepMind), Taylan Cemgil (DeepMind), Krishnamurthy Dvijotham (DeepMind), Timothy Mann (DeepMind), and Pushmeet Kohli (DeepMind)
QEBA: Query-Efficient Boundary-Based Blackbox Attack
Learning to Simulate Dynamic Environments With GameGAN

Learn2Perturb: An End-to-End Feature Perturbation Learning to Improve Adversarial Robustness	3
Ahmadreza Jeddi (Waterloo Al Institute, University of Waterloo, Waterloo, Ontario, Canada), Mohammad Javad Shafiee (Waterloo Al Institute, University of Waterloo, Waterloo, Ontario, Canada), Michelle Karg (ADC Automotive Distance Control Systems GmbH, Continental, Germany), Christian Scharfenberger (ADC Automotive Distance Control Systems GmbH, Continental, Germany), and Alexander Wong (Waterloo Al Institute, University of Waterloo, Waterloo, Ontario, Canada)	
Oral 1-2A: 3D From Multiview and Sensors (1)	
SDFDiff: Differentiable Rendering of Signed Distance Fields for 3D Shape Optimization	3
Through the Looking Glass: Neural 3D Reconstruction of Transparent Shapes)
TextureFusion: High-Quality Texture Acquisition for Real-Time RGB-D Scanning)
D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry 1278 Nan Yang (Technical University of Munich; Artisense), Lukas von Stumberg (Technical University of Munich; Artisense), Rui Wang (Technical University of Munich; Artisense), and Daniel Cremers (Technical University of Munich; Artisense)	}
Deep Implicit Volume Compression)
MAGSAC++, a Fast, Reliable and Accurate Robust Estimator	

OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression	310
Lila Huang (Uber Advanced Technologies Group; University of Waterloo),	
Shenlong Wang (Uber Advanced Technologies Group; University of	
Toronto), Kelvin Wong (Uber Advanced Technologies Group; University of	
Toronto), Jerry Liu (Uber Advanced Technologies Group), and Raquel	
Urtasun (Uber Advanced Technologies Group; University of Toronto)	

4D Association Graph for Realtime Multi-Person Motion Capture Using Multiple Video Cameras.... 1321

Yuxiang Zhang (Department of Automation, Tsinghua University), Liang An (Department of Automation, Tsinghua University), Tao Yu (Department of Automation, Tsinghua University), Xiu Li (Department of Automation, Tsinghua University), Kun Li (Tianjin University), and Yebin Liu (Department of Automation, Tsinghua University; Institute for Brain and Cognitive Sciences, Tsinghua University)

Robust 3D Self-Portraits in Seconds	
Zhe Li (Department of Automation, Tsinghua University, China), Tao Yu	
(Department of Automation, Tsinghua University, China), Chuanyu Pan	
(Department of Automation, Tsinghua University, China), Zerong Zheng	
(Department of Automation, Tsinghua University, China), and Yebin Liu	
(Department of Automation, Tsinghua University, China; Institute for	
Brain and Cognitive Sciences, Tsinghua University, China)	

Oral 1-2B: Computational Photography

FastDVDnet: Towards Real-Time Deep Video Denoising Without Flow Estimation Matias Tassano (GoPro France), Julie Delon (MAP5, Université de Paris & IUF), and Thomas Veit (GoPro France)	1351
Learning to Have an Ear for Face Super-Resolution Givi Meishvili (University of Bern, Switzerland), Simon Jenni (University of Bern, Switzerland), and Paolo Favaro (University of Bern, Switzerland)	1361
Deep Optics for Single-Shot High-Dynamic-Range Imaging Christopher A. Metzler (Stanford University), Hayato Ikoma (Stanford University), Yifan Peng (Stanford University), and Gordon Wetzstein (Stanford University)	1372
Learning Rank-1 Diffractive Optics for Single-Shot High Dynamic Range Imaging Qilin Sun (KAUST), Ethan Tseng (Princeton University), Qiang Fu (KAUST), Wolfgang Heidrich (KAUST), and Felix Heide (Princeton University)	1383
Deep White-Balance Editing Mahmoud Afifi (Samsung Al Center (SAIC) – Toronto; York University) and Michael S. Brown (Samsung Al Center (SAIC) – Toronto)	1394

Non-Line-of-Sight Surface Reconstruction Using the Directional Light-Cone Transform Sean I. Young (Stanford University), David B. Lindell (Stanford University), Bernd Girod (Stanford University), David Taubman (UNSW Sydney), and Gordon Wetzstein (Stanford University)	1404
Seeing the World in a Bag of Chips Jeong Joon Park (University of Washington), Aleksander Holynski (University of Washington), and Steven M. Seitz (University of Washington)	1414
Correction Filter for Single Image Super-Resolution: Robustifying Off-the-Shelf Deep Super-Resolvers	1425
Retina-Like Visual Image Reconstruction via Spiking Neural Model Lin Zhu (Peking University; Pengcheng Laboratory), Siwei Dong (Peking University), Jianing Li (Peking University; Pengcheng Laboratory), Tiejun Huang (Peking University), and Yonghong Tian (Peking University; Pengcheng Laboratory)	1435
 Plug-and-Play Algorithms for Large-Scale Snapshot Compressive Imaging	1444

Oral 1-2C: Efficient Training and Inference

Neural Network Pruning With Residual-Connections and Limited-Data	155
AdderNet: Do We Really Need Multiplications in Deep Learning?	165
NeuralScale: Efficient Scaling of Neurons for Resource-Constrained Deep Neural Networks 147 Eugene Lee (Institute of Electronics, National Chiao Tung University) and Chen-Yi Lee (Institute of Electronics, National Chiao Tung	1 75

Training Quantized Neural Networks With a Full-Precision Auxiliary Module	5
Neural Networks Are More Productive Teachers Than Human Raters: Active Mixup for Data-Efficient Knowledge Distillation From a Blackbox Model	5
Multi-Dimensional Pruning: A Unified Framework for Model Compression	5
Towards Efficient Model Compression via Learned Global Ranking	5
 HRank: Filter Pruning Using High-Rank Feature Map	5
DMCP: Differentiable Markov Channel Pruning for Neural Networks	5
ReSprop: Reuse Sparsified Backpropagation	5

Poster 1-2P

 Synchronizing Probability Measures on Rotations via Optimal Transport	56
GhostNet: More Features From Cheap Operations	77
 Attention-Aware Multi-View Stereo	37
Bi3D: Stereo Depth Estimation via Binary Classifications	€
Joint Filtering of Intensity Images and Neuromorphic Events for High-Resolution Noise-Robust Imaging)6
SGAS: Sequential Greedy Architecture Search	17
HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection	28

Frequency Domain Compact 3D Convolutional Neural Networks	1638
Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline Yu-Lun Liu (National Taiwan University; MediaTek Inc.), Wei-Sheng Lai (Google), Yu-Sheng Chen (National Taiwan University), Yi-Lung Kao (National Taiwan University), Ming-Hsuan Yang (Google; UC Merced), Yung-Yu Chuang (National Taiwan University), and Jia-Bin Huang (Virginia Tech)	1648
DNU: Deep Non-Local Unrolling for Computational Spectral Imaging Lizhi Wang (Beijing Institute of Technology), Chen Sun (Beijing Institute of Technology), Maoqing Zhang (Beijing Institute of Technology), Ying Fu (Beijing Institute of Technology), and Hua Huang (Beijing Institute of Technology)	1658
Single Image Optical Flow Estimation With an Event Camera Liyuan Pan (Australian National University, Canberra, Australia; Australian Centre for Robotic Vision), Miaomiao Liu (Australian National University, Canberra, Australia; Australian Centre for Robotic Vision), and Richard Hartley (Australian National University, Canberra, Australia; Australian Centre for Robotic Vision)	1669
Multi-View Neural Human Rendering Minye Wu (ShanghaiTech University; University of Chinese Academy of Sciences; Shanghai Institute of Microsystem and Information Technology), Yuehao Wang (ShanghaiTech University), Qiang Hu (ShanghaiTech University), and Jingyi Yu (ShanghaiTech University; DGene Inc.)	1679
Depth Sensing Beyond LiDAR Range Kai Zhang (Cornell Tech, Cornell University), Jiaxin Xie (HKUST), Noah Snavely (Cornell Tech, Cornell University), and Qifeng Chen (HKUST)	1689
Event Probability Mask (EPM) and Event Denoising Convolutional Neural Network (EDnCNN) f Neuromorphic Cameras <i>R. Wes Baldwin (Department of Electrical Engineering, University of Dayton), Mohammed Almatrafi (Department of Electrical Engineering, Umm Al-Qura University), Vijayan Asari (Department of Electrical Engineering, University of Dayton), and Keigo Hirakawa (Department of Electrical Engineering, University of Dayton)</i>	
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud Weijing Shi (Carnegie Mellon University,) and Raj Rajkumar (Carnegie Mellon University,)	1708

 Self-Learning Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence	7
 Neuromorphic Camera Guided High Dynamic Range Imaging	.'7
Learning in the Frequency Domain	7
Polarized Reflection Removal With Perfect Alignment in the Wild	⊧7
Learning Multiview 3D Point Cloud Registration	6
A Sparse Resultant Based Method for Efficient Minimal Solvers	7
Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement	7

 BlendedMVS: A Large-Scale Dataset for Generalized Multi-View Stereo Networks
Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Convolution Networks for Point Cloud Analysis
 A Semi-Supervised Assessor of Neural Architectures
Learning a Reinforced Agent for Flexible Exposure Bracketing Selection
 CARS: Continuous Evolution for Efficient Neural Architecture Search

Joint 3D Instance Segmentation and Object Detection for Autonomous Driving	1836
View-GCN: View-Based Graph Convolutional Network for 3D Shape Analysis	847
Collaborative Distillation for Ultra-Resolution Universal Style Transfer	857
TomoFluid: Reconstructing Dynamic Fluid From Sparse View Videos	867
Instance Shadow Detection 1 Tianyu Wang (Department of Computer Science and Engineering, The 1 Chinese University of Hong Kong; Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China), Xiaowei Hu (Department of Computer Science and Engineering, The Chinese University of Hong Kong), Qiong Wang (Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China), Pheng-Ann Heng (Department of Computer Science and Engineering, The Chinese University of Hong Kong; Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China), Pheng-Ann Heng (Department of Computer Science and Engineering, The Chinese University of Hong Kong; Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China), and Chi-Wing Fu (Department of Computer Science and Engineering, The Chinese University of Hong Kong; Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China) mad Chi-Wing Fu University of Hong Kong; Shenzhen Key Laboratory of Virtual Reality <	1877

Self2Self With Dropout: Learning Self-Supervised Denoising From Single Image
Discrete Model Compression With Resource Constraint for Deep Neural Networks
Structured Compression by Weight Encryption for Unstructured Pruning and Quantization 1906 Se Jung Kwon (Samsung Research, Republic of Korea), Dongsoo Lee (Samsung Research, Republic of Korea), Byeongwook Kim (Samsung Research, Republic of Korea), Parichay Kapoor (Samsung Research, Republic of Korea), Baeseong Park (Samsung Research, Republic of Korea), and Gu-Yeon Wei (Samsung Research, Republic of Korea; Harvard University, MA)
End-to-End Learning Local Multi-View Descriptors for 3D Point Clouds
 Minimal Solutions for Relative Pose With a Single Affine Correspondence
Point Cloud Completion by Skip-Attention Network With Hierarchical Folding
Fast-MVSNet: Sparse-to-Dense Multi-View Stereo With Learned Propagation and Gauss-NewtonRefinement1946Zehao Yu (ShanghaiTech University) and Shenghua Gao (ShanghaiTechUniversity)

AANet: Adaptive Aggregation Network for Efficient Stereo Matching
Towards Unified INT8 Training for Convolutional Neural Network
Active 3D Motion Visualization Based on Spatiotemporal Light-Ray Integration
Block-Wisely Supervised Neural Architecture Search With Knowledge Distillation
GreedyNAS: Towards Fast One-Shot NAS With Greedy Supernet
Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration
DIST: Rendering Deep Implicit Signed Distance Function With Differentiable Sphere Tracing . 2016 Shaohui Liu (ETH Zurich; Tsinghua University), Yinda Zhang (Google), Songyou Peng (ETH Zurich; Max Planck ETH Center for Learing Systems), Boxin Shi (Peking University; Peng Cheng Laboratory), Marc Pollefeys (ETH Zurich; Microsoft; Max Planck ETH Center for Learing Systems), and Zhaopeng Cui (ETH Zurich)
Visually Imbalanced Stereo Matching

Mesh-Guided Multi-View Stereo With Pyramid Architecture Yuesong Wang (School of Computer Science & Technology, Huazhong University of Science & Technology, China), Tao Guan (School of Computer Science & Technology, Huazhong University of Science & Technology, China; Farsee2 Technology Ltd, China), Zhuo Chen (School of Computer Science & Technology, Huazhong University of Science & Technology, China), Yawei Luo (School of Computer Science & Technology, Huazhong University of Science & Technology, Huazhong University of Science & Technology, China), Keyang Luo (School of Computer Science & Technology, Huazhong University of Science & Technology, China), and Lili Ju (University of South Carolina, USA)	2036
BiDet: An Efficient Binarized Object Detector	2046
Local Non-Rigid Structure-From-Motion From Diffeomorphic Mappings Shaifali Parashar (CVLAB, EPFL, Switzerland), Mathieu Salzmann (CVLAB, EPFL, Switzerland), and Pascal Fua (CVLAB, EPFL, Switzerland)	2056
Seeing Around Street Corners: Non-Line-of-Sight Detection and Tracking In-the-Wild Using Doppler Radar Nicolas Scheiner (Mercedes-Benz AG), Florian Kraus (Mercedes-Benz AG), Fangyin Wei (Princeton University), Buu Phan (Algolux), Fahim Mannan (Algolux), Nils Appenrodt (Mercedes-Benz AG), Werner Ritter (Mercedes-Benz AG), Jürgen Dickmann (Mercedes-Benz AG), Klaus Dietmayer (Ulm University), Bernhard Sick (University of Kassel), and Felix Heide (Princeton University; Algolux)	2065
 APQ: Joint Search for Network Architecture, Pruning and Quantization Policy Tianzhe Wang (Massachusetts Institute of Technology; Shanghai Jiao Tong University), Kuan Wang (Massachusetts Institute of Technology), Han Cai (Massachusetts Institute of Technology), Ji Lin (Massachusetts Institute of Technology), Zhijian Liu (Massachusetts Institute of Technology), Hanrui Wang (Massachusetts Institute of Technology), Yujun Lin (Massachusetts Institute of Technology), and Song Han (Massachusetts Institute of Technology) 	2075
On the Acceleration of Deep Learning Model Parallelism With Staleness An Xu (Electrical and Computer Engineering Department, University of Pittsburgh, PA, USA), Zhouyuan Huo (Electrical and Computer Engineering Department, University of Pittsburgh, PA, USA), and Heng Huang (Electrical and Computer Engineering Department, University of Pittsburgh, PA, USA; JD Finance America Corporation, CA, USA)	2085

RevealNet: Seeing Behind Objects in RGB-D Scans
 MemNAS: Memory-Efficient Neural Architecture Search With Grow-Trim Learning
StegaStamp: Invisible Hyperlinks in Physical Photographs
L2-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks
Polarized Non-Line-of-Sight Imaging
AdaBits: Neural Network Quantization With Adaptive Bit-Widths
Multi-Scale Boosted Dehazing Network With Dense Feature Fusion
ClusterVO: Clustering Moving Instances and Estimating Visual Odometry for Self and Surroundings

Automatic Neural Network Compression by Sparsity-Quantization Joint Learning: A Constrained Optimization-Based Approach
Normal Assisted Stereo Depth Estimation
 Fusing Wearable IMUs With Multi-View Images for Human Pose Estimation: A Geometric Approach
gDLS*: Generalized Pose-and-Scale Estimation Given Scale and Gravity Priors
Embodied Language Grounding With 3D Visual Feature Representations
Learning to Autofocus
Joint Demosaicing and Denoising With Self Guidance
Forward and Backward Information Retention for Accurate Binary Neural Networks

Light Field Spatial Super-Resolution via Deep Combinatorial Geometry Embedding and Structural Consistency Regularization	7
A Multi-Hypothesis Approach to Color Constancy	7
Learning to Restore Low-Light Images via Decomposition-and-Enhancement	8
Background Matting: The World Is Your Green Screen	8
Supervised Raw Video Denoising With a Benchmark Dataset on Dynamic Scenes	8
Photometric Stereo via Discrete Hypothesis-and-Test Search	8
Dynamic Convolutions: Exploiting Spatial Sparsity for Faster Inference	7

 Fixed-Point Back-Propagation Training	2327
Heterogeneous Knowledge Distillation Using Information Flow Modeling Nikolaos Passalis (Department of Informatics, Aristotle University of Thessaloniki, Greece), Maria Tzelepi (Department of Informatics, Aristotle University of Thessaloniki, Greece), and Anastasios Tefas (Department of Informatics, Aristotle University of Thessaloniki, Greece)	2336
Rethinking Differentiable Search for Mixed-Precision Neural Networks Zhaowei Cai (UC San Diego) and Nuno Vasconcelos (UC San Diego)	2346
Residual Feature Aggregation Network for Image Super-Resolution Jie Liu (State Key Laboratory for Novel Software Technology, Nanjing University, China), Wenjie Zhang (State Key Laboratory for Novel Software Technology, Nanjing University, China), Yuting Tang (State Key Laboratory for Novel Software Technology, Nanjing University, China), Jie Tang (State Key Laboratory for Novel Software Technology, Nanjing University, China), and Gangshan Wu (State Key Laboratory for Novel Software Technology, Nanjing University, China)	2356
Resolution Adaptive Networks for Efficient Inference Le Yang (Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist)), Yizeng Han (Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist)), Xi Chen (Harbin Institute of Technology), Shiji Song (Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist)), Jifeng Dai (SenseTime), and Gao Huang (Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist))	2366
Learning to Forget for Meta-Learning Sungyong Baik (ASRI, Department of ECE, Seoul National University), Seokil Hong (ASRI, Department of ECE, Seoul National University), and Kyoung Mu Lee (ASRI, Department of ECE, Seoul National University)	2376

Deep Learning for Handling Kernel/model Uncertainty in Image Deconvolution	35
Reflection Scene Separation From a Single Image	Э5
 Wavelet Synthesis Net for Disparity Estimation to Synthesize DSLR Calibre Bokeh Effect on Smartphones	24
Bundle Adjustment on a Graph Processor	13
3D-ZeF: A 3D Zebrafish Tracking Benchmark Dataset	23
 PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models 2434 Sachit Menon (Duke University, Durham, NC), Alexandru Damian (Duke University, Durham, NC), Shijia Hu (Duke University, Durham, NC), Nikhil Ravi (Duke University, Durham, NC), and Cynthia Rudin (Duke University, Durham, NC) 	
 Scalability in Perception for Autonomous Driving: Waymo Open Dataset	43

Oral 1-3A: 3D From a Single Image and Shape-From-X (2); 3D From Multiview and Sensors (2)

Extreme Relative Pose Network Under Hybrid Representations	2452
Single-Shot Monocular RGB-D Imaging Using Uneven Double Refraction	2462
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image	2472
3D Packing for Self-Supervised Monocular Depth Estimation	2482
Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching	2492
From Two Rolling Shutters to One Global Shutter	2502
Deep Global Registration	2511
Deep Stereo Using Adaptive Thin Volume Representation With Uncertainty Awareness 2 Shuo Cheng (University of California, San Diego), Zexiang Xu (University of California, San Diego), Shilin Zhu (University of California, San Diego), Zhuwen Li (Nuro Inc.), Li Erran Li (Scale AI; Columbia University), Ravi Ramamoorthi (University of California, San Diego), and Hao Su (University of California, San Diego)	2521
 Why Having 10,000 Parameters in Your Camera Model Is Better Than Twelve	2532

Blur Aware Calibration of Multi-Focus Plenoptic Camera	2542
Learning Fused Pixel and Feature-Based View Reconstructions for Light Fields	2552
SAL: Sign Agnostic Learning of Shapes From Raw Data	2562

Oral 1-3B: Image Retrieval; Datasets and Evaluation

Google Landmarks Dataset v2 – A Large-Scale Benchmark for Instance-Level Recognition and Retrieval	72
Tobias Weyand (Google Research, USA), André Araujo (Google Research, USA), Bingyi Cao (Google Research, USA), and Jack Sim (Google Research, USA)	
Instance Guided Proposal Network for Person Search	32
Which Is Plagiarism: Fashion Image Retrieval Based on Regional Representation for Design Protection	92
Yining Lang (Alibaba Group), Yuan He (Alibaba Group), Fan Yang (Alibaba Group), Jianfeng Dong (Zhejiang Gongshang Univresity; Alibaba-Zhejiang University Joint Institute of Frontier Technologies), and Hui Xue (Alibaba Group)	
Inter-Task Association Critic for Cross-Resolution Person Re-Identification)2

FineGym: A Hierarchical Video Dataset for Fine-Grained Action Understanding
 Mapillary Street-Level Sequences: A Dataset for Lifelong Place Recognition
BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning
Rethinking Computer-Aided Tuberculosis Diagnosis
IntrA: 3D Intracranial Aneurysm Dataset for Deep Learning
Revisiting Saliency Metrics: Farthest-Neighbor Area Under Curve
Computing the Testing Error Without a Testing Set
Improving Confidence Estimates for Unfamiliar Examples

Oral 1-3C: Low-Level and Physics-Based Vision

CycleISP: Real Image Restoration via Improved Data Synthesis	2693
Syed Waqas Zamir (Inception Institute of Artificial Intelligence,	
ŪAE), Aditya Arora (Inception Institute of Artificial Intelligence,	
UAE), Salman Khan (Inception Institute of Artificial Intelligence,	
UAE), Munawar Hayat (Inception Institute of Artificial Intelligence,	
UAE), Fahad Shahbaz Khan (Inception Institute of Artificial	
Intelligence, UAE), Ming-Hsuan Yang (University of California, Merced;	
Google Research), and Ling Shao (Inception Institute of Artificial	
Intelligence, UAE)	

Enhanced Blind Face Restoration With Multi-Exemplar Images and Adaptive Spatial Feature Fusion	2703
Xiaoming Li (School of Computer Science and Technology, Harbin Institute of Technology, China), Wenyu Li (School of Computer Science and Technology, Harbin Institute of Technology, China), Dongwei Ren (College of Intelligence and Computing, Tianjin University, China), Hongzhi Zhang (School of Computer Science and Technology, Harbin Institute of Technology, China), Meng Wang (Hefei University of Technology, China), and Wangmeng Zuo (School of Computer Science and Technology, Harbin Institute of Technology, China)	
Explorable Super Resolution Yuval Bahat (Technion - Israel Institute of Technology, Haifa, Israel) and Tomer Michaeli (Technion - Israel Institute of Technology, Haifa, Israel)	2713
Syn2Real Transfer Learning for Image Deraining Using Gaussian Processes Rajeev Yasarla (Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, MD, USA), Vishwanath A. Sindagi (Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, MD, USA), and Vishal M. Patel (Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, MD, USA)	2723
Deblurring by Realistic Blurring Kaihao Zhang (Australian National University), Wenhan Luo (Tencent Al Lab), Yiran Zhong (Australian National University; ACRV), Lin Ma (Tencent Al Lab), Björn Stenger (Rakuten Institute of Technology), Wei Liu (Tencent Al Lab), and Hongdong Li (Australian National University; ACRV)	2734
Bringing Old Photos Back to Life Ziyu Wan (City University of Hong Kong), Bo Zhang (Microsoft Research Asia), Dongdong Chen (Microsoft Cloud + Al), Pan Zhang (University of Science and Technology of China), Dong Chen (Microsoft Research Asia), Jing Liao (City University of Hong Kong), and Fang Wen (Microsoft Research Asia)	2744
A Physics-Based Noise Formation Model for Extreme Low-Light Raw Denoising Kaixuan Wei (Beijing Institute of Technology), Ying Fu (Beijing Institute of Technology), Jiaolong Yang (Microsoft Research), and Hua Huang (Beijing Institute of Technology)	2755
Learning to Super Resolve Intensity Images From Events S. Mohammad Mostafavi I. (GIST, South Korea), Jonghyun Choi (GIST, South Korea), and Kuk-Jin Yoon (KAIST, South Korea)	2765
Camouflaged Object Detection Deng-Ping Fan (Inception Institute of Artificial Intelligence, UAE; College of CS, Nankai University, China), Ge-Peng Ji (School of Computer Science, Wuhan University, China), Guolei Sun (ETH Zurich, Switzerland), Ming-Ming Cheng (College of CS, Nankai University, China), Jianbing Shen (Inception Institute of Artificial Intelligence, UAE), and Ling Shao (Inception Institute of Artificial Intelligence, UAE)	2774

