2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) CVPR 2023

Table of Contents

Message from the 2023 General and Program Chairs 2023 Organizing Committee 2023 Outstanding Reviewers	cccii
Sponsors	
Poster-Tue-AM	
Megahertz Light Steering Without Moving Parts Adithya Pediredla (Dartmouth College; Dartmouth College), Srinivasa G. Narasimhan (Carnegie Mellon University), Maysamreza Chamanzar (Carnegie Mellon University), and Ioannis Gkioulekas (Carnegie Mellon University)	1
Robust Dynamic Radiance Fields	13
DBARF: Deep Bundle-Adjusting Generalizable Neural Radiance Fields Yu Chen (National University of Singapore) and Gim Hee Lee (National University of Singapore)	24
VDN-NeRF: Resolving Shape-Radiance Ambiguity via View-Dependence Normaliz Bingfan Zhu (Zhejiang University), Yanchao Yang (The University of Hong Kong; Stanford University), Xulong Wang (Zhejiang University), Youyi Zheng (Zhejiang University), and Leonidas Guibas (Stanford University)	zation 35
AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware Training Yifan Jiang (University of Texas at Austin), Peter Hedman (Google Research), Ben Mildenhall (University of Texas at Austin; Google Research), Dejia Xu (Google Research), Jonathan T. Barron (The Chinese University of Hong Kong), Zhangyang Wang (University of Texas at Austin), and Tianfan Xue (The Chinese University of Hong Kong)	46

SeaThru-NeRF: Neural Radiance Fields in Scattering Media	. 56
Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields Brian K. S. Isaac-Medina (Department of Computer Science, Durham University, UK), Chris G. Willcocks (Department of Computer Science, Durham University, UK), and Toby P. Breckon (Department of Computer Science, Durham University, UK; Department of Engineering, Durham University, UK)	66
Neural Residual Radiance Fields for Streamably Free-Viewpoint Videos	.76
PlenVDB: Memory Efficient VDB-Based Radiance Fields for Fast Training and Rendering	88
Local Implicit Ray Function for Generalizable Radiance Field Representation	. 97
SurfelNeRF: Neural Surfel Radiance Fields for Online Photorealistic Reconstruction of Indoor Scenes	108
Frequency-Modulated Point Cloud Rendering With Easy Editing	∣19
HexPlane: A Fast Representation for Dynamic Scenes	30
Differentiable Shadow Mapping for Efficient Inverse Graphics	42
Hybrid Neural Rendering for Large-Scale Scenes With Motion Blur	54

TensolR: Tensorial Inverse Rendering	165
ShadowNeuS: Neural SDF Reconstruction by Shadow Ray Supervision Jingwang Ling (Tsinghua University), Zhibo Wang (SenseTime Research), and Feng Xu (Tsinghua University)	175
Realistic Saliency Guided Image Enhancement	186
LightPainter: Interactive Portrait Relighting With Freehand Scribble	195
A Unified Spatial-Angular Structured Light for Single-View Acquisition of Shape and Reflectance	206
Learning Visibility Field for Detailed 3D Human Reconstruction and Relighting Ruichen Zheng (Tsinghua University, China; Weilan Tech, China), Peng Li (Tsinghua University, China), Haoqian Wang (Tsinghua University, China), and Tao Yu (Tsinghua University, China)	216
Unsupervised Contour Tracking of Live Cells by Mechanical and Cycle Consistency Losses Junbong Jang (KAIST), Kwonmoo Lee (Boston Children's Hospital Harvard Medical School), and Tae-Kyun Kim (KAIST)	227
NeUDF: Leaning Neural Unsigned Distance Fields With Volume Rendering Yu-Tao Liu (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Li Wang (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jie Yang (Institute of Computing Technology, Chinese Academy of Sciences), Weikai Chen (Digital Content Technology Center, Tencent Games), Xiaoxu Meng (Digital Content Technology Center, Tencent Games), Bo Yang (Digital Content Technology Center, Tencent Games), and Lin Gao (University of Chinese Academy of Sciences)	237
NeAT: Learning Neural Implicit Surfaces With Arbitrary Topologies From Multi-View Images Xiaoxu Meng (Digital Content Technology Center), Weikai Chen (Digital Content Technology Center), and Bo Yang (Digital Content Technology Center)	248

ALTO: Alternating Latent Topologies for Implicit 3D Reconstruction	259
Controllable Mesh Generation Through Sparse Latent Point Diffusion Models Zhaoyang Lyu (Shanghai Al Laboratory), Jinyi Wang (Shanghai Al Laboratory; Shanghai Jiao Tong University), Yuwei An (Shanghai Al Laboratory; Tsinghua University), Ya Zhang (Shanghai Al Laboratory; Shanghai Jiao Tong University), Dahua Lin (Shanghai Al Laboratory; The Chinese University of Hong Kong), and Bo Dai (Shanghai Al Laboratory)	271
Power Bundle Adjustment for Large-Scale 3D Reconstruction	281
Neural Pixel Composition for 3D-4D View Synthesis From Multi-Views	290
Magic3D: High-Resolution Text-to-3D Content Creation	300
3D Video Loops From Asynchronous Input	310
High-Fidelity 3D GAN Inversion by Pseudo-Multi-View Optimization	321
Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative Radiance Fieldern Leheng Li (HKUST(GZ)), Qing Lian (HKUST), Luozhou Wang (HKUST(GZ)), Ningning Ma (NIO Autonomous Driving), and Ying-Cong Chen (HKUST(GZ); HKUST)	ld 332
3D GAN Inversion With Facial Symmetry Prior	342

StyleIPSB: Identity-Preserving Semantic Basis of StyleGAN for High Fidelity Face Swapping 352 Diqiong Jiang (Zhejiang University, China), Dan Song (Tianjin University, China), Ruofeng Tong (Zhejiang University, China), and Min Tang (Zhejiang University, China)
FFHQ-UV: Normalized Facial UV-Texture Dataset for 3D Face Reconstruction
Robust Model-Based Face Reconstruction Through Weakly-Supervised Outlier Segmentation . 372 Chunlu Li (Southeast University; University of Basel), Andreas Morel-Forster (University of Basel), Thomas Vetter (University of Basel), Bernhard Egger (Friedrich-Alexander-Universitat Erlangen-Nürnberg), and Adam Kortylewski (University of Freiburg; Max Planck Institute for Informatics)
Learning Neural Proto-Face Field for Disentangled 3D Face Modeling in the Wild
A Hierarchical Representation Network for Accurate and Detailed Face Reconstruction From In-the-Wild Images
BlendFields: Few-Shot Example-Driven Facial Modeling
Implicit Neural Head Synthesis via Controllable Local Deformation Fields
DPE: Disentanglement of Pose and Expression for General Video Portrait Editing

GANHead: Towards Generative Animatable Neural Head Avatars	437
EDGE: Editable Dance Generation From Music	448
Blowing in the Wind: CycleNet for Human Cinemagraphs From Still Images	459
Generating Holistic 3D Human Motion From Speech	469
Avatars Grow Legs: Generating Smooth Human Motion From Sparse Tracking Inputs Witl Diffusion Model	
Learning Anchor Transformations for 3D Garment Animation	491
CloSET: Modeling Clothed Humans on Continuous Surface With Explicit Template Decom 501	position.
Hongwen Zhang (Tsinghua University), Siyou Lin (Tsinghua University), Ruizhi Shao (Tsinghua University), Yuxiang Zhang (Tsinghua University), Zerong Zheng (Tsinghua University), Han Huang (OPPO Research Institute), Yandong Guo (OPPO Research Institute), and Yebin Liu (Tsinghua University)	
ECON: Explicit Clothed Humans Optimized via Normal Integration Yuliang Xiu (Max Planck Institute for Intelligent Systems, Germany), Jinlong Yang (Max Planck Institute for Intelligent Systems, Germany), Xu Cao (Osaka University, Japan), Dimitrios Tzionas (University of Amsterdam, the Netherlands), and Michael J. Black (Max Planck Institute for Intelligent Systems, Germany)	512

PersonNeRF: Personalized Reconstruction From Photo Collections
3D Human Mesh Estimation From Virtual Markers
Overcoming the Trade-Off Between Accuracy and Plausibility in 3D Hand Shape Reconstruction 544
Ziwei Yu (National University of Singapore), Chen Li (National University of Singapore), Linlin Yang (National University of Singapore), Xiaoxu Zheng (National University of Singapore), Michael Bi Mi (National University of Singapore), Gim Hee Lee (National University of Singapore), and Angela Yao (National University of Singapore)
Recovering 3D Hand Mesh Sequence From a Single Blurry Image: A New Dataset and Temporal Unfolding
Yeonguk Oh (Dept. of ECE&ASRI), JoonKyu Park (Dept. of ECE&ASRI), Jaeha Kim (Dept. of ECE&ASRI), Gyeongsik Moon (Meta Reality Labs Research), and Kyoung Mu Lee (Dept. of ECE&ASRI IPAI, Seoul National University, Korea)
MeMaHand: Exploiting Mesh-Mano Interaction for Single Image Two-Hand Reconstruction 564 Congyi Wang (ByteDance), Feida Zhu (ByteDance), and Shilei Wen (ByteDance)
PLIKS: A Pseudo-Linear Inverse Kinematic Solver for 3D Human Body Estimation
CAMS: CAnonicalized Manipulation Spaces for Category-Level Functional Hand-Object Manipulation Synthesis
Laboratory; Shanghai Qi Zhi Institute) Instant-NVR: Instant Neural Volumetric Rendering for Human-Object Interactions From Monocular RGBD Stream

BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects	606
Human-Art: A Versatile Human-Centric Dataset Bridging Natural and Artificial Scenes	618
Omnimatte3D: Associating Objects and Their Effects in Unconstrained Monocular Video	630
On the Benefits of 3D Pose and Tracking for Human Action Recognition Jathushan Rajasegaran (UC Berkeley; Meta Al, FAIR), Georgios Pavlakos (UC Berkeley), Angjoo Kanazawa (UC Berkeley), Christoph Feichtenhofer (Meta Al, FAIR), and Jitendra Malik (UC Berkeley)	640
Towards Stable Human Pose Estimation via Cross-View Fusion and Foot Stabilization	650
Human Pose As Compositional Tokens Zigang Geng (University of Science and Technology of China; Microsoft Research Asia), Chunyu Wang (Microsoft Research Asia), Yixuan Wei (Tsinghua University; Microsoft Research Asia), Ze Liu (University of Science and Technology of China; Microsoft Research Asia), Houqiang Li (University of Science and Technology of China), and Han Hu (Microsoft Research Asia)	660
PoseExaminer: Automated Testing of Out-of-Distribution Robustness in Human Pose and Shap Estimation	pe 672
SLOPER4D: A Scene-Aware Dataset for Global 4D Human Pose Estimation in Urban Environme	
Yudi Dai (Xiamen University; Xiamen University), Yitai Lin (Xiamen University; Xiamen University), Xiping Lin (Xiamen University; Xiamen University; Xiamen University), Chenglu Wen (Xiamen University; Xiamen University), Lan Xu (ShanghaiTech University, China), Hongwei Yi (Max Planck Institute for Intelligent Systems, Germany), Siqi Shen (Xiamen University; Xiamen University), Yuexin Ma (ShanghaiTech University, China), and Cheng Wang (Xiamen University; Xiamen University)	682

Semi-Supervised 2D Human Pose Estimation Driven by Position Inconsistency Pseudo Label Correction Module	. 693
Human Pose Estimation in Extremely Low-Light Conditions	. 704
Flexible-Cm GAN: Towards Precise 3D Dose Prediction in Radiotherapy	. 715
DualRefine: Self-Supervised Depth and Pose Estimation Through Iterative Epipolar Sampling and Refinement Toward Equilibrium	. 726
A Rotation-Translation-Decoupled Solution for Robust and Efficient Visual-Inertial Initialization	. 739
Semidefinite Relaxations for Robust Multiview Triangulation Linus Härenstam-Nielsen (Technical University of Munich; Munich Center for Machine Learning), Niclas Zeller (Karlsruhe University of Applied Sciences), and Daniel Cremers (Technical University of Munich; Munich Center for Machine Learning; University of Oxford)	. 749
A Probabilistic Attention Model With Occlusion-Aware Texture Regression for 3D Hand Reconstruction From a Single RGB Image	. 758
Instant Multi-View Head Capture Through Learnable Registration	.768

On the Importance of Accurate Geometry Data for Dense 3D Vision Tasks HyunJun Jung (Technical University of Munich), Patrick Ruhkamp (Technical University of Munich; 3Dwe.ai), Guangyao Zhai (Technical University of Munich), Nikolas Brasch (Technical University of Munich), Yitong Li (Technical University of Munich), Yannick Verdie (Technical University of Munich; Huawei Noah's Ark Lab), Jifei Song (Huawei Noah's Ark Lab), Yiren Zhou (Huawei Noah's Ark Lab), Anil Armagan (Huawei Noah's Ark Lab), Slobodan Ilic (Technical University of Munich; Siemens AG), Aleš Leonardis (Huawei Noah's Ark Lab), Nassir Navab (Technical University of Munich), and Benjamin Busam (Technical University of Munich; 3Dwe.ai)	. 780
Learning 3D Scene Priors With 2D Supervision Yinyu Nie (Technical University of Munich), Angela Dai (Technical University of Munich), Xiaoguang Han (The Chinese University of Hong Kong (Shenzhen)), and Matthias Nießner (Technical University of Munich)	. 792
OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic Perception, Reconstruction and Generation Tong Wu (Shanghai Artificial Intelligence Laboratory; The Chinese University of Hong Kong), Jiarui Zhang (Shanghai Artificial Intelligence Laboratory; SenseTime Research), Xiao Fu (Shanghai Artificial Intelligence Laboratory), Yuxin Wang (Shanghai Artificial Intelligence Laboratory; Hong Kong University of Science and Technology), Jiawei Ren (Nanyang Technological University), Liang Pan (Nanyang Technological University), Wayne Wu (Shanghai Artificial Intelligence Laboratory), Lei Yang (Shanghai Artificial Intelligence Laboratory; SenseTime Research), Jiaqi Wang (Shanghai Artificial Intelligence Laboratory), Chen Qian (Shanghai Artificial Intelligence Laboratory), Dahua Lin (Shanghai Artificial Intelligence Laboratory; The Chinese University of Hong Kong), and Ziwei Liu (Nanyang Technological University)	803
OpenScene: 3D Scene Understanding With Open Vocabularies	. 815
Multi-View Azimuth Stereo via Tangent Space Consistency	825
Progressive Transformation Learning for Leveraging Virtual Images in Training	. 835
Connecting the Dots: Floorplan Reconstruction Using Two-Level Queries	845

NeRF-Supervised Deep Stereo	855
Semantic Scene Completion With Cleaner Self	867
PanelNet: Understanding 360 Indoor Environment via Panel Representation	878
Implicit View-Time Interpolation of Stereo Videos Using Multi-Plane Disparities and Non-Uniform Coordinates	888
Depth Estimation From Indoor Panoramas With Neural Scene Representation	899
NeuralPCI: Spatio-Temporal Neural Field for 3D Point Cloud Multi-Frame Non-Linear Interpolation	909
RIAV-MVS: Recurrent-Indexing an Asymmetric Volume for Multi-View Stereo	919
NeuMap: Neural Coordinate Mapping by Auto-Transdecoder for Camera Localization	929
MACARONS: Mapping and Coverage Anticipation With RGB Online Self-Supervision	940
vMAP: Vectorised Object Mapping for Neural Field SLAM	952

Seeing a Rose in Five Thousand Ways	2
Propagate and Calibrate: Real-Time Passive Non-Line-of-Sight Tracking	2
Seeing With Sound: Long-range Acoustic Beamforming for Multimodal Scene Understanding . 98 Praneeth Chakravarthula (Princeton University), Jim Aldon D'Souza (Algolux), Ethan Tseng (Princeton University), Joe Bartusek (Princeton University), and Felix Heide (Princeton University; Algolux)	,2
Distilling Focal Knowledge From Imperfect Expert for 3D Object Detection	2
BEV-LaneDet: An Efficient 3D Lane Detection Based on Virtual Camera via Key-Points	2
AShapeFormer: Semantics-Guided Object-Level Active Shape Encoding for 3D Object Detection via Transformers	2
Benchmarking Robustness of 3D Object Detection to Common Corruptions	.2

Gaussian Label Distribution Learning for Spherical Image Object Detection	133
Deep Depth Estimation From Thermal Image	43
LidarGait: Benchmarking 3D Gait Recognition With Point Clouds	54
Generalized UAV Object Detection via Frequency Domain Disentanglement	64
Learning Compact Representations for LiDAR Completion and Generation	74
CXTrack: Improving 3D Point Cloud Tracking With Contextual Information	84
Multispectral Video Semantic Segmentation: A Benchmark Dataset and Baseline	94
LinK: Linear Kernel for LiDAR-Based 3D Perception	05
Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting	16

Curricular Object Manipulation in LiDAR-Based Object Detection	. 1125
Delivering Arbitrary-Modal Semantic Segmentation	.1136
Robust Outlier Rejection for 3D Registration With Variational Bayes	. 1148
3D Human Keypoints Estimation From Point Clouds in the Wild Without Human Labels Zhenzhen Weng (Stanford University), Alexander S. Gorban (Waymo), Jingwei Ji (Waymo), Mahyar Najibi (Waymo), Yin Zhou (Waymo), and Dragomir Anguelov (Waymo)	.1158
Self-Supervised Pre-Training With Masked Shape Prediction for 3D Scene Understanding Li Jiang (Max Planck Institute for Informatics, Saarland Informatics Campus), Zetong Yang (CUHK), Shaoshuai Shi (Max Planck Institute for Informatics, Saarland Informatics Campus), Vladislav Golyanik (Max Planck Institute for Informatics, Saarland Informatics Campus), Dengxin Dai (Max Planck Institute for Informatics, Saarland Informatics Campus), and Bernt Schiele (Max Planck Institute for Informatics, Saarland Informatics Campus)	.1168
ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding	. 1179
Open-Vocabulary Point-Cloud Object Detection Without 3D Annotation	. 1190
FlatFormer: Flattened Window Attention for Efficient Point Cloud Transformer	.1200