Poster 1-3P

 Holistically-Attracted Wireframe Parsing	5
Conv-MPN: Convolutional Message Passing Neural Network for Structured Outdoor Architecture Reconstruction	
 Domain Adaptation for Image Dehazing	5
 Auto-Encoding Twin-Bottleneck Hashing	5
Agriculture-Vision: A Large Aerial Image Database for Agricultural Pattern Analysis	5

Bi-Directional Interaction Network for Person Search	2836
Meshlet Priors for 3D Mesh Reconstruction Abhishek Badki (NVIDIA; University of California, Santa Barbara), Orazio Gallo (NVIDIA), Jan Kautz (NVIDIA), and Pradeep Sen (University of California, Santa Barbara)	2846
Space-Time-Aware Multi-Resolution Video Enhancement Muhammad Haris (Toyota Technological Institute, Japan), Greg Shakhnarovich (Toyota Technological Institute at Chicago), and Norimichi Ukita (Toyota Technological Institute, Japan)	2856
FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation Xiang Li (HKUST), Tianhan Wei (HKUST), Yau Pun Chen (HKUST), Yu-Wing Tai (Tencent), and Chi-Keung Tang (HKUST)	2866
MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation John Lambert (Intel Labs; Georgia Institute of Technology), Zhuang Liu (Intel Labs; University of California, Berkeley), Ozan Sener (Intel Labs), James Hays (Georgia Institute of Technology; Argo AI), and Vladlen Koltun (Intel Labs)	2876
DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection Liming Jiang (Nanyang Technological University), Ren Li (SenseTime Research), Wayne Wu (Nanyang Technological University; SenseTime Research), Chen Qian (SenseTime Research), and Chen Change Loy (Nanyang Technological University)	2886
Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification Yichao Yan (Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE), Jie Qin (Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE), Jiaxin Chen (Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE), Li Liu (Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE), Fan Zhu (Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE), Ying Tai (Tencent YouTu Lab, Shanghai, China), and Ling Shao (Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE)	2896

Online Joint Multi-Metric Adaptation From Frequent Sharing-Subset Mining for Person Re-Identification	2906
 Taking a Deeper Look at Co-Salient Object Detection	2916
Single-Stage 6D Object Pose Estimation	2927
OccuSeg: Occupancy-Aware 3D Instance Segmentation	2937
Camera Trace Erasing	2947
 Deep Metric Learning via Adaptive Learnable Assessment	2957
Deep Representation Learning on Long-Tailed Data: A Learnable Embedding Augmentation Perspective	2967
Fantastic Answers and Where to Find Them: Immersive Question-Directed Visual Attention2 Ming Jiang (University of Minnesota), Shi Chen (University of Minnesota), Jinhui Yang (University of Minnesota), and Qi Zhao (University of Minnesota)	2977

HUMBI: A Large Multiview Dataset of Human Body Expressions Zhixuan Yu (University of Minnesota), Jae Shin Yoon (University of Minnesota), In Kyu Lee (University of Minnesota), Prashanth Venkatesh (University of Minnesota), Jaesik Park (POSTECH), Jihun Yu (BinaryVR), and Hyun Soo Park (University of Minnesota)	. 2987
Image Search With Text Feedback by Visiolinguistic Attention Learning Yanbei Chen (Queen Mary University of London), Shaogang Gong (Queen Mary University of London), and Loris Bazzani (Amazon)	2998
Image Processing Using Multi-Code GAN Prior Jinjin Gu (The Chinese University of Hong Kong; The Chinese University of Hong Kong, Shenzhen), Yujun Shen (The Chinese University of Hong Kong), and Bolei Zhou (The Chinese University of Hong Kong)	3009
 What Does Plate Glass Reveal About Camera Calibration? Qian Zheng (School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore), Jinnan Chen (School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore), Zhan Lu (School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore), Boxin Shi (National Engineering Laboratory for Video Technology, Department of CS, Peking University, Beijing, China; Peng Cheng Laboratory, Shenzhen, China), Xudong Jiang (School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore), Kim-Hui Yap (School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore), Ling-Yu Duan (National Engineering Laboratory for Video Technology, Department of CS, Peking University, Beijing, China; Peng Cheng Laboratoral Engineering Laboratory for Video Technology, Nanyang Technological University, Singapore), Ling-Yu Duan (National Engineering Laboratory for Video Technology, Department of CS, Peking University, Beijing, China; Peng Cheng Laboratory, Shenzhen, China), and Alex C. Kot (School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore) 	3019
Zero-Assignment Constraint for Graph Matching With Outliers Fudong Wang (Wuhan University, China), Nan Xue (Wuhan University, China), Jin-Gang Yu (South China University of Technology, China), and Gui-Song Xia (Wuhan University, China)	3030
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior Jinshan Pan (Nanjing University of Science and Technology), Haoran Bai (Nanjing University of Science and Technology), and Jinhui Tang (Nanjing University of Science and Technology)	3040
JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection <i>Keren Fu (College of Computer Science, Sichuan University), Deng-Ping</i> <i>Fan (College of CS, Nankai University; Inception Institute of</i> <i>Artificial Intelligence), Ge-Peng Ji (School of Computer Science,</i> <i>Wuhan University), and Qijun Zhao (College of Computer Science,</i> <i>Sichuan University)</i>	3049
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement	3060

Unsupervised Adaptation Learning for Hyperspectral Imagery Super-Resolution	C
Central Similarity Quantization for Efficient Image and Video Retrieval)
 ARCH: Animatable Reconstruction of Clothed Humans)
A Model-Driven Deep Neural Network for Single Image Rain Removal)
Novel Object Viewpoint Estimation Through Reconstruction Alignment)
Creating Something From Nothing: Unsupervised Knowledge Distillation for Cross-Modal Hashing	C
 Evaluating Weakly Supervised Object Localization Methods Right)

Style Normalization and Restitution for Generalizable Person Re-Identification
Reconstruct Locally, Localize Globally: A Model Free Method for Object Pose Estimation 3150 Ming Cai (The University of Adelaide) and Ian Reid (The University of Adelaide)
 RoboTHOR: An Open Simulation-to-Real Embodied AI Platform
All in One Bad Weather Removal Using Architectural Search
Relation-Aware Global Attention for Person Re-Identification
HOnnotate: A Method for 3D Annotation of Hand and Object Poses
Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics
Deep Unfolding Network for Image Super-Resolution

On the Uncertainty of Self-Supervised Monocular Depth Estimation Matteo Poggi (Department of Computer Science and Engineering (DISI), University of Bologna, Italy), Filippo Aleotti (Department of Computer Science and Engineering (DISI), University of Bologna, Italy), Fabio Tosi (Department of Computer Science and Engineering (DISI), University of Bologna, Italy), and Stefano Mattoccia (Department of Computer Science and Engineering (DISI), University of Bologna, Italy)	3224
Proxy Anchor Loss for Deep Metric Learning Sungyeon Kim (POSTECH, Pohang, Korea), Dongwon Kim (POSTECH, Pohang, Korea), Minsu Cho (POSTECH, Pohang, Korea), and Suha Kwak (POSTECH, Pohang, Korea)	3235
Unsupervised Learning for Intrinsic Image Decomposition From a Single Image Yunfei Liu (State Key Laboratory of VR Technology and Systems, School of CSE, Beihang University), Yu Li (Applied Research Center (ARC), Tencent PCG), Shaodi You (University of Amsterdam, Amsterdam, Netherland), and Feng Lu (State Key Laboratory of VR Technology and Systems, School of CSE, Beihang University; Peng Cheng Laboratory, Shenzhen, China)	3245
Multi-Domain Learning for Accurate and Few-Shot Color Constancy Jin Xiao (The Hong Kong Polytechnic University), Shuhang Gu (CVL, ETH Zürich), and Lei Zhang (The Hong Kong Polytechnic University; DAMO Academy, Alibaba Group)	3255
PANDA: A Gigapixel-Level Human-Centric Video Dataset Xueyang Wang (Tsinghua University), Xiya Zhang (Tsinghua University), Yinheng Zhu (Tsinghua University), Yuchen Guo (Tsinghua University), Xiaoyun Yuan (Tsinghua University), Liuyu Xiang (Tsinghua University), Zerun Wang (Tsinghua University), Guiguang Ding (Tsinghua University), David Brady (Duke University), Qionghai Dai (Tsinghua University), and Lu Fang (Tsinghua University)	3265
Cross-View Tracking for Multi-Human 3D Pose Estimation at Over 100 FPS Long Chen (Department of Computer Science and Technology, Tsinghua University), Haizhou Ai (Department of Computer Science and Technology, Tsinghua University), Rui Chen (Department of Computer Science and Technology, Tsinghua University), Zijie Zhuang (Department of Computer Science and Technology, Tsinghua University), and Shuang Liu (AiFi Inc.)	3276
Spatial-Temporal Graph Convolutional Network for Video-Based Person Re-Identification Jinrui Yang (School of Data and Computer Science, Sun Yat-sen University, China; Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China), Wei-Shi Zheng (School of Data and Computer Science, Sun Yat-sen University, China; Peng Cheng Laboratory, China; Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China), Qize Yang (School of Data and Computer Science, Sun Yat-sen University, China; Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China), Ying-Cong Chen (The Chinese University of Hong Kong, China), and Qi Tian (The Huawei Noah's Ark Lab, China)	3286

 Salience-Guided Cascaded Suppression Network for Person Re-Identification Xuesong Chen (School of Electronic and Computer Engineering, Peking University, China; Southern University of Science and Technology, China), Canmiao Fu (Tencent, China), Yong Zhao (School of Electronic and Computer Engineering, Peking University, China), Feng Zheng (Southern University of Science and Technology, China), Jingkuan Song (University of Electronic Science and Technology of China, China), Rongrong Ji (Xiamen University, China; Peng Cheng Laboratory, China), and Yi Yang (The ReLER Lab, Centre for Al, University of Technology Sydney, Australia) 	3297
Fashion Outfit Complementary Item Retrieval	3308
Learning Event-Based Motion Deblurring	3317
Domain Decluttering: Simplifying Images to Mitigate Synthetic-Real Domain Shift and Improve Depth Estimation	3327
Neural Blind Deconvolution Using Deep Priors	3338
 Anisotropic Convolutional Networks for 3D Semantic Scene Completion	3348
TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution Yapeng Tian (University of Rochester), Yulun Zhang (Northeastern University), Yun Fu (Northeastern University), and Chenliang Xu (University of Rochester)	3357
Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution Xiaoyu Xiang (Purdue University), Yapeng Tian (University of Rochester), Yulun Zhang (Northeastern University), Yun Fu (Northeastern University), Jan P. Allebach (Purdue University), and Chenliang Xu (University of Rochester)	3367

Fast MSER	3377
Unsupervised Person Re-Identification via Softened Similarity Learning	3387
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-Identification	3397
Learning Formation of Physically-Based Face Attributes	3407
Generalized Product Quantization Network for Semi-Supervised Image Retrieval Young Kyun Jang (Department of ECE, INMC, Seoul National University, Seoul Korea) and Nam Ik Cho (Department of ECE, INMC, Seoul National University, Seoul Korea)	3417
 Stereoscopic Flash and No-Flash Photography for Shape and Albedo Recovery	3427
Context-Aware Group Captioning via Self-Attention and Contrastive Features Zhuowan Li (Johns Hopkins University), Quan Tran (Adobe Research), Long Mai (Adobe Research), Zhe Lin (Adobe Research), and Alan L. Yuille (Johns Hopkins University)	3437

MEBOW: Monocular Estimation of Body Orientation in the Wild Chenyan Wu (The Pennsylvania State University; Amazon Lab126), Yukun Chen (The Pennsylvania State University), Jiajia Luo (Amazon Lab126), Che-Chun Su (Amazon Lab126), Anuja Dawane (Amazon Lab126), Bikramjot Hanzra (Amazon Lab126), Zhuo Deng (Amazon Lab126), Bilan Liu (Amazon Lab126), James Z. Wang (The Pennsylvania State University), and Cheng-hao Kuo (Amazon Lab126)	3448
Distilling Image Dehazing With Heterogeneous Task Imitation Ming Hong (Fujian Key Laboratory of Sensing and Computing for Smart City, School of Informatics, Xiamen University, Fujian, China), Yuan Xie (School of Computer Science and Technology, East China Normal University, Shanghai, China), Cuihua Li (Fujian Key Laboratory of Sensing and Computing for Smart City, School of Informatics, Xiamen University, Fujian, China), and Yanyun Qu (Fujian Key Laboratory of Sensing and Computing for Smart City, School of Informatics, Xiamen University, Fujian, China)	3459
Select, Supplement and Focus for RGB-D Saliency Detection Miao Zhang (Dalian University of Technology, China; Key Lab for Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, China), Weisong Ren (Dalian University of Technology, China), Yongri Piao (Dalian University of Technology, China), Zhengkun Rong (Dalian University of Technology, China), and Huchuan Lu (Dalian University of Technology, China; Key Lab for Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, China; Pengcheng Lab)	3469
Transfer Learning From Synthetic to Real-Noise Denoising With Adaptive Instance Normalization Yoonsik Kim (Departmet of ECE, INMC, Seoul National University, Seoul Korea), Jae Woong Soh (Departmet of ECE, INMC, Seoul National University, Seoul Korea), Gu Yong Park (Departmet of ECE, INMC, Seoul National University, Seoul Korea), and Nam Ik Cho (Departmet of ECE, INMC, Seoul National University, Seoul Korea)	3479
On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner Carolin Schmitt (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen), Simon Donné (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen), Gernot Riegler (Intel Intelligent Systems Lab), Vladlen Koltun (Intel Intelligent Systems Lab), and Andreas Geiger (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen)	3490
Differentiable Volumetric Rendering: Learning Implicit 3D Representations Without 3D Supervision Michael Niemeyer (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen), Lars Mescheder (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen; Amazon, Tübingen), Michael Oechsle (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen; ETAS GmbH, Bosch Group, Stuttgart), and Andreas Geiger (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen)	3501

Meta-Transfer Learning for Zero-Shot Super-Resolution	513
Solving Jigsaw Puzzles With Eroded Boundaries	523
Context-Aware Attention Network for Image-Text Retrieval	533
M-LVC: Multiple Frames Prediction for Learned Video Compression	543
Efficient Dynamic Scene Deblurring Using Spatially Variant Deconvolution Network With Optical Flow Guided Training	552
Single Image Reflection Removal Through Cascaded Refinement	562

From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of Picture Quality S Zhenqiang Ying (University of Texas at Austin), Haoran Niu (University of Texas at Austin), Praful Gupta (University of Texas at Austin), Dhruv Mahajan (Facebook Al), Deepti Ghadiyaram (Facebook Al), and Alan Bovik (University of Texas at Austin)	3572
 Video to Events: Recycling Video Datasets for Event Cameras	3583
Composed Query Image Retrieval Using Locally Bounded Features Mehrdad Hosseinzadeh (University of Manitoba, Canada) and Yang Wang (University of Manitoba, Canada)	3593
Spatially-Attentive Patch-Hierarchical Network for Adaptive Motion Deblurring Maitreya Suin (Indian Institute of Technology Madras, India), Kuldeep Purohit (Indian Institute of Technology Madras, India), and A. N. Rajagopalan (Indian Institute of Technology Madras, India)	3603
 End-to-End Illuminant Estimation Based on Deep Metric Learning	3613
Variational-EM-Based Deep Learning for Noise-Blind Image Deblurring Yuesong Nan (Department of Mathematics, National University of Singapore, Singapore), Yuhui Quan (School of Computer Science & Engineering, South China University of Technology, Guangzhou , China), and Hui Ji (Department of Mathematics, National University of Singapore, Singapore)	3623
Image Demoireing with Learnable Bandpass Filters Bolun Zheng (Hangzhou Dianzi University), Shanxin Yuan (Huawei Noah's Ark Lab), Gregory Slabaugh (Huawei Noah's Ark Lab), and Aleš Leonardis (Huawei Noah's Ark Lab)	3633
Assessing Image Quality Issues for Real-World Problems Tai-Yin Chiu (University of Texas at Austin), Yinan Zhao (University of Texas at Austin), and Danna Gurari (University of Texas at Austin)	3643
Memory-Efficient Hierarchical Neural Architecture Search for Image Denoising	3654

Blindly Assess Image Quality in the Wild Guided by a Self-Adaptive Hyper Network	564
Perceptual Quality Assessment of Smartphone Photography	674
Don't Hit Me! Glass Detection in Real-World Scenes	684
Progressive Mirror Detection	694

Oral 1-4A: Scene Analysis and Understanding

Category-Level Articulated Object Pose Estimation Xiaolong Li (Virginia Tech), He Wang (Stanford University), Li Yi (Google Research), Leonidas J. Guibas (Stanford University), A. Lynn Abbott (Virginia Tech), and Shuran Song (Columbia University)	3703
Unbiased Scene Graph Generation From Biased Training Kaihua Tang (Nanyang Technological University), Yulei Niu (Renmin University of China), Jianqiang Huang (Nanyang Technological University; Damo Academy, Alibaba Group), Jiaxin Shi (Tsinghua University), and Hanwang Zhang (Nanyang Technological University)	3713
Dynamic Graph Message Passing Networks Li Zhang (University of Oxford), Dan Xu (University of Oxford), Anurag Arnab (Google Research), and Philip H.S. Torr (University of Oxford)	
Weakly Supervised Visual Semantic Parsing Alireza Zareian (Columbia University, New York, NY, USA), Svebor Karaman (Columbia University, New York, NY, USA), and Shih-Fu Chang (Columbia University, New York, NY, USA)	3733

GPS-Net: Graph Property Sensing Network for Scene Graph Generation
End-to-End Optimization of Scene Layout
Unsupervised Intra-Domain Adaptation for Semantic Segmentation Through Self-Supervision 3763 <i>Fei Pan (KAIST, South Korea), Inkyu Shin (KAIST, South Korea),</i> <i>Francois Rameau (KAIST, South Korea), Seokju Lee (KAIST, South Korea),</i> <i>and In So Kweon (KAIST, South Korea)</i>
Dual Super-Resolution Learning for Semantic Segmentation
Self-Supervised Scene De-Occlusion
BANet: Bidirectional Aggregation Network With Occlusion Handling for Panoptic Segmentation 3792 Vifeng Chen (Zheijang University), Guangchen Lin (Zheijang

Yifeng Chen (Zhejiang University), Guangchen Lin (Zhejiang University), Songyuan Li (Zhejiang University), Omar Bourahla (Zhejiang University), Yiming Wu (Zhejiang University), Fangfang Wang (Zhejiang University), Junyi Feng (Zhejiang University), Mingliang Xu (Zhengzhou University), and Xi Li (Zhejiang University)

Oral 1-4B: Medical, Biological and Cell Microscopy

Cross-View Correspondence Reasoning Based on Bipartite Graph Convolutional Network for Mammogram Mass Detection
 MPM: Joint Representation of Motion and Position Map for Cell Tracking
Deep Distance Transform for Tubular Structure Segmentation in CT Scans
Instance Segmentation of Biological Images Using Harmonic Embeddings
Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classification with Unannotated Histopathological Images
 SOS: Selective Objective Switch for Rapid Immunofluorescence Whole Slide Image Classification

Oral 1-4C: Transfer/Low-Shot/Semi/Unsupervised Learning (1)

METAL: Minimum Effort Temporal Activity Localization in Untrimmed Videos	31
Neural Data Server: A Large-Scale Search Engine for Transfer Learning Data	92
Revisiting Knowledge Distillation via Label Smoothing Regularization)2
 WCP: Worst-Case Perturbations for Semi-Supervised Deep Learning	1
DEPARA: Deep Attribution Graph for Deep Knowledge Transferability	<u>'</u> 1
Conditional Channel Gated Networks for Task-Aware Continual Learning	30
Towards Discriminability and Diversity: Batch Nuclear-Norm Maximization Under Label Insufficient Situations	10

Poster 1-4P

 FocalMix: Semi-Supervised Learning for 3D Medical Image Detection
Learning 3D Semantic Scene Graphs From 3D Indoor Reconstructions
Self-Supervised Viewpoint Learning From Image Collections
Two-Shot Spatially-Varying BRDF and Shape Estimation
 Variational Context-Deformable ConvNets for Indoor Scene Parsing
Strip Pooling: Rethinking Spatial Pooling for Scene Parsing
Few-Shot Object Detection With Attention-RPN and Multi-Relation Detector

 What Can Be Transferred: Unsupervised Domain Adaptation for Endoscopic Lesions Segmentation
Rock, Arkansas, USA)
ADINet: Attribute Driven Incremental Network for Retinal Image Classification
Unsupervised Domain Adaptation With Hierarchical Gradient Synchronization
Deep Grouping Model for Unified Perceptual Parsing
Where Am I Looking At? Joint Location and Orientation Estimation by Cross-View Matching 4063 Yujiao Shi (Australian National University; Australian Centre for Robotic Vision), Xin Yu (Australian National University; Australian Centre for Robotic Vision; University of Technology Sydney), Dylan Campbell (Australian National University; Australian Centre for Robotic Vision), and Hongdong Li (Australian National University; Australian Centre for Robotic Vision)

Gum-Net: Unsupervised Geometric Matching for Fast and Accurate 3D Subtomogram Image Alignment and Averaging
FDA: Fourier Domain Adaptation for Semantic Segmentation
 Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery
 When2com: Multi-Agent Perception via Communication Graph Grouping
Learning Human-Object Interaction Detection Using Interaction Points
C2FNAS: Coarse-to-Fine Neural Architecture Search for 3D Medical Image Segmentation 4125 Qihang Yu (The Johns Hopkins University), Dong Yang (NVIDIA), Holger Roth (NVIDIA), Yutong Bai (The Johns Hopkins University), Yixiao Zhang (The Johns Hopkins University), Alan L. Yuille (The Johns Hopkins University), and Daguang Xu (NVIDIA)
Adaptive Subspaces for Few-Shot Learning
Learning to Detect Important People in Unlabelled Images for Semi-Supervised Important People Detection
Stochastic Sparse Subspace Clustering

CRNet: Cross-Reference Networks for Few-Shot Segmentation
 Shoestring: Graph-Based Semi-Supervised Classification With Severely Limited Labeled Data 4173 Wanyu Lin (University of Toronto), Zhaolin Gao (University of
Toronto), and Baochun Li (University of Toronto)
Uninformed Students: Student-Teacher Anomaly Detection With Discriminative Latent Embeddings
Paul Bergmann (MVTec Software GmbH), Michael Fauser (MVTec Software GmbH), David Sattlegger (MVTec Software GmbH), and Carsten Steger (MVTec Software GmbH)
3D Sketch-Aware Semantic Scene Completion via Semi-Supervised Structure Prior
Graph-Guided Architecture Search for Real-Time Semantic Segmentation
Composing Good Shots by Exploiting Mutual Relations
Organ at Risk Segmentation for Head and Neck Cancer Using Stratified Learning and Neural Architecture Search

 G2L-Net: Global to Local Network for Real-Time 6D Pose Estimation With Embedding Vector Features	
Unsupervised Instance Segmentation in Microscopy Images via Panoptic Domain Adaptation and Task Re-Weighting	
Single-Stage Semantic Segmentation From Image Labels	
Cascaded Human-Object Interaction Recognition	
DuDoRNet: Learning a Dual-Domain Recurrent Network for Fast MRI Reconstruction With Deep T1 Prior	

Learning Integral Objects With Intra-Class Discriminator for Weakly-Supervised Semantic Segmentation	82
Junsong Fan (Center for Research on Intelligent Perception and Computing (CRIPAC), National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA); School of Artificial Intelligence, University of Chinese Academy of Sciences (UCAS)), Zhaoxiang Zhang (Center for Research on Intelligent Perception and Computing (CRIPAC), National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA); School of Artificial Intelligence, University of Chinese Academy of Sciences (UCAS); Center for Excellence in Brain Science and Intelligence Technology, CAS), Chunfeng Song (Center for Research on Intelligent Perception and Computing (CRIPAC), National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA); School of Artificial Intelligence, University of Chinese Academy of Sciences (UCAS)), and Tieniu Tan (Center for Research on Intelligent Perception and Computing (CRIPAC), National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA); School of Artificial Intelligence, University of Chinese Academy of Sciences (CASIA); School of Artificial Intelligence, University of Chinese Academy of Sciences (CASIA); School of Artificial Intelligence, University of Chinese Academy of Sciences (CASIA); School of Artificial Intelligence, University of Chinese Academy of Sciences (UCAS); Center for Excellence in Brain Science and Intelligence Technology, CAS)	
 FPConv: Learning Local Flattening for Point Convolution	92
Rotation Equivariant Graph Convolutional Network for Spherical Image Classification	02
 FOAL: Fast Online Adaptive Learning for Cardiac Motion Estimation	12
ScrabbleGAN: Semi-Supervised Varying Length Handwritten Text Generation	23