Zhiqiang Shen (Shanghai Jia Sheng (Shanghai Jiao Tong L	rediction for Self-Supervised Learning on Point Cloud Videos o Tong University; CloudWa!k), Xiaoxiao Iniversity), Longguang Wang (Aviation on Guo (Sun Yat-sen University), Qiong on (CloudWa!k)	. 1212
Minghan Zhu (University of I	nt Point Network Michigan), Maani Ghaffari (University of Cornell University), and Huei Peng	. 1223
Tao Xie (Harbin Institute of T Wang (University of Electron SenseTime Research), Ke Wa Yang (Harbin Institute of Tec Institute of Technology), Xing Dai (Harbin Institute of Tech	for Multiple Point Cloud Tasks at Once	. 1233
Nan Zhang (Peking Universit	ion for Point Cloud Segmentation via Attentive Filtering y), Zhiyi Pan (Peking University), Thomas Gao (Peking University), and Ge Li	1244
Sheng Ao (Sun Yat-sen Unive Hanyun Wang (Information	fficiency, and Generalizability in Point Cloud Registration rsity), Qingyong Hu (University of Oxford), Engineering University), Kai Xu (National blogy), and Yulan Guo (Sun Yat-sen	. 1255
TopDiG: Class-Agnostic Topolo 1265	ogical Directional Graph Extraction From Remote Sensing Imag	ges
Bingnan Yang (Wuhan Unive China), Zhan Zhang (Wuhan	rsity, China), Mi Zhang (Wuhan University, University, China), Zhili Zhang (Wuhan Iyun Hu (Wuhan University, China)	
Invariants With No False Nega	Unlabeled Point Clouds by Complete and Continuous Isometr tives and No False Positives ty of Liverpool, UK) and Vitaliy Kurlin	y 1275
Semantic Segmentation Xu Zheng (Northeastern Uni HKUST(GZ)), Yexin Liu (AI Thi HKUST(GZ)), Chong Fu (Norti Intelligent Computing in Med	ter: Dual-Path Unsupervised Domain Adaptation for Panoram Versity), Jinjing Zhu (Al Thrust, Lust, HKUST(GZ)), Zidong Cao (Al Thrust, Leastern University; Key Laboratory of Jical Image, Ministry of Education, China), UST(GZ); Dept. of CSE, HKUST)	
Harshil Bhatia (Indian Institu Tretschk (SIC), Zorah Lähner	Quantum-Hybrid Matching of Multiple Shapes ute of Technology, Jodhpur; SIC), Edith (Universitat Siegen), Marcel Seelbach Michael Moeller (Universitat Siegen), Vladislav Golyanik (SIC)	1296

Enhancing Deformable Local Features by Jointly Learning To Detect and Describe Keypoints Guilherme Potje (Universidade Federal de Minas Gerais), Felipe Cadar (Universidade Federal de Minas Gerais), André Araujo (Google Research), Renato Martins (Universite de Bourgogne; Universite de Lorraine, LORIA, Inria), and Erickson R. Nascimento (Universidade Federal de Minas Gerais; Microsoft)	1306
Understanding and Improving Features Learned in Deep Functional Maps	1316
High-Frequency Stereo Matching Network Haoliang Zhao (Guizhou University, China; Ghost-Valley AI Technology, China), Huizhou Zhou (Guangdong University of Technology, China; Ghost-Valley AI Technology, China), Yongjun Zhang (Guizhou University, China), Jie Chen (Peking University, China), Yitong Yang (Guizhou University, China), and Yong Zhao (Peking University, China; Ghost-Valley AI Technology, China)	1327
Rethinking Optical Flow From Geometric Matching Consistent Perspective	1337
Efficient Robust Principal Component Analysis via Block Krylov Iteration and CUR Decomposition Shun Fang (Wuhan University of Science and Technology, China; Wuhan University of Science and Technology, China), Zhengqin Xu (Shanghai Jiao Tong University, China), Shiqian Wu (Wuhan University of Science and Technology, China; Wuhan University of Science and Technology, China; Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial Systems), and Shoulie Xie (Signal Processing, RF & Optical Dept. Institute for Infocomm Research A*STAR, Singapore)	1348
VectorFloorSeg: Two-Stream Graph Attention Network for Vectorized Roughcast Floorplan Segmentation	1358
TBP-Former: Learning Temporal Bird's-Eye-View Pyramid for Joint Perception and Prediction in Vision-Centric Autonomous Driving	1368
Implicit Occupancy Flow Fields for Perception and Prediction in Self-Driving	1379

UniSim: A Neural Closed-Loop Sensor Simulator	389
FEND: A Future Enhanced Distribution-Aware Contrastive Learning Framework for Long-Tail Trajectory Prediction	400
EqMotion: Equivariant Multi-Agent Motion Prediction With Invariant Interaction Reasoning 14 Chenxin Xu (Shanghai Jiao Tong University; National University of Singapore), Robby T. Tan (National University of Singapore), Yuhong Tan (Shanghai Jiao Tong University), Siheng Chen (Shanghai Jiao Tong University; Shanghai Al Laboratory), Yu Guang Wang (Shanghai Jiao Tong University), Xinchao Wang (National University of Singapore), and Yanfeng Wang (Shanghai Al Laboratory; Shanghai Jiao Tong University)	41C
Lookahead Diffusion Probabilistic Models for Refining Mean Estimation	421
Neural Volumetric Memory for Visual Locomotion Control	430
Gazeformer: Scalable, Effective and Fast Prediction of Goal-Directed Human Attention	441
DrapeNet: Garment Generation and Self-Supervised Draping	451
Tracking Multiple Deformable Objects in Egocentric Videos	461

Good Is Bad: Causality Inspired Cloth-Debiasing for Cloth-Changing Person Re-Identification	472
Zhengwei Yang (National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence; Wuhan University; Hubei Key Laboratory of Multimedia and Network Communication Engineering), Meng Lin (National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence; Wuhan University; Hubei Key Laboratory of Multimedia and Network Communication Engineering), Xian Zhong (Wuhan University of Technology), Yu Wu (National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence; Wuhan University), and Zheng Wang (National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence; Wuhan University; Hubei Key Laboratory of Multimedia and Network Communication Engineering)	
Micron-BERT: BERT-Based Facial Micro-Expression Recognition	182
MARLIN: Masked Autoencoder for Facial Video Representation LearnINg	193
StyleSync: High-Fidelity Generalized and Personalized Lip Sync in Style-Based Generator 15 Jiazhi Guan (Department of Computer Vision Technology (VIS), Baidu Inc.; Tsinghua University), Zhanwang Zhang (Department of Computer Vision Technology (VIS), Baidu Inc.), Hang Zhou (Department of Computer Vision Technology (VIS), Baidu Inc.), Tianshu Hu (Department of Computer Vision Technology (VIS), Baidu Inc.), Kaisiyuan Wang (The University of Sydney), Dongliang He (Department of Computer Vision Technology (VIS), Baidu Inc.), Haocheng Feng (Department of Computer Vision Technology (VIS), Baidu Inc.), Jingtuo Liu (Department of Computer Vision Technology (VIS), Baidu Inc.), Errui Ding (Department of Computer Vision Technology (VIS), Baidu Inc.), Ziwei Liu (Nanyang Technological University), and Jingdong Wang (Department of Computer Vision Technology (VIS), Baidu Inc.)	505
RealImpact: A Dataset of Impact Sound Fields for Real Objects	516
STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition	526

Progressive Spatio-Temporal Alignment for Efficient Event-Based Motion Estimation Xueyan Huang (University of Science and Technology of China), Yueyi Zhang (University of Science and Technology of China), and Zhiwei Xiong (University of Science and Technology of China)	1537
Event-Based Shape From Polarization	1547
Learning Spatial-Temporal Implicit Neural Representations for Event-Guided Video Super-Resolution	. 1557
BiFormer: Learning Bilateral Motion Estimation via Bilateral Transformer for 4K Video Frame Interpolation	1568
A Unified Pyramid Recurrent Network for Video Frame Interpolation	. 1578
Event-Based Blurry Frame Interpolation Under Blind Exposure	1588
FlowFormer++: Masked Cost Volume Autoencoding for Pretraining Optical Flow Estimation Xiaoyu Shi (CUHK MMLab; NVIDIA AI Technology Center), Zhaoyang Huang (CUHK MMLab; NVIDIA AI Technology Center), Dasong Li (CUHK MMLab), Manyuan Zhang (CUHK MMLab), Ka Chun Cheung (NVIDIA AI Technology Center), Simon See (NVIDIA AI Technology Center), Hongwei Qin (SenseTime Research), Jifeng Dai (Tsinghua University), and Hongsheng Li (CUHK MMLab; CPII under InnoHK)	. 1599
POTTER: Pooling Attention Transformer for Efficient Human Mesh Recovery	. 1611
Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo	. 1621

On the Difficulty of Unpaired Infrared-to-Visible Video Translation: Fine-Grained Content-Rich Patches Transfer	. 1631
Thermal Spread Functions (TSF): Physics-Guided Material Classification Aniket Dashpute (Electrical and Computer Engineering; Rice University), Vishwanath Saragadam (Rice University), Emma Alexander (Northwestern University), Florian Willomitzer (University of Arizona), Aggelos Katsaggelos (Electrical and Computer Engineering), Ashok Veeraraghavan (Rice University), and Oliver Cossairt (Electrical and Computer Engineering; Northwestern University)	. 1641
Better "CMOS" Produces Clearer Images: Learning Space-Variant Blur Estimation for Blind Image Super-Resolution	1651
Learning Semantic-Aware Knowledge Guidance for Low-Light Image Enhancement	.1662
CutMIB: Boosting Light Field Super-Resolution via Multi-View Image Blending	. 1672
sRGB Real Noise Synthesizing With Neighboring Correlation-Aware Noise Model	1683
Masked Image Training for Generalizable Deep Image Denoising Haoyu Chen (The Hong Kong University of Science and Technology, Guangzhou), Jinjin Gu (Shanghai Al Lab; The University of Sydney), Yihao Liu (Shanghai Al Lab; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Salma Abdel Magid (The Hong Kong University of Science and Technology), Chao Dong (Shanghai Al Lab; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Qiong Wang (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Hanspeter Pfister (Harvard University), and Lei Zhu (Shanghai Al Lab; The Hong Kong University of Science and Technology)	1692

DR2: Diffusion-Based Robust Degradation Remover for Blind Face Restoration	14
Learning Distortion Invariant Representation for Image Restoration From a Causality Perspective	4
Perception-Oriented Single Image Super-Resolution Using Optimal Objective Estimation 172 Seung Ho Park (Seoul National University, Korea; Samsung Electronics, Korea), Young Su Moon (Samsung Electronics, Korea), and Nam Ik Cho (Seoul National University, Korea)	:5
Catch Missing Details: Image Reconstruction With Frequency Augmented Variational Autoencoder	36
MD-VQA: Multi-Dimensional Quality Assessment for UGC Live Videos	ŀ6
CABM: Content-Aware Bit Mapping for Single Image Super-Resolution Network With Large Input 1756 Senmao Tian (Beijing Jiaotong University; OPPO Research Institute), Ming Lu (Intel Labs China), Jiaming Liu (OPPO Research Institute; Peking University), Yandong Guo (Beijing University of Posts and Telecommunications), Yurong Chen (Intel Labs China), and Shunli Zhang (Beijing Jiaotong University)	
Initialization Noise in Image Gradients and Saliency Maps	6
Local Implicit Normalizing Flow for Arbitrary-Scale Image Super-Resolution	'6

Deep Arbitrary-Scale Image Super-Resolution via Scale-Equivariance Pursuit	786
CiaoSR: Continuous Implicit Attention-in-Attention Network for Arbitrary-Scale Image Super-Resolution	796
Multiplicative Fourier Level of Detail	808
Document Image Shadow Removal Guided by Color-Aware Background	818
StyleRes: Transforming the Residuals for Real Image Editing With StyleGAN	828
TopNet: Transformer-Based Object Placement Network for Image Compositing	838
VecFontSDF: Learning To Reconstruct and Synthesize High-Quality Vector Fonts via Signed Distance Functions	848
CF-Font: Content Fusion for Few-Shot Font Generation	858
SIEDOB: Semantic Image Editing by Disentangling Object and Background	868
MaskSketch: Unpaired Structure-Guided Masked Image Generation	879

Text2Scene: Text-Driven Indoor Scene Stylization With Part-Aware Details	. 1890
Uncovering the Disentanglement Capability in Text-to-Image Diffusion Models	. 1900
VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models	. 1911
Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation	. 1921
Multi-Concept Customization of Text-to-Image Diffusion	. 1931
Unifying Layout Generation With a Decoupled Diffusion Model	. 1942
BBDM: Image-to-Image Translation With Brownian Bridge Diffusion Models	. 1952
Towards Practical Plug-and-Play Diffusion Models Hyojun Go (Riiid Al Research), Yunsung Lee (Riiid Al Research), Jin-Young Kim (Riiid Al Research), Seunghyun Lee (Riiid Al Research), Myeongho Jeong (Riiid Al Research), Hyun Seung Lee (Riiid Al Research), and Seungtaek Choi (Riiid Al Research)	. 1962
Post-Training Quantization on Diffusion Models Yuzhang Shang (Illinois Institute of Technology; Cisco Research), Zhihang Yuan (Houmo AI), Bin Xie (Illinois Institute of Technology), Bingzhe Wu (Tencent AI Lab), and Yan Yan (Illinois Institute of Technology)	1972
DiffTalk: Crafting Diffusion Models for Generalized Audio-Driven Portraits Animation	. 1982
Mask-Guided Matting in the Wild Kwanyong Park (KAIST), Sanghyun Woo (KAIST), Seoung Wug Oh (Adobe Research), In So Kweon (KAIST), and Joon-Young Lee (Adobe Research)	. 1992

Not All Image Regions Matter: Masked Vector Quantization for Autoregressive Image Generation	2002
Zhendong Mao (University of Science and Technology of China, China; Institute of Artificial intelligence, Hefei Comprehensive National Science Center, China), Quan Wang (Beijing University of Posts and Telecommunications, China), and Yongdong Zhang (University of Science and Technology of China, China; Institute of Artificial intelligence, Hefei Comprehensive National Science Center, China)	
Compression-Aware Video Super-Resolution	2012
Neural Rate Estimator and Unsupervised Learning for Efficient Distributed Image Analytics in Split-DNN Models	2022
Nilesh Ahuja (Intel Labs), Parual Datta (Intel Labs), Bhavya Kanzariya (Intel Labs; IIT Hyderabad), V. Srinivasa Somayazulu (Intel Labs), and Omesh Tickoo (Intel Labs)	
DNeRV: Modeling Inherent Dynamics via Difference Neural Representation for Videos 2 Qi Zhao (Nanjing University), M. Salman Asif (Nanjing University), and Zhan Ma (Nanjing University)	2031
Polynomial Implicit Neural Representations for Large Diverse Datasets	2041
Learning Decorrelated Representations Efficiently Using Fast Fourier Transform	2052
SparseViT: Revisiting Activation Sparsity for Efficient High-Resolution Vision Transformer Xuanyao Chen (Shanghai Qi Zhi Institute; Fudan University), Zhijian Liu (MIT), Haotian Tang (MIT), Li Yi (Shanghai Qi Zhi Institute; Tsinghua University), Hang Zhao (Shanghai Qi Zhi Institute; Tsinghua University), and Song Han (MIT)	2061
N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution	2071
Slide-Transformer: Hierarchical Vision Transformer With Local Self-Attention	2082

Joint Token Pruning and Squeezing Towards More Aggressive Compression of Vision Transformers	2092
Siyuan Wei (MEGVII Technology), Tianzhu Ye (Tsinghua University), Shen Zhang (MEGVII Technology), Yao Tang (MEGVII Technology), and Jiajun Liang (MEGVII Technology)	
Top-Down Visual Attention From Analysis by Synthesis	2102
Probing Neural Representations of Scene Perception in a Hippocampally Dependent Ta Artificial Neural Networks	ask Using 2113
Masked Image Modeling With Local Multi-Scale Reconstruction	2122
Siamese Image Modeling for Self-Supervised Vision Representation Learning	2132
MAGE: MAsked Generative Encoder To Unify Representation Learning and Image Synth Tianhong Li (MIT CSAIL), Huiwen Chang (Google Research), Shlok Mishra (University of Maryland), Han Zhang (Google Research), Dina Katabi (MIT CSAIL), and Dilip Krishnan (Google Research)	nesis . 2142
Diverse Embedding Expansion Network and Low-Light Cross-Modality Benchmark for Visible-Infrared Person Re-Identification	2153
DistilPose: Tokenized Pose Regression With Heatmap Distillation	2163
Graph Transformer GANs for Graph-Constrained House Generation	2173

Automatic High Resolution Wire Segmentation and Removal	2183
Tree Instance Segmentation With Temporal Contour Graph Adnan Firoze (Purdue University), Cameron Wingren (Purdue University), Raymond A. Yeh (Purdue University), Bedrich Benes (Purdue University), and Daniel Aliaga (Purdue University)	2193
Dual-Path Adaptation From Image to Video Transformers	2203
Rethinking Video ViTs: Sparse Video Tubes for Joint Image and Video Learning	2214
Modeling Video As Stochastic Processes for Fine-Grained Video Representation Learning Heng Zhang (Renmin University of China; Beijing Key Laboratory of Big Data Management and Analysis Methods), Daqing Liu (JD.com), Qi Zheng (The University of Sydney), and Bing Su (Renmin University of China; Beijing Key Laboratory of Big Data Management and Analysis Methods)	2225
Masked Motion Encoding for Self-Supervised Video Representation Learning	2235
Boosting Video Object Segmentation via Space-Time Correspondence Learning	2246
Two-Shot Video Object Segmentation	2257