Cross-Domain Semantic Segmentation via Domain-Invariant Interactive Relation Transfer 4333 Fengmao Lv (Center of Statistical Research & School of Statistics, Southwestern University of Finance and Economics, China), Tao Liang (Center of Statistical Research & School of Statistics, Southwestern University of Finance and Economics, China; Content Platform of Center & Content Development Platform, Tencent, China), Xiang Chen (Content Platform of Center & Content Development Platform, Tencent, China), and Guosheng Lin (School of Computer Science and Engineering, Nanyang Technological University, Singapore)
Inflated Episodic Memory With Region Self-Attention for Long-Tailed Visual Recognition 4343 Linchao Zhu (Baidu Research; ReLER, University of Technology Sydney) and Yi Yang (ReLER, University of Technology Sydney)
Multimodal Future Localization and Emergence Prediction for Objects in Egocentric View With a Reachability Prior
Structure Preserving Generative Cross-Domain Learning
Reverse Perspective Network for Perspective-Aware Object Counting
Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds 4383
Jiacheng Wei (Nanyang Technological University, Singapore), Guosheng Lin (Nanyang Technological University, Singapore), Kim-Hui Yap (Nanyang Technological University, Singapore), Tzu-Yi Hung (Delta Research Center, Singapore), and Lihua Xie (Nanyang Technological University, Singapore)
Reliable Weighted Optimal Transport for Unsupervised Domain Adaptation
ImVoteNet: Boosting 3D Object Detection in Point Clouds With Image Votes

Understanding Road Layout From Videos as a Whole
Bi-Directional Relationship Inferring Network for Referring Image Segmentation
Perspective Plane Program Induction From a Single Image
DeepFLASH: An Efficient Network for Learning-Based Medical Image Registration
Semi-Supervised Learning for Few-Shot Image-to-Image Translation
Semantic Correspondence as an Optimal Transport Problem
How Much Time Do You Have? Modeling Multi-Duration Saliency
Fine-Grained Generalized Zero-Shot Learning via Dense Attribute-Based Attention

 Online Depth Learning Against Forgetting in Monocular Videos	
Few-Shot Learning of Part-Specific Probability Space for 3D Shape Segmentation	
 Pattern-Structure Diffusion for Multi-Task Learning	
Training Noise-Robust Deep Neural Networks via Meta-Learning	

 Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation	33
 Universal Source-Free Domain Adaptation	43
 Exploring Spatial-Temporal Multi-Frequency Analysis for High-Fidelity and Temporal-Consistency Video Prediction	53
 Varicolored Image De-Hazing	63
 SpSequenceNet: Semantic Segmentation Network on 4D Point Clouds	73
Separating Particulate Matter From a Single Microscopic Image	83

Adaptive Dilated Network With Self-Correction Supervision for Counting	;
PointPainting: Sequential Fusion for 3D Object Detection	;
Rethinking Zero-Shot Video Classification: End-to-End Training for Realistic Applications4612 Biagio Brattoli (Heidelberg University), Joseph Tighe (Amazon), Fedor Zhdanov (Amazon), Pietro Perona (Amazon), and Krzysztof Chalupka (Amazon)	2
Learning to Select Base Classes for Few-Shot Classification	;
CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus	;
Fast Symmetric Diffeomorphic Image Registration with Convolutional Neural Networks 4643 Tony C.W. Mok (Department of Computer Science and Engineering, The Hong Kong University of Science and Technology) and Albert C.S. Chung (Department of Computer Science and Engineering, The Hong Kong University of Science and Technology)	;
Distilled Semantics for Comprehensive Scene Understanding from Videos	}
Modeling Biological Immunity to Adversarial Examples	•

DOA-GAN: Dual-Order Attentive Generative Adversarial Network for Image Copy-Move Forgery Detection and Localization
Correspondence-Free Material Reconstruction using Sparse Surface Constraints
Augmenting Colonoscopy Using Extended and Directional CycleGAN for Lossy Image Translation 4695
Shawn Mathew (Stony Brook University), Saad Nadeem (Memorial Sloan Kettering Cancer Center), Sruti Kumari (Stony Brook University), and Arie Kaufman (Stony Brook University)
 Attention Scaling for Crowd Counting
Shape Reconstruction by Learning Differentiable Surface Representations
A Spatiotemporal Volumetric Interpolation Network for 4D Dynamic Medical Image
Attention-Based Context Aware Reasoning for Situation Recognition

PatchVAE: Learning Local Latent Codes for Recognition
Self-Supervised Monocular Trained Depth Estimation Using Self-Attention and Discrete Disparity Volume
STAViS: Spatio-Temporal AudioVisual Saliency Network
More Grounded Image Captioning by Distilling Image-Text Matching Model
DUNIT: Detection-Based Unsupervised Image-to-Image Translation
Learning to Observe: Approximating Human Perceptual Thresholds for Detection of Suprathreshold Image Transformations
Show, Edit and Tell: A Framework for Editing Image Captions

Structure Boundary Preserving Segmentation for Medical Image With Ambiguous Boundary 4816

Hong Joo Lee (Image and Video Systems Lab, School of Electrical Engineering, KAIST, South Korea), Jung Uk Kim (Image and Video Systems Lab, School of Electrical Engineering, KAIST, South Korea), Sangmin Lee (Image and Video Systems Lab, School of Electrical Engineering, KAIST, South Korea), Hak Gu Kim (Image and Video Systems Lab, School of Electrical Engineering, KAIST, South Korea), and Yong Man Ro (Image and Video Systems Lab, School of Electrical Engineering, KAIST, South Korea)	
Predicting Cognitive Declines Using Longitudinally Enriched Representations for Imaging Biomarkers Lyujian Lu (Department of Computer Science, Colorado School of Mines, Golden, Colorado, USA), Hua Wang (Department of Computer Science, Colorado School of Mines, Golden, Colorado, USA), Saad Elbeleidy (Department of Computer Science, Colorado School of Mines, Golden, Colorado, USA), and Feiping Nie (School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, P. R. China)	4826
Predicting Lymph Node Metastasis Using Histopathological Images Based on Multiple Instan Learning With Deep Graph Convolution	
Extremely Dense Point Correspondences Using a Learned Feature Descriptor Xingtong Liu (Johns Hopkins University), Yiping Zheng (Johns Hopkins University), Benjamin Killeen (Johns Hopkins University), Masaru Ishii (Johns Hopkins Medical Institutions), Gregory D. Hager (Johns Hopkins University), Russell H. Taylor (Johns Hopkins University), and Mathias Unberath (Johns Hopkins University)	4846
Oral 2-1A: 3D From Multiview and Sensors (3)	
Local Deep Implicit Functions for 3D Shape Kyle Genova (Princeton University; Google Research), Forrester Cole (Google Research), Avneesh Sud (Google Research), Aaron Sarna (Google Research), and Thomas Funkhouser (Princeton University; Google Research)	4856

hesedicity	
PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation	4866
Li Jiang (The Chinese University of Hong Kong), Hengshuang Zhao (The	
Chinese University of Hong Kong), Shaoshuai Shi (The Chinese	
University of Hong Kong), Shu Liu (SmartMore), Chi-Wing Fu (The	
Chinese University of Hong Kong), and Jiaya Jia (The Chinese	
University of Hong Kong; SmartMore)	

Cost Volume Pyramid Based Depth Inference for Multi-View Stereo	5
RoutedFusion: Learning Real-Time Depth Map Fusion	ō
VOLDOR: Visual Odometry From Log-Logistic Dense Optical Flow Residuals	7
Learning to Optimize Non-Rigid Tracking)
 KFNet: Learning Temporal Camera Relocalization Using Kalman Filtering	3
Information-Driven Direct RGB-D Odometry	3
SuperGlue: Learning Feature Matching With Graph Neural Networks	7
Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task	7

Oral 2-1B: Face, Gesture, and Body Pose (1)

EventCap: Monocular 3D Capture of High-Speed Human Motions Using an Event Camera 4967 Lan Xu (Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China; Robotics Institute, Hong Kong University of Science and Technology, Hong Kong), Weipeng Xu (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), Vladislav Golyanik (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), Marc Habermann (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), Lu Fang (Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China), and Christian Theobalt (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany)
Cross-Modal Deep Face Normals With Deactivable Skip Connections
 Weakly-Supervised Mesh-Convolutional Hand Reconstruction in the Wild
Face X-Ray for More General Face Forgery Detection
A Morphable Face Albedo Model
Cascade EF-GAN: Progressive Facial Expression Editing With Local Focuses
GanHand: Predicting Human Grasp Affordances in Multi-Object Scenes

 Deep Spatial Gradient and Temporal Depth Learning for Face Anti-Spoofing	041
DeepCap: Monocular Human Performance Capture Using Weak Supervision	051
Attention Mechanism Exploits Temporal Contexts: Real-Time 3D Human Pose Reconstruction . 5063	
Ruixu Liu (University of Dayton), Ju Shen (University of Dayton), He Wang (University of Dayton), Chen Chen (University of North Carolina at Charlotte), Sen-ching Cheung (University of Kentucky), and Vijayan Asari (University of Dayton)	
Advancing High Fidelity Identity Swapping for Forgery Detection	073

Oral 2-1C: Image and Video Synthesis (1)

Controllable Person Image Synthesis With Attribute-Decomposed GAN Yifang Men (Wangxuan Institute of Computer Technology, Peking University, China), Yiming Mao (Bytedance AI Lab), Yuning Jiang (Bytedance AI Lab), Wei-Ying Ma (Bytedance AI Lab), and Zhouhui Lian (Wangxuan Institute of Computer Technology, Peking University, China)	5083
Attentive Normalization for Conditional Image Generation Yi Wang (The Chinese University of Hong Kong), Ying-Cong Chen (The Chinese University of Hong Kong), Xiangyu Zhang (MEGVII Technology), Jian Sun (MEGVII Technology), and Jiaya Jia (The Chinese University of Hong Kong)	5093
SEAN: Image Synthesis With Semantic Region-Adaptive Normalization Peihao Zhu (KAUST), Rameen Abdal (KAUST), Yipeng Qin (MEGVII Technology), and Peter Wonka (KAUST)	5103

Blurry Video Frame Interpolation
Learning Physics-Guided Face Relighting Under Directional Light
Disentangled Image Generation Through Structured Noise Injection
Cross-Domain Correspondence Learning for Exemplar-Based Image Translation
Disentangled and Controllable Face Image Generation via 3D Imitative-Contrastive Learning 5153
Yu Deng (Tsinghua University; Microsoft Research Asia), Jiaolong Yang (Microsoft Research Asia), Dong Chen (Microsoft Research Asia), Fang Wen (Microsoft Research Asia), and Xin Tong (Microsoft Research Asia)
Single Image Reflection Removal With Physically-Based Training Images
SketchyCOCO: Image Generation From Freehand Scene Sketches
Image Based Virtual Try-On Network From Unpaired Data

PSGAN: Pose and Expression Robust Spatial-Aware GAN for Customizable Makeup Transfer 5193 Wentao Jiang (School of Computer Science and Engineering, Beihang University), Si Liu (School of Computer Science and Engineering, Beihang University), Chen Gao (Institute of Information Engineering, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jie Cao (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Ran He (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jiashi Feng (National University of Singapore), and Shuicheng Yan (YITU Tech)

Poster 2-1P

RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild	202
 Semantic Image Manipulation Using Scene Graphs	212
A Stochastic Conditioning Scheme for Diverse Human Motion Prediction	222
Transferring Dense Pose to Proximal Animal Classes	232
Weakly-Supervised 3D Human Pose Learning via Multi-View Images in the Wild	242
 VIBE: Video Inference for Human Body Pose and Shape Estimation	252
G3AN: Disentangling Appearance and Motion for Video Generation	263

Domain Adaptive Image-to-Image Translation Ying-Cong Chen (The Chinese University of Hong Kong), Xiaogang Xu (The Chinese University of Hong Kong), and Jiaya Jia (The Chinese University of Hong Kong; SmartMore)	.5273
GAN Compression: Efficient Architectures for Interactive Conditional GANs Muyang Li (Massachusetts Institute of Technology; Shanghai Jiao Tong University), Ji Lin (Massachusetts Institute of Technology), Yaoyao Ding (Massachusetts Institute of Technology; Shanghai Jiao Tong University), Zhijian Liu (Massachusetts Institute of Technology), Jun-Yan Zhu (Adobe Research), and Song Han (Massachusetts Institute of Technology)	.5283
Searching Central Difference Convolutional Networks for Face Anti-Spoofing Zitong Yu (CMVS, University of Oulu), Chenxu Zhao (Mininglamp Academy of Sciences, Mininglamp Technology), Zezheng Wang (Aibee), Yunxiao Qin (Northwestern Polytechnical University), Zhuo Su (CMVS, University of Oulu), Xiaobai Li (CMVS, University of Oulu), Feng Zhou (Aibee), and Guoying Zhao (CMVS, University of Oulu)	5294
TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Zhuoqian Yang (Robotics Institute, Carnegie Mellon University), Wentao Zhu (Peking University), Wayne Wu (BNRist, Tsinghua University), Chen Qian (SenseTime Research), Qiang Zhou (BNRist, Tsinghua University), Bolei Zhou (CUHK), and Chen Change Loy (Nanyang Technological University)	5305
AdaCoF: Adaptive Collaboration of Flows for Video Frame Interpolation Hyeongmin Lee (Yonsei University), Taeoh Kim (Yonsei University), Tae-young Chung (Yonsei University), Daehyun Pak (Yonsei University), Yuseok Ban (Agency for Defense Development), and Sangyoun Lee (Yonsei University)	5315
FReeNet: Multi-Identity Face Reenactment Jiangning Zhang (Zhejiang University), Xianfang Zeng (Zhejiang University), Mengmeng Wang (Zhejiang University), Yusu Pan (Zhejiang University), Liang Liu (Zhejiang University), Yong Liu (Zhejiang University), Yu Ding (Fuxi Al Lab, NetEase), and Changjie Fan (Fuxi Al Lab, NetEase)	5325
Novel View Synthesis of Dynamic Scenes With Globally Coherent Depths From a Monocular Camera Jae Shin Yoon (University of Minnesota), Kihwan Kim (NVIDIA), Orazio Gallo (NVIDIA), Hyun Soo Park (University of Minnesota), and Jan Kautz (NVIDIA)	5335
Monocular Real-Time Hand Shape and Motion Capture Using Multi-Modal Data Yuxiao Zhou (BNRist and School of Software, Tsinghua University), Marc Habermann (Max Planck Institute for Informatics; Saarland Informatics Campus), Weipeng Xu (Max Planck Institute for Informatics; Saarland Informatics Campus), Ikhsanul Habibie (Max Planck Institute for Informatics; Saarland Informatics Campus), Christian Theobalt (Max Planck Institute for Informatics; Saarland Informatics; Saarland School of Software, Tsinghua University)	5345

The GAN That Warped: Semantic Attribute Editing With Unpaired Data Garoe Dorta (University of Bath; Anthropics Technology Ltd.), Sara Vicente (Anthropics Technology Ltd.), Neill D. F. Campbell (University of Bath), and Ivor J. A. Simpson (Anthropics Technology Ltd.; University of Sussex)	5355
4D Visualization of Dynamic Events From Unconstrained Multi-View Videos Aayush Bansal (Carnegie Mellon University), Minh Vo (Carnegie Mellon University), Yaser Sheikh (Carnegie Mellon University), Deva Ramanan (Carnegie Mellon University), and Srinivasa Narasimhan (Carnegie Mellon University)	5365
Global-Local Bidirectional Reasoning for Unsupervised Representation Learning of 3D Point	
Clouds Yongming Rao (Department of Automation, Tsinghua University, China; State Key Lab of Intelligent Technologies and Systems, China; Beijing National Research Center for Information Science and Technology, China), Jiwen Lu (Department of Automation, Tsinghua University, China; State Key Lab of Intelligent Technologies and Systems, China; Beijing National Research Center for Information Science and Technology, China), and Jie Zhou (Department of Automation, Tsinghua University, China; State Key Lab of Intelligent Technologies and Systems, China; Beijing National Research Center for Information Science and Technology, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, China)	
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation 5385	
Bowen Cheng (UIUC), Bin Xiao (Microsoft), Jingdong Wang (Microsoft), Honghui Shi (UIUC; University of Oregon), Thomas S. Huang (UIUC), and Lei Zhang (Microsoft)	
Detecting Attended Visual Targets in Video Eunji Chong (Georgia Institute of Technology), Yongxin Wang (Carnegie Mellon University), Nataniel Ruiz (Boston University), and James M. Rehg (Georgia Institute of Technology)	5395
Closed-Loop Matters: Dual Regression Networks for Single Image Super-Resolution	5406
Technology, Guangzhou Laboratory, Microsoft Research Asia, Baidu Inc.), Qi Chen (South China University of Technology, Guangzhou Laboratory, Microsoft Research Asia, Baidu Inc.), Jiezhang Cao (South China University of Technology, Guangzhou Laboratory, Microsoft Research Asia, Baidu Inc.), Zeshuai Deng (South China University of Technology, Guangzhou Laboratory, Microsoft Research Asia, Baidu Inc.), Yanwu Xu (South China University of Technology, Guangzhou Laboratory, Microsoft Research Asia, Baidu Inc.), and Mingkui Tan (South China University of Technology, Guangzhou Laboratory, Microsoft Research Asia, Baidu Inc.)	

Research)

Neural Contours: Learning to Draw Lines From 3D Shapes Difan Liu (University of Massachusetts Amherst), Mohamed Nabail (University of Massachusetts Amherst), Aaron Hertzmann (Adobe Research), and Evangelos Kalogerakis (University of Massachusetts Amherst)	5427
Softmax Splatting for Video Frame Interpolation Simon Niklaus (Portland State University) and Feng Liu (Portland State University)	5436
CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks Maxim Maximov (Technical University Munich), Ismail Elezi (University of Venice), and Laura Leal-Taixé (Technical University Munich)	5446
Probabilistic Structural Latent Representation for Unsupervised Embedding Mang Ye (Inception Institute of Artificial Intelligence, Abu Dhabi, UAE) and Jianbing Shen (Inception Institute of Artificial Intelligence, Abu Dhabi, UAE)	5456
Semantically Multi-Modal Image Synthesis Zhen Zhu (Huazhong University of Science and Technology), Zhiliang Xu (Huazhong University of Science and Technology), Ansheng You (Peking University), and Xiang Bai (Huazhong University of Science and Technology)	5466
Nested Scale-Editing for Conditional Image Synthesis Lingzhi Zhang (University of Pennsylvania), Jiancong Wang (University of Pennsylvania), Yinshuang Xu (University of Pennsylvania), Jie Min (University of Pennsylvania), Tarmily Wen (University of Pennsylvania), James C. Gee (University of Pennsylvania), and Jianbo Shi (University of Pennsylvania)	5476
UnrealText: Synthesizing Realistic Scene Text Images From the Unreal World Shangbang Long (Carnegie Mellon University) and Cong Yao (Megvii (Face++) Technology Inc.)	5487
Fast Texture Synthesis via Pseudo Optimizer Wu Shi (ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society) and Yu Qiao (ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society)	5497
Towards Learning Structure via Consensus for Face Segmentation and Parsing Iacopo Masi (USC Information Sciences Institute, Marina del Rey, CA, USA), Joe Mathai (USC Information Sciences Institute, Marina del Rey, CA, USA), and Wael AbdAlmageed (USC Information Sciences Institute, Marina del Rey, CA, USA)	5507
CookGAN: Causality Based Text-to-Image Synthesis Bin Zhu (City University of Hong Kong) and Chong-Wah Ngo (City University of Hong Kong)	5518

	5527
Hong-Xing Yu (School of Data and Computer Science, Sun Yat-sen University, China) and Wei-Shi Zheng (School of Data and Computer Science, Sun Yat-sen University, China; Peng Cheng Laboratory, China; Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China)	
Future Video Synthesis With Object Motion Prediction Yue Wu (HKUST), Rongrong Gao (HKUST), Jaesik Park (POSTECH), and Qifeng Chen (HKUST)	5538
MaskGAN: Towards Diverse and Interactive Facial Image Manipulation Cheng-Han Lee (SenseTime Research), Ziwei Liu (The Chinese University of Hong Kong), Lingyun Wu (SenseTime Research), and Ping Luo (The University of Hong Kong)	5548
A Graduated Filter Method for Large Scale Robust Estimation Huu Le (Chalmers University of Technology, Sweden) and Christopher Zach (Chalmers University of Technology, Sweden)	5558
Deep Face Super-Resolution With Iterative Collaboration Between Attentive Recovery and Landmark Estimation	5568
Coherent Reconstruction of Multiple Humans From a Single Image Wen Jiang (Zhejiang University), Nikos Kolotouros (University of Pennsylvania), Georgios Pavlakos (University of Pennsylvania), Xiaowei Zhou (Zhejiang University), and Kostas Daniilidis (University of Pennsylvania)	5578
PointASNL: Robust Point Clouds Processing Using Nonlocal Neural Networks With Adaptive Sampling Xu Yan (The Chinese University of Hong Kong (Shenzhen); Shenzhen Research Institute of Big Data), Chaoda Zheng (Shenzhen Research Institute of Big Data; South China University of Technology), Zhen Li (The Chinese University of Hong Kong (Shenzhen); Shenzhen Research Institute of Big Data), Sheng Wang (Tencent Al Lab), and Shuguang Cui (The Chinese University of Hong Kong (Shenzhen); Shenzhen Research Institute of Big Data)	5588

A Neural Rendering Framework for Free-Viewpoint Relighting	598
A Multi-Task Mean Teacher for Semi-Supervised Shadow Detection	510
GroupFace: Learning Latent Groups and Constructing Group-Based Representations for Face Recognition	520
Channel Attention Based Iterative Residual Learning for Depth Map Super-Resolution 56 Xibin Song (Baidu Research; National Engineering Laboratory of Deep Learning Technology and Application, China), Yuchao Dai (Northwestern Polytechnical University, China), Dingfu Zhou (Baidu Research; National Engineering Laboratory of Deep Learning Technology and Application, China), Liu Liu (Australian National University, Australia; Australian Centre for Robotic Vision, Australia), Wei Li (Shandong University, China), Hongdong Li (Australian National University, Australia; Australian Centre for Robotic Vision, Australia), and Ruigang Yang (Baidu Research; National Engineering Laboratory of Deep Learning Technology and Application, China; University of Kentucky, Kentucky, USA)	530
Time Flies: Animating a Still Image With Time-Lapse Video As Reference	540

Philipp Terhörst (Fraunhofer Institute for Computer Graphics Research	5650
IGD, Darmstadt, Germany; Technical University of Darmstadt, Darmstadt, Germany), Jan Niklas Kolf (Technical University of Darmstadt, Darmstadt, Germany), Naser Damer (Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany; Technical University of Darmstadt, Darmstadt, Germany), Florian Kirchbuchner (Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany; Technical University of Darmstadt, Darmstadt, Germany), and Arjan Kuijper (Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany; Technical University of Darmstadt, Germany)	
Grid-GCN for Fast and Scalable Point Cloud Learning Qiangeng Xu (University of Southern California), Xudong Sun (Tusimple, Inc), Cho-Ying Wu (University of Southern California), Panqu Wang (Tusimple, Inc), and Ulrich Neumann (University of Southern California)	5660
Domain Balancing: Face Recognition on Long-Tailed Domains	5670
AdversarialNAS: Adversarial Neural Architecture Search for GANs Chen Gao (Institute of Information Engineering, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Yitu Technology), Yunpeng Chen (Yitu Technology), Si Liu (School of Computer Science and Engineering, Beihang University), Zhenxiong Tan (Beijing Forestry University), and Shuicheng Yan (Yitu Technology)	5679
Image Super-Resolution With Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining Yiqun Mei (IFP Group, UIUC), Yuchen Fan (IFP Group, UIUC), Yuqian Zhou (IFP Group, UIUC), Lichao Huang (Horizon Robotics), Thomas S. Huang (IFP Group, UIUC), and Honghui Shi (University of Oregon; IFP Group, UIUC)	
The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation	5699

Data Uncertainty Learning in Face Recognition
Regularizing Discriminative Capability of CGANs for Semi-Supervised Generative Learning 5719 Yi Liu (School of Computer Science and Engineering, South China University of Technology), Guangchang Deng (School of Computer Science and Engineering, South China University of Technology), Xiangping Zeng (School of Computer Science and Engineering, South China University of Technology), Si Wu (School of Computer Science and Engineering, South China University of Technology; Department of Computer Science, City University of Hong Kong), Zhiwen Yu (School of Computer Science and Engineering, South China University of Technology), and Hau-San Wong (Department of Computer Science, City University of Hong Kong)
FM2u-Net: Face Morphological Multi-Branch Network for Makeup-Invariant Face Verification
5729 Wenxuan Wang (Fudan University, China), Yanwei Fu (Fudan University, China), Xuelin Qian (Fudan University, China), Yu-Gang Jiang (Fudan University, China), Qi Tian (Noah's Ark Lab, Huawei Technologies), and Xiangyang Xue (Fudan University, China)
UCTGAN: Diverse Image Inpainting Based on Unsupervised Cross-Space Translation
Decoupled Representation Learning for Skeleton-Based Gesture Recognition

An Efficient PointLSTM for Point Clouds Based Gesture Recognition
Editing in Style: Uncovering the Local Semantics of GANs
On the Detection of Digital Face Manipulation
Learning Texture Transformer Network for Image Super-Resolution
Reference-Based Sketch Image Colorization Using Augmented-Self Reference and Dense Semantic Correspondence
Deblurring Using Analysis-Synthesis Networks Pair
Exploring Unlabeled Faces for Novel Attribute Discovery

Neural Pose Transfer by Spatially Adaptive Instance Normalization
Fine-Grained Image-to-Image Transformation Towards Visual Recognition
Deep Facial Non-Rigid Multi-View Stereo
Attention-Driven Cropping for Very High Resolution Facial Landmark Detection
Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis . 5870 Yiyi Liao (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen), Katja Schwarz (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen), Lars Mescheder (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen; Amazon, Tübingen), and Andreas Geiger (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen)
End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection
Towards High-Fidelity 3D Face Reconstruction From In-the-Wild Images Using Graph Convolutional Networks
CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition

Rotate-and-Render: Unsupervised Photorealistic Face Rotation From Single-View Images 5910 Hang Zhou (The Chinese University of Hong Kong), Jihao Liu (SenseTime Research), Ziwei Liu (The Chinese University of Hong Kong), Yu Liu (The Chinese University of Hong Kong), and Xiaogang Wang (The Chinese University of Hong Kong)
One-Shot Domain Adaptation for Face Generation
BidNet: Binocular Image Dehazing Without Explicit Disparity Estimation
Deep Shutter Unrolling Network
Joint Texture and Geometry Optimization for RGB-D Reconstruction
Deep 3D Capture: Geometry and Reflectance From Sparse Multi-View Images
 Auto-Tuning Structured Light by Optical Stochastic Gradient Descent
MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction

Uncertainty Based Camera Model Selection	i990
Local Implicit Grid Representations for 3D Scenes	5000
TetraTSDF: 3D Human Reconstruction From a Single Image With a Tetrahedral Outer Shell 6 Hayato Onizuka (Kyushu University), Zehra Hayirci (Technical University of Munich), Diego Thomas (Kyushu University), Akihiro Sugimoto (National Institute of Informatics), Hideaki Uchiyama (Kyushu University), and Rin-ichiro Taniguchi (Kyushu University)	5010
Averaging Essential and Fundamental Matrices in Collinear Camera Settings	5020
On the Distribution of Minima in Intrinsic-Metric Rotation Averaging	5030
Lightweight Multi-View 3D Pose Estimation Through Camera-Disentangled Representation 6 Edoardo Remelli (CVLab, EPFL, Lausanne, Switzerland), Shangchen Han (Facebook Reality Labs, Redmond, USA), Sina Honari (CVLab, EPFL, Lausanne, Switzerland), Pascal Fua (CVLab, EPFL, Lausanne, Switzerland), and Robert Wang (Facebook Reality Labs, Redmond, USA)	i039
A Novel Recurrent Encoder-Decoder Structure for Large-Scale Multi-View Stereo Reconstruction From an Open Aerial Dataset	5049
 Factorized Higher-Order CNNs With an Application to Spatio-Temporal Emotion Estimation . 6 Jean Kossaifi (NVIDIA), Antoine Toisoul (Samsung Al Center), Adrian Bulat (Samsung Al Center), Yannis Panagakis (University of Athens), Timothy M. Hospedales (Samsung Al Center), and Maja Pantic (Imperial College London) 	5059
Effectively Unbiased FID and Inception Score and Where to Find Them	5069

Robust Homography Estimation via Dual Principal Component Pursuit	79
Non-Adversarial Video Synthesis With Learned Priors	89
Uncertainty-Aware Mesh Decoder for High Fidelity 3D Face Reconstruction	99

Oral 2-2A: Face, Gesture, and Body Pose (2)

3FabRec: Fast Few-Shot Face Alignment by Reconstruction)9
 Weakly-Supervised Domain Adaptation via GAN and Mesh Model for Estimating 3D Hand Poses Interacting Objects	<u>2</u> 0
 Vec2Face: Unveil Human Faces From Their Blackbox Features in Face Recognition	31
 StyleRig: Rigging StyleGAN for 3D Control Over Portrait Images	11

 Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image Synthesis
Learning Meta Face Recognition in Unseen Domains
Cascaded Deep Monocular 3D Human Pose Estimation With Evolutionary Training Data 6172 Shichao Li (The Hong Kong University of Science and Technology), Lei Ke (The Hong Kong University of Science and Technology), Kevin Pratama (The Hong Kong University of Science and Technology), Yu-Wing Tai (Tencent), Chi-Keung Tang (The Hong Kong University of Science and Technology), and Kwang-Ting Cheng (The Hong Kong University of Science and Technology)
GHUM & GHUML: Generative 3D Human Shape and Articulated Pose Models
 Generating 3D People in Scenes Without People
Transferring Cross-Domain Knowledge for Video Sign Language Recognition

Bodies at Rest: 3D Human Pose and Shape Estimation From a Pressure Image Using Synthetic Data
Henry M. Clever (Georgia Institute of Technology, Atlanta, GA, USA), Zackory Erickson (Georgia Institute of Technology, Atlanta, GA, USA), Ariel Kapusta (Georgia Institute of Technology, Atlanta, GA, USA), Greg Turk (Georgia Institute of Technology, Atlanta, GA, USA), C. Karen Liu (Stanford University, Stanford, CA, USA), and Charles C. Kemp (Georgia Institute of Technology, Atlanta, GA, USA)
Bayesian Adversarial Human Motion Synthesis
Oral 2-2B: Motion and Tracking (1)
LSM: Learning Subspace Minimization for Low-Level Vision
Learning a Neural Solver for Multiple Object Tracking
GLU-Net: Global-Local Universal Network for Dense Flow and Correspondences
SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking 6268 Dongyan Guo (Zhejiang University of Technology, China), Jun Wang (Zhejiang University of Technology, China), Ying Cui (Zhejiang University of Technology, China), Zhenhua Wang (Zhejiang University of Technology, China), and Shengyong Chen (Tianjin University of Technology, China)
MaskFlownet: Asymmetric Feature Matching With Learnable Occlusion Mask
Tracking by Instance Detection: A Meta-Learning Approach

 High-Performance Long-Term Tracking With Meta-Updater	6297
TubeTK: Adopting Tubes to Track Multi-Object in a One-Step Training Model Bo Pang (Shanghai Jiao Tong University), Yizhuo Li (Shanghai Jiao Tong University), Yifan Zhang (Shanghai Jiao Tong University), Muchen Li (Huazhong University of Science and Technology), and Cewu Lu (Institute and MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China)	6307
Collaborative Motion Prediction via Neural Motion Message Passing Yue Hu (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University), Siheng Chen (Mitsubishi Electric Research Laboratories), Ya Zhang (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University), and Xiao Gu (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University)	6318
P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds	6328

 Self-Supervised Deep Visual Odometry With Online Adaptation	338
(Key Laboratory of Machine Perception (MOE), School of EECS, Peking University PKU-SenseTime Machine Vision Joint Lab)	
Globally Optimal Contrast Maximisation for Event-Based Motion Estimation	348

Oral 2-2C: Representation Learning

D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features	58
Towards Backward-Compatible Representation Learning	67
PointAugment: An Auto-Augmentation Framework for Point Cloud Classification	;77
Cross-Batch Memory for Embedding Learning	87
Circle Loss: A Unified Perspective of Pair Similarity Optimization	97
Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics	l07

Ayperbolic Image Embeddings	7
Controllable Orthogonalization in Training DNNs	:8
In Investigation Into the Stochasticity of Batch Whitening	18

Poster 2-2P

Same Features, Different Day: Weakly Supervised Feature Learning for Seasonal Invariance . 6458 Jaime Spencer (Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey), Richard Bowden (Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey), and Simon Hadfield (Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey)

Learning to Dress 3D People in Generative Clothing Qianli Ma (Max Planck Institute for Intelligent Systems, Tübingen, Germany), Jinlong Yang (Max Planck Institute for Intelligent Systems, Tübingen, Germany), Anurag Ranjan (Max Planck Institute for Intelligent Systems, Tübingen, Germany; University of Tübingen, Germany), Sergi Pujades (Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, France), Gerard Pons-Moll (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), Siyu Tang (ETH Zürich, Switzerland; MPI-IS and University of Tübingen), and Michael J. Black (Max Planck Institute for Intelligent Systems, Tübingen, Germany)	6468
MAST: A Memory-Augmented Self-Supervised Tracker Zihang Lai (Visual Geometry Group, Department of Engineering Science, University of Oxford), Erika Lu (Visual Geometry Group, Department of Engineering Science, University of Oxford), and Weidi Xie (Visual Geometry Group, Department of Engineering Science, University of Oxford)	.6478
Learning by Analogy: Reliable Supervision From Transformations for Unsupervised Optical Flow Estimation Liang Liu (Zhejiang University), Jiangning Zhang (Zhejiang University), Ruifei He (Zhejiang University), Yong Liu (Zhejiang University), Yabiao Wang (Youtu Lab, Tencent), Ying Tai (Youtu Lab, Tencent), Donghao Luo (Youtu Lab, Tencent), Chengjie Wang (Youtu Lab, Tencent), Jilin Li (Youtu Lab, Tencent), and Feiyue Huang (Youtu Lab, Tencent)	6488
GNN3DMOT: Graph Neural Network for 3D Multi-Object Tracking With 2D-3D Multi-Feature Learning Xinshuo Weng (Robotics Institute, Carnegie Mellon University), Yongxin Wang (Robotics Institute, Carnegie Mellon University), Yunze Man (Robotics Institute, Carnegie Mellon University), and Kris M. Kitani (Robotics Institute, Carnegie Mellon University)	. 6498
ClusterFit: Improving Generalization of Visual Representations Xueting Yan (Facebook AI), Ishan Misra (Facebook AI), Abhinav Gupta (Facebook AI), Deepti Ghadiyaram (Facebook AI), and Dhruv Mahajan (Facebook AI)	6508
Learning Dynamic Relationships for 3D Human Motion Prediction Qiongjie Cui (Nanjing University of Science and Technology, Nanjing, China), Huaijiang Sun (Nanjing University of Science and Technology, Nanjing, China), and Fei Yang (Nanjing University of Science and Technology, Nanjing, China)	6518
Knowledge As Priors: Cross-Modal Knowledge Generalization for Datasets Without Superior Knowledge Long Zhao (Rutgers University), Xi Peng (University of Delaware), Yuxiao Chen (Rutgers University), Mubbasir Kapadia (Rutgers University), and Dimitris N. Metaxas (Rutgers University)	6527

S3VAE: Self-Supervised Sequential VAE for Representation Disentanglement and Data Generation
Yizhe Zhu (NEC Labs America; Department of Computer Science, Rutgers University), Martin Renqiang Min (NEC Labs America), Asim Kadav (NEC Labs America), and Hans Peter Graf (NEC Labs America)
Video Playback Rate Perception for Self-Supervised Spatio-Temporal Representation Learning 6547
Yuan Yao (University of Chinese Academy of Sciences, Beijing, China), Chang Liu (University of Chinese Academy of Sciences, Beijing, China), Dezhao Luo (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Yu Zhou (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), and Qixiang Ye (University of Chinese Academy of Sciences, Beijing, China)
Learning to Manipulate Individual Objects in an Image
PADS: Policy-Adapted Sampling for Visual Similarity Learning
Siam R-CNN: Visual Tracking by Re-Detection
ASLFeat: Learning Local Features of Accurate Shape and Localization
Filter Grafting for Deep Neural Networks

 HOPE-Net: A Graph-Based Model for Hand-Object Pose Estimation	07
DeepFaceFlow: In-the-Wild Dense 3D Facial Motion Estimation	17
Learning for Video Compression With Hierarchical Quality and Recurrent Enhancement66 Ren Yang (ETH Zürich, Switzerland), Fabian Mentzer (ETH Zürich, Switzerland), Luc Van Gool (ETH Zürich, Switzerland), and Radu Timofte (ETH Zürich, Switzerland)	27
Learning Better Lossless Compression Using Lossy Compression	37
Flow2Stereo: Effective Self-Supervised Learning of Optical Flow and Stereo Matching	47
Multi-Scale Fusion Subspace Clustering Using Similarity Constraint	57
Siamese Box Adaptive Network for Visual Tracking	67

Cross-Domain Face Presentation Attack Detection via Multi-Domain Disentangled Representation Learning	
Online Deep Clustering for Unsupervised Representation Learning	
Density-Aware Feature Embedding for Face Clustering	
Self-Supervised Learning of Pretext-Invariant Representations	'
ROAM: Recurrently Optimizing Tracking Model	
Deformable Siamese Attention Networks for Visual Object Tracking	
15 Keypoints Is All You Need	
Optical Flow in the Dark	

 Sketch-BERT: Learning Sketch Bidirectional Encoder Representation From Transformers by Self-Supervised Learning of Sketch Gestalt	
A Unified Object Motion and Affinity Model for Online Multi-Object Tracking	
 Sub-Frame Appearance and 6D Pose Estimation of Fast Moving Objects	
 How to Train Your Deep Multi-Object Tracker	
TPNet: Trajectory Proposal Network for Motion Prediction	
Large Scale Video Representation Learning via Relational Graph Clustering	
Towards Universal Representation Learning for Deep Face Recognition	

Robust Partial Matching for Person Search in the Wild Yingji Zhong (Peking University), Xiaoyu Wang (Intellifusion; The Chinese University of Hong Kong, Shenzhen), and Shiliang Zhang (Peking University)	6826
Correlation-Guided Attention for Corner Detection Based Visual Tracking Fei Du (School of Computer Science and Technology, Harbin Institute of Technology, China), Peng Liu (School of Computer Science and Technology, Harbin Institute of Technology, China), Wei Zhao (School of Computer Science and Technology, Harbin Institute of Technology, China), and Xianglong Tang (School of Computer Science and Technology, Harbin Institute of Technology, China)	6835
Learning Multi-Object Tracking and Segmentation From Automatic Annotations Lorenzo Porzi (Mapillary Researchy), Markus Hofinger (Graz University of Technology), Idoia Ruiz (Computer Vision Center, UAB), Joan Serrat (Computer Vision Center, UAB), Samuel Rota Bulò (Mapillary Researchy), and Peter Kontschieder (Mapillary Researchy)	6845
PandaNet: Anchor-Based Single-Shot Multi-Person 3D Pose Estimation Abdallah Benzine (CEA LIST Vision and Learning Lab for Scene Analysis; Sorbonne University, CNRS, Institute for Intelligent Systems and Robotics), Florian Chabot (CEA LIST Vision and Learning Lab for Scene Analysis), Bertrand Luvison (CEA LIST Vision and Learning Lab for Scene Analysis), Quoc Cuong Pham (CEA LIST Vision and Learning Lab for Scene Analysis), and Catherine Achard (Sorbonne University, CNRS, Institute for Intelligent Systems and Robotics)	6855
Rotation Consistent Margin Loss for Efficient Low-Bit Face Recognition Yudong Wu (SenseTime Group Limited), Yichao Wu (SenseTime Group Limited), Ruihao Gong (SenseTime Group Limited; BeiHang University), Yuanhao Lv (SenseTime Group Limited), Ken Chen (SenseTime Group Limited), Ding Liang (SenseTime Group Limited), Xiaolin Hu (Tsinghua University), Xianglong Liu (BeiHang University), and Junjie Yan (SenseTime Group Limited)	6865
Joint Spatial-Temporal Optimization for Stereo 3D Object Tracking Peiliang Li (The Hong Kong University of Science and Technology), Jieqi Shi (The Hong Kong University of Science and Technology), and Shaojie Shen (The Hong Kong University of Science and Technology)	6876
Unity Style Transfer for Person Re-Identification Chong Liu (State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing, China), Xiaojun Chang (Monash University, Melbourne, Australia), and Yi-Dong Shen (State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China)	6886

Suppressing Uncertainties for Large-Scale Facial Expression Recognition Kai Wang (ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science; University of Chinese Academy of Sciences, China), Xiaojiang Peng (ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science), Jianfei Yang (Nanyang Technological University Singapore), Shijian Lu (Nanyang Technological University Singapore), and Yu Qiao (ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science)	6896
Multiview-Consistent Semi-Supervised Learning for 3D Human Pose Estimation Rahul Mitra (IIT Bombay), Nitesh B. Gundavarapu (UC San Diego), Abhishek Sharma (Axogyan AI), and Arjun Jain (IISc Bangalore)	. 6906
Regularizing Neural Networks via Minimizing Hyperspherical Energy Rongmei Lin (Emory University), Weiyang Liu (Georgia Institute of Technology), Zhen Liu (Mila, Université de Montréal), Chen Feng (New York University), Zhiding Yu (NVIDIA), James M. Rehg (Georgia Institute of Technology), Li Xiong (Emory University), and Le Song (Georgia Institute of Technology)	6916
Learning Representations by Predicting Bags of Visual Words Spyros Gidaris (Valeo.ai), Andrei Bursuc (Valeo.ai), Nikos Komodakis (University of Crete), Patrick Pérez (Valeo.ai), and Matthieu Cord (Valeo.ai)	6926
 AnimalWeb: A Large-Scale Hierarchical Dataset of Annotated Animal Faces Muhammad Haris Khan (Inception Institute of Artificial Intelligence, UAE), John McDonagh (University of Nottingham, UK), Salman Khan (Inception Institute of Artificial Intelligence, UAE), Muhammad Shahabuddin (Comsats University Islamabad, Pakistan), Aditya Arora (Inception Institute of Artificial Intelligence, UAE), Fahad Shahbaz Khan (Inception Institute of Artificial Intelligence, UAE), Ling Shao (Inception Institute of Artificial Intelligence, UAE), and Georgios Tzimiropoulos (Queen Mary University of London, UK) 	6937
A Transductive Approach for Video Object Segmentation Yizhuo Zhang (Carnegie Mellon University), Zhirong Wu (Microsoft Research Asia), Houwen Peng (Microsoft Research Asia), and Stephen Lin (Microsoft Research Asia)	6947
Dynamic Face Video Segmentation via Reinforcement Learning Yujiang Wang (Imperial College London; Samsung AI Center Cambridge), Mingzhi Dong (University College London), Jie Shen (Imperial College London; Samsung AI Center Cambridge), Yang Wu (Kyoto University), Shiyang Cheng (Samsung AI Center Cambridge), and Maja Pantic (Imperial College London; Samsung AI Center Cambridge)	6957

Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion	58
 Semantic Drift Compensation for Class-Incremental Learning	30
Context-Aware Human Motion Prediction	ЭО
DeepDeform: Learning Non-Rigid RGB-D Reconstruction With Semi-Supervised Data	00
Optical Non-Line-of-Sight Physics-Based 3D Human Pose Estimation	11
Learning to Transfer Texture From Clothing Images to 3D Humans	21
UniPose: Unified Human Pose Estimation in Single Images and Videos	33

Minimal Solutions to Relative Pose Estimation From Two Views Sharing a Common Direction With Unknown Focal Length	13
3D Human Mesh Regression With Dense Correspondence	2
 Cross-Modal Pattern-Propagation for RGB-T Tracking	52

Distilling Knowledge From Graph Convolutional Networks Yiding Yang (Department of Computer Science, Stevens Institute of Technology, USA), Jiayan Qiu (UBTECH Sydney AI Centre, School of Computer Science, FEIT, The University of Sydney, Australia), Mingli Song (College of Computer Science and Technology, Zhejiang University, China), Dacheng Tao (UBTECH Sydney AI Centre, School of Computer Science, FEIT, The University of Sydney, Australia), and Xinchao Wang (Department of Computer Science, Stevens Institute of Technology, USA)	7072
Learning Identity-Invariant Motion Representations for Cross-ID Face Reenactment	7082
Distribution-Aware Coordinate Representation for Human Pose Estimation Feng Zhang (School of Computer Science and Engineering, University of Electronic Science and Technology of China), Xiatian Zhu (Centre for Vision, Speech and Signal Processing, University of Surrey), Hanbin Dai (School of Automation Engineering, University of Electronic Science and Technology of China), Mao Ye (School of Computer Science and Engineering, University of Electronic Science and Technology of China), and Ce Zhu (School of Information and Communication Engineering, University of Electronic Science and Technology of China)	7091
 Parsing-Based View-Aware Embedding Network for Vehicle Re-Identification	7101
HandVoxNet: Deep Voxel-Based Network for 3D Hand Shape and Pose Estimation From a Sin Depth Map Jameel Malik (TU Kaiserslautern; DFKI Kaiserslautern; NUST Pakistan), Ibrahim Abdelaziz (TU Kaiserslautern; DFKI Kaiserslautern), Ahmed Elhayek (DFKI Kaiserslautern; UPM Saudi Arabia), Soshi Shimada (MPII Saarland), Sk Aziz Ali (TU Kaiserslautern; DFKI Kaiserslautern), Vladislav Golyanik (MPII Saarland), Christian Theobalt (MPII Saarland), and Didier Stricker (TU Kaiserslautern; DFKI Kaiserslautern)	-

Determinant Regularization for Gradient-Efficient Graph Matching
 D3S – A Discriminative Single Shot Segmentation Tracker
MANTRA: Memory Augmented Networks for Multiple Trajectory Prediction
 End-to-End Model-Free Reinforcement Learning for Urban Driving Using Implicit Affordances 7151 Marin Toromanoff (Center for Robotics, MINES ParisTech, PSL; Valeo Driving Assistance Research; Valeo.ai), Emilie Wirbel (Valeo Driving Assistance Research; Valeo.ai), and Fabien Moutarde (Center for Robotics, MINES ParisTech, PSL)
GraphTER: Unsupervised Learning of Graph Transformation Equivariant Representations via Auto-Encoding Node-Wise Transformations
Can Facial Pose and Expression Be Separated With Weak Perspective Camera?
Probabilistic Regression for Visual Tracking
3DRegNet: A Deep Neural Network for 3D Point Registration
Compressed Volumetric Heatmaps for Multi-Person 3D Pose Estimation

Three-Dimensional Reconstruction of Human Interactions
Distribution-Induced Bidirectional Generative Adversarial Network for Graph Representation
Learning7222Shuai Zheng (Institute of Information Science, Beijing Jiaotong University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China), Zhenfeng Zhu (Institute of Information Science, Beijing Jiaotong University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China), Xingxing Zhang (Institute of Information Science, Beijing Jiaotong University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China), Zhizhe Liu (Institute of Information Science, Beijing Jiaotong University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China), Zhizhe Liu (Institute of Information Science, Beijing Jiaotong University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China), Jian Cheng (NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China), and Yao Zhao (Institute of Information Science, Beijing Jiaotong University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China)
Minimal Solvers for 3D Scan Alignment With Pairs of Intersecting Lines
 Wavelet Integrated CNNs for Noise-Robust Image Classification
Embedding Expansion: Augmentation in Embedding Space for Deep Metric Learning

NAVER Corp.)