Look Before You Match: Instance Understanding Matters in Video Object Segmentation 2268 Junke Wang (Fudan University), Dongdong Chen (Microsoft Cloud + AI), Zuxuan Wu (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), Chong Luo (Microsoft Research Asia), Chuanxin Tang (Microsoft Research Asia), Xiyang Dai (Microsoft Cloud + AI), Yucheng Zhao (Microsoft Research Asia), Yujia Xie (Microsoft Cloud + AI), Lu Yuan (Microsoft Cloud + AI), and Yu-Gang Jiang (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing)	3
Spatial-Then-Temporal Self-Supervised Learning for Video Correspondence	Э
Few-Shot Referring Relationships in Videos	Э
Vision Transformers Are Parameter-Efficient Audio-Visual Learners	Э
Egocentric Video Task Translation	Э
QPGesture: Quantization-Based and Phase-Guided Motion Matching for Natural Speech-Driven Gesture Generation	1
Co-Speech Gesture Synthesis by Reinforcement Learning With Contrastive Pre-Trained Rewards 2331 Mingyang Sun (Dalian University of Technology, China), Mengchen Zhao (Noah's Ark Lab, China), Yaqing Hou (Dalian University of Technology, China), Minglei Li (Huawei Cloud Computing Technologies Co., Ltd, China), Huang Xu (Huawei Cloud Computing Technologies Co., Ltd, China), Songcen Xu (Noah's Ark Lab, China), and Jianye Hao (Noah's Ark Lab, China; Tianjin University, China)	•
TimeBalance: Temporally-Invariant and Temporally-Distinctive Video Representations for Semi-Supervised Action Recognition	1
How Can Objects Help Action Recognition?	3

	Actionlet-Dependent Contrastive Learning for Unsupervised Skeleton-Based Action Recognition Lilang Lin (Wangxuan Institute of Computer Technology, Peking University, China), Jiahang Zhang (Wangxuan Institute of Computer Technology, Peking University, China), and Jiaying Liu (Wangxuan Institute of Computer Technology, Peking University, China)	2363
	Decomposed Cross-Modal Distillation for RGB-Based Temporal Action Detection	. 2373
H	ASPnet: Action Segmentation With Shared-Private Representation of Multiple Data Sources Beatrice van Amsterdam (Wellcome/EPSRC Centre for Interventional and Surgical Sciences; Medtronic plc), Abdolrahim Kadkhodamohammadi (Medtronic plc), Imanol Luengo (Medtronic plc), and Danail Stoyanov (Wellcome/EPSRC Centre for InteMedtronic plcrventional and Surgical Sciences; Medtronic plc)	2384
	Proposal-Based Multiple Instance Learning for Weakly-Supervised Temporal Action Localization	2394
L	LOGO: A Long-Form Video Dataset for Group Action Quality Assessment Shiyi Zhang (Tsinghua University; Tsinghua University; Beijing National Research Center for Information Science and Technology), Wenxun Dai (Tsinghua University), Sujia Wang (Tsinghua University), Xiangwei Shen (Tsinghua University), Jiwen Lu (Tsinghua University; Beijing National Research Center for Information Science and Technology), Jie Zhou (Tsinghua University; Beijing National Research Center for Information Science and Technology), and Yansong Tang (Tsinghua University)	. 2405
l	Jse Your Head: Improving Long-Tail Video Recognition Toby Perrett (University of Bristol, UK), Saptarshi Sinha (University of Bristol, UK), Tilo Burghardt (University of Bristol, UK), Majid Mirmehdi (University of Bristol, UK), and Dima Damen (University of Bristol, UK)	2415
(Conditional Generation of Audio From Video via Foley Analogies	2426

Weakly Supervised Video Representation Learning With Unaligned Text for Sequential Video 2437)S
Sixun Dong (ShanghaiTech University), Huazhang Hu (ShanghaiTech University), Dongze Lian (ShanghaiTech University; National University of Singapore), Weixin Luo (Meituan), Yicheng Qian (ShanghaiTech University), and Shenghua Gao (ShanghaiTech University; Shanghai Engineering Research Center of Intelligent Vision and Imaging; Shanghai Engineering Research Center of Energy Efficient and Custom AIIC)	
You Can Ground Earlier Than See: An Effective and Efficient Pipeline for Temporal Sentence Grounding in Compressed Videos	2448
Connecting Vision and Language With Video Localized Narratives	. 2461
Video-Text As Game Players: Hierarchical Banzhaf Interaction for Cross-Modal Representation Learning	. 2472
Aligning Step-by-Step Instructional Diagrams to Video Demonstrations Jiahao Zhang (The Australian National University), Anoop Cherian (Mitsubishi Electric Research Labs), Yanbin Liu (The Australian National University), Yizhak Ben-Shabat (The Australian National University; Technion Israel Institute of Technology), Cristian Rodriguez (The Australian Institute for Machine Learning), and Stephen Gould (The Australian National University)	. 2483
Make-a-Story: Visual Memory Conditioned Consistent Story Generation Tanzila Rahman (University of British Columbia; Vector Institute for Al), Hsin-Ying Lee (Snap Inc.), Jian Ren (Snap Inc.), Sergey Tulyakov (Snap Inc.), Shweta Mahajan (University of British Columbia; Vector Institute for Al), and Leonid Sigal (University of British Columbia; Vector Institute for Al; Canada CIFAR Al Chair)	. 2493
Test of Time: Instilling Video-Language Models With a Sense of Time	. 2503
How You Feelin'? Learning Emotions and Mental States in Movie Scenes	. 2517

Continuous Sign Language Recognition With Correlation Network	2529
DIP: Dual Incongruity Perceiving Network for Sarcasm Detection	2540
Gloss Attention for Gloss-Free Sign Language Translation	2551
Object-Goal Visual Navigation via Effective Exploration of Relations Among Historical Navigation States Heming Du (Australian National University; The University of Queensland), Lincheng Li (Netease Fuxi Al Lab), Zi Huang (The University of Queensland), and Xin Yu (The University of Queensland)	2563
Behavioral Analysis of Vision-and-Language Navigation Agents	2574
KERM: Knowledge Enhanced Reasoning for Vision-and-Language Navigation	2583
Where Is My Wallet? Modeling Object Proposal Sets for Egocentric Visual Query Localization Mengmeng Xu (Meta Al; KAUST, Saudi Arabia), Yanghao Li (Meta Al), Cheng-Yang Fu (Meta Al), Bernard Ghanem (KAUST, Saudi Arabia), Tao Xiang (Meta Al), and Juan-Manuel Pérez-Rúa (Meta Al)	on. 2593
Efficient Multimodal Fusion via Interactive Prompting	2604
NS3D: Neuro-Symbolic Grounding of 3D Objects and Relations	2614

Dynamic Inference With Grounding Based Vision and Language Models	
Improving Commonsense in Vision-Language Models via Knowledge Graph Riddles	
S3C: Semi-Supervised VQA Natural Language Explanation via Self-Critical Learning	
Teaching Structured Vision & Language Concepts to Vision & Language Models	
FAME-Vil: Multi-Tasking Vision-Language Model for Heterogeneous Fashion Tasks	
RefCLIP: A Universal Teacher for Weakly Supervised Referring Expression Comprehension 2681 Lei Jin (Xiamen University, P.R. China.; Xiamen University, P.R. China.), Gen Luo (Xiamen University, P.R. China.), Yiyi Zhou (Xiamen University, P.R. China.; Xiamen University, P.R. China.), Xiaoshuai Sun (Xiamen University, P.R. China.; Xiamen University, P.R. China.), Guannan Jiang (Intelligent Manufacturing Department, Contemporary Amperex Technology Co. Limited (CATL)), Annan Shu (Intelligent Manufacturing Department, Contemporary Amperex Technology Co. Limited (CATL)), and Rongrong Ji (Xiamen University, P.R. China.; Xiamen University, P.R. China.)	

Uni-Perceiver v2: A Generalist Model for Large-Scale Vision and Vision-Language Tasks Hao Li (The Chinese University of Hong Kong), Jinguo Zhu (Xi'an Jiaotong University), Xiaohu Jiang (Tsinghua University), Xizhou Zhu (Tsinghua University; Shanghai Artificial Intelligence Laboratory), Hongsheng Li (The Chinese University of Hong Kong), Chun Yuan (Xi'an Jiaotong University), Xiaohua Wang (SenseTime Research), Yu Qiao (Shanghai Artificial Intelligence Laboratory), Xiaogang Wang (The Chinese University of Hong Kong), Wenhai Wang (Shanghai Artificial Intelligence Laboratory), and Jifeng Dai (Tsinghua University; Shanghai Artificial Intelligence Laboratory)	. 2691
Learning From Unique Perspectives: User-Aware Saliency Modeling	2701
CRAFT: Concept Recursive Activation FacTorization for Explainability Thomas Fel (Brown University, USA; Université de Toulouse, France; Innovation & Research Division, SNCF), Agustin Picard (Université de Toulouse, France; Scalian), Louis Béthune (Université de Toulouse, France), Thibaut Boissin (Université de Toulouse, France; Institut de Recherche Technologique Saint-Exupery, France), David Vigouroux (Université de Toulouse, France; Institut de Recherche Technologique Saint-Exupery, France), Julien Colin (Brown University, USA; Université de Toulouse, France), Rémi Cadène (Brown University, USA; Sorbonne Université, CNRS, France), and Thomas Serre (Brown University, USA; Université de Toulouse, France)	. 2711
Doubly Right Object Recognition: A Why Prompt for Visual Rationales Chengzhi Mao (Columbia University), Revant Teotia (Columbia University), Amrutha Sundar (Columbia University), Sachit Menon (Columbia University), Junfeng Yang (Columbia University), Xin Wang (Microsoft Research), and Carl Vondrick (Columbia University)	. 2722
Sketch2Saliency: Learning To Detect Salient Objects From Human Drawings Ayan Kumar Bhunia (University of Surrey, United Kingdom), Subhadeep Koley (University of Surrey, United Kingdom; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence), Amandeep Kumar (University of Surrey, United Kingdom), Aneeshan Sain (University of Surrey, United Kingdom; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence), Pinaki Nath Chowdhury (University of Surrey, United Kingdom; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence), Tao Xiang (University of Surrey, United Kingdom; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence), and Yi-Zhe Song (University of Surrey, United Kingdom; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence)	. 2733
PIP-Net: Patch-Based Intuitive Prototypes for Interpretable Image Classification	. 2744

Photo Pre-Training, but for Sketch	
CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained or Not	
iCLIP: Bridging Image Classification and Contrastive Language-Image Pre-Training for Visual Recognition	
Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval 2787 Ding Jiang (Wuhan University, China) and Mang Ye (Wuhan University, China; Hubei Luojia Laboratory, China)	
Multi-Modal Representation Learning With Text-Driven Soft Masks	
Texts as Images in Prompt Tuning for Multi-Label Image Recognition	
Reproducible Scaling Laws for Contrastive Language-Image Learning	

Mu	Iltilateral Semantic Relations Modeling for Image Text Retrieval
Sm	nallCap: Lightweight Image Captioning Prompted With Retrieval Augmentation
Pro 28	obing Sentiment-Oriented Pre-Training Inspired by Human Sentiment Perception Mechanism . 50
	Tinglei Feng (Nankai University, China), Jiaxuan Liu (Nankai University, China), and Jufeng Yang (Nankai University, China)
Pre	efix Conditioning Unifies Language and Label Supervision
Cro	Sissing the Gap: Domain Generalization for Image Captioning
A E	Bag-of-Prototypes Representation for Dataset-Level Applications
Cr	owdCLIP: Unsupervised Crowd Counting via Vision-Language Model

D2Former: Jointly Learning Hierarchical Detectors and Contextual Descriptors via Agent-Based Transformers
Learning To Generate Language-Supervised and Open-Vocabulary Scene Graph Using Pre-Traine Visual-Semantic Space
Relational Context Learning for Human-Object Interaction Detection
Learning Open-Vocabulary Semantic Segmentation Models From Natural Language Supervision . 2935 Jilan Xu (Fudan University; Shanghai Al Laboratory), Junlin Hou (Fudan University), Yuejie Zhang (Fudan University), Rui Feng (Fudan University), Yi Wang (Shanghai Al Laboratory), Yu Qiao (Shanghai Al Laboratory), and Weidi Xie (Shanghai Al Laboratory; Shanghai Jiao Tong University)
Side Adapter Network for Open-Vocabulary Semantic Segmentation
Open-Vocabulary Panoptic Segmentation With Text-to-Image Diffusion Models
IFSeg: Image-Free Semantic Segmentation via Vision-Language Model
PartManip: Learning Cross-Category Generalizable Part Manipulation Policy From Point Cloud Observations

OneFormer: One Transformer To Rule Universal Image Segmentation	2080
Jitesh Jain (SHI Labs @ U of Oregon & UIUC; IIT Roorkee), Jiachen Li (SHI Labs @ U of Oregon & UIUC), Mang Tik Chiu (SHI Labs @ U of Oregon & UIUC), Ali Hassani (SHI Labs @ U of Oregon & UIUC), Nikita Orlov (Picsart AI Research (PAIR)), and Humphrey Shi (Picsart AI Research (PAIR))	2303
Delving Into Shape-Aware Zero-Shot Semantic Segmentation Xinyu Liu (Xidian University; Institute for Al Industry Research (AIR), Tsinghua University), Beiwen Tian (Institute for Al Industry Research (AIR), Tsinghua University; Department of Computer Science and Technology, Tsinghua University), Zhen Wang (Didi Chuxing), Rui Wang (Didi Chuxing), Kehua Sheng (Didi Chuxing), Bo Zhang (Didi Chuxing), Hao Zhao (Institute for Al Industry Research (AIR), Tsinghua University), and Guyue Zhou (Institute for Al Industry Research (AIR), Tsinghua University)	2999
CoMFormer: Continual Learning in Semantic and Panoptic Segmentation	3010
Learning To Segment Every Referring Object Point by Point	3021
Unsupervised Continual Semantic Adaptation Through Neural Rendering	3031
Mask DINO: Towards a Unified Transformer-Based Framework for Object Detection and Segmentation	3041
Transformer Scale Gate for Semantic Segmentation	3051

Style Projected Clustering for Domain Generalized Semantic Segmentation	3061
Rethinking Few-Shot Medical Segmentation: A Vector Quantization View	3072
Continual Semantic Segmentation With Automatic Memory Sample Selection	3082
Token Contrast for Weakly-Supervised Semantic Segmentation	3093
Multi-Granularity Archaeological Dating of Chinese Bronze Dings Based on a Knowledge-Guided Relation Graph	3103
Hunting Sparsity: Density-Guided Contrastive Learning for Semi-Supervised Semantic Segmentation Xiaoyang Wang (XJTLU; University of Liverpool; Metavisioncn), Bingfeng Zhang (China University of Petroleum (East China)), Limin Yu (XJTLU), and Jimin Xiao (XJTLU)	3114
Cut and Learn for Unsupervised Object Detection and Instance Segmentation	3124
Extracting Class Activation Maps From Non-Discriminative Features As Well	3135
BoxTeacher: Exploring High-Quality Pseudo Labels for Weakly Supervised Instance Segmentation Tianheng Cheng (Huazhong University of Science & Technology), Xinggang Wang (Huazhong University of Science & Technology), Shaoyu Chen (Huazhong University of Science & Technology), Qian Zhang (Horizon Robotics), and Wenyu Liu (Huazhong University of Science & Technology)	3145

Hierarchical Fine-Grained Image Forgery Detection and Localization	,5
Towards Professional Level Crowd Annotation of Expert Domain Data	6
Unsupervised Object Localization: Observing the Background To Discover Objects	6
Semi-Supervised Learning Made Simple With Self-Supervised Clustering	7
Unbalanced Optimal Transport: A Unified Framework for Object Detection	8
DiGeo: Discriminative Geometry-Aware Learning for Generalized Few-Shot Object Detection 3208 Jiawei Ma (Columbia University), Yulei Niu (Columbia University), Jincheng Xu (Columbia University), Shiyuan Huang (Columbia University), Guangxing Han (Columbia University), and Shih-Fu Chang (Columbia University)	, • •
CLIP the Gap: A Single Domain Generalization Approach for Object Detection	9
Unknown Sniffer for Object Detection: Don't Turn a Blind Eye to Unknown Objects	0
Consistent-Teacher: Towards Reducing Inconsistent Pseudo-Targets in Semi-Supervised Object Detection	.0

Intimal Proposal Learning for Deployable End-to-End Pedestrian Detection
syFOD: An Asymmetric Adaptation Paradigm for Few-Shot Domain Adaptive Object Detection 261
Yipeng Gao (Sun Yat-sen University, China; Ministry of Education, China), Kun-Yu Lin (Sun Yat-sen University, China; Ministry of Education, China), Junkai Yan (Sun Yat-sen University, China; Ministry of Education, China), Yaowei Wang (Pengcheng Lab.), and Wei-Shi Zheng (Sun Yat-sen University, China; Pengcheng Lab.; Ministry of Education, China)
There Is My Spot? Few-Shot Image Generation via Latent Subspace Optimization
ncertainty-Aware Optimal Transport for Semantically Coherent Out-of-Distribution etection
Fan Lu (University of Science and Technology of China), Kai Zhu (University of Science and Technology of China), Wei Zhai (University of Science and Technology of China), Kecheng Zheng (Ant Group), and Yang Cao (University of Science and Technology of China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center)
MAESTER: Masked Autoencoder Guided Segmentation at Pixel Resolution for Accurate, elf-Supervised Subcellular Structure Recognition
orthogonal Annotation Benefits Barely-Supervised Medical Image Segmentation

RepMode: Learning to Re-Parameterize Diverse Experts for Subcellular Structure Prediction Donghao Zhou (Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences; The Chinese University of Hong Kong), Chunbin Gu (The Chinese University of Hong Kong), Junde Xu (Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences; The Chinese University of Hong Kong), Furui Liu (Zhejiang Lab), Qiong Wang (Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Guangyong Chen (Zhejiang Lab), and Pheng-Ann Heng (Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences)	12
Topology-Guided Multi-Class Cell Context Generation for Digital Pathology	23
Dynamic Graph Enhanced Contrastive Learning for Chest X-Ray Report Generation	34
Benchmarking Self-Supervised Learning on Diverse Pathology Datasets	44
Multiple Instance Learning via Iterative Self-Paced Supervised Contrastive Learning	55
Learning Expressive Prompting With Residuals for Vision Transformers	56

Detection of Out-of-Distribution Samples Using Binary Neuron Activation Patterns	378
Decoupling MaxLogit for Out-of-Distribution Detection	388
Exploring Structured Semantic Prior for Multi Label Recognition With Incomplete Labels 3: Zixuan Ding (Xidian University; Hangzhou Zhuoxi Institute of Brain and Intelligence), Ao Wang (Tsinghua University; BNRist; Hangzhou Zhuoxi Institute of Brain and Intelligence), Hui Chen (Tsinghua University; BNRist), Qiang Zhang (Xidian University), Pengzhang Liu (JD.com), Yongjun Bao (JD.com), Weipeng Yan (JD.com), and Jungong Han (Department of Computer Science, the University of Sheffield, UK; Centre for Machine Intelligence, the University of Sheffield, UK)	398
Bridging the Gap Between Model Explanations in Partially Annotated Multi-Label Classification	408
Youngwook Kim (Seoul National University), Jae Myung Kim (PSL Research University), Jieun Jeong (University of Tübingen), Cordelia Schmid (University of Tübingen; MPI for Intelligent Systems), Zeynep Akata (Seoul National University; HodooAl Lab), and Jungwoo Lee (Seoul National University; HodooAl Lab)	400
DivClust: Controlling Diversity in Deep Clustering	418
Deep Semi-Supervised Metric Learning With Mixed Label Propagation	429
Leveraging Inter-Rater Agreement for Classification in the Presence of Noisy Labels	439
Modeling Inter-Class and Intra-Class Constraints in Novel Class Discovery	449
Bootstrap Your Own Prior: Towards Distribution-Agnostic Novel Class Discovery	459

Towards Realistic Long-Tailed Semi-Supervised Learning: Consistency Is All You Need 346 Tong Wei (Southeast University, China) and Kai Gan (Southeast University, China)	59
PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for Generalized Novel Category Discovery	79
Probabilistic Knowledge Distillation of Face Ensembles	39
Class-Conditional Sharpness-Aware Minimization for Deep Long-Tailed Recognition	3 9
Promoting Semantic Connectivity: Dual Nearest Neighbors Contrastive Learning for Unsupervised Domain Generalization	10
Instance Relation Graph Guided Source-Free Domain Adaptive Object Detection	20
MOT: Masked Optimal Transport for Partial Domain Adaptation	31
TOPLight: Lightweight Neural Networks With Task-Oriented Pretraining for Visible-Infrared Recognition	41
OSAN: A One-Stage Alignment Network To Unify Multimodal Alignment and Unsupervised Doma Adaptation	
(Tencent Youtu Lab)	

Patch-Mix Transformer for Unsupervised Domain Adaptation: A Game Perspective Jinjing Zhu (Al Thrust, HKUST(GZ)), Haotian Bai (Al Thrust, HKUST(GZ)), and Lin Wang (Al Thrust, HKUST(GZ); Dept. of CSE, HKUST)	3561
ARO-Net: Learning Implicit Fields From Anchored Radial Observations Yizhi Wang (Shenzhen University; Simon Fraser University), Zeyu Huang (Shenzhen University), Ariel Shamir (Reichman University), Hui Huang (Shenzhen University; Simon Fraser University), Hao Zhang (Simon Fraser University), and Ruizhen Hu (Shenzhen University)	3572
A Probabilistic Framework for Lifelong Test-Time Adaptation Dhanajit Brahma (Indian Institute of Technology Kanpur) and Piyush Rai (Indian Institute of Technology Kanpur)	3582
Distribution Shift Inversion for Out-of-Distribution Prediction	3592
Learning Joint Latent Space EBM Prior Model for Multi-Layer Generator Jiali Cui (Department of Computer Science, Stevens Institute of Technology), Ying Nian Wu (Department of Statistics, University of California, Los Angeles), and Tian Han (Department of Computer Science, Stevens Institute of Technology)	3603
A Data-Based Perspective on Transfer Learning	3613
A Meta-Learning Approach to Predicting Performance and Data Requirements	3623
Guided Recommendation for Model Fine-Tuning	3633
EMT-NAS:Transferring Architectural Knowledge Between Tasks From Different Datasets Peng Liao (Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, ECUST, China), Yaochu Jin (Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, ECUST, China; Bielefeld University, Germany), and Wenli Du (Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, ECUST, China)	s 3643

AttriCLIP: A Non-Incremental Learner for Incremental Knowledge Learning	3654
Batch Model Consolidation: A Multi-Task Model Consolidation Framework	3664
SmartAssign: Learning a Smart Knowledge Assignment Strategy for Deraining and Desnot 3677 Yinglong Wang (Huawei Noah's Ark Lab), Chao Ma (Al Institute, Shanghai Jiao Tong University), and Jianzhuang Liu (Huawei Noah's Ark Lab)	wing
TinyMIM: An Empirical Study of Distilling MIM Pre-Trained Models	3687
Computationally Budgeted Continual Learning: What Does Matter? Ameyaa Prabhu (University of Oxford), Hasan Abed Al Kader Hammoud (King Abdullah University of Science and Technology (KAUST)), Puneet K. Dokania (University of Oxford), Philip H.S. Torr (University of Oxford), Ser-Nam Lim (Meta Al), Bernard Ghanem (King Abdullah University of Science and Technology (KAUST)), and Adel Bibi (University of Oxford)	3698
GradMA: A Gradient-Memory-Based Accelerated Federated Learning With Alleviated Catastrophic Forgetting	3708
Rethinking Gradient Projection Continual Learning: Stability / Plasticity Feature Space Decoupling	3718
Zhen Zhao (East China Normal University, China), Zhizhong Zhang (East China Normal University, China), Xin Tan (East China Normal University, China), Jun Liu (Tencent Youtu Lab), Yanyun Qu (Xiamen University, China), Yuan Xie (East China Normal University, China), and Lizhuang Ma (East China Normal University, China)	

Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptation	3/28
Generalizing Dataset Distillation via Deep Generative Prior	3739
Minimizing the Accumulated Trajectory Error To Improve Dataset Distillation Jiawei Du (Technology and Research (A*STAR), Singapore; National University of Singapore), Yidi Jiang (National University of Singapore), Vincent Y. F. Tan (National University of Singapore), Joey Tianyi Zhou (Technology and Research (A*STAR), Singapore; National University of Singapore), and Haizhou Li (The Chinese University of Hong Kong, Shenzhen, China; National University of Singapore)	3749
Slimmable Dataset Condensation	3759
Sharpness-Aware Gradient Matching for Domain Generalization	3769
Dynamic Neural Network for Multi-Task Learning Searching Across Diverse Netv 3779 Wonhyeok Choi (Department of Electrical Engineering & Computer Science, DGIST, Korea) and Sunghoon Im (Department of Electrical Engineering & Computer Science, DGIST, Korea)	vork Topologies
SplineCam: Exact Visualization and Characterization of Deep Network Geometry Boundaries	

VNE: An Effective Method for Improving Deep Representation by Manipulating Eigenvalue Distribution	e 3799
Efficient On-Device Training via Gradient Filtering	3811
Are Data-Driven Explanations Robust Against Out-of-Distribution Data?	3821
BiasAdv: Bias-Adversarial Augmentation for Model Debiasing	3832
Q-DETR: An Efficient Low-Bit Quantized Detection Transformer Sheng Xu (Beihang University), Yanjing Li (Beihang University), Mingbao Lin (Tencent), Peng Gao (Shanghai Al Laboratory), Guodong Guo (UNIUBI Research, Universal Ubiquitous Co.), Jinhu Lü (Beihang University; Zhongguancun Laboratory), and Baochang Zhang (Beihang University; Zhongguancun Laboratory)	3842
NIPQ: Noise Proxy-Based Integrated Pseudo-Quantization	3852
CUDA: Convolution-Based Unlearnable Datasets	3862
KD-DLGAN: Data Limited Image Generation via Knowledge Distillation Kaiwen Cui (Nanyang Technological University), Yingchen Yu (Nanyang Technological University), Fangneng Zhan (Max Planck Institute for Informatics), Shengcai Liao (Inception Institute of Artificial Intelligence), Shijian Lu (Nanyang Technological University), and Eric P. Xing (Mohamed bin Zayed University of Artificial Intelligence)	3872

Spider GAN: Leveraging Friendly Neighbors To Accelerate GAN Training	3883
Efficient Verification of Neural Networks Against LVM-Based Specifications	3894
Bi-Directional Feature Fusion Generative Adversarial Network for Ultra-High Resolution Pathological Image Virtual Re-Staining	3904
DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection	3914
OmniAL: A Unified CNN Framework for Unsupervised Anomaly Localization	3924
Federated Incremental Semantic Segmentation Jiahua Dong (Shenyang Institute of Automation, Chinese Academy of Sciences, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Duzhen Zhang (ETH Zürich, Switzerland), Yang Cong (Shenyang Institute of Automation, Chinese Academy of Sciences, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, China), Wei Cong (Shenyang Institute of Automation, Chinese Academy of Sciences, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Henghui Ding (ETH Zürich, Switzerland), and Dengxin Dai (ETH Zürich, Switzerland)	3934
Re-Thinking Federated Active Learning Based on Inter-Class Diversity	3944
Federated Domain Generalization With Generalization Adjustment Ruipeng Zhang (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University; Shanghai AI Laboratory), Qinwei Xu (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University; Shanghai AI Laboratory), Jiangchao Yao (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University; Shanghai AI Laboratory), Ya Zhang (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University; Shanghai AI Laboratory), Qi Tian (Huawei Cloud & AI), and Yanfeng Wang (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University; Shanghai AI Laboratory)	3954

On the Effectiveness of Partial Variance Reduction in Federated Learning With Heterogeneous Data Bo Li (Technical University of Denmark), Mikkel N. Schmidt (Technical University of Denmark), Tommy S. Alstrøm (Technical University of Denmark), and Sebastian U. Stich (CISPA)	. 3964
The Resource Problem of Using Linear Layer Leakage Attack in Federated Learning	3974
Unlearnable Clusters: Towards Label-Agnostic Unlearnable Examples Jiaming Zhang (Beijing Jiaotong University), Xingjun Ma (Fudan University), Qi Yi (Beijing Jiaotong University), Jitao Sang (Beijing Jiaotong University; Peng Cheng Lab), Yu-Gang Jiang (Fudan University), Yaowei Wang (Peng Cheng Lab), and Changsheng Xu (Chinese Academy of Sciences; Peng Cheng Lab)	. 3984
Implicit Identity Leakage: The Stumbling Block to Improving Deepfake Detection Generalization	. 3994
Backdoor Defense via Adaptively Splitting Poisoned Dataset Kuofeng Gao (Tsinghua University), Yang Bai (Tencent Security Zhuque Lab), Jindong Gu (University of Oxford), Yong Yang (Tencent Security Platform Department), and Shu-Tao Xia (Peng Cheng Laboratory)	. 4005
How to Backdoor Diffusion Models? Sheng-Yen Chou (National Tsing Hua University, R.O.C; The Chinese University of Hong Kong, Hong Kong), Pin-Yu Chen (IBM Research, USA), and Tsung-Yi Ho (The Chinese University of Hong Kong, Hong Kong)	4015
TrojViT: Trojan Insertion in Vision Transformers	4025
TrojDiff: Trojan Attacks on Diffusion Models With Diverse Targets	. 4035
Ensemble-Based Blackbox Attacks on Dense Prediction	. 4045
Efficient Loss Function by Minimizing the Detrimental Effect of Floating-Point Errors on Gradient-Based Attacks	. 4056
The Best Defense Is a Good Offense: Adversarial Augmentation Against Adversarial Attacks . Iuri Frosio (NVIDIA) and Jan Kautz (NVIDIA)	4067
Adversarial Robustness via Random Projection Filters	4077

Jedi: Entropy-Based Localization and Removal of Adversarial Patches Bilel Tarchoun (Université de Sousse, Ecole Nationale d'Ingénieurs de Sousse, LATIS, Tunisia), Anouar Ben Khalifa (Université de Sousse, Ecole Nationale d'Ingénieurs de Sousse, LATIS, Tunisia; Université de Jendouba, Institut National des Technologies et des Sciences du Kef, Tunisia), Mohamed Ali Mahjoub (Université de Sousse, Ecole Nationale d'Ingénieurs de Sousse, LATIS, Tunisia), Nael Abu-Ghazaleh (University of California Riverside, USA), and Ihsen Alouani (CSIT, Queen's University Belfast, UK' IEMN CNRS 8520, Université Polytechnique Hauts-de-France)	4087
Exploring the Relationship Between Architectural Design and Adversarially Robust Generalization Aishan Liu (Beihang University), Shiyu Tang (Beihang University), Siyuan Liang (Chinese Academy of Sciences), Ruihao Gong (Beihang University; SenseTime), Boxi Wu (Zhejiang University), Xianglong Liu (Beihang University; Zhongguancun Laboratory; Hefei Comprehensive National Science Center), and Dacheng Tao (JD Explore Academy)	4096
Improving Robustness of Vision Transformers by Reducing Sensitivity To Patch Corruptions Yong Guo (Max Planck Institute for Informatics, Saarland Informatics Campus), David Stutz (Max Planck Institute for Informatics, Saarland Informatics Campus), and Bernt Schiele (Max Planck Institute for Informatics, Saarland Informatics Campus)	5 . 4108
Towards Effective Adversarial Textured 3D Meshes on Physical Face Recognition	4119

AltFreezing for More General Video Face Forgery Detection
Poster-Tue-PM
Passive Micron-Scale Time-of-Flight With Sunlight Interferometry
F2-NeRF: Fast Neural Radiance Field Training With Free Camera Trajectories
NoPe-NeRF: Optimising Neural Radiance Field With No Pose Prior
BAD-NeRF: Bundle Adjusted Deblur Neural Radiance Fields
DiffusioNeRF: Regularizing Neural Radiance Fields With Denoising Diffusion Models
SPARF: Neural Radiance Fields From Sparse and Noisy Poses
Interactive Segmentation of Radiance Fields

Temporal Interpolation Is All You Need for Dynamic Neural Radiance Fields	4212
Compressing Volumetric Radiance Fields to 1 MB	4222
Multiscale Tensor Decomposition and Rendering Equation Encoding for View Synthesis Kang Han (James Cook University) and Wei Xiang (La Trobe University)	4232
Ref-NPR: Reference-Based Non-Photorealistic Radiance Fields for Controllable Scene Stylization Yuechen Zhang (The Chinese University of Hong Kong; SmartMore), Zexin He (The Chinese University of Hong Kong), Jinbo Xing (The Chinese University of Hong Kong), Xufeng Yao (The Chinese University of Hong Kong), and Jiaya Jia (The Chinese University of Hong Kong; SmartMore)	4242
Representing Volumetric Videos As Dynamic MLP Maps Sida Peng (Zhejiang University), Yunzhi Yan (Zhejiang University), Qing Shuai (Zhejiang University), Hujun Bao (Zhejiang University), and Xiaowei Zhou (Zhejiang University)	4252
Fast Monocular Scene Reconstruction With Global-Sparse Local-Dense Grids	4263
DynlBaR: Neural Dynamic Image-Based Rendering	4273
Plateau-Reduced Differentiable Path Tracing	4285
NeFII: Inverse Rendering for Reflectance Decomposition With Near-Field Indirect Illumination Haoqian Wu (NetEase Fuxi AI Lab), Zhipeng Hu (NetEase Fuxi AI Lab; Zhejiang University), Lincheng Li (NetEase Fuxi AI Lab), Yongqiang Zhang (NetEase Fuxi AI Lab), Changjie Fan (NetEase Fuxi AI Lab), and Xin Yu (The University of Queensland)	4295
WildLight: In-the-Wild Inverse Rendering With a Flashlight	4305

	ightable Neural Human Assets From Multi-View Gradient Illuminations
	fRF: Rendering-Guided 3D Radiance Field Diffusion
	alyzing Physical Impacts Using Transient Surface Wave Imaging
	ural Kaleidoscopic Space Sculpting
	wards Unbiased Volume Rendering of Neural Implicit Surfaces With Geometry Priors 4359 Yongqiang Zhang (NetEase Fuxi AI Lab), Zhipeng Hu (NetEase Fuxi AI Lab), Haoqian Wu (NetEase Fuxi AI Lab), Minda Zhao (NetEase Fuxi AI Lab), Lincheng Li (NetEase Fuxi AI Lab), Zhengxia Zou (Beihang University), and Changjie Fan (NetEase Fuxi AI Lab)
-	ural Kernel Surface Reconstruction
Info	M-3DScene: 3D Scene Understanding by Customizing Masked Modeling With ormative-Preserved Reconstruction and Self-Distilled Consistency
439	
	Dario Pavllo (ETH Zurich), David Joseph Tan (ETH Zurich; Google), Marie-Julie Rakotosaona (Google), and Federico Tombari (Google; TU Munich)

DisCoScene: Spatially Disentangled Generative Radiance Fields for Controllable 3D-Aware Scene Synthesis	4402
Yinghao Xu (CUHK; Snap Inc.), Menglei Chai (Snap Inc.), Zifan Shi (HKUST), Sida Peng (KAUST), Ivan Skorokhodov (Snap Inc.; KAUST), Aliaksandr Siarohin (Snap Inc.), Ceyuan Yang (CUHK), Yujun Shen (CUHK), Hsin-Ying Lee (Snap Inc.), Bolei Zhou (UCLA), and Sergey Tulyakov (Snap Inc.)	
Heat Diffusion Based Multi-Scale and Geometric Structure-Aware Transformer for Mesh Segmentation	4413
Learning Detailed Radiance Manifolds for High-Fidelity and 3D-Consistent Portrait Synthesis From Monocular Image	4423
3D-Aware Conditional Image Synthesis	4434
VIVE3D: Viewpoint-Independent Video Editing Using 3D-Aware GANs Anna Frühstück (Meta Reality Labs Research), Nikolaos Sarafianos (Meta Reality Labs Research), Yuanlu Xu (Meta Reality Labs Research), Peter Wonka (KAUST), and Tony Tung (Meta Reality Labs Research)	4446
SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation	4456
Generating Part-Aware Editable 3D Shapes Without 3D Supervision Konstantinos Tertikas (National and Kapodistrian University of Athens; Athena RC, Greece), Despoina Paschalidou (Stanford University), Boxiao Pan (Stanford University), Jeong Joon Park (Stanford University), Mikaela Angelina Uy (Stanford University), Ioannis Emiris (Athena RC, Greece; National and Kapodistrian University of Athens), Yannis Avrithis (Institute of Advanced Research in Artificial Intelligence (IARAI)), and Leonidas Guibas (Stanford University)	4466
NeuralLift-360: Lifting an In-the-Wild 2D Photo to a 3D Object With 360° Views	4479
Implicit Identity Driven Deepfake Face Swapping Detection Baojin Huang (Wuhan University), Zhongyuan Wang (Wuhan University), Jifan Yang (Wuhan University), Jiaxin Ai (Wuhan University), Qin Zou (Wuhan University), Qian Wang (Wuhan University), and Dengpan Ye (Wuhan University)	4490