 PropagationNet: Propagate Points to Curve to Learn Structure Information
 Sequential 3D Human Pose and Shape Estimation From Point Clouds
Improving the Robustness of Capsule Networks to Image Affine Transformations
Noise Modeling, Synthesis and Classification for Generic Object Anti-Spoofing
Quaternion Product Units for Deep Learning on 3D Rotation Groups
Unsupervised Representation Learning for Gaze Estimation

P-nets: Deep Polynomial Neural Networks Grigorios G. Chrysos (Department of Computing, Imperial College London, UK), Stylianos Moschoglou (Department of Computing, Imperial College London, UK; Facesoft.io), Giorgos Bouritsas (Department of Computing, Imperial College London, UK), Yannis Panagakis (3 Department of Informatics and Telecommunications, University of Athens, GR), Jiankang Deng (Department of Computing, Imperial College London, UK; Facesoft.io), and Stefanos Zafeiriou (Department of Computing, Imperial College London, UK; Facesoft.io)	7323
Hierarchically Robust Representation Learning Qi Qian (Alibaba Group), Juhua Hu (School of Engineering and Technology University of Washington, Tacoma, USA), and Hao Li (Alibaba Group)	7334
How Useful Is Self-Supervised Pretraining for Visual Tasks? Alejandro Newell (Princeton University) and Jia Deng (Princeton University)	7343

Oral 2-3A: Face, Gesture, and Body Pose (3); Motion and Tracking (2)

 Copy and Paste GAN: Face Hallucination From Shaded Thumbnails	353
TailorNet: Predicting Clothing in 3D as a Eurotion of Human Pose, Shane and Garmont Style	

TailorNet: Predicting Clothing in 3D as a Function of Human Pose, Shape and Garment Style 7363

Chaitanya Patel (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), Zhouyingcheng Liao (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), and Gerard Pons-Moll (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany)

Recursive Least-Squares Estimator-Aided Online Learning for Visual Tracking	34
Self-Supervised Monocular Scene Flow Estimation	Э4
Learning Fast and Robust Target Models for Video Object Segmentation)4
Reciprocal Learning Networks for Human Trajectory Prediction	14
 Nonparametric Object and Parts Modeling With Lie Group Dynamics	24

Oral 2-3B: Image and Video Synthesis (2); Neural Generative Models

Learning to Shadow Hand-Drawn Sketches	.34
Intuitive, Interactive Beard and Hair Synthesis With Generative Models	44
Semantic Pyramid for Image Generation	55
SynSin: End-to-End View Synthesis From a Single Image	65

A Characteristic Function Approach to Deep Implicit Generative Modeling
 High-Resolution Daytime Translation Without Domain Labels
Leveraging 2D Data to Learn Textured 3D Mesh Generation
Contextual Residual Aggregation for Ultra High-Resolution Image Inpainting
Flow Contrastive Estimation of Energy-Based Models

Oral 2-3C: Optimization and Learning Methods

Hardware-in-the-Loop End-to-End Optimization of Camera Image Processing Pipelines 75 Ali Mosleh (Algolux), Avinash Sharma (Algolux), Emmanuel Onzon (Algolux), Fahim Mannan (Algolux), Nicolas Robidoux (Algolux), and Felix Heide (Algolux; Princeton University)	526
 Search to Distill: Pearls Are Everywhere but Not the Eyes	536
Total Deep Variation for Linear Inverse Problems	546

Relative Interior Rule in Block-Coordinate Descent Tomáš Werner (Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic), Daniel Průša (Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic), and Tomáš Dlask (Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic)	7556
Learning Combinatorial Solver for Graph Matching Tao Wang (The Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China; HiScene Information Technologies, Shanghai), He Liu (The Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China), Yidong Li (The Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China), Yi Jin (The Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China), Yi Jin (The Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China), Xiaohui Hou (HiScene Information Technologies, Shanghai, China), and Haibin Ling (Stony Brook University, Stony Brook, USA)	7565
SampleNet: Differentiable Point Cloud Sampling Itai Lang (Tel Aviv University), Asaf Manor (Tel Aviv University), and Shai Avidan (Tel Aviv University)	7575
Can We Learn Heuristics for Graphical Model Inference Using Reinforcement Learning? Safa Messaoud (University of Illinois at Urbana-Champaign), Maghav Kumar (University of Illinois at Urbana-Champaign), and Alexander G. Schwing (University of Illinois at Urbana-Champaign)	7586
Quasi-Newton Solver for Robust Non-Rigid Registration Yuxin Yao (University of Science and Technology of China), Bailin Deng (Cardiff University), Weiwei Xu (Zhejiang University), and Juyong Zhang (University of Science and Technology of China)	7597
Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition From a Domain Adaptation Perspective <i>Muhammad Abdullah Jamal (University of Central Florida), Matthew Brown</i> (Google), Ming-Hsuan Yang (University of California at Merced; Google), Liqiang Wang (University of Central Florida), and Boqing Gong (Google)	7607
Optimizing Rank-Based Metrics With Blackbox Differentiation Michal Rolínek (Max-Planck-Institute for Intelligent Systems, Tübingen, Germany), Vít Musil (Università degli Studi di Firenze, Italy), Anselm Paulus (Max-Planck-Institute for Intelligent Systems, Tübingen, Germany), Marin Vlastelica (Max-Planck-Institute for Intelligent Systems, Tübingen, Germany), Claudio Michaelis (University of Tübingen, Germany), and Georg Martius (Max-Planck-Institute for Intelligent Systems, Tübingen, Germany)	7617

Poster 2-3P

DualSDF: Semantic Shape Manipulation Using a Two-Level Representation	628
Dynamic Hierarchical Mimicking Towards Consistent Optimization Objectives	639
Deep Homography Estimation for Dynamic Scenes	649
PF-Net: Point Fractal Network for 3D Point Cloud Completion	659
On the Regularization Properties of Structured Dropout	668
Learning Oracle Attention for High-Fidelity Face Completion	677
 Deep Image Spatial Transformation for Person Image Generation	687

Learning to Optimize on SPD Manifolds	,
Deep 3D Portrait From a Single Image	,
RDCFace: Radial Distortion Correction for Face Recognition	;
 Global-Local GCN: Large-Scale Label Noise Cleansing for Face Recognition	;
MISC: Multi-Condition Injection and Spatially-Adaptive Compositing for Conditional Person Image Synthesis	;
 SAINT: Spatially Aware Interpolation NeTwork for Medical Slice Synthesis	,

Recurrent Feature Reasoning for Image Inpainting	57
 Structure-Preserving Super Resolution With Gradient Guidance	56
Epipolar Transformers	'6
 Diversified Arbitrary Style Transfer via Deep Feature Perturbation	
MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks	16

cxiv

Overcoming Multi-Model Forgetting in One-Shot NAS With Diversity Maximization Miao Zhang (Beijing Institute of Technology; University of Technology Sydney), Huiqi Li (Beijing Institute of Technology), Shirui Pan (Monash University), Xiaojun Chang (Monash University), and Steven Su (University of Technology Sydney)	7806
Select to Better Learn: Fast and Accurate Deep Learning Using Data Selection From Nonlinear Manifolds	7816
Neural Point Cloud Rendering via Multi-Plane Projection Peng Dai (University of Electronic Science and Technology of China), Yinda Zhang (Google Research), Zhuwen Li (Nuro Inc), Shuaicheng Liu (University of Electronic Science and Technology of China), and Bing Zeng (University of Electronic Science and Technology of China)	7827
Wish You Were Here: Context-Aware Human Generation Oran Gafni (Facebook Al Research) and Lior Wolf (Facebook Al Research and Tel-Aviv University)	7837
Towards Photo-Realistic Virtual Try-On by Adaptively GeneratingPreserving Image Content Han Yang (Harbin Institute of Technology; SenseTime Research), Ruimao Zhang (SenseTime Research), Xiaobao Guo (SenseTime Research), Wei Liu (Tencent Al Lab), Wangmeng Zuo (Harbin Institute of Technology), and Ping Luo (The University of Hong Kong)	7847
Breaking the Cycle – Colleagues Are All You Need Ori Nizan (Technion, Israel) and Ayellet Tal (Technion, Israel)	7857
Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation Hao Tang (University of Trento), Dan Xu (University of Oxford), Yan Yan (Texas State University), Philip H.S. Torr (University of Oxford), and Nicu Sebe (University of Trento; Huawei Research Ireland)	7867
ManiGAN: Text-Guided Image Manipulation Bowen Li (University of Oxford), Xiaojuan Qi (University of Oxford; University of Hong Kong), Thomas Lukasiewicz (University of Oxford), and Philip H.S. Torr (University of Oxford)	7877

 Watch Your Up-Convolution: CNN Based Generative Deep Neural Networks Are Failing to Reproduce Spectral Distributions	
 Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems	
Barycenters of Natural Images - Constrained Wasserstein Barycenters for Image Morphing . 7907 Dror Simon (Technion, Haifa, Israel) and Aviad Aberdam (Technion, Haifa, Israel)	
Guided Variational Autoencoder for Disentanglement Learning	
Cross-Spectral Face Hallucination via Disentangling Independent Factors	
Learned Image Compression With Discretized Gaussian Mixture Likelihoods and Attention Modules	
C-Flow: Conditional Generative Flow Models for Images and 3D Point Clouds	

Cogradient Descent for Bilinear Optimization	956
Instance-Aware Image Colorization	965
Joint Training of Variational Auto-Encoder and Latent Energy-Based Model	975
 Adaptive Loss-Aware Quantization for Multi-Bit Networks	985
ScopeFlow: Dynamic Scene Scoping for Optical Flow	995
 Video Super-Resolution With Temporal Group Attention	

8015

Yawei Li (Computer Vision Lab, ETH Zürich, Switzerland), Shuhang Gu (Computer Vision Lab, ETH Zürich, Switzerland), Christoph Mayer (Computer Vision Lab, ETH Zürich, Switzerland), Luc Van Gool (Computer Vision Lab, ETH Zürich, Switzerland; KU Leuven, Belgium), and Radu Timofte (Computer Vision Lab, ETH Zürich, Switzerland)

3D Photography Using Context-Aware Layered Depth Inpainting
MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation 8036 Yuheng Li (University of California, Davis), Krishna Kumar Singh (University of California, Davis), Utkarsh Ojha (University of California, Davis), and Yong Jae Lee (University of California, Davis)
Low-Rank Compression of Neural Nets: Learning the Rank of Each Layer
Global Texture Enhancement for Fake Face Detection in the Wild
Panoptic-Based Image Synthesis
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination
Learning to Cartoonize Using White-Box Cartoon Representations
End-to-End Learnable Geometric Vision by Backpropagating PnP Optimization
Analyzing and Improving the Image Quality of StyleGAN
 Fashion Editing With Adversarial Parsing Learning

Augment Your Batch: Improving Generalization Through Instance Repetition	
ARShadowGAN: Shadow Generative Adversarial Network for Augmented Reality in Single Light Scenes	
An End-to-End Edge Aggregation Network for Moving Object Segmentation	
Learning Video Stabilization Using Optical Flow	
Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation 8165 Runfa Chen (Institute for Artificial Intelligence, Tsinghua University (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), State Key Lab on Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing, P.R.China), Wenbing Huang (Institute for Artificial Intelligence, Tsinghua University (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), State Key Lab on Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing, P.R.China), Binghui Huang (Institute for Artificial Intelligence, Tsinghua University (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), State Key Lab on Intelligent Technology and Systems, Department of Computer Science and Technology (BNRist), State Key Lab on Intelligence, Tsinghua University (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), State Key Lab on Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing, P.R.China), Fuchun Sun (Institute for Artificial Intelligence, Tsinghua University (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), State Key Lab on Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing, P.R.China), and Bin Fang (Institute for Artificial Intelligence, Tsinghua University (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), State Key Lab on Intelligent Technology and Systems, Department of Computer Science and Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing, P.R.China)	

Robust Design of Deep Neural Networks Against Adversarial Attacks Based on Lyapunov Theory... 8175

Arash Rahnama (Modzy), Andre T. Nguyen (Booz Allen Hamilton), and Edward Raff (Booz Allen Hamilton)
StarGAN v2: Diverse Image Synthesis for Multiple Domains
Warping Residual Based Image Stitching for Large Parallax
A U-Net Based Discriminator for Generative Adversarial Networks
 Unpaired Portrait Drawing Generation via Asymmetric Cycle Mapping
When to Use Convolutional Neural Networks for Inverse Problems
LUVLi Face Alignment: Estimating Landmarks' Location, Uncertainty, and Visibility Likelihood
Affinity Graph Supervision for Visual Recognition
Unsupervised Magnification of Posture Deviations Across Subjects
 Accurate Estimation of Body Height From a Single Depth Image via a Four-Stage Developing Network

Fast Soft Color Segmentation
Global Optimality for Point Set Registration Using Semidefinite Programming
Image2StyleGAN++: How to Edit the Embedded Images?
SQE: a Self Quality Evaluation Metric for Parameters Optimization in Multi-Object Tracking 8303 Yanru Huang (Tsinghua University), Feiyu Zhu (Megvii Inc.), Zheni Zeng (Tsinghua University), Xi Qiu (Megvii Inc.), Yuan Shen (Tsinghua University), and Jianan Wu (Megvii Inc.)
EventSR: From Asynchronous Events to Image Reconstruction, Restoration, and Super-Resolution via End-to-End Adversarial Learning
 Hierarchical Pyramid Diverse Attention Networks for Face Recognition
RGBD-Dog: Predicting Canine Pose from RGBD Sensors
Multi-Scale Progressive Fusion Network for Single Image Deraining
Learning a Neural 3D Texture Space From 2D Exemplars

BachGAN: High-Resolution Image Synthesis From Salient Object Layout Yandong Li (University of Central Florida), Yu Cheng (Microsoft Dynamics 365 AI Research), Zhe Gan (Microsoft Dynamics 365 AI Research), Licheng Yu (Microsoft Dynamics 365 AI Research), Liqiang Wang (University of Central Florida), and Jingjing Liu (Microsoft Dynamics 365 AI Research)	8362
Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy Jaejun Yoo (EPFL.), Namhyuk Ahn (Ajou University), and Kyung-Ah Sohn (Ajou University)	
On Positive-Unlabeled Classification in GAN Tianyu Guo (Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University.; UBTECH Sydney AI Centre, School of Computer Science, Faculty of Engineering, University of Sydney), Chang Xu (UBTECH Sydney AI Centre, School of Computer Science, Faculty of Engineering, University of Sydney), Jiajun Huang (UBTECH Sydney AI Centre, School of Computer Science, Faculty of Engineering, University of Sydney), Yunhe Wang (Noah's Ark Lab, Huawei Technologies.), Boxin Shi (NELVT, Dept. of CS, Peking University.; Peng Cheng Laboratory), Chao Xu (Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University.), and Dacheng Tao (UBTECH Sydney AI Centre, School of Computer Science, Faculty of Engineering, University of Sydney)	8382
DoveNet: Deep Image Harmonization via Domain Verification Wenyan Cong (MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University), Jianfu Zhang (MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University), Li Niu (MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University), Liu Liu (MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University), Zhixin Ling (MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University), Weiyuan Li (East China Normal University), and Liqing Zhang (MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University)	8391
Noise Robust Generative Adversarial Networks Takuhiro Kaneko (The University of Tokyo) and Tatsuya Harada (The University of Tokyo; RIKEN)	. 8401
Normalizing Flows With Multi-Scale Autoregressive Priors Apratim Bhattacharyya (Max Planck Institute for Informatics, Saarland Informatics Campus), Shweta Mahajan (Department of Computer Science, TU Darmstadt), Mario Fritz (CISPA Helmholtz Center for Information Security, Saarland Informatics Campus), Bernt Schiele (Max Planck Institute for Informatics, Saarland Informatics Campus), and Stefan Roth (Department of Computer Science, TU Darmstadt)	8412
Robust Reference-Based Super-Resolution With Similarity-Aware Deformable Convolution Gyumin Shim (Robotics and Computer Vision Laboratory, Korea Advanced Institute of Science and Technology, Republic of Korea), Jinsun Park (Robotics and Computer Vision Laboratory, Korea Advanced Institute of Science and Technology, Republic of Korea), and In So Kweon (Robotics and Computer Vision Laboratory, Korea Advanced Institute of Science and Technology, Republic of Korea)	.8422

Painting Many Pasts: Synthesizing Time Lapse Videos of Paintings Amy Zhao (MIT), Guha Balakrishnan (MIT), Kathleen M. Lewis (MIT), Frédo Durand (MIT), John V. Guttag (MIT), and Adrian V. Dalca (MIT)	8432
GeoDA: A Geometric Framework for Black-Box Adversarial Attacks Ali Rahmati (Department of ECE, North Carolina State University), Seyed-Mohsen Moosavi-Dezfooli (Institue for Machine Learning, ETH Zurich), Pascal Frossard (Ecole Polytechnique Federale de Lausanne), and Huaiyu Dai (Department of ECE, North Carolina State University)	8443
GAMIN: Generative Adversarial Multiple Imputation Network for Highly Missing Data Seongwook Yoon (Korea University, Seoul, Republic of Korea) and Sanghoon Sull (Korea University, Seoul, Republic of Korea)	. 8453
An Internal Covariate Shift Bounding Algorithm for Deep Neural Networks by Unitizing Layers' Outputs You Huang (Fuzhou University) and Yuanlong Yu (Fuzhou University)	8462
A Unified Optimization Framework for Low-Rank Inducing Penalties Marcus Valtonen Örnhag (Centre for Mathematical Sciences, Lund University) and Carl Olsson (Department of Electrical Engineering, Chalmers University of Technology)	8471
 Single-Side Domain Generalization for Face Anti-Spoofing	8481
The Knowledge Within: Methods for Data-Free Model Compression Matan Haroush (Habana Labs Research, Caesarea, Israel), Itay Hubara (Habana Labs Research, Caesarea, Israel; Department of Electrical Engineering, Technion, Haifa, Israel), Elad Hoffer (Habana Labs Research, Caesarea, Israel), and Daniel Soudry (Department of Electrical Engineering, Technion, Haifa, Israel)	8491
Scale-Space Flow for End-to-End Optimized Video Compression Eirikur Agustsson (Google Research, Perception Team), David Minnen (Google Research, Perception Team), Nick Johnston (Google Research, Perception Team), Johannes Ballé (Google Research, Perception Team), Sung Jin Hwang (Google Research, Perception Team), and George Toderici (Google Research, Perception Team)	8500
Dynamic Neural Relational Inference Colin Graber (University of Illinois at Urbana-Champaign) and Alexander G. Schwing (University of Illinois at Urbana-Champaign)	8510

Oral 2-4A: Segmentation, Grouping and Shape (1)

Real-Time Panoptic Segmentation From Dense Detections Rui Hou (Toyota Research Institute; University of Michigan, Ann Arbor), Jie Li (Toyota Research Institute), Arjun Bhargava (Toyota Research Institute), Allan Raventos (Toyota Research Institute), Vitor Guizilini (Toyota Research Institute), Chao Fang (Toyota Research Institute), Jerome Lynch (University of Michigan, Ann Arbor), and Adrien Gaidon (Toyota Research Institute)	8520
Deep Snake for Real-Time Instance Segmentation Sida Peng (Zhejiang University), Wen Jiang (Zhejiang University), Huaijin Pi (Zhejiang University), Xiuli Li (Deepwise Al Lab), Hujun Bao (Zhejiang University), and Xiaowei Zhou (Zhejiang University)	8530
AdaCoSeg: Adaptive Shape Co-Segmentation With Group Consistency Loss Chenyang Zhu (Simon Fraser University; National University of Defense Technology), Kai Xu (National University of Defense Technology), Siddhartha Chaudhuri (Adobe Research; IIT Bombay), Li Yi (Google Research), Leonidas J. Guibas (Stanford University), and Hao Zhang (Simon Fraser University)	8540
Learning Dynamic Routing for Semantic Segmentation Yanwei Li (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Lin Song (Xi'an Jiaotong University), Yukang Chen (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Zeming Li (Megvii Technology), Xiangyu Zhang (Megvii Technology), Xingang Wang (Institute of Automation, Chinese Academy of Sciences), and Jian Sun (Megvii Technology)	8550
Boosting Semantic Human Matting With Coarse Annotations Jinlin Liu (Alibaba Group; Department of Automation, Tsinghua University), Yuan Yao (Alibaba Group), Wendi Hou (Alibaba Group), Miaomiao Cui (Alibaba Group), Xuansong Xie (Alibaba Group), Changshui Zhang (Department of Automation, Tsinghua University), and Xian-Sheng Hua (Alibaba Group)	8560
BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation Hao Chen (The University of Adelaide, Australia), Kunyang Sun (Southeast University, China; The University of Adelaide, Australia), Zhi Tian (The University of Adelaide, Australia), Chunhua Shen (The University of Adelaide, Australia), Yongming Huang (Southeast University, China), and Youliang Yan (Huawei Noah's Ark Lab)	8570
UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders Jing Zhang (Australian National University; ACRV; Data61), Deng-Ping Fan (CS, Nankai University; Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE), Yuchao Dai (Northwestern Polytechnical University), Saeed Anwar (Australian National University; Data61), Fatemeh Sadat Saleh (Australian National University; ACRV), Tong Zhang (Australian National University), and Nick Barnes (Australian National University)	8579

Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence 85 Nicolas Donati (LIX, Ècole Polytechnique), Abhishek Sharma (LIX, Ècole Polytechnique), and Maks Ovsjanikov (LIX, Ècole Polytechnique)	89
Deep Polarization Cues for Transparent Object Segmentation	,99
DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes	·09
F-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation	20
Approximating shapes in images with low-complexity polygons	530

Oral 2-4B: Explainable AI; Fairness, Accountability, Transparency and Ethics in Vision

Towards Visually Explaining Variational Autoencoders
Towards Global Explanations of Convolutional Neural Networks With Concept Attribution 8649 Weibin Wu (Department of Computer Science and Engineering, The Chinese University of Hong Kong), Yuxin Su (Department of Computer Science and Engineering, The Chinese University of Hong Kong), Xixian Chen (Tencent), Shenglin Zhao (Tencent), Irwin King (Department of Computer Science and Engineering, The Chinese University of Hong Kong), Michael R. Lyu (Department of Computer Science and Engineering, The Chinese University of Hong Kong), and Yu-Wing Tai (Tencent)
Interpretable and Accurate Fine-grained Recognition via Region Grouping
SAM: The Sensitivity of Attribution Methods to Hyperparameters

High-Frequency Component Helps Explain the Generalization of Convolutional Neural Networks.. 8681

Haohan Wang (School of Computer Science, Carnegie Mellon University), Xindi Wu (School of Computer Science, Carnegie Mellon University), Zevi Huang (School of Computer Science, Carnegie Mellon University), and Eric P. Xing (School of Computer Science, Carnegie Mellon University) Sheng-Yu Wang (UC Berkeley), Oliver Wang (Adobe Research), Richard Zhang (Adobe Research), Andrew Owens (UC Berkeley; University of Michigan), and Alexei A. Efros (UC Berkeley) FALCON: A Fourier Transform Based Approach for Fast and Secure Convolutional Neural Shaohua Li (University of Science and Technology of China), Kaiping Xue (University of Science and Technology of China), Bin Zhu (University of Science and Technology of China), Chenkai Ding (University of Science and Technology of China), Xindi Gao (University of Science and Technology of China), David Wei (Fordham University), and Tao Wan (CableLabs)

Oral 2-4C: Transfer/Low-Shot/Semi/Unsupervised Learning (2)

Dreaming to Distill: Data-Free Knowledge Transfer via DeepInversion Hongxu Yin (NVIDIA; Princeton University), Pavlo Molchanov (NVIDIA), Jose M. Alvarez (NVIDIA), Zhizhong Li (NVIDIA; University of Illinois at Urbana-Champaign), Arun Mallya (NVIDIA), Derek Hoiem (University of Illinois at Urbana-Champaign), Niraj K. Jha (Princeton University), and Jan Kautz (NVIDIA)	8712
Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering Hui Tang (South China University of Technology, Guangdong, China), Ke Chen (South China University of Technology, Guangdong, China), and Kui Jia (South China University of Technology, Guangdong, China)	8722
HyperSTAR: Task-Aware Hyperparameters for Deep Networks Gaurav Mittal (Microsoft), Chang Liu (Northeastern University), Nikolaos Karianakis (Microsoft), Victor Fragoso (Microsoft), Mei Chen (Microsoft), and Yun Fu (Northeastern University)	8733
ActBERT: Learning Global-Local Video-Text Representations Linchao Zhu (Baidu Research; ReLER, University of Technology Sydney) and Yi Yang (ReLER, University of Technology Sydney)	8743

 State-Relabeling Adversarial Active Learning	53
Erasing Integrated Learning: A Simple Yet Effective Approach for Weakly Supervised Object Localization	63
A Shared Multi-Attention Framework for Multi-Label Zero-Shot Learning	73
Self-Supervised Learning of Interpretable Keypoints From Unlabelled Videos	84