Canonical Fields: Self-Supervised Learning of Pose-Canonicalized Neural Fields	1500
Improving Fairness in Facial Albedo Estimation via Visual-Textual Cues	1511
High-Fidelity 3D Face Generation From Natural Language Descriptions	l521
DSFNet: Dual Space Fusion Network for Occlusion-Robust 3D Dense Face Alignment	ļ531
High-Fidelity Facial Avatar Reconstruction From Monocular Video With Generative Priors 4 Yunpeng Bai (Tsinghua Shenzhen International Graduate School), Yanbo Fan (Tencent AI Lab), Xuan Wang (Ant Group), Yong Zhang (Tencent AI Lab), Jingxiang Sun (Tsinghua University), Chun Yuan (Tsinghua Shenzhen International Graduate School; Peng Cheng Laboratory), and Ying Shan (Tencent AI Lab)	I541
3DAvatarGAN: Bridging Domains for Personalized Editable Avatars	l552
RODIN: A Generative Model for Sculpting 3D Digital Avatars Using Diffusion	I563
Instant Volumetric Head Avatars	I574
Synthesizing Photorealistic Virtual Humans Through Cross-Modal Disentanglement	ŀ585

3D Cinemagraphy From a Single Image
TryOnDiffusion: A Tale of Two UNets
Diverse 3D Hand Gesture Prediction From Body Dynamics by Bilateral Hand Disentanglement 4616 Xingqun Qi (University of Technology Sydney; Netease Fuxi AI Lab), Chen Liu (The University of Queensland), Muyi Sun (CRIPAC, NLPR, Institute of Automation, Chinese Academy of Sciences), Lincheng Li (Netease Fuxi AI Lab), Changjie Fan (Netease Fuxi AI Lab), and Xin Yu (University of Technology Sydney; The University of Queensland)
Normal-Guided Garment UV Prediction for Human Re-Texturing
REC-MV: REconstructing 3D Dynamic Cloth From Monocular Videos
SeSDF: Self-Evolved Signed Distance Field for Implicit 3D Clothed Human Reconstruction 464 Yukang Cao (The University of Hong Kong), Kai Han (The University of Hong Kong), and Kwan-Yee K. Wong (The University of Hong Kong)
Unsupervised Volumetric Animation
Handy: Towards a High Fidelity 3D Hand Shape and Appearance Model
Fantastic Breaks: A Dataset of Paired 3D Scans of Real-World Broken Objects and Their Complete Counterparts

Jeff Tan (Carnegie Mellon University), Gengshan Yang (Carnegie Mellon University), and Deva Ramanan (Carnegie Mellon University)
GANmouflage: 3D Object Nondetection With Texture Fields
3D Human Pose Estimation via Intuitive Physics
Object Pop-Up: Can We Infer 3D Objects and Their Poses From Human Interactions Alone? 4726 Ilya A. Petrov (University of Tubingen, Germany), Riccardo Marin (University of Tubingen, Germany), Julian Chibane (University of Tubingen, Germany), and Gerard Pons-Moll (University of Tubingen, Germany; Max Planck Institute for Informatics, Saarland Informatics Campus, Germany; Tubingen Al Center, Germany)
UniDexGrasp: Universal Robotic Dexterous Grasping via Learning Diverse Proposal Generation and Goal-Conditioned Policy
Xiongbiao Luo (Xiamen University, China; National Institute for Data Science in Health and Medicine, Xiamen University, China)
Visibility Aware Human-Object Interaction Tracking From Single RGB Camera

Transformer-Based Unified Recognition of Two Hands Manipulating Objects	4769
HuManiFlow: Ancestor-Conditioned Normalising Flows on SO(3) Manifolds for Human Pose a Shape Distribution Estimation Akash Sengupta (University of Cambridge), Ignas Budvytis (University of Cambridge), and Roberto Cipolla (University of Cambridge)	
3D Human Pose Estimation With Spatio-Temporal Criss-Cross Attention	4790
GFPose: Learning 3D Human Pose Prior With Gradient Fields Hai Ci (Nat'l Key Lab. of GAI & Beijing Institute for GAI (BIGAI)), Mingdong Wu (CFCS, Sch'l of CS; Nat'l Key Lab. of GAI & Beijing Institute for GAI (BIGAI)), Wentao Zhu (CFCS, Sch'l of CS), Xiaoxuan Ma (CFCS, Sch'l of CS), Hao Dong (CFCS, Sch'l of CS), Fangwei Zhong (Sch'l of IST; Nat'l Key Lab. of GAI & Beijing Institute for GAI (BIGAI)), and Yizhou Wang (CFCS, Sch'l of CS; Inst. for AI, Peking University; Nat'l Eng. Research Center of Visual Technology)	4800
RDB-Pose: A Large-Scale Dataset for Multi-Person Pose Estimation and Tracking	4811
Analyzing and Diagnosing Pose Estimation With Attributions	4821
Shape-Constraint Recurrent Flow for 6D Object Pose Estimation Yang Hai (Xidian University), Rui Song (Xidian University), Jiaojiao Li (Xidian University), and Yinlin Hu (MagicLeap)	4831
TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose Estimation	4841
Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery From Sparse Image Ensemble	4853

Revisiting Rolling Shutter Bundle Adjustment: Toward Accurate and Fast Solution	4863
Revisiting the P3P Problem	4872
Common Pets in 3D: Dynamic New-View Synthesis of Real-Life Deformable Categories	4881
MobileBrick: Building LEGO for 3D Reconstruction on Mobile Devices	4892
EFEM: Equivariant Neural Field Expectation Maximization for 3D Object Segmentation Without Scene Supervision	
GINA-3D: Learning To Generate Implicit Neural Assets in the Wild	4913
Habitat-Matterport 3D Semantics Dataset	4927
BUOL: A Bottom-Up Framework With Occupancy-Aware Lifting for Panoptic 3D Scene Reconstruction From a Single Image	4937
Panoptic Compositional Feature Field for Editable Scene Rendering With Network-Inferred Labels via Metric Learning	4947

A Light Touch Approach to Teaching Transformers Multi-View Geometry	1958
Learning To Render Novel Views From Wide-Baseline Stereo Pairs	1970
Spring: A High-Resolution High-Detail Dataset and Benchmark for Scene Flow, Optical Flow and Stereo	4981
EventNeRF: Neural Radiance Fields From a Single Colour Event Camera	1992
LightedDepth: Video Depth Estimation in Light of Limited Inference View Angles	5003
Generating Aligned Pseudo-Supervision From Non-Aligned Data for Image Restoration in Under-Display Camera	5013
Spatio-Focal Bidirectional Disparity Estimation From a Dual-Pixel Image5 Donggun Kim (KAIST), Hyeonjoong Jang (KAIST), Inchul Kim (KAIST), and Min H. Kim (KAIST)	5023
Trap Attention: Monocular Depth Estimation With Manual Traps	5033
Accelerated Coordinate Encoding: Learning to Relocalize in Minutes Using RGB and Poses 5 Eric Brachmann (University of Oxford), Tommaso Cavallari (University of Oxford), and Victor Adrian Prisacariu (University of Oxford)	5044
Energy-Efficient Adaptive 3D Sensing	5054
Incremental 3D Semantic Scene Graph Prediction From RGB Sequences	5064

Consistent Direct Time-of-Flight Video Depth Super-Resolution	5075
Learning To Zoom and Unzoom	5086
FrustumFormer: Adaptive Instance-Aware Resampling for Multi-View 3D Detection	5096
3D Video Object Detection With Learnable Object-Centric Global Optimization	5106
UniDistill: A Universal Cross-Modality Knowledge Distillation Framework for 3D Object Detection in Bird's-Eye View Shengchao Zhou (MEGVII Technology), Weizhou Liu (MEGVII Technology), Chen Hu (MEGVII Technology), Shuchang Zhou (MEGVII Technology), and Chao Ma (Shanghai Jiao Tong University)	5116
ARKitTrack: A New Diverse Dataset for Tracking Using Mobile RGB-D Data Haojie Zhao (Dalian University of Technology, China), Junsong Chen (Dalian University of Technology, China), Lijun Wang (Dalian University of Technology, China), and Huchuan Lu (Dalian University of Technology, China; Peng Cheng Laboratory, China)	5126
Deep Dive Into Gradients: Better Optimization for 3D Object Detection With Gradient-Corrected IoU Supervision	5136

SlowLiDAR: Increasing the Latency of LiDAR-Based Detection Using Adversarial Examples Han Liu (Washington University in St. Louis), Yuhao Wu (Washington University in St. Louis), Zhiyuan Yu (Washington University in St. Louis), Yevgeniy Vorobeychik (Washington University in St. Louis), and Ning Zhang (Washington University in St. Louis)	5146
Normalizing Flow Based Feature Synthesis for Outlier-Aware Object Detection Nishant Kumar (TU Dresden), Siniša Šegvić (University of Zagreb - FER), Abouzar Eslami (Carl Zeiss Meditec AG), and Stefan Gumhold (TU Dresden)	. 5156
OcTr: Octree-Based Transformer for 3D Object Detection	5166
HypLiLoc: Towards Effective LiDAR Pose Regression With Hyperbolic Fusion	5176
LiDAR2Map: In Defense of LiDAR-Based Semantic Map Construction Using Online Camera Distillation	5186
MSF: Motion-Guided Sequential Fusion for Efficient 3D Object Detection From Point Cloud Sequences	.5196
SFD2: Semantic-Guided Feature Detection and Description Fei Xue (University of Cambridge; Durham University), Ignas Budvytis (University of Cambridge), and Roberto Cipolla (University of Cambridge)	5206
Temporal Consistent 3D LiDAR Representation Learning for Semantic Perception in Autonom Driving	
Unsupervised 3D Point Cloud Representation Learning by Triangle Constrained Contrast for Autonomous Driving	

RangeViT: Towards Vision Transformers for 3D Semantic Segmentation in Autonomous Driving 5240	
Angelika Ando (Valeo.ai, France; Université PSL, France), Spyros Gidaris (Valeo.ai, France), Andrei Bursuc (Valeo.ai, France), Gilles Puy (Valeo.ai, France), Alexandre Boulch (Valeo.ai, France), and Renaud Marlet (Valeo.ai, France; Univ. Gustave Eiffel, CNRS, France)	
Spatiotemporal Self-Supervised Learning for Point Clouds in the Wild	
Change-Aware Sampling and Contrastive Learning for Satellite Images	J
Self-Supervised 3D Scene Flow Estimation Guided by Superpoints	
SCOOP: Self-Supervised Correspondence and Optimization-Based Scene Flow	l
PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D Object Detection 5291 Anthony Chen (Peking University), Kevin Zhang (Peking University), Renrui Zhang (The Chinese University of Hong Kong), Zihan Wang (Peking University), Yuheng Lu (Peking University; Wukong Lab, iKingtec), Yandong Guo (Beijing University of Posts and Telecommunications), and Shanghang Zhang (Peking University)	
CP3: Channel Pruning Plug-In for Point-Based Networks	2
Binarizing Sparse Convolutional Networks for Efficient Point Cloud Analysis	3

Hyperspherical Embedding for Point Cloud Completion	5323
Attention-Based Point Cloud Edge Sampling	5333
Starting From Non-Parametric Networks for 3D Point Cloud Analysis	5344
Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent With Learned Distance Functions Yun He (Fudan University), Danhang Tang (Google), Yinda Zhang (Google), Xiangyang Xue (Fudan University), and Yanwei Fu (Fudan University)	e 5354
SE-ORNet: Self-Ensembling Orientation-Aware Network for Unsupervised Point Cloud Shape Correspondence	5364
Robust 3D Shape Classification via Non-Local Graph Attention Network Shengwei Qin (Zhejiang Sci-Tech University), Zhong Li (Huzhou University; Zhejiang Sci-Tech University), and Ligang Liu (University of Science and Technology of China)	5374
Rotation-Invariant Transformer for Point Cloud Matching	5384
Deep Graph-Based Spatial Consistency for Robust Non-Rigid Point Cloud Registration Zheng Qin (National University of Defense Technology), Hao Yu (Technical University of Munich), Changjian Wang (National University of Defense Technology), Yuxing Peng (National University of Defense Technology), and Kai Xu (National University of Defense Technology)	5394

Efficient RGB-T Tracking via Cross-Modality Distillation	5404
Finding Geometric Models by Clustering in the Consensus Space Daniel Barath (Computer Vision and Geometry Group, Switzerland), Denys Rozumnyi (VRG, Faculty of Electrical Engineering; Computer Vision and Geometry Group, Switzerland), Ivan Eichhardt (TMEIC Corporation Americas, USA; Eotvos Lorand University, Hungary), Levente Hajder (TMEIC Corporation Americas, USA), and Jiri Matas (VRG, Faculty of Electrical Engineering, CTU in Prague, Czech Republic)	5414
Adaptive Assignment for Geometry Aware Local Feature Matching	5425
Masked Representation Learning for Domain Generalized Stereo Matching	5435
Learning Optical Expansion From Scale Matching Han Ling (Nanjing University of Science and Technology), Yinghui Sun (Nanjing University of Science and Technology), Quansen Sun (Nanjing University of Science and Technology), and Zhenwen Ren (Nanjing University of Science and Technology; Southwest University of Science and Technology; SongShan Laboratory)	5445
AnyFlow: Arbitrary Scale Optical Flow With Implicit Neural Representation	5455
HouseDiffusion: Vector Floorplan Generation via a Diffusion Model With Discrete and Continuous Denoising	5466

Localized Semantic Feature Mixers for Efficient Pedestrian Detection in Autonomous Driving 5476 Abdul Hannan Khan (Department of Computer Science, RPTU Kaiserslautern-Landau, Germany; German Research Center for Artificial Intelligence (DFKI GmbH), Germany), Mohammed Shariq Nawaz (Department of Computer Science, RPTU Kaiserslautern-Landau, Germany), and Andreas Dengel (Department of Computer Science, RPTU Kaiserslautern-Landau, Germany; German Research Center for Artificial Intelligence (DFKI GmbH), Germany)	5
V2X-Seq: A Large-Scale Sequential Dataset for Vehicle-Infrastructure Cooperative Perception and Forecasting Haibao Yu (Tsinghua University; The University of Hong Kong), Wenxian Yang (Tsinghua University), Hongzhi Ruan (Tsinghua University; University of Chinese Academy of Science), Zhenwei Yang (Tsinghua University; University of Science and Technology Beijing), Yingjuan Tang (Tsinghua University; Beijing Institute of Technology), Xu Gao (Baidu Inc.), Xin Hao (Baidu Inc.), Yifeng Shi (Baidu Inc.), Yifeng Pan (Baidu Inc.), Ning Sun (Beijing Connected and Autonomous Vehicles Technology Co., Ltd), Juan Song (Beijing Connected and Autonomous Vehicles Technology Co., Ltd), Jirui Yuan (Tsinghua University), Ping Luo (The University of Hong Kong), and Zaiqing Nie (Tsinghua University)	. 5486
ViP3D: End-to-End Visual Trajectory Prediction via 3D Agent Queries Junru Gu (Tsinghua University), Chenxu Hu (Tsinghua University), Tianyuan Zhang (Shanghai Qi Zhi Institute; CMU), Xuanyao Chen (Shanghai Qi Zhi Institute; Fudan University), Yilun Wang (Li Auto), Yue Wang (MIT), and Hang Zhao (Tsinghua University; Shanghai Qi Zhi Institute)	.5496
IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint Multi-Agent Trajectory Prediction	. 5507
Leapfrog Diffusion Model for Stochastic Trajectory Prediction	5517
DeFeeNet: Consecutive 3D Human Motion Prediction With Deviation Feedback	5527

Self-Correctable and Adaptable Inference for Generalizable Human Pose Estimation	5537
ReDirTrans: Latent-to-Latent Translation for Gaze and Head Redirection	5547
Feature Shrinkage Pyramid for Camouflaged Object Detection With Transformers	5557
OVTrack: Open-Vocabulary Multiple Object Tracking	5567
GaitGCI: Generative Counterfactual Intervention for Gait Recognition Huanzhang Dou (Zhejiang University), Pengyi Zhang (Zhejiang University), Wei Su (Zhejiang University), Yunlong Yu (Zhejiang University), Yining Lin (SupreMind), and Xi Li (Zhejiang University; Shanghai Al Laboratory; Singapore Innovation and Al Joint Research Lab)	5578
Multi-Label Compound Expression Recognition: C-EXPR Database & Network	5589
Blemish-Aware and Progressive Face Retouching With Limited Paired Data	5599
High-Fidelity and Freely Controllable Talking Head Video Generation Yue Gao (Microsoft Research), Yuan Zhou (Microsoft Research), Jinglu Wang (Microsoft Research), Xiao Li (Microsoft Research), Xiang Ming (Microsoft Research), and Yan Lu (Microsoft Research)	5609
3Mformer: Multi-Order Multi-Mode Transformer for Skeletal Action Recognition Lei Wang (Australian National University) and Piotr Koniusz (Australian National University)	5620
UDE: A Unified Driving Engine for Human Motion Generation	5632
Data-Driven Feature Tracking for Event Cameras	5642

MoStGAN-V: Video Generation With Temporal Motion Styles	. 5652
Two-Stage Co-Segmentation Network Based on Discriminative Representation for Recovering Human Mesh From Videos	ng . 5662
Joint Appearance and Motion Learning for Efficient Rolling Shutter Correction	. 5671
Extracting Motion and Appearance via Inter-Frame Attention for Efficient Video Frame Interpolation	. 5682
Deep Stereo Video Inpainting	. 5693
Burstormer: Burst Image Restoration and Enhancement Transformer Akshay Dudhane (Mohamed bin Zayed University of AI), Syed Waqas Zamir (Inception Institute of AI), Salman Khan (Australian National University), Fahad Shahbaz Khan (Mohamed bin Zayed University of AI; Linkoping University), and Ming-Hsuan Yang (University of California, Merced; Yonsei University; Google Research)	. 5703
Blur Interpolation Transformer for Real-World Motion From Blur	5713
HDR Imaging With Spatially Varying Signal-to-Noise Ratios	5724
Light Source Separation and Intrinsic Image Decomposition Under AC Illumination	. 5735

Physics-Guided ISO-Dependent Sensor Noise Modeling for Extreme Low-Light Photography 574 Yue Cao (School of Computer Science and Technology, Harbin Institute of Technology, China), Ming Liu (School of Computer Science and Technology, Harbin Institute of Technology, China), Shuai Liu (School of Computer Science and Technology, Harbin Institute of Technology, China), Xiaotao Wang (School of Computer Science and Technology, Harbin Institute of Technology, China), Lei Lei (School of Computer Science and Technology, Harbin Institute of Technology, China), and Wangmeng Zuo (School of Computer Science and Technology, Harbin Institute of Technology, China; Peng Cheng Laboratory, China)	44
Neumann Network With Recursive Kernels for Single Image Defocus Deblurring575 Yuhui Quan (South China University of Technology, China; Pazhou Lab, China), Zicong Wu (South China University of Technology, China; Pazhou Lab, China), and Hui Ji (National University of Singapore, Singapore)	54
JMat: Uncertainty-Aware Single Image High Resolution Material Capture	54
SMAE: Few-Shot Learning for HDR Deghosting With Saturation-Aware Masked Autoencoders 5775 Qingsen Yan (Northwestern Polytechnical University), Song Zhang (Xidian University), Weiye Chen (Xidian University), Hao Tang (CVL), Yu Zhu (Northwestern Polytechnical University), Jinqiu Sun (Northwestern Polytechnical University), Luc Van Gool (CVL), and Yanning Zhang (Northwestern Polytechnical University)	•••
Curricular Contrastive Regularization for Physics-Aware Single Image Dehazing Yu Zheng (Ocean University of China), Jiahui Zhan (Ocean University of China), Shengfeng He (Singapore Management University), Junyu Dong (Ocean University of China), and Yong Du (Ocean University of China)	35
Patch-Craft Self-Supervised Training for Correlated Image Denoising	95
Spectral Enhanced Rectangle Transformer for Hyperspectral Image Denoising)5
All-in-One Image Restoration for Unknown Degradations Using Adaptive Discriminative Filters for Specific Degradations	15

Ingredient-Oriented Multi-Degradation Learning for Image Restoration Jinghao Zhang (University of Science and Technology of China), Jie Huang (University of Science and Technology of China), Mingde Yao (University of Science and Technology of China), Zizheng Yang (University of Science and Technology of China), Hu Yu (University of Science and Technology of China), Man Zhou (University of Science and Technology of China), and Feng Zhao (University of Science and Technology of China)	5825
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability	5836
Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild	5846
Toward Accurate Post-Training Quantization for Image Super Resolution	5856
Learning Steerable Function for Efficient Image Resampling Jiacheng Li (University of Science and Technology of China), Chang Chen (Huawei Noah's Ark Lab), Wei Huang (University of Science and Technology of China), Zhiqiang Lang (Huawei Noah's Ark Lab), Fenglong Song (Huawei Noah's Ark Lab), Youliang Yan (Huawei Noah's Ark Lab), and Zhiwei Xiong (University of Science and Technology of China)	5866
ABCD: Arbitrary Bitwise Coefficient for De-Quantization	5876
Efficient Frequency Domain-Based Transformers for High-Quality Image Deblurring Lingshun Kong (Nanjing University of Science and Technology), Jiangxin Dong (Nanjing University of Science and Technology), Jianjun Ge (China Electronics Technology Group Corporation), Mingqiang Li (China Electronics Technology Group Corporation), and Jinshan Pan (Nanjing University of Science and Technology)	5886

Learning a Sparse Transformer Network for Effective Image Deraining	5896
CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion	5906
Zixiang Zhao (Xi'an Jiaotong University; ETH Zurich), Haowen Bai (Xi'an Jiaotong University), Jiangshe Zhang (Xi'an Jiaotong University), Yulun Zhang (ETH Zurich), Shuang Xu (Research and Development Institute of Northwestern Polytechnical University in Shenzhen; Northwestern Polytechnical University), Zudi Lin (Harvard University), Radu Timofte (ETH Zurich; University of Wurzburg), and Luc Van Gool (ETH Zurich)	
PCT-Net: Full Resolution Image Harmonization Using Pixel-Wise Color Transformations Julian Jorge Andrade Guerreiro (The University of Tokyo), Mitsuru Nakazawa (Rakuten Institute of Technology, Rakuten Group, Inc.), and Björn Stenger (Rakuten Institute of Technology, Rakuten Group, Inc.)	5917
Semi-Supervised Parametric Real-World Image Harmonization	5927
Towards Robust Tampered Text Detection in Document Image: New Dataset and New Solution 5937	on
Chenfan Qu (South China University of Technology), Chongyu Liu (South China University of Technology), Yuliang Liu (Huazhong University of Science and Technology), Xinhong Chen (South China University of Technology), Dezhi Peng (South China University of Technology), Fengjun Guo (IntSig Information Co., Ltd), and Lianwen Jin (South China University of Technology)	
QuantArt: Quantizing Image Style Transfer Towards High Visual Fidelity	5947
Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation for Pretrained De Generative Model	
Person Image Synthesis via Denoising Diffusion Model	5968

Disentangling Writer and Character Styles for Handwriting Generation	5977
NoisyTwins: Class-Consistent and Diverse Image Generation Through StyleGANs	5987
High-Fidelity Guided Image Synthesis With Latent Diffusion Models Jaskirat Singh (The Australian National University), Stephen Gould (The Australian National University; Australian Centre for Robotic Vision), and Liang Zheng (The Australian National University; Australian Centre for Robotic Vision)	5997
Imagic: Text-Based Real Image Editing With Diffusion Models Bahjat Kawar (Google Research; Technion), Shiran Zada (Google Research), Oran Lang (Google Research), Omer Tov (Google Research), Huiwen Chang (Google Research), Tali Dekel (Google Research; Weizmann Institute of Science), Inbar Mosseri (Google Research), and Michal Irani (Google Research; Weizmann Institute of Science)	6007
PosterLayout: A New Benchmark and Approach for Content-Aware Visual-Textual Present	
Layout	6018
SINE: SINgle Image Editing With Text-to-Image Diffusion Models	6027
NULL-Text Inversion for Editing Real Images Using Guided Diffusion Models	6038
Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models	6048
Parallel Diffusion Models of Operator and Image for Blind Inverse Problems	6059

Unite and Conquer: Plug & Play Multi-Modal Synthesis Using Diffusion Models	6070
Collaborative Diffusion for Multi-Modal Face Generation and Editing	6080
Diffusion Video Autoencoders: Toward Temporally Consistent Face Video Editing via Disentangled Video Encoding	6091
NVTC: Nonlinear Vector Transform Coding	6101
Motion Information Propagation for Neural Video Compression	6111
A Dynamic Multi-Scale Voxel Flow Network for Video Prediction	6121
Towards Scalable Neural Representation for Diverse Videos Bo He (University of Maryland, College Park), Xitong Yang (Meta Al), Hanyu Wang (University of Maryland, College Park), Zuxuan Wu (Fudan University), Hao Chen (University of Maryland, College Park), Shuaiyi Huang (University of Maryland, College Park), Yixuan Ren (University of Maryland, College Park), Ser-Nam Lim (Meta Al), and Abhinav Shrivastava (University of Maryland, College Park)	6132
DINER: Disorder-Invariant Implicit Neural Representation Shaowen Xie (Nanjing University, China), Hao Zhu (Nanjing University, China), Zhen Liu (Nanjing University, China), Qi Zhang (Al Lab, Tencent Company, China), You Zhou (Nanjing University, China), Xun Cao (Nanjing University, China), and Zhan Ma (Nanjing University, China)	6143
SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy Jiafeng Li (East China Normal University, China), Ying Wen (East China Normal University, China), and Lianghua He (Tongji University, China)	6153

DeepMAD: Mathematical Architecture Design for Deep Convolutional Neural Network 6 Xuan Shen (Northeastern University), Yaohua Wang (Alibaba Group), Ming Lin (Amazon), Yilun Huang (Alibaba Group), Hao Tang (ETH Zurich), Xiuyu Sun (Alibaba Group), and Yanzhi Wang (Northeastern University)	163
Optimization-Inspired Cross-Attention Transformer for Compressive Sensing	174
Neighborhood Attention Transformer	185
Making Vision Transformers Efficient From a Token Sparsification View	195
Towards Efficient Use of Multi-Scale Features in Transformer-Based Object Detectors	206
Neuralizer: General Neuroimage Analysis Without Re-Training	217
Learning Partial Correlation Based Deep Visual Representation for Image Classification 6. Saimunur Rahman (Data61vCSIRO; University of Wollongong), Piotr Koniusz (Data61vCSIRO; Australian National University), Lei Wang (University of Wollongong), Luping Zhou (University of Sydney), Peyman Moghadam (Data61vCSIRO; Queensland University of Technology), and Changming Sun (Data61vCSIRO)	231
Understanding Masked Image Modeling via Learning Occlusion Invariant Feature	241
MixMAE: Mixed and Masked Autoencoder for Efficient Pretraining of Hierarchical Vision Transformers	252

Adaptive Graph Convolutional Subspace Clustering	6262
Deep Learning of Partial Graph Matching via Differentiable Top-K	6272
DynamicDet: A Unified Dynamic Architecture for Object Detection	. 6282
IS-GGT: Iterative Scene Graph Generation With Generative Transformers	6292
Fast Contextual Scene Graph Generation With Unbiased Context Augmentation	. 6302
Masked Video Distillation: Rethinking Masked Feature Modeling for Self-Supervised Video Representation Learning	. 6312
MED-VT: Multiscale Encoder-Decoder Video Transformer With Application To Object Segmentation	. 6323
MOVES: Manipulated Objects in Video Enable Segmentation	. 6334
InstMove: Instance Motion for Object-Centric Video Segmentation	6344

ZBS: Zero-Shot Background Subtraction via Instance-Level Background Modeling and Foreground Selection	6355
Feature Aggregated Queries for Transformer-Based Video Object Detectors	6365
Context-Aware Relative Object Queries To Unify Video Instance and Panoptic Segmentation Anwesa Choudhuri (University of Illinois at Urbana-Champaign), Girish Chowdhary (University of Illinois at Urbana-Champaign), and Alexander G. Schwing (University of Illinois at Urbana-Champaign)	6377
Selective Structured State-Spaces for Long-Form Video Understanding	6387
Relational Space-Time Query in Long-Form Videos Xitong Yang (Meta Al), Fu-Jen Chu (Meta Al), Matt Feiszli (Meta Al), Raghav Goyal (Meta Al; University of British Columbia), Lorenzo Torresani (Meta Al), and Du Tran (Meta Al)	6398
Novel-View Acoustic Synthesis	6409
Learning Audio-Visual Source Localization via False Negative Aware Contrastive Learning Weixuan Sun (Australian National University; OPPO Research Institute), Jiayi Zhang (Beihang University), Jianyuan Wang (The University of Oxford), Zheyuan Liu (Australian National University), Yiran Zhong (Shanghai Al Lab), Tianpeng Feng (OPPO Research Institute), Yandong Guo (OPPO Research Institute), Yanhao Zhang (OPPO Research Institute), and Nick Barnes (Australian National University)	6420

Sound to Visual Scene Generation by Audio-to-Visual Latent Alignment	30
CASP-Net: Rethinking Video Saliency Prediction From an Audio-Visual Consistency Perceptual Perspective	
Decompose More and Aggregate Better: Two Closer Looks at Frequency Representation Learning for Human Motion Prediction	
TempSAL – Uncovering Temporal Information for Deep Saliency Prediction	61
Prompt-Guided Zero-Shot Anomaly Action Recognition Using Pretrained Deep Skeleton Feature 6471 Fumiaki Sato (Konica Minolta, Inc.), Ryo Hachiuma (Konica Minolta, Inc.), and Taiki Sekii (Konica Minolta, Inc.)	!S
MMG-Ego4D: Multimodal Generalization in Egocentric Action Recognition	81
Active Exploration of Multimodal Complementarity for Few-Shot Action Recognition	92

Reducing the Label Bias for Timestamp Supervised Temporal Action Segmentation	.6503
Soft-Landing Strategy for Alleviating the Task Discrepancy Problem in Temporal Action Localization Tasks Hyolim Kang (Yonsei University), Hanjung Kim (Yonsei University),	. 6514
Joungbin An (Yonsei University), Minsu Cho (POSTECH), and Seon Joo Kim (Yonsei University)	
Iterative Proposal Refinement for Weakly-Supervised Video Grounding	6524
Movies2Scenes: Using Movie Metadata To Learn Scene Representation	6535
Fine-Tuned CLIP Models Are Efficient Video Learners Hanoona Rasheed (Mohamed bin Zayed University of Al), Muhammad Uzair Khattak (Mohamed bin Zayed University of Al), Muhammad Maaz (Mohamed bin Zayed University of Al), Salman Khan (Australian National University), and Fahad Shahbaz Khan (Mohamed bin Zayed University of Al; Linköping University)	6545
Revisiting Temporal Modeling for CLIP-Based Image-to-Video Knowledge Transferring	6555
VoP: Text-Video Co-Operative Prompt Tuning for Cross-Modal Retrieval	. 6565
ProTéGé: Untrimmed Pretraining for Video Temporal Grounding by Video Temporal Ground 6575 Lan Wang (Michigan State University), Gaurav Mittal (Michigan State University), Sandra Sajeev (Microsoft), Ye Yu (Microsoft), Matthew Hall (Microsoft), Vishnu Naresh Boddeti (Microsoft), and Mei Chen (Microsoft)	ing
Learning Video Representations From Large Language Models Yue Zhao (FAIR, Meta Al; University of Texas, Austin), Ishan Misra (FAIR, Meta Al), Philipp Krähenbühl (FAIR, Meta Al; University of Texas, Austin), and Rohit Girdhar (FAIR, Meta Al)	. 6586

All in One: Exploring Unified Video-Language Pre-Training	5598
Chao Xu (Zhejiang University), Junwei Zhu (Youtu Lab, Tencent), Jiangning Zhang (Youtu Lab, Tencent), Yue Han (Zhejiang University), Wenqing Chu (Youtu Lab, Tencent), Ying Tai (Youtu Lab, Tencent), Chengjie Wang (Youtu Lab, Tencent; Shanghai Jiao Tong University), Zhifeng Xie (Shanghai University), and Yong Liu (Zhejiang University)	e 6609
Bidirectional Cross-Modal Knowledge Exploration for Video Recognition With Pre-Trained Vision-Language Models	5620
Decoupled Multimodal Distilling for Emotion Recognition Yong Li (Nanjing University of Science and Technology, China), Yuanzhi Wang (Nanjing University of Science and Technology, China), and Zhen Cui (Nanjing University of Science and Technology, China)	5631
Affection: Learning Affective Explanations for Real-World Visual Data	5641
An Actor-Centric Causality Graph for Asynchronous Temporal Inference in Group Activity 6 Zhao Xie (Hefei University of Technology), Tian Gao (Hefei University of Technology), Kewei Wu (Hefei University of Technology), and Jiao Chang (Hefei University of Technology)	5652
VLPD: Context-Aware Pedestrian Detection via Vision-Language Semantic Self-Supervision 6 Mengyin Liu (University of Science and Technology Beijing, China), Jie Jiang (Data Platform Department, China), Chao Zhu (University of Science and Technology Beijing, China), and Xu-Cheng Yin (University of Science and Technology Beijing, China)	5662
3D-Aware Object Goal Navigation via Simultaneous Exploration and Identification	5672
Meta-Explore: Exploratory Hierarchical Vision-and-Language Navigation Using Scene Object Spectrum Grounding	5683

NaQ: Leveraging Narrations As Queries To Supervise Episodic Memory
EC2: Emergent Communication for Embodied Control
Abstract Visual Reasoning: An Algebraic Approach for Solving Raven's Progressive Matrices 6715 Jingyi Xu (Singapore University of Technology and Design), Tushar Vaidya (Nanyang Technological University), Yufei Wu (Nanyang Technological University), Saket Chandra (Singapore University of Technology and Design), Zhangsheng Lai (Singapore Polytechnic), and Kai Fong Ernest Chong (Singapore University of Technology and Design)
Logical Implications for Visual Question Answering Consistency
Divide and Conquer: Answering Questions With Object Factorization and Compositional Reasoning
The Dialog Must Go On: Improving Visual Dialog via Generative Self-Training
Visual-Language Prompt Tuning With Knowledge-Guided Context Optimization
Probabilistic Prompt Learning for Dense Prediction
Is BERT Blind? Exploring the Effect of Vision-and-Language Pretraining on Visual Language Understanding
Seeing What You Miss: Vision-Language Pre-Training With Semantic Completion Learning 6789 Yatai Ji (Tsinghua University), Rongcheng Tu (Tencent), Jie Jiang (Tencent), Weijie Kong (Tencent), Chengfei Cai (Tencent), Wenzhe Zhao (Tencent), Hongfa Wang (Tencent), Yujiu Yang (Tsinghua University), and Wei Liu (Tencent)

Affordance Grounding From Demonstration Video To Target Image	99
Leverage Interactive Affinity for Affordance Learning	09
DeAR: Debiasing Vision-Language Models With Additive Residuals	20
Images Speak in Images: A Generalist Painter for In-Context Visual Learning	30
Hyperbolic Contrastive Learning for Visual Representations Beyond Objects	40
Picture That Sketch: Photorealistic Image Generation From Abstract Sketches Subhadeep Koley (University of Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on Artificial Intelligence), Ayan Kumar Bhunia (University of Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on Artificial Intelligence), Aneeshan Sain (University of Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on Artificial Intelligence), Pinaki Nath Chowdhury (University of Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on Artificial Intelligence), Tao Xiang (University of Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on Artificial Intelligence), and Yi-Zhe Song (University of Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on Artificial Intelligence)	50
GeneCIS: A Benchmark for General Conditional Image Similarity	62