Poster 2-4P

 Few-Shot Open-Set Recognition Using Meta-Learning	;795
Few-Shot Learning via Embedding Adaptation With Set-to-Set Functions	805
Temporally Distributed Networks for Fast Video Semantic Segmentation	815
Benchmarking the Robustness of Semantic Segmentation Models	825

There and Back Again: Revisiting Backpropagation Saliency Methods
Deep Semantic Clustering by Partition Confidence Maximisation
 StructEdit: Learning Structural Shape Variations
Harmonizing Transferability and Discriminability for Adapting Object Detectors
 Fast Video Object Segmentation With Temporal Aggregation Network and Dynamic Template Matching
CascadePSP: Toward Class-Agnostic and Very High-Resolution Segmentation via Global and Local Refinement
Correlating Edge, Pose With Parsing
VecRoad: Point-Based Iterative Graph Exploration for Road Graphs Extraction
Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation

 Hierarchical Human Parsing With Typed Part-Relation Reasoning	926
Compositional Convolutional Neural Networks: A Deep Architecture With Innate Robustness to Partial Occlusion	
Spatial Pyramid Based Graph Reasoning for Semantic Segmentation	947
Learning Video Object Segmentation From Unlabeled Videos	957

 Part-Aware Context Network for Human Parsing	58
SCOUT: Self-Aware Discriminant Counterfactual Explanations	'8
 Weakly-Supervised Semantic Segmentation via Sub-Category Exploration	88
Continual Learning With Extended Kronecker-Factored Approximate Curvature	8
Phase Consistent Ecological Domain Adaptation)8
 AD-Cluster: Augmented Discriminative Clustering for Domain Adaptive Person Re-Identification	8

3D-MPA: Multi-Proposal Aggregation for 3D Semantic Instance Segmentation
Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision
Adaptive Graph Convolutional Network With Attention Graph Clustering for Co-Saliency Detection
A2dele: Adaptive and Attentive Depth Distiller for Efficient RGB-D Salient Object Detection
Yongri Piao (Dalian University of Technology, China), Zhengkun Rong (Dalian University of Technology, China), Miao Zhang (Dalian University of Technology, China; Key Lab for Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, China), Weisong Ren (Dalian University of Technology, China), and Huchuan Lu (Dalian University of Technology, China; Pengcheng Lab)
Deep Fair Clustering for Visual Learning
Bidirectional Graph Reasoning Network for Panoptic Segmentation
Exploit Clues From Views: Self-Supervised and Regularized Learning for Multiview Object
Recognition
Spherical Space Domain Adaptation With Robust Pseudo-Label Loss

 Stochastic Classifiers for Unsupervised Domain Adaptation	3
Unsupervised Learning of Intrinsic Structural Representation Points	3
PolyTransform: Deep Polygon Transformer for Instance Segmentation	3
Interactive Two-Stream Decoder for Accurate and Fast Saliency Detection	3
Towards Better Generalization: Joint Depth-Pose Learning Without PoseNet	3

LT-Net: Label Transfer by Learning Reversible Voxel-Wise Correspondence for One-Shot Medical Image Segmentation
FGN: Fully Guided Network for Few-Shot Instance Segmentation
A Quantum Computational Approach to Correspondence Problems on Point Sets
Data-Efficient Semi-Supervised Learning by Reliable Edge Mining
NestedVAE: Isolating Common Factors via Weak Supervision
Progressive Adversarial Networks for Fine-Grained Domain Adaptation

A Disentangling Invertible Interpretation Network for Explaining Latent Representations92 Patrick Esser (Heidelberg Collaboratory for Image Processing, IWR, Heidelberg University, Germany), Robin Rombach (Heidelberg Collaboratory for Image Processing, IWR, Heidelberg University, Germany), and Björn Ommer (Heidelberg Collaboratory for Image Processing, IWR, Heidelberg University, Germany)	20
Modeling the Background for Incremental Learning in Semantic Segmentation	30
Interpreting the Latent Space of GANs for Semantic Face Editing	40
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation	50
 Self-Learning With Rectification Strategy for Human Parsing	60
 Hyperbolic Visual Embedding Learning for Zero-Shot Recognition	70
Sequential Mastery of Multiple Visual Tasks: Networks Naturally Learn to Learn and Forget to Forget	79

Distilling Effective Supervision From Severe Label Noise	<u>2</u> 91
Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks	301
CenterMask: Single Shot Instance Segmentation With Point Representation	310
Mitigating Bias in Face Recognition Using Skewness-Aware Reinforcement Learning	319
 MineGAN: Effective Knowledge Transfer From GANs to Target Domains With Few Images 93 Yaxing Wang (Computer Vision Center, Universitat Autònoma de Barcelona, Spain), Abel Gonzalez-Garcia (Computer Vision Center, Universitat Autònoma de Barcelona, Spain), David Berga (Computer Vision Center, Universitat Autònoma de Barcelona, Spain), Luis Herranz (Computer Vision Center, Universitat Autònoma de Barcelona, Spain), Fahad Shahbaz Khan (Inception Institute of Artificial Intelligence, UAE; CVL, Linköping University, Sweden), and Joost van de Weijer (Computer Vision Center, Universitat Autònoma de Barcelona, Spain) 	329
DLWL: Improving Detection for Lowshot Classes With Weakly Labelled Data	39
Unsupervised Deep Shape Descriptor With Point Distribution Learning	350
 Stylization-Based Architecture for Fast Deep Exemplar Colorization	360

Cars Can't Fly Up in the Sky: Improving Urban-Scene Segmentation via Height-Driven Attention Networks
State-Aware Tracker for Real-Time Video Object Segmentation
Iteratively-Refined Interactive 3D Medical Image Segmentation With Multi-Agent Reinforcement Learning
ENSEI: Efficient Secure Inference via Frequency-Domain Homomorphic Convolution for Privacy-Preserving Visual Recognition
Multi-Scale Interactive Network for Salient Object Detection
Interactive Multi-Label CNN Learning With Partial Labels
ViewAL: Active Learning With Viewpoint Entropy for Semantic Segmentation

Scene-Adaptive Video Frame Interpolation via Meta-Learning	
Action Segmentation With Joint Self-Supervised Temporal Domain Adaptation	1
Pixel Consensus Voting for Panoptic Segmentation	1
Minimizing Discrete Total Curvature for Image Processing	
Towards Robust Image Classification Using Sequential Attention Models)
Discovering Synchronized Subsets of Sequences: A Large Scale Solution)
Going Deeper With Lean Point Networks)
Efficient and Robust Shape Correspondence via Sparsity-Enforced Quadratic Assignment 9510 Rui Xiang (Department of Mathematics, UC Irvine), Rongjie Lai (Department of Mathematics, Rensselaer Polytechnic Institute), and Hongkai Zhao (Department of Mathematics, UC Irvine))

Explainable Object-Induced Action Decision for Autonomous Vehicles Yiran Xu (Department of Electrical and Computer Engineering, University of California, San Diego), Xiaoyin Yang (Department of Electrical and Computer Engineering, University of California, San Diego), Lihang Gong (Department of Electrical and Computer Engineering, University of California, San Diego), Hsuan-Chu Lin (Department of Electrical and Computer Engineering, University of California, San Diego), Tz-Ying Wu (Department of Electrical and Computer Engineering, University of California, San Diego), Yunsheng Li (Department of Electrical and Computer Engineering, University of California, San Diego), and Nuno Vasconcelos (Department of Electrical and Computer Engineering, University of California, San Diego)	9520
Spatially Attentive Output Layer for Image Classification Ildoo Kim (Kakao Brain, Seongnam, South Korea), Woonhyuk Baek (Kakao Brain, Seongnam, South Korea), and Sungwoong Kim (Kakao Brain, Seongnam, South Korea)	9530
Attack to Explain Deep Representation Mohammad A. A. K. Jalwana (Computer Science and Software Engineering, The University of Western Australia), Naveed Akhtar (Computer Science and Software Engineering, The University of Western Australia), Mohammed Bennamoun (Computer Science and Software Engineering, The University of Western Australia), and Ajmal Mian (Computer Science and Software Engineering, The University of Western Australia)	9540
Computing Valid P-Values for Image Segmentation by Selective Inference Kosuke Tanizaki (Nagoya Institute of Technology), Noriaki Hashimoto (Nagoya Institute of Technology), Yu Inatsu (RIKEN), Hidekata Hontani (Nagoya Institute of Technology), and Ichiro Takeuchi (Nagoya Institute of Technology; RIKEN)	9550
Unsupervised Learning From Video With Deep Neural Embeddings Chengxu Zhuang (Stanford University), Tianwei She (Stanford University), Alex Andonian (MIT), Max Sobol Mark (Stanford University), and Daniel Yamins (Stanford University)	9560
Partial Weight Adaptation for Robust DNN Inference Xiufeng Xie (Hewlett Packard Labs) and Kyu-Han Kim (Hewlett Packard Labs)	9570
Probability Weighted Compact Feature for Domain Adaptive Retrieval <i>Fuxiang Huang (Learning Intelligence & Vision Essential (LiVE) Group,</i> <i>School of Microelectronics and Communication Engineering, Chongqing</i> <i>University, China), Lei Zhang (Learning Intelligence & Vision</i> <i>Essential (LiVE) Group, School of Microelectronics and Communication</i> <i>Engineering, Chongqing University, China), Yang Yang (University of</i> <i>Electronic Science and Technology of China), and Xichuan Zhou</i> <i>(Learning Intelligence & Vision Essential (LiVE) Group, School of</i> <i>Microelectronics and Communication Engineering, Chongqing University,</i> <i>China)</i>	9579
Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints . Michael Strecke (Embodied Vision Group, Max Planck Institute for Intelligent Systems, Tübingen) and lörg Stückler (Embodied Vision	9589

Intelligent Systems, Tübingen) and Jörg Stückler (Embodied Visio Group, Max Planck Institute for Intelligent Systems, Tübingen)

PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation
Yang Zhang (Department of Computer Science, University of Central Florida), Zixiang Zhou (Department of Computer Science, University of Central Florida), Philip David (Computational and Information Sciences Directorate, U.S. Army Research Laboratory), Xiangyu Yue (Department of Electrical Engineering and Computer Sciences, University of California, Berkeley), Zerong Xi (Department of Computer Science, University of Central Florida), Boqing Gong (Department of Computer Science, University of Central Florida), and Hassan Foroosh (Department of Computer Science, University of Central Florida)
Pathological Retinal Region Segmentation From OCT Images Using Geometric Relation Based Augmentation
Transferring and Regularizing Prediction for Semantic Segmentation
 PREDICT & CLUSTER: Unsupervised Skeleton Based Action Recognition
Model Adaptation: Unsupervised Domain Adaptation Without Source Data
Evade Deep Image Retrieval by Stashing Private Images in the Hash Space
Advisable Learning for Self-Driving Vehicles by Internalizing Observation-to-Action Rules 9658 Jinkyu Kim (EECS, University of California, Berkeley), Suhong Moon (EECS, University of California, Berkeley), Anna Rohrbach (EECS, University of California, Berkeley), Trevor Darrell (EECS, University of California, Berkeley), and John Canny (EECS, University of California, Berkeley)

ProAlignNet: Unsupervised Learning for Progressively Aligning Noisy Contours VSR Veeravasarapu (Verisk AI, Verisk Analytics), Abhishek Goel (Verisk AI, Verisk Analytics), Deepak Mittal (Verisk AI, Verisk Analytics), and Maneesh Singh (Verisk AI, Verisk Analytics)	. 9668
Attribution in Scale and Space Shawn Xu (Google Al Healthcare), Subhashini Venugopalan (Google Research), and Mukund Sundararajan (Google Inc.)	. 9677
Towards Causal VQA: Revealing and Reducing Spurious Correlations by Invariant and Covariant Semantic Editing	.9687

Oral 3-1A: Recognition (Detection, Categorization) (1)

Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection
Large-Scale Object Detection in the Wild From Imbalanced Multi-Labels
 BBN: Bilateral-Branch Network With Cumulative Learning for Long-Tailed Visual Recognition 9716 Boyan Zhou (Megvii Technology), Quan Cui (Megvii Technology; Waseda University), Xiu-Shen Wei (Megvii Technology), and Zhao-Min Chen (Megvii Technology; Nanjing University)
Momentum Contrast for Unsupervised Visual Representation Learning
Classifying, Segmenting, and Tracking Object Instances in Video with Mask Propagation 9736 Gedas Bertasius (Facebook AI) and Lorenzo Torresani (Facebook AI)

Weakly Supervised Fine-Grained Image Classification via Guassian Mixture Model Oriented Discriminative Learning
Zhihui Wang (International School of Information Science & Engineering, Dalian University of Technology, China; Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, China), Shijie Wang (International School of Information Science & Engineering, Dalian University of Technology, China), Shuhui Yang (International School of Information Science & Engineering, Dalian University of Technology, China), Haojie Li (International School of Information Science & Engineering, Dalian University of Technology, China; Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, China), Jianjun Li (School of Computer Science and Technology, Hangzhou Dianzi University, China), and Zezhou Li (Shanghai Pinlan Data Technology)
Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection
Learning User Representations for Open Vocabulary Image Hashtag Prediction
 Sketch Less for More: On-the-Fly Fine-Grained Sketch-Based Image Retrieval
Few-Shot Pill Recognition
Suiyi Ling (University of Nantes), Andréas Pastor (University of Nantes), Jing Li (Alibaba Group), Zhaohui Che (Shanghai Jiao Tong University), Junle Wang (Tencent), Jieun Kim (Hanyang University), and Patrick Le Callet (University of Nantes)
PointRend: Image Segmentation As Rendering
ABCNet: Real-Time Scene Text Spotting With Adaptive Bezier-Curve Network

Oral 3-1B: Video Analysis and Understanding

Learning Temporal Co-Attention Models for Unsupervised Video Action Localization
 Spatiotemporal Fusion in 3D CNNs: A Probabilistic View
Uncertainty-Aware Score Distribution Learning for Action Quality Assessment
Learning Interactions and Relationships Between Movie Characters
Video Panoptic Segmentation
Understanding Human Hands in Contact at Internet Scale
End-to-End Learning of Visual Representations From Uncurated Instructional Videos
You2Me: Inferring Body Pose in Egocentric Video via First and Second Person Interactions 9887 Evonne Ng (UC Berkeley; UT Austin), Donglai Xiang (Carnegie Mellon University), Hanbyul Joo (Facebook Al Research), and Kristen Grauman (UT Austin; Facebook Al Research)

Learning a Weakly-Supervised Video Actor-Action Segmentation Model With a Wise Selection 9898

Jie Chen (Department of Computer Science, University of Rochester), Zhiheng Li (Department of Computer Science, University of Rochester), Jiebo Luo (Department of Computer Science, University of Rochester), and Chenliang Xu (Department of Computer Science, University of Rochester)	
Learning to Measure the Static Friction Coefficient in Cloth Contact Abdullah Haroon Rasheed (Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France), Victor Romero (Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France; Sorbonne Université, CNRS, Institut Jean le Rond d'Alembert, Paris, France), Florence Bertails-Descoubes (Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France), Stefanie Wuhrer (Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France), Jean-Sebastien Franco (Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France), and Arnaud Lazarus (Sorbonne Université, CNRS, Institut Jean le Rond d'Alembert, Paris, France)	
SpeedNet: Learning the Speediness in Videos Sagie Benaim (Google Research; Tel Aviv University), Ariel Ephrat (Google Research), Oran Lang (Google Research), Inbar Mosseri (Google Research), William T. Freeman (Google Research), Michael Rubinstein (Google Research), Michal Irani (Google Research; Weizmann Institute), and Tali Dekel (Google Research)	
Telling Left From Right: Learning Spatial Correspondence of Sight and Sound Karren Yang (MIT), Bryan Russell (Adobe Research), and Justin Salamon (Adobe Research)	

Oral 3-1C: Vision & Language

Visual-Textual Capsule Routing for Text-Based Video Segmentation Bruce McIntosh (Center for Research in Computer Vision, University of Central Florida, USA), Kevin Duarte (Center for Research in Computer Vision, University of Central Florida, USA), Yogesh S Rawat (Center for Research in Computer Vision, University of Central Florida, USA), and Mubarak Shah (Center for Research in Computer Vision, University of Central Florida, USA)	. 9939
Graph-Structured Referring Expression Reasoning in the Wild Sibei Yang (The University of Hong Kong), Guanbin Li (Sun Yat-sen University), and Yizhou Yu (The University of Hong Kong; Deepwise Al Lab)	. 9949
Say As You Wish: Fine-Grained Control of Image Caption Generation With Abstract Scene Graphs	. 9959
Shizhe Chen (Renmin University of China), Qin Jin (Renmin University of China), Peng Wang (Northwestern Polytechnical University), and Qi Wu (University of Adelaide)	

Hierarchical Conditional Relation Networks for Video Question Answering
REVERIE: Remote Embodied Visual Referring Expression in Real Indoor Environments
Iterative Answer Prediction With Pointer-Augmented Multimodal Transformers for TextVQA 9989 Ronghang Hu (Facebook AI Research (FAIR); University of California, Berkeley), Amanpreet Singh (Facebook AI Research (FAIR)), Trevor Darrell (University of California, Berkeley), and Marcus Rohrbach (Facebook AI Research (FAIR))
SQuINTing at VQA Models: Introspecting VQA Models With Sub-Questions
Vision-Language Navigation With Self-Supervised Auxiliary Reasoning Tasks
Sign Language Transformers: Joint End-to-End Sign Language Recognition and Translation . 10020 Necati Cihan Camgöz (CVSSP, University of Surrey, Guildford, UK), Oscar Koller (Microsoft, Munich, Germany), Simon Hadfield (CVSSP, University of Surrey, Guildford, UK), and Richard Bowden (CVSSP, University of Surrey, Guildford, UK)
Multi-Task Collaborative Network for Joint Referring Expression Comprehension and Segmentation

Counterfactual Vision and Language Learning	0041
Iterative Context-Aware Graph Inference for Visual Dialog	0052
TA-Student VQA: Multi-Agents Training by Self-Questioning	0062

Poster 3-1P

Exploring Self-Attention for Image Recognition
 Cops-Ref: A New Dataset and Task on Compositional Referring Expression Comprehension 10083 Zhenfang Chen (The University of Hong Kong), Peng Wang (University of Wollongong), Lin Ma (Tencent Al Lab), Kwan-Yee K. Wong (The University of Hong Kong), and Qi Wu (Australian Centre for Robotic Vision, University of Adelaide)
Improving Convolutional Networks With Self-Calibrated Convolutions
Modality Shifting Attention Network for Multi-Modal Video Question Answering

Learning to Structure an Image With Few Colors
On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering 10123 Xinyu Wang (University of Adelaide), Yuliang Liu (University of Adelaide; South China University of Technology), Chunhua Shen (University of Adelaide), Chun Chet Ng (University of Malaya), Canjie Luo (South China University of Technology), Lianwen Jin (South China University of Technology), Chee Seng Chan (University of Malaya), Anton van den Hengel (University of Adelaide), and Liangwei Wang (Huawei Noah's Ark Lab)
From Paris to Berlin: Discovering Fashion Style Influences Around the World 10133 Ziad Al-Halah (The University of Texas at Austin) and Kristen Grauman (The University of Texas at Austin)
A Local-to-Global Approach to Multi-Modal Movie Scene Segmentation
G-TAD: Sub-Graph Localization for Temporal Action Detection
Detailed 2D-3D Joint Representation for Human-Object Interaction
One-Shot Adversarial Attacks on Visual Tracking With Dual Attention
Rethinking Classification and Localization for Object Detection

Correspondence Networks With Adaptive Neighbourhood Consensus
 Multiple Anchor Learning for Visual Object Detection
PhraseCut: Language-Based Image Segmentation in the Wild
Mask Encoding for Single Shot Instance Segmentation
Action Genome: Actions As Compositions of Spatio-Temporal Scene Graphs
Learning Unseen Concepts via Hierarchical Decomposition and Composition
 Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-Infrared Person Re-Identification
In Defense of Grid Features for Visual Question Answering

Multi-Mutual Consistency Induced Transfer Subspace Learning for Human Motion Segmentation . 10274

10274 Tao Zhou (Inception Institute of Artificial Intelligence, Abu Dhabi, UAE.), Huazhu Fu (Inception Institute of Artificial Intelligence, Abu Dhabi, UAE.), Chen Gong (The Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology, China.), Jianbing Shen (Inception Institute of Artificial Intelligence, Abu Dhabi, UAE.), Ling Shao (Inception Institute of Artificial Intelligence, Abu Dhabi, UAE.), and Fatih Porikli (Australian National University, Australia.)
Dense Regression Network for Video Grounding
Neural Architecture Search for Lightweight Non-Local Networks
Learning Saliency Propagation for Semi-Supervised Instance Segmentation
Speech2Action: Cross-Modal Supervision for Action Recognition
Normalized and Geometry-Aware Self-Attention Network for Image Captioning

Memory Enhanced Global-Local Aggregation for Video Object Detection
Solving Mixed-Modal Jigsaw Puzzle for Fine-Grained Sketch-Based Image Retrieval
LG-GAN: Label Guided Adversarial Network for Flexible Targeted Attack of Point Cloud Based Deep Networks
Memory Aggregation Networks for Efficient Interactive Video Object Segmentation
VQA With No Questions-Answers Training
Counting Out Time: Class Agnostic Video Repetition Counting in the Wild
SaccadeNet: A Fast and Accurate Object Detector
Multi-Granularity Reference-Aided Attentive Feature Aggregation for Video-Based Person Re-Identification 10404 Zhizheng Zhang (University of Science and Technology of China), 10404 Cuiling Lan (Microsoft Research Asia), Wenjun Zeng (Microsoft Research Asia), and Zhibo Chen (University of Science and Technology of China)
Video Object Grounding Using Semantic Roles in Language Description

Designing Network Design Spaces
12-in-1: Multi-Task Vision and Language Representation Learning
MLCVNet: Multi-Level Context VoteNet for 3D Object Detection
Listen to Look: Action Recognition by Previewing Audio
Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization
Music Gesture for Visual Sound Separation
Referring Image Segmentation via Cross-Modal Progressive Comprehension

 Cloth in the Wind: A Case Study of Physical Measurement Through Simulation	15
The Garden of Forking Paths: Towards Multi-Future Trajectory Prediction	15
CentripetalNet: Pursuing High-Quality Keypoint Pairs for Object Detection	6
 PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection	:6
Graph Embedded Pose Clustering for Anomaly Detection	6
Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation	,5
Deepstrip: High-Resolution Boundary Refinement	5

Smoothing Adversarial Domain Attack and P-Memory Reconsolidation for Cross-Domain Person Re-Identification
Meshed-Memory Transformer for Image Captioning
Learning From Noisy Anchors for One-Stage Object Detection
 Instance-Aware, Context-Focused, and Memory-Efficient Weakly Supervised Object Detection 10595 Zhongzheng Ren (University of Illinois at Urbana-Champaign; NVIDIA), Zhiding Yu (NVIDIA), Xiaodong Yang (NVIDIA), Ming-Yu Liu (NVIDIA), Yong Jae Lee (University of California, Davis), Alexander G. Schwing (University of Illinois at Urbana-Champaign), and Jan Kautz (NVIDIA)
Density-Based Clustering for 3D Object Detection in Point Clouds
Few-Shot Video Classification via Temporal Alignment
Densely Connected Search Space for More Flexible Neural Architecture Search
Fine-Grained Video-Text Retrieval With Hierarchical Graph Reasoning

 Warp to the Future: Joint Forecasting of Features and Feature Motion
Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio
 Where Does It Exist: Spatio-Temporal Video Grounding for Multi-Form Sentences
Cross-Modal Cross-Domain Moment Alignment Network for Person Search
Self-Training With Noisy Student Improves ImageNet Classification
Learning Longterm Representations for Person Re-Identification Using Radio Signals 10696 Lijie Fan (MIT CSAIL), Tianhong Li (MIT CSAIL), Rongyao Fang (MIT CSAIL), Rumen Hristov (MIT CSAIL), Yuan Yuan (MIT CSAIL), and Dina Katabi (MIT CSAIL)
LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen Object Pose Estimation