Exploiting Unlabelled Photos for Stronger Fine-Grained SBIR
Parts2Words: Learning Joint Embedding of Point Clouds and Texts by Bidirectional Matching Between Parts and Words
DeltaEdit: Exploring Text-Free Training for Text-Driven Image Manipulation
Detecting and Grounding Multi-Modal Media Manipulation
Positive-Augmented Contrastive Learning for Image and Video Captioning Evaluation
Similarity Maps for Self-Training Weakly-Supervised Phrase Grounding
Cross-Domain Image Captioning With Discriminative Finetuning
EXIF As Language: Learning Cross-Modal Associations Between Images and Camera Metadata 6945 Chenhao Zheng (University of Michigan), Ayush Shrivastava (University of Michigan), and Andrew Owens (University of Michigan)

Uncurated Image-Text Datasets: Shedding Light on Demographic Bias	7
Filtering, Distillation, and Hard Negatives for Vision-Language Pre-Training	7
Turning a CLIP Model Into a Scene Text Detector	3
ScanDMM: A Deep Markov Model of Scanpath Prediction for 360° Images)
CrOC: Cross-View Online Clustering for Dense Visual Representation Learning)
PLA: Language-Driven Open-Vocabulary 3D Scene Understanding)
CLIP2Scene: Towards Label-Efficient 3D Scene Understanding by CLIP)
CORA: Adapting CLIP for Open-Vocabulary Detection With Region Prompting and Anchor Pre-Matching	i
Open-Vocabulary Attribute Detection	
Learning To Detect and Segment for Open Vocabulary Object Detection	ĺ

Open-Vocabulary Semantic Segmentation With Mask-Adapted CLIP Feng Liang (The University of Texas, Austin), Bichen Wu (Meta Reality Labs), Xiaoliang Dai (Meta Reality Labs), Kunpeng Li (Meta Reality Labs), Yinan Zhao (Meta Reality Labs), Hang Zhang (Cruise), Peizhao Zhang (Meta Reality Labs), Peter Vajda (Meta Reality Labs), and Diana Marculescu (The University of Texas, Austin)	7061
A Simple Framework for Text-Supervised Semantic Segmentation Muyang Yi (Shanghai Jiao Tong University), Quan Cui (Waseda University; ByteDance Inc.), Hao Wu (ByteDance Inc.), Cheng Yang (ByteDance Inc.), Osamu Yoshie (Waseda University), and Hongtao Lu (Shanghai Jiao Tong University)	7071
GAPartNet: Cross-Category Domain-Generalizable Object Perception and Manipulation via Generalizable and Actionable Parts	7081
GeoLayoutLM: Geometric Pre-Training for Visual Information Extraction	7092
Self-Supervised Image-to-Point Distillation via Semantically Tolerant Contrastive Loss	7102
Generative Semantic Segmentation	7111
MISC210K: A Large-Scale Dataset for Multi-Instance Semantic Correspondence Yixuan Sun (Academy of Engineering & Technology, Fudan University, China), Yiwen Huang (Fudan University, China), Haijing Guo (Fudan University, China), Yuzhou Zhao (Fudan University, China), Runmin Wu (The University of Hong Kong, China), Yizhou Yu (The University of Hong Kong, China), Weifeng Ge (Fudan University, China), and Wenqiang Zhang (Academy of Engineering & Technology, Fudan University, China; Fudan University, China)	7121
MIANet: Aggregating Unbiased Instance and General Information for Few-Shot Semantic Segmentation	7131

PACO: Parts and Attributes of Common Objects Vignesh Ramanathan (Meta Al), Anmol Kalia (Meta Al), Vladan Petrovic (Meta Al), Yi Wen (Meta Al), Baixue Zheng (Meta Al), Baishan Guo (Meta Al), Rui Wang (Meta Al), Aaron Marquez (Meta Al), Rama Kovvuri (Meta Al), Abhishek Kadian (Meta Al), Amir Mousavi (Simon Fraser University), Yiwen Song (Meta Al), Abhimanyu Dubey (Meta Al), and Dhruv Mahajan (Meta Al)	7141
PartDistillation: Learning Parts From Instance Segmentation	7152
ACSeg: Adaptive Conceptualization for Unsupervised Semantic Segmentation Kehan Li (Peking University, China; Peking University Shenzhen Graduate School, Shenzhen, China), Zhennan Wang (Peng Cheng Laboratory, Shenzhen, China), Zesen Cheng (Peking University, China; Peking University Shenzhen Graduate School, Shenzhen, China), Runyi Yu (Peking University, China; Peking University Shenzhen Graduate School, Shenzhen, China), Yian Zhao (Dalian University of Technology), Guoli Song (Peng Cheng Laboratory, Shenzhen, China), Chang Liu (Tsinghua University, Beijing, China), Li Yuan (Peking University, China; Peng Cheng Laboratory, China; Peking University Shenzhen Graduate School, Shenzhen, China), and Jie Chen (Peking University, China; Peng Cheng Laboratory, China; Peking University Shenzhen Graduate School, Shenzhen, China)	7162
Reliability in Semantic Segmentation: Are We on the Right Track?	7173
Rethinking the Correlation in Few-Shot Segmentation: A Buoys View	7183
SIM: Semantic-Aware Instance Mask Generation for Box-Supervised Instance Segmentation Ruihuang Li (The Hong Kong Polytechnic University), Chenhang He (The Hong Kong Polytechnic University), Yabin Zhang (The Hong Kong Polytechnic University), Shuai Li (The Hong Kong Polytechnic University), Liyi Chen (The Hong Kong Polytechnic University), and Lei Zhang (The Hong Kong Polytechnic University)	7193
Endpoints Weight Fusion for Class Incremental Semantic Segmentation Jia-Wen Xiao (Nankai University), Chang-Bin Zhang (Nankai University), Jiekang Feng (Tianjin University), Xialei Liu (Nankai University), Joost van de Weijer (Universitat Autonoma de Barcelona), and Ming-Ming Cheng (Nankai University)	7204

Incrementer: Transformer for Class-Incremental Semantic Segmentation With Knowledge Distillation Focusing on Old Class Chao Shang (University of Electronic Science and Technology of China), Hongliang Li (University of Electronic Science and Technology of China), Fanman Meng (University of Electronic Science and Technology of China), Qingbo Wu (University of Electronic Science and Technology of China), Heqian Qiu (University of Electronic Science and Technology of China), and Lanxiao Wang (University of Electronic Science and Technology of China)	7214
Continuous Pseudo-Label Rectified Domain Adaptive Semantic Segmentation With Implicit Neural Representations	7225
Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation	7236
Discriminative Co-Saliency and Background Mining Transformer for Co-Salient Object Detection Long Li (Northwestern Polytechnical University), Junwei Han (Northwestern Polytechnical University), Ni Zhang (Northwestern Polytechnical University), Nian Liu (Mohamed bin Zayed University of Artificial Intelligence), Salman Khan (Mohamed bin Zayed University of Artificial Intelligence; Australian National University 4CVL, Linköping University), Hisham Cholakkal (Mohamed bin Zayed University of Artificial Intelligence), Rao Muhammad Anwer (Mohamed bin Zayed University of Artificial Intelligence), and Fahad Shahbaz Khan (Mohamed bin Zayed University of Artificial Intelligence; Australian National University 4CVL, Linköping University)	7247
Texture-Guided Saliency Distilling for Unsupervised Salient Object Detection Huajun Zhou (Sun Yat-sen University, China), Bo Qiao (Sun Yat-sen University, China), Lingxiao Yang (Sun Yat-sen University, China), Jianhuang Lai (Sun Yat-sen University, China; Guangdong Province Key Laboratory of Information Security Technology, China; Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China), and Xiaohua Xie (Sun Yat-sen University, China; Guangdong Province Key Laboratory of Information Security Technology, China; Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China)	7257
An Erudite Fine-Grained Visual Classification Model Dongliang Chang (Beijing University of Posts and Telecommunications, China), Yujun Tong (Beijing University of Posts and Telecommunications, China), Ruoyi Du (Beijing University of Posts and Telecommunications, China), Timothy Hospedales (University of Edinburgh, UK), Yi-Zhe Song (SketchX, CVSSP, University of Surrey, UK), and Zhanyu Ma (Beijing University of Posts and Telecommunications, China)	7268

Dynamic Graph Learning With Content-Guided Spatial-Frequency Relation Reasoning to Deepfake Detection	r 7278
Yuan Wang (Institute of Automation, Chinese Academy of Sciences; Alibaba Group; University of Chinese Academy of Sciences), Kun Yu (Alibaba Group), Chen Chen (Institute of Automation, Chinese Academy of Sciences), Xiyuan Hu (Nanjing University of Science and Technology), and Silong Peng (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Beijing Visystem Co.Ltd)	
ScaleDet: A Scalable Multi-Dataset Object Detector	7288
Multi-Centroid Task Descriptor for Dynamic Class Incremental Inference	7298
Matching Is Not Enough: A Two-Stage Framework for Category-Agnostic Pose Estimation Min Shi (Huazhong University of Science and Technology; Shanghai Al Laboratory), Zihao Huang (Huazhong University of Science and Technology), Xianzheng Ma (Shanghai Al Laboratory), Xiaowei Hu (Shanghai Al Laboratory), and Zhiguo Cao (Huazhong University of Science and Technology; Shanghai Al Laboratory)	n 7308
Dynamic Coarse-To-Fine Learning for Oriented Tiny Object Detection	7318
Dense Distinct Query for End-to-End Object Detection	7329
Meta-Tuning Loss Functions and Data Augmentation for Few-Shot Object Detection Berkan Demirel (Middle East Technical University; HAVELSAN Inc.), Orhun Buğra Baran (Middle East Technical University), and Ramazan Gokberk Cinbis (Middle East Technical University)	7339
One-to-Few Label Assignment for End-to-End Dense Detection Shuai Li (The Hong Kong Polytechnic University; OPPO Research Institute), Minghan Li (The Hong Kong Polytechnic University), Ruihuang Li (The Hong Kong Polytechnic University), Chenhang He (The Hong Kong Polytechnic University; OPPO Research Institute), and Lei Zhang (OPPO Research Institute)	7350

Test Time Adaptation With Regularized Loss for Weakly Supervised Salient Object Detection Olga Veksler (University of Waterloo, Canada)	7360
MixTeacher: Mining Promising Labels With Mixed Scale Teacher for Semi-Supervised Object Detection	7370
Liang Liu (Youtu Lab, Tencent), Boshen Zhang (Youtu Lab, Tencent), Jiangning Zhang (Youtu Lab, Tencent), Wuhao Zhang (Youtu Lab, Tencent), Zhenye Gan (Youtu Lab, Tencent), Guanzhong Tian (Zhejiang University), Wenbing Zhu (Rongcheer Co., Ltd), Yabiao Wang (Youtu Lab, Tencent), and Chengjie Wang (Youtu Lab, Tencent; Shanghai Jiao Tong University)	
Exploring Incompatible Knowledge Transfer in Few-Shot Image Generation	7380
Exploring Intra-Class Variation Factors With Learnable Cluster Prompts for Semi-Supervised Image Synthesis	7392
A Soma Segmentation Benchmark in Full Adult Fly Brain Xiaoyu Liu (University of Science and Technology of China), Bo Hu (University of Science and Technology of China), Mingxing Li (University of Science and Technology of China), Wei Huang (University of Science and Technology of China), Yueyi Zhang (University of Science and Technology of China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center), and Zhiwei Xiong (University of Science and Technology of China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center)	7402
SDC-UDA: Volumetric Unsupervised Domain Adaptation Framework for Slice-Direction Continuous Cross-Modality Medical Image Segmentation Hyungseob Shin (Yonsei University), Hyeongyu Kim (Yonsei University), Sewon Kim (Naver AI Lab; Naver Cloud), Yohan Jun (Martinos Center for Biomedical Imaging; Harvard Medical School), Taejoon Eo (Yonsei University; Probe Medical, Inc.), and Dosik Hwang (Yonsei University; Center for Healthcare Robotics, Korea Institute of Science and Technology)	7412
Label-Free Liver Tumor Segmentation Qixin Hu (Huazhong University of Science and Technology), Yixiong Chen (The Chinese University of Hong Kong, Shenzhen), Junfei Xiao (Johns Hopkins University), Shuwen Sun (The First Affiliated Hospital of Nanjing Medical University), Jieneng Chen (Johns Hopkins University), Alan L. Yuille (Johns Hopkins University), and Zongwei Zhou (Johns Hopkins University)	7422

Interactive and Explainable Region-Guided Radiology Report Generation	7433
A Loopback Network for Explainable Microvascular Invasion Classification	⁷ 443
Task-Specific Fine-Tuning via Variational Information Bottleneck for Weakly-Supervised Pathology Whole Slide Image Classification	⁷ 454
YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors 7464 Chien-Yao Wang (Academia Sinica, Taiwan), Alexey Bochkovskiy (Academia Sinica, Taiwan), and Hong Yuan Mark Line (Academia Sinica, Taiwan)	
Sinica, Taiwan), and Hong-Yuan Mark Liao (Academia Sinica, Taiwan) Two-Way Multi-Label Loss	7476
Teaching Matters: Investigating the Role of Supervision in Vision Transformers	7486
Label Information Bottleneck for Label Enhancement	7497
Glocal Energy-Based Learning for Few-Shot Open-Set Recognition	'507
Noisy Correspondence Learning With Meta Similarity Correction	⁷ 517

Hubs and Hyperspheres: Reducing Hubness and Improving Transductive Few-Shot Le Hyperspherical Embeddings	
Daniel J. Trosten (UiT The Arctic University of Norway), Rwiddhi Chakraborty (UiT The Arctic University of Norway), Sigurd Løkse (UiT The Arctic University of Norway), Kristoffer Knutsen Wickstrøm (UiT The Arctic University of Norway), Robert Jenssen (UiT The Arctic University of Norway), and Michael C. Kampffmeyer (UiT The Arctic University of Norway)	
Coreset Sampling From Open-Set for Fine-Grained Self-Supervised Learning	7537
Boosting Semi-Supervised Learning by Exploiting All Unlabeled Data	7548
Trade-Off Between Robustness and Accuracy of Vision Transformers	7558
Exploring and Utilizing Pattern Imbalance	7569
Dynamic Conceptional Contrastive Learning for Generalized Category Discovery Nan Pu (University of Trento, Italy), Zhun Zhong (University of Trento, Italy), and Nicu Sebe (University of Trento, Italy)	7579
Towards Better Decision Forests: Forest Alternating Optimization Miguel Á. Carreira-Perpiñán (Dept. CSE, University of California, Merced), Magzhan Gabidolla (Dept. CSE, University of California, Merced), and Arman Zharmagambetov (Dept. CSE, University of California, Merced)	7589
Learning Debiased Representations via Conditional Attribute Interpolation	7599
On the Pitfall of Mixup for Uncertainty Calibration	7609
Class Relationship Embedded Learning for Source-Free Unsupervised Domain Adapta <i>Yixin Zhang (Institute of Artificial Intelligence, Hefei Comprehensive National Science Center; University of Science and Technology of China), Zilei Wang (University of Science and Technology of China), and Weinan He (University of Science and Technology of China)</i>	tion 7619

FeatureBooster: Boosting Feature Descriptors With a Lightweight Neural Network	7630
Guiding Pseudo-Labels With Uncertainty Estimation for Source-Free Unsupervised Domain Adaptation	7640
Divide and Adapt: Active Domain Adaptation via Customized Learning	7651
Understanding and Constructing Latent Modality Structures in Multi-Modal Representation Learning	ı 7661
Deep Factorized Metric Learning Chengkun Wang (Tsinghua University, China; Beijing National Research Center for Information Science and Technology, China), Wenzhao Zheng (Tsinghua University, China; Beijing National Research Center for Information Science and Technology, China), Junlong Li (Tsinghua University, China; Beijing National Research Center for Information Science and Technology, China), Jie Zhou (Tsinghua University, China; Beijing National Research Center for Information Science and Technology, China), and Jiwen Lu (Tsinghua University, China; Beijing National Research Center for Information Science and Technology, China)	7672

Meta-Causal Learning for Single Domain Generalization	3
Meta Omnium: A Benchmark for General-Purpose Learning-To-Learn	3
Robust Mean Teacher for Continual and Gradual Test-Time Adaptation	4
NAR-Former: Neural Architecture Representation Learning Towards Holistic Attributes Prediction	5
Visual Query Tuning: Towards Effective Usage of Intermediate Representations for Parameter and Memory Efficient Transfer Learning	5
Architecture, Dataset and Model-Scale Agnostic Data-Free Meta-Learning	6
GKEAL: Gaussian Kernel Embedded Analytic Learning for Few-Shot Class Incremental Task 774 Huiping Zhuang (South China University of Technology, China), Zhenyu Weng (Nanyang Technological University, Singapore), Run He (South China University of Technology, China), Zhiping Lin (Nanyang Technological University, Singapore), and Ziqian Zeng (South China University of Technology, China)	6

Mitigating Task Interference in Multi-Task Learning via Explicit Task Routing With Non-Learnable Primitives	56
Chuntao Ding (Beijing Jiaotong University), Zhichao Lu (Sun Yat-sen University), Shangguang Wang (Beijing University of Posts and Telecommunications), Ran Cheng (Southern University of Science and Technology), and Vishnu Naresh Boddeti (Michigan State University)	
Boundary Unlearning: Rapid Forgetting of Deep Networks via Shifting the Decision Boundary 7766	
Min Chen (Huazhong University of Science and Technology, China), Weizhuo Gao (Huazhong University of Science and Technology, China), Gaoyang Liu (Huazhong University of Science and Technology, China), Kai Peng (Huazhong University of Science and Technology, China), and Chen Wang (Huazhong University of Science and Technology, China)	
Task Difficulty Aware Parameter Allocation & Regularization for Lifelong Learning	'6
Learning To Retain While Acquiring: Combating Distribution-Shift in Adversarial Data-Free Knowledge Distillation	36
A Unified Knowledge Distillation Framework for Deep Directed Graphical Models	}5
Coaching a Teachable Student)5
Adaptive Plasticity Improvement for Continual Learning	6
Improving Generalization of Meta-Learning With Inverted Regularization at Inner-Level 782 Lianzhe Wang (Tsinghua University), Shiji Zhou (Tsinghua University), Shanghang Zhang (Peking University), Xu Chu (Tsinghua University), Heng Chang (Tsinghua University), and Wenwu Zhu (Tsinghua University)	<u>2</u> 6
Trainable Projected Gradient Method for Robust Fine-Tuning	}6
Imitation Learning As State Matching via Differentiable Physics	1 6