Learning Instance Occlusion for Panoptic Segmentation
Vision-Dialog Navigation by Exploring Cross-Modal Memory
 ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks
NMS by Representative Region: Towards Crowded Pedestrian Detection by Proposal Pairing 10747 <i>Xin Huang (Waseda University), Zheng Ge (Waseda University), Zequn Jie (Tencent Al Lab), and Osamu Yoshie (Waseda University)</i>
Visual Commonsense R-CNN
 What Deep CNNs Benefit From Global Covariance Pooling: An Optimization Perspective 10768 <i>Qilong Wang (Tianjin Key Lab of Machine Learning, College of</i> <i>Intelligence and Computing, Tianjin University, China), Li Zhang</i> <i>(Tianjin Key Lab of Machine Learning, College of Intelligence and</i> <i>Computing, Tianjin University, China), Banggu Wu (Tianjin Key Lab of</i> <i>Machine Learning, College of Intelligence and Computing, Tianjin University, China), Dongwei Ren (Tianjin Key Lab of Machine Learning, College of Intelligence and Computing, Tianjin University, China), Dongwei Ren (Tianjin Key Lab of Machine Learning, College of Intelligence and Computing, Tianjin University, China),</i> <i>Peihua Li (Dalian University of Technology, China), and Qinghua Hu (Tianjin Key Lab of Machine Learning, College of Intelligence and Computing, Tianjin University, China),</i> <i>Pathua Li (Dalian University, China), and Qinghua Hu (Tianjin Key Lab of Machine Learning, College of Intelligence and Computing, Tianjin University, China),</i> <i>Pathua Li (Dalian University, China), and Qinghua Hu (Tianjin Key Lab of Machine Learning, College of Intelligence and Computing, Tianjin University, China),</i>
EfficientDet: Scalable and Efficient Object Detection

Fast Template Matching and Update for Video Object Tracking and Segmentation
Counterfactual Samples Synthesizing for Robust Visual Question Answering
Local-Global Video-Text Interactions for Temporal Grounding
Set-Constrained Viterbi for Set-Supervised Action Segmentation
Probabilistic Video Prediction From Noisy Data With a Posterior Confidence
 Beyond Short-Term Snippet: Video Relation Detection With Spatio-Temporal Global Context 10837 Chenchen Liu (Peking University), Yang Jin (Beihang University), Kehan Xu (Peking University), Guoqiang Gong (Peking University), and Yadong Mu (Peking University)
Visual Grounding in Video for Unsupervised Word Translation
Two Causal Principles for Improving Visual Dialog
Spatio-Temporal Graph for Video Captioning With Knowledge Distillation

A Real-Time Cross-Modality Correlation Filtering Method for Referring Expression Comprehension
Yue Liao (School of Computer Science and Engineering, Beihang University; SenseTime Research), Si Liu (School of Computer Science and Engineering, Beihang University), Guanbin Li (Sun Yat-sen University), Fei Wang (SenseTime Research), Yanjie Chen (SenseTime Research), Chen Qian (SenseTime Research), and Bo Li (School of Computer Science and Engineering, Beihang University)
Better Captioning With Sequence-Level Exploration
 Violin: A Large-Scale Dataset for Video-and-Language Inference
RiFeGAN: Rich Feature Generation for Text-to-Image Synthesis From Prior Knowledge 10908 Jun Cheng (CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, CAS, China; The Chinese University of Hong Kong, Hong Kong, China), Fuxiang Wu (CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, CAS, China; The Chinese University of Hong Kong, Hong Kong, China), Yanling Tian (Graduate School of Information, Production and Systems, Waseda University, Japan), Lei Wang (CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, CAS, China; The Chinese University of Hong Kong, Hong Kong, China), and Dapeng Tao (School of Information Science and Engineering, Yunnan University, China)
Graph Structured Network for Image-Text Matching
Straight to the Point: Fast-Forwarding Videos via Reinforcement Learning Using Textual Data

Multi-Modality Cross Attention Network for Image and Sentence Matching)938
 Generalized ODIN: Detecting Out-of-Distribution Image Without Learning From Out-of-Distribution Data)948
Learning Augmentation Network via Influence Functions	0958
X-Linear Attention Networks for Image Captioning	0968

Oral 3-2A: Recognition (Detection, Categorization) (2)

Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax.... 10988

Yu Li (Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Department of Electrical and Computer Engineering, National University of Singapore, Singapore), Tao Wang (Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Institute of Data Science, National University of Singapore, Singapore), Bingyi Kang (Department of Electrical and Computer Engineering, National University of Singapore, Singapore), Sheng Tang (Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China), Chunfeng Wang (University of Chinese Academy of Sciences, Beijing, China), Jintao Li (Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China), and Jiashi Feng (Department of Electrical and Computer Engineering, National University of Singapore, Singapore)

 What You See is What You Get: Exploiting Visibility for 3D Object Detection
Deep Structure-Revealed Network for Texture Recognition
Online Knowledge Distillation via Collaborative Learning
Dynamic Convolution: Attention Over Convolution Kernels
3DSSD: Point-Based 3D Single Stage Object Detector
Deep Degradation Prior for Low-Quality Image Classification
ViBE: Dressing for Diverse Body Shapes
Don't Judge an Object by Its Context: Learning to Overcome Contextual Bias
SESS: Self-Ensembling Semi-Supervised 3D Object Detection

Oral 3-2B: Vision for Robotics and Autonomous Vehicles

 SAPIEN: A SimulAted Part-Based Interactive ENvironment
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
SurfelGAN: Synthesizing Realistic Sensor Data for Autonomous Driving
A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors
Predicting Semantic Map Representations From Images Using Pyramid Occupancy Networks 11135 <i>Thomas Roddick (University of Cambridge) and Roberto Cipolla</i> <i>(University of Cambridge)</i>
Efficient Derivative Computation for Cumulative B-Splines on Lie Groups
RL-CycleGAN: Reinforcement Learning Aware Simulation-to-Real

LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World Sivabalan Manivasagam (Uber Advanced Technologies Group; University of Toronto), Shenlong Wang (Uber Advanced Technologies Group; University of Toronto), Kelvin Wong (Uber Advanced Technologies Group; University of Toronto), Wenyuan Zeng (Uber Advanced Technologies Group; University of Toronto), Mikita Sazanovich (Uber Advanced Technologies Group), Shuhan Tan (Uber Advanced Technologies Group), Bin Yang (Uber Advanced Technologies Group; University of Toronto), Wei-Chiu Ma (Uber Advanced Technologies Group; Massachusetts Institute of Techonology), and Raquel Urtasun (Uber Advanced Technologies Group; University of Toronto)	1164
Just Go With the Flow: Self-Supervised Scene Flow Estimation Himangi Mittal (Carnegie Mellon University), Brian Okorn (Carnegie Mellon University), and David Held (Carnegie Mellon University)	11174
TITAN: Future Forecast Using Action Priors Srikanth Malla (Honda Research Institute, USA), Behzad Dariush (Honda Research Institute, USA), and Chiho Choi (Honda Research Institute, USA)	1183

Oral 3-2C: Machine Learning Architectures and Formulations

Robust Learning Through Cross-Task Consistency	ļ
Dynamic Refinement Network for Oriented and Densely Packed Object Detection	-
AOWS: Adaptive and Optimal Network Width Search With Latency Constraints	Ļ
High-Dimensional Convolutional Networks for Geometric Pattern Recognition	ł
Filter Response Normalization Layer: Eliminating Batch Dependence in the Training of Deep Neural Networks	ł

Deep Iterative Surface Normal Estimation Jan Eric Lenssen (NNAISENSE; TU Dortmund University), Christian Osendorfer (NNAISENSE), and Jonathan Masci (NNAISENSE)	11244
Dataless Model Selection With the Deep Frame Potential Calvin Murdock (Carnegie Mellon University) and Simon Lucey (Carnegie Mellon University; Argo AI)	11254
UNAS: Differentiable Architecture Search Meets Reinforcement Learning Arash Vahdat (NVIDIA), Arun Mallya (NVIDIA), Ming-Yu Liu (NVIDIA), and Jan Kautz (NVIDIA)	11263
Local Context Normalization: Revisiting Local Normalization Anthony Ortiz (The University of Texas at El Paso; Microsoft Al for Good Research Lab), Caleb Robinson (Georgia Institute of Technology; Microsoft Al for Good Research Lab), Dan Morris (Microsoft Research), Olac Fuentes (The University of Texas at El Paso), Christopher Kiekintveld (The University of Texas at El Paso), Md Mahmudulla Hassan (The University of Texas at El Paso), and Nebojsa Jojic (Microsoft Research)	11273

Poster 3-2P

ACNe: Attentive Context Normalization for Robust Permutation-Equivariant Learning	3
Learning Situational Driving	3
From Depth What Can You See? Depth Completion via Auxiliary Image Reconstruction 1130 Kaiyue Lu (The Australian National University; Data61, CSIRO), Nick Barnes (The Australian National University), Saeed Anwar (Data61, CSIRO; The Australian National University), and Liang Zheng (The Australian National University)	3
Symmetry and Group in Attribute-Object Compositions	3

 Noise-Aware Fully Webly Supervised Object Detection
3D Part Guided Image Editing for Fine-Grained Object Understanding
STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and Trajectory Prediction
Rethinking Performance Estimation in Neural Architecture Search

 Feature-Metric Registration: A Fast Semi-Supervised Approach for Robust Point Cloud Registration Without Correspondences
Learning Multi-View Camera Relocalization With Graph Neural Networks
MotionNet: Joint Perception and Motion Prediction for Autonomous Driving Based on Bird's Eye View Maps
EcoNAS: Finding Proxies for Economical Neural Architecture Search
Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection
Geometrically Principled Connections in Graph Neural Networks
On Vocabulary Reliance in Scene Text Recognition
Generating Accurate Pseudo-Labels in Semi-Supervised Learning and Avoiding Overconfident Predictions via Hermite Polynomial Activations

GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping
PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation
Through Fog High-Resolution Imaging Using Millimeter Wave Radar
Disentangling Physical Dynamics From Unknown Factors for Unsupervised Video Prediction 11471
Vincent Le Guen (EDF R&D, Chatou, France; CEDRIC, Conservatoire National des Arts et Métiers, Paris, France) and Nicolas Thome (CEDRIC, Conservatoire National des Arts et Métiers, Paris, France)
D2Det: Towards High Quality Object Detection and Instance Segmentation
LiDAR-Based Online 3D Video Object Detection With Graph-Based Message Passing and Spatiotemporal Transformer Attention
Orthogonal Convolutional Neural Networks

Self-Robust 3D Point Recognition via Gather-Vector Guidance
VectorNet: Encoding HD Maps and Agent Dynamics From Vectorized Representation 11522 Jiyang Gao (Waymo LLC), Chen Sun (Google Research), Hang Zhao (Waymo LLC), Yi Shen (Waymo LLC), Dragomir Anguelov (Waymo LLC), Congcong Li (Waymo LLC), and Cordelia Schmid (Google Research)
ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks
MTL-NAS: Task-Agnostic Neural Architecture Search Towards General-Purpose Multi-Task Learning
PnPNet: End-to-End Perception and Prediction With Tracking in the Loop
Revisiting the Sibling Head in Object Detector
 Visual Reaction: Learning to Play Catch With Your Drone

Prime Sample Attention in Object Detection
 SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization
KeyPose: Multi-View 3D Labeling and Keypoint Estimation for Transparent Objects
SegGCN: Efficient 3D Point Cloud Segmentation With Fuzzy Spherical Kernel
nuScenes: A Multimodal Dataset for Autonomous Driving
PVN3D: A Deep Point-Wise 3D Keypoints Voting Network for 6DoF Pose Estimation
Probabilistic Pixel-Adaptive Refinement Networks
Discovering Human Interactions With Novel Objects via Zero-Shot Learning
Equalization Loss for Long-Tailed Object Recognition

Learning Depth-Guided Convolutions for Monocular 3D Object Detection
Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather
Don't Even Look Once: Synthesizing Features for Zero-Shot Detection
EPOS: Estimating 6D Pose of Objects With Symmetries
Train in Germany, Test in the USA: Making 3D Object Detectors Generalize
Exploring Categorical Regularization for Domain Adaptive Object Detection
Neural Implicit Embedding for Point Cloud Analysis
Pose-Guided Visible Part Matching for Occluded Person ReID

ContourNet: Taking a Further Step Toward Accurate Arbitrary-Shaped Scene Text Detection 11750

Yuxin Wang (University of Science and Technology of China), Hongtao Xie (University of Science and Technology of China), Zheng-Jun Zha (University of Science and Technology of China), Mengting Xing (University of Science and Technology of China), Zilong Fu (University of Science and Technology of China), and Yongdong Zhang (University of Science and Technology of China)	
Exploring Data Aggregation in Policy Learning for Vision-Based Urban Autonomous Driving 11760	••••
Aditya Prakash (Max Planck Institute for Intelligent Systems, Tübingen), Aseem Behl (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen), Eshed Ohn-Bar (Max Planck Institute for Intelligent Systems, Tübingen; Boston University), Kashyap Chitta (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen), and Andreas Geiger (Max Planck Institute for Intelligent Systems, Tübingen; University of Tübingen)	
Look-Into-Object: Self-Supervised Structure Modeling for Object Recognition	71
Recognizing Objects From Any View With Object and Viewer-Centered Representations 1178 Sainan Liu (University of California, San Diego), Vincent Nguyen (University of California, San Diego), Isaac Rehg (University of California, San Diego), and Zhuowen Tu (University of California, San Diego)	31
Gated Channel Transformation for Visual Recognition	Э1
Non-Local Neural Networks With Grouped Bilinear Attentional Transforms)1
Generative-Discriminative Feature Representations for Open-Set Recognition	11
RPM-Net: Robust Point Matching Using Learned Features	21

Sideways: Depth-Parallel Training of Video Models
Basis Prediction Networks for Effective Burst Denoising With Large Kernels
Private-kNN: Practical Differential Privacy for Computer Vision
SP-NAS: Serial-to-Parallel Backbone Search for Object Detection
Structure Aware Single-Stage 3D Object Detection From Point Cloud
"Looking at the Right Stuff" – Guided Semantic-Gaze for Autonomous Driving
 What's Hidden in a Randomly Weighted Neural Network?
 Structured Multi-Hashing for Model Compression
DOPS: Learning to Detect 3D Objects and Predict Their 3D Shapes

AutoTrack: Towards High-Performance Visual Tracking for UAV With Automatic Spatio-Temporal Regularization	
of Singapore), and Geng Lu (Tsinghua University) GP-NAS: Gaussian Process Based Neural Architecture Search	
 NAS-FCOS: Fast Neural Architecture Search for Object Detection	
 TCTS: A Task-Consistent Two-Stage Framework for Person Search	
SCATTER: Selective Context Attentional Scene Text Recognizer	

Learning Canonical Shape Space for Category-Level 6D Object Pose and Size Estimation 11970 Dengsheng Chen (National University of Defense Technology), Jun Li (National University of Defense Technology), Zheng Wang (Taobao.com), and Kai Xu (National University of Defense Technology; SpeedBot Robotics Ltd.)
Hierarchical Scene Coordinate Classification and Regression for Visual Localization
MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation
Scalable Uncertainty for Computer Vision With Functional Variational Inference
Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End 12011 <i>Abdelrahman Eldesokey (Computer Vision Laboratory, Linköping</i> <i>University, Sweden), Michael Felsberg (Computer Vision Laboratory,</i> <i>Linköping University, Sweden), Karl Holmquist (Computer Vision</i> <i>Laboratory, Linköping University, Sweden), and Michael Persson</i> <i>(Computer Vision Laboratory, Linköping University, Sweden)</i>
Butterfly Transform: An Efficient FFT Based Neural Architecture Design
A Certifiably Globally Optimal Solution to Generalized Essential Matrix Estimation
MUXConv: Information Multiplexing in Convolutional Neural Networks
PointGMM: A Neural GMM Network for Point Clouds
Noisier2Noise: Learning to Denoise From Unpaired Noisy Data

 TRPLP – Trifocal Relative Pose From Lines at Points	70
DSNAS: Direct Neural Architecture Search Without Parameter Retraining	81
MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships	190
Regularization on Spatio-Temporally Smoothed Feature for Action Recognition	00
Towards Accurate Scene Text Recognition With Semantic Reasoning Networks	10
Unsupervised Reinforcement Learning of Transferable Meta-Skills for Embodied Navigation 12120 Juncheng Li (Zhejiang University), Xin Wang (University of California, Santa Barbara), Siliang Tang (Zhejiang University), Haizhou Shi (Zhejiang University), Fei Wu (Zhejiang University), Yueting Zhuang (Zhejiang University), and William Yang Wang (University of California, Santa Barbara)	
Inferring Attention Shift Ranks of Objects for Image Saliency	30

Camera On-Boarding for Person Re-Identification Using Hypothesis Transfer Learning 1214 Sk Miraj Ahmed (University of California, Riverside), Aske R. Lejbølle (Aalborg University, Denmark), Rameswar Panda (Aalborg University, Denmark), and Amit K. Roy-Chowdhury (University of California, Riverside)	1
Joint Graph-Based Depth Refinement and Normal Estimation	1
DR Loss: Improving Object Detection by Distributional Ranking	1
Self-Trained Deep Ordinal Regression for End-to-End Video Anomaly Detection	0

Oral 3-3A: Recognition (Detection, Categorization) (3); Segmentation, Grouping and Shape (2)

 Few-Shot Class-Incremental Learning
 PolarMask: Single Shot Instance Segmentation With Polar Representation
DeepEMD: Few-Shot Image Classification With Differentiable Earth Mover's Distance and Structured Classifiers
Detection in Crowded Scenes: One Proposal, Multiple Predictions

I
1
2
2
2
2

Oral 3-3B: Vision Applications and Systems; Vision & Other Modalities; Visual Reasoning and Logical Representation

Efficient Neural Vision Systems Based on Convolutional Image Acquisition
Visual Chirality
What Machines See Is Not What They Get: Fooling Scene Text Recognition Models WithAdversarial Text Images12301Xing Xu (Center for Future Media & School of Computer Science andEngineering, University of Electronic Science and Technology ofChina), Jiefu Chen (Center for Future Media & School of ComputerScience and Engineering, University of Electronic Science andTechnology of China), Jinhui Xiao (Center for Future Media & School ofComputer Science and Engineering, University of Electronic Science andTechnology of China), Lianli Gao (Center for Future Media & School ofComputer Science and Engineering, University of Electronic Science andTechnology of China), Fumin Shen (Center for Future Media & School ofComputer Science and Engineering, University of Electronic Science andTechnology of China), Fumin Shen (Center for Future Media & School ofComputer Science and Engineering, University of Electronic Science andTechnology of China), and Heng Tao Shen (Center for Future Media &School of Computer Science and Engineering, University of Electronic Science andTechnology of China), and Heng Tao Shen (Center for Future Media &School of Computer Science and Engineering, University of ElectronicScience and Technology of China)
Dynamic Traffic Modeling From Overhead Imagery
Satellite Image Time Series Classification With Pixel-Set Encoders and Temporal Self-Attention
DAVD-Net: Deep Audio-Aided Video Decompression of Talking Heads
Learning When and Where to Zoom With Deep Reinforcement Learning

Oral 3-3C: Transfer/Low-Shot/Semi/Unsupervised Learning (3)

Cross-Domain Detection via Graph-Induced Prototype Alignment Minghao Xu (Shanghai Jiao Tong University, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University), Hang Wang (Shanghai Jiao Tong University, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University), Bingbing Ni (Shanghai Jiao Tong University, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University; Huawei Hisilicon), Qi Tian (Huawei Noah's Ark Lab), and Wenjun Zhang (Shanghai Jiao Tong University, Shanghai, China)	12352
Meta-Learning of Neural Architectures for Few-Shot Learning Thomas Elsken (Bosch Center for Artificial Intelligence; University of Freiburg), Benedikt Staffler (Bosch Center for Artificial Intelligence), Jan Hendrik Metzen (Bosch Center for Artificial Intelligence), and Frank Hutter (University of Freiburg; Bosch Center for Artificial Intelligence)	12362
Towards Inheritable Models for Open-Set Domain Adaptation Jogendra Nath Kundu (Video Analytics Lab, CDS, Indian Institute of Science, Bangalore), Naveen Venkat (Video Analytics Lab, CDS, Indian Institute of Science, Bangalore), Ambareesh Revanur (Video Analytics Lab, CDS, Indian Institute of Science, Bangalore), Rahul M V (Video Analytics Lab, CDS, Indian Institute of Science, Bangalore), and R. Venkatesh Babu (Video Analytics Lab, CDS, Indian Institute of Science, Bangalore)	12373
Learning From Synthetic Animals Jiteng Mu (Johns Hopkins University), Weichao Qiu (Johns Hopkins University), Gregory D. Hager (Johns Hopkins University), and Alan L. Yuille (Johns Hopkins University)	12383
Distilling Cross-Task Knowledge via Relationship Matching Han-Jia Ye (Nanjing University), Su Lu (Nanjing University), and De-Chuan Zhan (Nanjing University)	12393
Open Compound Domain Adaptation Ziwei Liu (The Chinese University of Hong Kong), Zhongqi Miao (UC Berkeley / ICSI), Xingang Pan (The Chinese University of Hong Kong), Xiaohang Zhan (The Chinese University of Hong Kong), Dahua Lin (The Chinese University of Hong Kong), Stella X. Yu (UC Berkeley / ICSI), and Boqing Gong (Google Inc.)	12403

Poster 3-3P

Context Prior for Scene Segmentation	13
Tangent Images for Mitigating Spherical Distortion	23
Learning a Dynamic Map of Visual Appearance	32
 Webly Supervised Knowledge Embedding Model for Visual Reasoning	42
 Gradually Vanishing Bridge for Adversarial Domain Adaptation	52
Active Speakers in Context	52

Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation 12472
Bowen Cheng (UIUC; Google Research), Maxwell D. Collins (Google Research), Yukun Zhu (Google Research), Ting Liu (Google Research), Thomas S. Huang (UIUC), Hartwig Adam (Google Research), and Liang-Chieh Chen (Google Research)
Inter-Region Affinity Distillation for Road Marking Segmentation
Unified Dynamic Convolutional Network for Super-Resolution With Variational Degradations 12493 <i>Yu-Syuan Xu (MediaTek Inc., Hsinchu, Taiwan), Shou-Yao Roy Tseng</i>
(MediaTek Inc., Hsinchu, Taiwan), Yu Tseng (MediaTek Inc., Hsinchu, Taiwan), Hsien-Kai Kuo (MediaTek Inc., Hsinchu, Taiwan), and Yi-Min Tsai (MediaTek Inc., Hsinchu, Taiwan)
Making Better Mistakes: Leveraging Class Hierarchies With Deep Networks
 Data-Free Knowledge Amalgamation via Group-Stack Dual-GAN
Screencast Tutorial Video Understanding
DSGN: Deep Stereo Geometry Network for 3D Object Detection
 Weakly-Supervised Salient Object Detection via Scribble Annotations
Learning to Learn Single Domain Generalization

Severity-Aware Semantic Segmentation With Reinforced Wasserstein Training
Boosting Few-Shot Learning With Adaptive Margin Loss
JA-POLS: A Moving-Camera Background Model via Joint Alignment and Partially-Overlapping Local Subspaces
AugFPN: Improving Multi-Scale Feature Learning for Object Detection
xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3D Semantic Segmentation 12602 Maximilian Jaritz (Inria; Valeo DAR; Valeo.ai), Tuan-Hung Vu (Valeo.ai), Raoul de Charette (Inria), Emilie Wirbel (Valeo DAR;

Valeo.ai), and Patrick Pérez (Valeo.ai)

 Norm-Aware Embedding for Efficient Person Search	
Intelligent Home 3D: Automatic 3D-House Design From Linguistic Descriptions Only	•
Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation	
Robust Object Detection Under Occlusion With Context-Aware CompositionalNets	•
 IMRAM: Iterative Matching With Recurrent Attention Memory for Cross-Modal Image-Text Retrieval	-
Domain-Aware Visual Bias Eliminating for Generalized Zero-Shot Learning	
Semi-Supervised Semantic Segmentation With Cross-Consistency Training	

Learning to Learn Cropping Models for Different Aspect Ratio Requirements
What Makes Training Multi-Modal Classification Networks Hard?
Selective Transfer With Reinforced Transfer Network for Partial Domain Adaptation
Semi-Supervised Semantic Image Segmentation With Self-Correcting Networks
Exemplar Normalization for Learning Deep Representation
Imitative Non-Autoregressive Modeling for Trajectory Forecasting and Imputation

Multi-Modal Graph Neural Network for Joint Reasoning on Vision and Scene Text
StereoGAN: Bridging Synthetic-to-Real Domain Gap by Joint Optimization of Domain Translation and Stereo Matching
Self-Supervised Domain-Aware Generative Network for Generalized Zero-Shot Learning 12764 Jiamin Wu (University of Science and Technology of China), Tianzhu Zhang (University of Science and Technology of China), Zheng-Jun Zha (University of Science and Technology of China), Jiebo Luo (University of Rochester), Yongdong Zhang (University of Science and Technology of China), and Feng Wu (University of Science and Technology of China)
Sparse Layered Graphs for Multi-Object Segmentation
Visual-Semantic Matching by Exploring High-Order Attention and Distraction
End-to-End 3D Point Cloud Instance Segmentation Without Detection

Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images 12803
Zhengxia Zou (University of Michigan, Ann Arbor), Sen Lei (Beihang University), Tianyang Shi (NetEase Fuxi Al Lab), Zhenwei Shi (Beihang University), and Jieping Ye (University of Michigan, Ann Arbor; Didi Chuxing)
Differentiable Adaptive Computation Time for Visual Reasoning
DeepLPF: Deep Local Parametric Filters for Image Enhancement
Instance Credibility Inference for Few-Shot Learning
Learning From Web Data With Self-Organizing Memory Module
TransMatch: A Transfer-Learning Scheme for Semi-Supervised Few-Shot Learning
Learning the Redundancy-Free Features for Generalized Zero-Shot Object Recognition 12862 Zongyan Han (PCALab, Nanjing University of Science and Technology), Zhenyong Fu (PCALab, Nanjing University of Science and Technology), and Jian Yang (PCALab, Nanjing University of Science and Technology)
Neural Topological SLAM for Visual Navigation

 WaveletStereo: Learning Wavelet Coefficients of Disparity Map in Stereo Matching
Robust Superpixel-Guided Attentional Adversarial Attack
BEDSR-Net: A Deep Shadow Removal Network From a Single Document Image
Cross-Domain Document Object Detection: Benchmark Suite and Method
Explaining Knowledge Distillation by Quantifying the Knowledge
Exploring Bottom-Up and Top-Down Cues With Attentive Learning for Webly Supervised Object Detection
Zhonghua Wu (Nanyang Technological University), Qingyi Tao (Nanyang Technological University; NVIDIA AI Technology Center), Guosheng Lin (Nanyang Technological University), and Jianfei Cai (Nanyang Technological University; Monash University)
Enhancing Generic Segmentation With Learned Region Representations
Adaptive Hierarchical Down-Sampling for Point Cloud Classification

IDA-3D: Instance-Depth-Aware 3D Object Detection From Stereo Vision for Autonomous Driving... 13012

Wanli Peng (Dalian University of Technology, China), Hao Pan (Dalian University of Technology, China), He Liu (Dalian University of Technology, China), and Yi Sun (Dalian University of Technology, China)

Label Decoupling Framework for Salient Object Detection	22
Transform and Tell: Entity-Aware News Image Captioning	32
 HAMBox: Delving Into Mining High-Quality Anchors on Face Detection	13
 Hierarchical Feature Embedding for Attribute Recognition	52
 Squeeze-and-Attention Networks for Semantic Segmentation	52
Context R-CNN: Long Term Temporal Context for Per-Camera Object Detection	72
Mixture Dense Regression for Object Detection and Human Pose Estimation	33

Syntax-Aware Action Targeting for Video Captioning	3093
Learning Visual Emotion Representations From Web Data	3103
The Edge of Depth: Explicit Constraints Between Segmentation and Depth	3113
A Context-Aware Loss Function for Action Spotting in Soccer Videos	3123
Towards Learning a Generic Agent for Vision-and-Language Navigation via Pre-Training 13 Weituo Hao (Duke University), Chunyuan Li (Microsoft Research, Redmond), Xiujun Li (Microsoft Research, Redmond), Lawrence Carin (Duke University), and Jianfeng Gao (Microsoft Research, Redmond)	3134
Video Instance Segmentation Tracking With a Modified VAE Architecture	3144
Deformation-Aware Unpaired Image Translation for Pose Estimation on Laboratory Animals 13155 Siyuan Li (CVLAB, EPFL, Lausanne), Semih Günel (CVLAB, EPFL, Lausanne; Neuroengineering Lab, EPFL, Lausanne), Mirela Ostrek (CVLAB, EPFL, Lausanne), Pavan Ramdya (Neuroengineering Lab, EPFL, Lausanne), Pascal Fua (CVLAB, EPFL, Lausanne), and Helge Rhodin (CVLAB, EPFL, Lausanne; Imager Lab, UBC, Vancouver)	
ZeroQ: A Novel Zero Shot Quantization Framework	3166

Disparity-Aware Domain Adaptation in Stereo Image Restoration	176
Offset Bin Classification Network for Accurate Object Detection	185
TBT: Targeted Neural Network Attack With Bit Trojan	195
Maintaining Discrimination and Fairness in Class Incremental Learning	205
Background Data Resampling for Outlier-Aware Classification	215
 STEFANN: Scene Text Editor Using Font Adaptive Neural Network	225
Geometry and Learning Co-Supported Normal Estimation for Unstructured Point Cloud 132 Haoran Zhou (Nanjing University of Aeronautics and Astronautics; MIIT Key Laboratory of Pattern Analysis and Machine Intelligence), Honghua Chen (Nanjing University of Aeronautics and Astronautics), Yidan Feng (Nanjing University of Aeronautics and Astronautics; MIIT Key Laboratory of Pattern Analysis and Machine Intelligence), Qiong Wang (Shenzhen Institutes of Advanced Technology), Jing Qin (The Hong Kong Polytechnic University), Haoran Xie (Lingnan University), Fu Lee Wang (The Open University of Hong Kong), Mingqiang Wei (Nanjing University of Aeronautics and Astronautics; MIIT Key Laboratory of Pattern Analysis and Machine Intelligence), and Jun Wang (Nanjing University of Aeronautics and Astronautics)	235

Sequential Motif Profiles and Topological Plots for Offline Signature Verification
Optical Flow in Dense Foggy Scenes Using Semi-Supervised Learning
A Spatial RNN Codec for End-to-End Image Compression
Object Relational Graph With Teacher-Recommended Learning for Video Captioning 13275 Ziqi Zhang (National Laboratory of Pattern Recognition, CASIA; University of Chinese Academy of Sciences), Yaya Shi (University of Science and Technology of China), Chunfeng Yuan (National Laboratory of Pattern Recognition, CASIA), Bing Li (National Laboratory of Pattern Recognition, CASIA; PeopleAI, Inc.; State Key Laboratory of Communication Content Cognition, People's Daily Online), Peijin Wang (University of Chinese Academy of Sciences; Aerospace Information Research Institute, CAS), Weiming Hu (National Laboratory of Pattern Recognition, CASIA; University of Chinese Academy of Sciences; Center for Excellence in Brain Science and Intelligence Technology, CAS), and Zheng-Jun Zha (University of Science and Technology of China)
MMTM: Multimodal Transfer Module for CNN Fusion
Generalized Zero-Shot Learning via Over-Complete Distribution
Gait Recognition via Semi-supervised Disentangled Representation Learning to Identity and Covariate Features

Poster 3-4P

Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection 13326

Liang Du (Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China), Xiaoqing Ye (Baidu Inc., China), Xiao Tan (Baidu Inc., China), Jianfeng Feng (Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China), Zhenbo Xu (University of Science and Technology of China, China), Errui Ding (Baidu Inc., China), and Shilei Wen (Baidu Inc., China)
Interactive Image Segmentation With First Click Attention
 NETNet: Neighbor Erasing and Transferring Network for Better Single Shot Object Detection 13346 Yazhao Li (Tianjin Key Laboratory of Brain-inspired Intelligence Technology, School of Electrical and Information Engineering, Tianjin University, China), Yanwei Pang (Tianjin Key Laboratory of Brain-inspired Intelligence Technology, School of Electrical and Information Engineering, Tianjin University, China), Jianbing Shen (Inception Institute of Artificial Intelligence, Abu Dhabi, UAE), Jiale Cao (Tianjin Key Laboratory of Brain-inspired Intelligence Technology, School of Electrical and Information Engineering, Tianjin University, China), and Ling Shao (Inception Institute of Artificial Intelligence, Abu Dhabi, UAE)
Scale-Equalizing Pyramid Convolution for Object Detection
Learning to Cluster Faces via Confidence and Connectivity Estimation

Cross-Modality Person Re-Identification With Shared-Specific Feature Transfer
DPGN: Distribution Propagation Graph Network for Few-Shot Learning
Density-Aware Graph for Deep Semi-Supervised Visual Recognition
Unsupervised Multi-Modal Image Registration via Geometry Preserving Image-to-Image Translation
Binarizing MobileNet via Evolution-Based Searching

Temporal-Context Enhanced Detection of Heavily Occluded Pedestrians	127
Orderless Recurrent Models for Multi-Label Classification	137
Gold Seeker: Information Gain From Policy Distributions for Goal-Oriented Vision-and-Langauge Reasoning	147
Rethinking the Route Towards Weakly Supervised Object Localization	157
Adversarial Feature Hallucination Networks for Few-Shot Learning	167
Conditional Gaussian Distribution Learning for Open Set Recognition	177
Connect-and-Slice: An Hybrid Approach for Reconstructing 3D Objects	487
Attentive Weights Generation for Few Shot Learning via Information Maximization	196

Assessing Eye Aesthetics for Automatic Multi-Reference Eye In-Painting
PuppeteerGAN: Arbitrary Portrait Animation With Semantic-Aware Appearance Transformation 13515
Zhuo Chen (Shenzhen International Graduate School, Tsinghua University; UBTECH Sydney AI Centre, School of Computer Science, Faculty of Engineering, The University of Sydney, Australia), Chaoyue Wang (UBTECH Sydney AI Centre, School of Computer Science, Faculty of Engineering, The University of Sydney, Australia), Bo Yuan (Shenzhen International Graduate School, Tsinghua University), and Dacheng Tao (UBTECH Sydney AI Centre, School of Computer Science, Faculty of Engineering, The University of Sydney, Australia)
 SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition 13525 Zhi Qiao (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China), Yu Zhou (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Dongbao Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Yucan Zhou (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), and Weiping Wang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China)
Texture and Shape Biased Two-Stream Networks for Clothing Classification and Attribute
Recognition
Distortion Agnostic Deep Watermarking
 RMP-SNN: Residual Membrane Potential Neuron for Enabling Deeper High-Accuracy and Low-Latency Spiking Neural Network
BFBox: Searching Face-Appropriate Backbone and Feature Pyramid Network for Face Detector 13565 <i>Yang Liu (North China Electic Power University, Beijing) and Xu Tang</i>

(Baidu Inc., Beijing)

PFCNN: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames
 iTAML: An Incremental Task-Agnostic Meta-learning Approach
Optimal least-squares solution to the hand-eye calibration problem
MnasFPN: Learning Latency-Aware Pyramid Architecture for Object Detection on Mobile
Devices
 VSGNet: Spatial Attention Network for Detecting Human Object Interactions Using Graph Convolutions
End-to-End Camera Calibration for Broadcast Videos
Regularizing CNN Transfer Learning With Randomised Regression
KeypointNet: A Large-Scale 3D Keypoint Dataset Aggregated From Numerous Human Annotations
Yang You (Shanghai Jiao Tong University, China), Yujing Lou (Shanghai Jiao Tong University, China), Chengkun Li (Shanghai Jiao Tong University, China), Zhoujun Cheng (Shanghai Jiao Tong University, China), Liangwei Li (Shanghai Jiao Tong University, China), Lizhuang Ma (Shanghai Jiao Tong University, China), Cewu Lu (Shanghai Jiao Tong University, China), and Weiming Wang (Shanghai Jiao Tong University, China)

Hierarchical Clustering With Hard-Batch Triplet Loss for Person Re-Identification
Joint Semantic Segmentation and Boundary Detection Using Iterative Pyramid Contexts 13663 Mingmin Zhen (Hong Kong University of Science and Technology), Jinglu Wang (Microsoft Rresearch Asia), Lei Zhou (Hong Kong University of Science and Technology), Shiwei Li (Everest Innovation Technology), Tianwei Shen (Hong Kong University of Science and Technology), Jiaxiang Shang (Hong Kong University of Science and Technology), Tian Fang (Everest Innovation Technology), and Long Quan (Hong Kong University of Science and Technology)
Attention-Guided Hierarchical Structure Aggregation for Image Matting
 MetaFuse: A Pre-trained Fusion Model for Human Pose Estimation
Prior Guided GAN Based Semantic Inpainting
Weakly Supervised Semantic Point Cloud Segmentation: Towards 10× Fewer Labels
Physically Realizable Adversarial Examples for LiDAR Object Detection
Combating Noisy Labels by Agreement: A Joint Training Method with Co-Regularization 13723 Hongxin Wei (School of Computer Science and Engineering, Nanyang Technological University, Singapore), Lei Feng (School of Computer Science and Engineering, Nanyang Technological University, Singapore), Xiangyu Chen (Open FIESTA Center, Tsinghua University, China), and Bo An (School of Computer Science and Engineering, Nanyang Technological University, Singapore)

Light-weight Calibrator: A Separable Component for Unsupervised Domain Adaptation 13733 Shaokai Ye (Institute for Interdisciplinary Information Core Technology (IIISCT), China), Kailu Wu (Tsinghua University, China), Mu Zhou (University of Tsukuba, Japan), Yunfei Yang (Tsinghua University, China), Sia Huat Tan (Tsinghua University, China), Kaidi Xu (Northeastern University, USA), Jiebo Song (Institute for Interdisciplinary Information Core Technology (IIISCT), China), Chenglong Bao (Tsinghua University, China), and Kaisheng Ma (Tsinghua University, China)
Learn to Augment: Joint Data Augmentation and Network Optimization for Text Recognition 13743 <i>Canjie Luo (South China University of Technology), Yuanzhi Zhu (South</i>
China University of Technology), Lianwen Jin (South China University of Technology), and Yongpan Wang (Alibaba Group)
Learning Selective Self-Mutual Attention for RGB-D Saliency Detection
Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation
Estimating Low-Rank Region Likelihood Maps
Neural Head Reenactment with Latent Pose Descriptors
Learning Individual Speaking Styles for Accurate Lip to Speech Synthesis

Self-Supervised Learning of Video-Induced Visual Invariances
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer 13813 Jan Svoboda (NNAISENSE, Switzerland; Universita della Svizzera italiana, Switzerland), Asha Anoosheh (NNAISENSE, Switzerland), Christian Osendorfer (NNAISENSE, Switzerland), and Jonathan Masci (NNAISENSE, Switzerland)
MINA: Convex Mixed-Integer Programming for Non-Rigid Shape Alignment
Improving One-Shot NAS by Suppressing the Posterior Fading
Incremental Few-Shot Object Detection
Synthetic Learning: Learn From Distributed Asynchronized Discriminator GAN Without SharingMedical Image Data13853Qi Chang (Rutgers University), Hui Qu (Rutgers University), Yikai13853Zhang (Rutgers University), Mert Sabuncu (Cornell University), ChaoChen (Stony Brook University), Tong Zhang (Hong Kong University of Science and Technology), and Dimitris N. Metaxas (Cornell University)
Exploring Category-Agnostic Clusters for Open-Set Domain Adaptation
Regularizing Class-Wise Predictions via Self-Knowledge Distillation
Hierarchical Graph Attention Network for Visual Relationship Detection

M2m: Imbalanced Classification via Major-to-Minor Translation	93
CenterMask: Real-Time Anchor-Free Instance Segmentation	03
Multi-Path Learning for Object Pose Estimation Across Domains	13
Incremental Learning in Online Scenario	23
Enhanced Transport Distance for Unsupervised Domain Adaptation	33
TESA: Tensor Element Self-Attention via Matricization	42
Training a Steerable CNN for Guidewire Detection	52
Superpixel Segmentation With Fully Convolutional Networks	61
SharinGAN: Combining Synthetic and Real Data for Unsupervised Geometry Estimation 1397 Koutilya PNVR (University of Maryland, USA), Hao Zhou (University of Maryland, USA), and David Jacobs (University of Maryland, USA)	71

Label Distribution Learning on Auxiliary Label Space Graphs for Facial Expression Recognition
Shi (Al Lab, Lenovo Research), Xin Geng (Southeast University), and Yong Rui (Al Lab, Lenovo Research)
Deep Residual Flow for Out of Distribution Detection
 FeatureFlow: Robust Video Interpolation via Structure-to-Texture Generation
Learning Nanoscale Motion Patterns of Vesicles in Living Cells
Improving Action Segmentation via Graph-Based Temporal Reasoning
 Episode-Based Prototype Generating Network for Zero-Shot Learning
Learning to Segment the Tail

Learning to Evaluate Perception Models Using Planner-Centric Metrics
CoverNet: Multimodal Behavior Prediction Using Trajectory Sets
Real-World Person Re-Identification via Degradation Invariance Learning
Defending and Harnessing the Bit-Flip Based Adversarial Weight Attack
Adversarial Latent Autoencoders
Adaptive Fractional Dilated Convolution Network for Image Aesthetics Assessment
Deep Generative Model for Robust Imbalance Classification

Learning Deep Network for Detecting 3D Object Keypoints and 6D Poses
MetalQA: Deep Meta-Learning for No-Reference Image Quality Assessment
 Sketchformer: Transformer-Based Representation for Sketched Structure
Cylindrical Convolutional Networks for Joint Object Detection and Viewpoint Estimation 14151 Sunghun Joung (Yonsei University), Seungryong Kim (École Polytechnique Fédérale de Lausanne (EPFL); Korea University), Hanjae Kim (Yonsei University), Minsu Kim (Yonsei University), Ig-Jae Kim (Korea Institute of Science and Technology (KIST)), Junghyun Cho (Korea Institute of Science and Technology (KIST)), and Kwanghoon Sohn (Yonsei University)
Learning a Unified Sample Weighting Network for Object Detection
Old Is Gold: Redefining the Adversarially Learned One-Class Classifier Training Paradigm 14171 Muhammad Zaigham Zaheer (University of Science and Technology; Electronics and Telecommunications Research Institute, Daejeon, South Korea), Jin-Ha Lee (University of Science and Technology; Electronics and Telecommunications Research Institute, Daejeon, South Korea), Marcella Astrid (University of Science and Technology; Electronics and Telecommunications Research Institute, Daejeon, South Korea), and Seung-Ik Lee (University of Science and Technology; Electronics and Telecommunications Research Institute, Daejeon, South Korea)
An Adaptive Neural Network for Unsupervised Mosaic Consistency Analysis in Image Forensics 14182 <i>Quentin Bammey (CMLA, CNRS, ENS Paris-Saclay, Université</i> <i>Paris Saclay) Pafael Grompone von Gioi (CMLA, CNRS, ENS Paris Saclay</i>

Paris-Saclay), Rafael Grompone von Gioi (CMLA, CNRS, ENS Paris-Saclay, Université Paris-Saclay), and Jean-Michel Morel (CMLA, CNRS, ENS Paris-Saclay, Université Paris-Saclay)

McFlow: Monte Carlo Flow Models for Data Imputation
Learning to See Through Obstructions
GaitPart: Temporal Part-Based Model for Gait Recognition
EmotiCon: Context-Aware Multimodal Emotion Recognition Using Frege's Principle
Can Deep Learning Recognize Subtle Human Activities?
PhysGAN: Generating Physical-World-Resilient Adversarial Examples for Autonomous Driving 14242
Zelun Kong (The University of Texas at Dallas), Junfeng Guo (The University of Texas at Dallas), Ang Li (The University of Maryland, College Park), and Cong Liu (The University of Texas at Dallas)
ILFO: Adversarial Attack on Adaptive Neural Networks
On Translation Invariance in CNNs: Convolutional Layers Can Exploit Absolute Spatial Location
Diverse Image Generation via Self-Conditioned GANs

Rongjie Liu (Rice University), Meng Li (Rice University), and Li Ma (Duke University)

GrappaNet: Combining Parallel Imaging With Deep Learning for Multi-Coil MRI Reconstruction..... 14303

Anuroop Sriram (Facebook AI Research (FAIR)), Jure Zbontar (Facebook AI Research (FAIR)), Tullie Murrell (Facebook AI Research (FAIR)), C. Lawrence Zitnick (Facebook AI Research (FAIR)), Aaron Defazio (Facebook AI Research (FAIR)), and Daniel K. Sodickson (NYU School of Medicine)

Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS 14311

Gabriel Bender (Google Research, Contributed Equally), Hanxiao Liu (Google Research, Contributed Equally), Bo Chen (Google Research), Grace Chu (Google Research), Shuyang Cheng (Waymo), Pieter-Jan Kindermans (Google Research), and Quoc V. Le (Google Research)

Context Aware Graph Convolution for Skeleton-Based Action Recognition	
 Fast(er) Reconstruction of Shredded Text Documents via Self-Supervised Deep Asymmetric Metric Learning	

(Federal University of Espírito Santo (UFES), Vit ória, Brazil), Alberto F. De Souza (Federal University of Espírito Santo (UFES), Vit ória, Brazil), and Thiago Oliveira-Santos (Federal University of

Espírito Santo (UFES), Vit ória, Brazil)

Revisiting Pose-Normalization for Fine-Grained Few-Shot Recognition	
Luming Tang (Cornell University), Davis Wertheimer (Cornell	
University), and Bharath Hariharan (Cornell University)	

Learning Memory-Guided Normality for Anomaly Detection	0
Appearance Shock Grammar for Fast Medial Axis Extraction From Real Images	'0
Generalizing Hand Segmentation in Egocentric Videos With Uncertainty-Guided Model Adaptation	0
DeFeat-Net: General Monocular Depth via Simultaneous Unsupervised Representation Learning 14390 Jaime Spencer (Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey), Richard Bowden (Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey), and Simon Hadfield (Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey)	
Learning Visual Motion Segmentation Using Event Surfaces	12
Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction	2
Discriminative Multi-Modality Speech Recognition	.1

Clean-Label Backdoor Attacks on Video Recognition Models
Detecting Adversarial Samples Using Influence Functions and Nearest Neighbors
Unsupervised Model Personalization While Preserving Privacy and Scalability: An Open Problem
 GIFnets: Differentiable GIF Encoding Framework
Learning Invariant Representation for Unsupervised Image Restoration
Improved Few-Shot Visual Classification
Learning Weighted Submanifolds With Variational Autoencoders and Riemannian Variational Autoencoders
Learning Geocentric Object Pose in Oblique Monocular Images

Understanding Adversarial Examples From the Mutual Influence of Images and Perturbations 14509

Chaoning Zhang (Robotics and Computer Vision (RCV) Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Korea), Philipp Benz (Robotics and Computer Vision (RCV) Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Korea), Tooba Imtiaz (Robotics and Computer Vision (RCV) Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Korea), and In So Kweon (Robotics and Computer Vision (RCV) Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Korea)
Your Local GAN: Designing Two Dimensional Local Attention Mechanisms for Generative Models 14519
Giannis Daras (National Technical University of Athens), Augustus Odena (Google Brain), Han Zhang (Google Brain), and Alexandros G. Dimakis (UT Austin)
MoreFusion: Multi-object Reasoning for 6D Pose Estimation from Volumetric Fusion
HCNAF: Hyper-Conditioned Neural Autoregressive Flow and its Application for Probabilistic Occupancy Map Forecasting
Detail-recovery Image Deraining via Context Aggregation Networks
 MCEN: Bridging Cross-Modal Gap between Cooking Recipes and Dish Images with Latent Variable Model

 Hypergraph Attention Networks for Multimodal Learning	4569
 Moving in the Right Direction: A Regularization for Deep Metric Learning	4579
Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets	4588
Seeing without Looking: Contextual Rescoring of Object Detections for AP Maximization 1 Lourenço V. Pato (Institute for Systems and Robotics / IST, ULisboa), Renato Negrinho (Carnegie Mellon University), and Pedro M. Q. Aguiar (Institute for Systems and Robotics / IST, ULisboa)	4598
End-to-End Adversarial-Attention Network for Multi-Modal Clustering	4607
Fast Sparse ConvNets	4617
Few Sample Knowledge Distillation for Efficient Network Compression	4627
Predicting Sharp and Accurate Occlusion Boundaries in Monocular Depth Estimation Using Displacement Fields	4636

Shape correspondence using anisotropic Chebyshev spectral CNNs	6
RetinaTrack: Online Single Stage Joint Detection and Tracking	6
Multimodal Categorization of Crisis Events in Social Media	7
 SPARE3D: A Dataset for SPAtial REasoning on Three-View Line Drawings	8
SwapText: Image Based Texts Transfer in Scenes	8
OrigamiNet: Weakly-Supervised, Segmentation-Free, One-Step, Full Page Text Recognition by learning to unfold	8
 FroDO: From Detections to 3D Objects	8