Improved Distribution Matching for Dataset Condensation	7856
A General Regret Bound of Preconditioned Gradient Method for DNN Training	7866
From Node Interaction To Hop Interaction: New Effective and Scalable Graph Learning	
Paradigm Jie Chen (Shanghai Key Lab of Intelligent Information Processing, School of Computer Science), Zilong Li (Shanghai Key Lab of Intelligent Information Processing, School of Computer Science), Yin Zhu (Shanghai Key Lab of Intelligent Information Processing, School of Computer Science), Junping Zhang (Shanghai Key Lab of Intelligent Information Processing, School of Computer Science), and Jian Pu (Fudan University, China)	7876
Constructing Deep Spiking Neural Networks From Artificial Neural Networks With Knowled Distillation	
Qi Xu (Dalin University of Technology), Yaxin Li (Dalin University of Technology), Jiangrong Shen (Zhejiang University), Jian K. Liu (University of Leeds), Huajin Tang (Zhejiang University), and Gang Pan (Zhejiang University)	7886
Rate Gradient Approximation Attack Threats Deep Spiking Neural Networks	7896
MobileOne: An Improved One Millisecond Mobile Backbone Pavan Kumar Anasosalu Vasu (Apple), James Gabriel (Apple), Jeff Zhu (Apple), Oncel Tuzel (Apple), and Anurag Ranjan (Apple)	7907
Understanding Masked Autoencoders via Hierarchical Latent Variable Models Lingjing Kong (Carnegie Mellon University), Martin Q. Ma (Carnegie Mellon University), Guangyi Chen (Carnegie Mellon University; Mohamed bin Zayed University of Artificial Intelligence), Eric P. Xing (Carnegie Mellon University; Mohamed bin Zayed University of Artificial Intelligence), Yuejie Chi (Carnegie Mellon University), Louis-Philippe Morency (Carnegie Mellon University), and Kun Zhang (Carnegie Mellon University; Mohamed bin Zayed University of Artificial Intelligence)	7918
Training Debiased Subnetworks With Contrastive Weight Pruning Geon Yeong Park (Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Korea), Sangmin Lee (Mathematical Sciences, Korea Advanced Institute of Science and Technology (KAIST), Korea), Sang Wan Lee (Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Korea), and Jong Chul Ye (Bio and Brain Engineering, Mathematical Sciences, Kim Jaechul Graduate School of AI, Korea Advanced Institute of Science and Technology (KAIST), Korea)	7929

One-Shot Model for Mixed-Precision Quantization	7939
Solving Oscillation Problem in Post-Training Quantization Through a Theoretical Perspective Yuexiao Ma (Xiamen University, P.R. China), Huixia Li (ByteDance Inc.), Xiawu Zheng (Peng Cheng Laboratory, China), Xuefeng Xiao (ByteDance Inc.), Rui Wang (ByteDance Inc.), Shilei Wen (ByteDance Inc.), Xin Pan (ByteDance Inc.), Fei Chao (Xiamen University, P.R. China), and Rongrong Ji (Xiamen University, P.R. China; Shenzhen Research Institute of Xiamen University)	7950
Adaptive Data-Free Quantization Biao Qian (Hefei University of Technology, China), Yang Wang (Hefei University of Technology, China), Richang Hong (Hefei University of Technology, China), and Meng Wang (Hefei University of Technology, China)	7960
Learning To Generate Image Embeddings With User-Level Differential Privacy Zheng Xu (Google Research), Maxwell Collins (Google Research), Yuxiao Wang (Google Research), Liviu Panait (Google Research), Sewoong Oh (Google Research), Sean Augenstein (Google Research), Ting Liu (Google Research), Florian Schroff (Google Research), and H. Brendan McMahan (Google Research)	7969
Cross-GAN Auditing: Unsupervised Identification of Attribute Level Similarities and Differences Between Pretrained Generative Models	7981
HandsOff: Labeled Dataset Generation With No Additional Human Annotations Austin Xu (Georgia Institute of Technology; Amazon AWS), Mariya I. Vasileva (Georgia Institute of Technology; Amazon AWS), Achal Dave (Georgia Institute of Technology; Amazon AWS), and Arjun Seshadri (Georgia Institute of Technology; Amazon AWS)	7991
Attribute-Preserving Face Dataset Anonymization via Latent Code Optimization Simone Barattin (University of Trento), Christos Tzelepis (Queen Mary University of London), Ioannis Patras (Queen Mary University of London), and Nicu Sebe (University of Trento)	8001
Fake It Till You Make It: Learning Transferable Representations From Synthetic Image Clones	0011

Unbiased Multiple Instance Learning for Weakly Supervised Video Anomaly Detection . Hui Lv (PCAlab, Nanjing University of Science and Technology; Singapore Management University; Nanyang Technological University), Zhongqi Yue (Nanyang Technological University), Qianru Sun (Singapore Management University), Bin Luo (Alibaba Group), Zhen Cui (PCAlab, Nanjing University of Science and Technology), and Hanwang Zhang (Nanyang Technological University)	8022
Multimodal Industrial Anomaly Detection via Hybrid Fusion	8032
FedSeg: Class-Heterogeneous Federated Learning for Semantic Segmentation	8042
Decentralized Learning With Multi-Headed Distillation	8053
Learning Federated Visual Prompt in Null Space for MRI Reconstruction	8064
Federated Learning With Data-Agnostic Distribution Fusion	8074
CaPriDe Learning: Confidential and Private Decentralized Learning Based on Encryption-Friendly Distillation Loss	8084
RiDDLE: Reversible and Diversified De-Identification With Latent Encryptor Dongze Li (University of Chinese Academy of Sciences; Center for Research on Intelligent Perception and Computing, CASIA), Wei Wang (Center for Research on Intelligent Perception and Computing, CASIA), Kang Zhao (Alibaba Group), Jing Dong (Center for Research on Intelligent Perception and Computing, CASIA), and Tieniu Tan (Nanjing University)	8093

Multi-View Adversarial Discriminator: Mine the Non-Causal Factors for Object Detection in Unseen Domains	0 3
Single Image Backdoor Inversion via Robust Smoothed Classifiers	⊦13
Effective Ambiguity Attack Against Passport-Based DNN Intellectual Property Protection Schemes Through Fully Connected Layer Substitution	23
Color Backdoor: A Robust Poisoning Attack in Color Space	, 33
Adversarially Robust Neural Architecture Search for Graph Neural Networks	.43
Minimizing Maximum Model Discrepancy for Transferable Black-Box Targeted Attacks 81 Anqi Zhao (University of Electronic Science and Technology of China), Tong Chu (University of Electronic Science and Technology of China), Yahao Liu (University of Electronic Science and Technology of China), Wen Li (University of Electronic Science and Technology of China), Jingjing Li (University of Electronic Science and Technology of China), and Lixin Duan (University of Electronic Science and Technology of China)	53
StyLess: Boosting the Transferability of Adversarial Examples	63
Improving the Transferability of Adversarial Samples by Path-Augmented Method	73

Feature Separation and Recalibration for Adversarial Robustness	3183
CFA: Class-Wise Calibrated Fair Adversarial Training	3193
Revisiting Residual Networks for Adversarial Robustness	3202
Privacy-Preserving Adversarial Facial Features	3212
Edge-Aware Regional Message Passing Controller for Image Forgery Localization	3222
Poster-Wed-AM	
Swept-Angle Synthetic Wavelength Interferometry	8233
RefSR-NeRF: Towards High Fidelity and Super Resolution View Synthesis	3244
FreeNeRF: Improving Few-Shot Neural Rendering With Free Frequency Regularization 8 Jiawei Yang (Stanford University; Nvidia Research), Marco Pavone (Stanford University; Nvidia Research), and Yue Wang (Stanford University; Nvidia Research)	3254

Local-to-Global Registration for Bundle-Adjusting Neural Radiance Fields Yue Chen (National Key Laboratory of Human-Machine Hybrid Augmented Intelligence; Xi'an Jiaotong University), Xingyu Chen (National Key Laboratory of Human-Machine Hybrid Augmented Intelligence; Xi'an Jiaotong University), Xuan Wang (Ant Group; Tencent Al Lab), Qi Zhang (Ant Group Tencent Al Lab), Yu Guo (National Key Laboratory of Human-Machine Hybrid Augmented Intelligence; Xi'an Jiaotong University; Tencent Al Lab), Ying Shan (Tencent Al Lab), and Fei Wang (National Key Laboratory of Human-Machine Hybrid Augmented Intelligence; Xi'an Jiaotong University)	8264
Nerflets: Local Radiance Fields for Efficient Structure-Aware 3D Scene Representation From 2D Supervision	
NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects	8285
Grid-Guided Neural Radiance Fields for Large Urban Scenes Linning Xu (The Chinese University of Hong Kong), Yuanbo Xiangli (The Chinese University of Hong Kong), Sida Peng (Zhejiang University), Xingang Pan (Max Planck Institute for Informatics), Nanxuan Zhao (Adobe Research), Christian Theobalt (Max Planck Institute for Informatics), Bo Dai (Shanghai AI Laboratory), and Dahua Lin (The Chinese University of Hong Kong; Shanghai AI Laboratory)	8296
Learning Neural Duplex Radiance Fields for Real-Time View Synthesis Ziyu Wan (City University of Hong Kong), Christian Richardt (Meta Reality Labs), Aljaž Božič (Meta Reality Labs), Chao Li (Meta Reality Labs), Vijay Rengarajan (Meta Reality Labs), Seonghyeon Nam (Meta Reality Labs), Xiaoyu Xiang (Meta Reality Labs), Tuotuo Li (Meta Reality Labs), Bo Zhu (Meta Reality Labs), Rakesh Ranjan (Meta Reality Labs), and Jing Liao (City University of Hong Kong)	8307
EditableNeRF: Editing Topologically Varying Neural Radiance Fields by Key Points	8317
Real-Time Neural Light Field on Mobile Devices Junli Cao (Snap Inc.), Huan Wang (Northeastern University), Pavlo Chemerys (Snap Inc.), Vladislav Shakhrai (Snap Inc.), Ju Hu (Snap Inc.), Yun Fu (Northeastern University), Denys Makoviichuk (Snap Inc.), Sergey Tulyakov (Snap Inc.), and Jian Ren (Snap Inc.)	8328

StyleRF: Zero-Shot 3D Style Transfer of Neural Radiance Fields Kunhao Liu (Nanyang Technological UniversityMax Planck Institute for Informatics), Fangneng Zhan (University of Ottawa; MBZUAI), Yiwen Chen (Nanyang Technological University), Jiahui Zhang (Nanyang Technological University), Yingchen Yu (Nanyang Technological University), Abdulmotaleb El Saddik (University of Ottawa; MBZUAI), Shijian Lu (Nanyang Technological University), and Eric P. Xing (Carnegie Mellon University; MBZUAI)	8338
Point2Pix: Photo-Realistic Point Cloud Rendering via Neural Radiance Fields	8349
Pointersect: Neural Rendering With Cloud-Ray Intersection	8359
Neural Fields Meet Explicit Geometric Representations for Inverse Rendering of Urban Scenes Zian Wang (NVIDIA; University of Toronto; Vector Institute), Tianchang Shen (NVIDIA; University of Toronto; Vector Institute), Jun Gao (NVIDIA; University of Toronto; Vector Institute), Shengyu Huang (NVIDIA; ETH Zürich), Jacob Munkberg (NVIDIA), Jon Hasselgren (NVIDIA), Zan Gojcic (NVIDIA), Wenzheng Chen (NVIDIA; University of Toronto; Vector Institute), and Sanja Fidler (NVIDIA; University of Toronto; Vector Institute)	8370
DANI-Net: Uncalibrated Photometric Stereo by Differentiable Shadow Handling, Anisotropic Reflectance Modeling, and Neural Inverse Rendering	8381
MAIR: Multi-View Attention Inverse Rendering With 3D Spatially-Varying Lighting Estimation. JunYong Choi (Korea Institute of Science and Technology(KIST); Korea University), SeokYeong Lee (Korea Institute of Science and Technology(KIST); Korea University), Haesol Park (Korea Institute of Science and Technology(KIST)), Seung-Won Jung (Korea University), Ig-Jae Kim (Korea Institute of Science and Technology(KIST); University of Science and Technology; Yonsei University), and Junghyun Cho (Korea Institute of Science and Technology(KIST))	. 8392
Weakly-Supervised Single-View Image Relighting	. 8402

Controllable Light Diffusion for Portraits	8412
RGBD2: Generative Scene Synthesis via Incremental View Inpainting Using RGBD Diffusion Models	8422
Jiabao Lei (South China University of Technology), Jiapeng Tang (Technical University of Munich), and Kui Jia (South China University of Technology; Peng Cheng Laboratory)	
Neural Lens Modeling	8435
RealFusion: 360° Reconstruction of Any Object From a Single Image	8446
Neuralangelo: High-Fidelity Neural Surface Reconstruction Zhaoshuo Li (NVIDIA Research; Johns Hopkins University), Thomas Müller (NVIDIA Research), Alex Evans (NVIDIA Research), Russell H. Taylor (Johns Hopkins University), Mathias Unberath (Johns Hopkins University), Ming-Yu Liu (NVIDIA Research), and Chen-Hsuan Lin (NVIDIA Research)	8456
PermutoSDF: Fast Multi-View Reconstruction With Implicit Surfaces Using Permutohedral Lattices	8466
NeuDA: Neural Deformable Anchor for High-Fidelity Implicit Surface Reconstruction	8476
NEF: Neural Edge Fields for 3D Parametric Curve Reconstruction From Multi-View Images Yunfan Ye (National University of Defense Technology), Renjiao Yi (National University of Defense Technology), Zhirui Gao (National University of Defense Technology), Chenyang Zhu (National University of Defense Technology), Zhiping Cai (National University of Defense Technology), and Kai Xu (National University of Defense Technology)	8486
NeuralField-LDM: Scene Generation With Hierarchical Latent Diffusion Models	8496

SinGRAF: Learning a 3D Generative Radiance Field for a Single Scene
Painting 3D Nature in 2D: View Synthesis of Natural Scenes From a Single Semantic Mask 8518 Shangzhan Zhang (Zhejiang University), Sida Peng (Zhejiang University), Tianrun Chen (Zhejiang University), Linzhan Mou (Zhejiang University), Haotong Lin (Zhejiang University), Kaicheng Yu (Alibaba Group), Yiyi Liao (Zhejiang University), and Xiaowei Zhou (Zhejiang University)
Quantitative Manipulation of Custom Attributes on 3D-Aware Image Synthesis
NeRFInvertor: High Fidelity NeRF-GAN Inversion for Single-Shot Real Image Animation 8539 Yu Yin (Northeastern University), Kamran Ghasedi (Microsoft), HsiangTao Wu (Microsoft), Jiaolong Yang (Microsoft), Xin Tong (Microsoft), and Yun Fu (Northeastern University)
PREIM3D: 3D Consistent Precise Image Attribute Editing From a Single Image
Unsupervised 3D Shape Reconstruction by Part Retrieval and Assembly
DiffSwap: High-Fidelity and Controllable Face Swapping via 3D-Aware Masked Diffusion 8568 Wenliang Zhao (Tsinghua University), Yongming Rao (Tsinghua University), Weikang Shi (Tsinghua University), Zuyan Liu (Tsinghua University), Jie Zhou (Tsinghua University), and Jiwen Lu (Tsinghua University)
Fine-Grained Face Swapping via Regional GAN Inversion
Logical Consistency and Greater Descriptive Power for Facial Hair Attribute Learning 8583 Haiyu Wu (University of Notre Dame), Grace Bezold (University of Notre Dame), Aman Bhatta (University of Notre Dame), and Kevin W. Bowyer (University of Notre Dame)

Learning a 3D Morphable Face Reflectance Model From Low-Cost Data	3598
StyleGAN Salon: Multi-View Latent Optimization for Pose-Invariant Hairstyle Transfer	3609
FaceLit: Neural 3D Relightable Faces	3619
FitMe: Deep Photorealistic 3D Morphable Model Avatars	3629
NeuWigs: A Neural Dynamic Model for Volumetric Hair Capture and Animation	3641
SadTalker: Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation	3652
High-Fidelity Clothed Avatar Reconstruction From a Single Image	3662

Music-Driven Group Choreography Nhat Le (AIOZ, Singapore), Thang Pham (AIOZ, Singapore), Tuong Do (AIOZ, Singapore), Erman Tjiputra (AIOZ, Singapore), Quang D. Tran (AIOZ, Singapore), and Anh Nguyen (University of Liverpool, UK)	8673
Hand Avatar: Free-Pose Hand Animation and Rendering From Monocular Video	8683
Biomechanics-Guided Facial Action Unit Detection Through Force Modeling	8694
Zero-Shot Pose Transfer for Unrigged Stylized 3D Characters	8704
Invertible Neural Skinning	8715
BEDLAM: A Synthetic Dataset of Bodies Exhibiting Detailed Lifelike Animated Motion	8726
DIFu: Depth-Guided Implicit Function for Clothed Human Reconstruction Dae-Young Song (Electronics and Telecommunications Research Institute, South Korea; Chungnam National University, South Korea), HeeKyung Lee (Electronics and Telecommunications Research Institute, South Korea), Jeongil Seo (Electronics and Telecommunications Research Institute, South Korea), and Donghyeon Cho (Chungnam National University, South Korea)	8738
Complete 3D Human Reconstruction From a Single Incomplete Image	. 8748
Learning Neural Volumetric Representations of Dynamic Humans in Minutes	8759
Marching-Primitives: Shape Abstraction From Signed Distance Function Weixiao Liu (National University of Singapore; Johns Hopkins University), Yuwei Wu (National University of Singapore), Sipu Ruan (National University of Singapore), and Gregory S. Chirikjian (National University of Singapore)	8771

Learning Analytical Posterior Probability for Human Mesh Recovery	8781
MagicPony: Learning Articulated 3D Animals in the Wild	8792
Visual-Tactile Sensing for In-Hand Object Reconstruction	. 8803
Command-Driven Articulated Object Understanding and Manipulation	8813
Target-Referenced Reactive Grasping for Dynamic Objects	8824
NeuralDome: A Neural Modeling Pipeline on Multi-View Human-Object Interactions	8834

A2J-Transformer: Anchor-to-Joint Transformer Network for 3D Interacting Hand Pose Estimation From a Single RGB Image	8846
TRACE: 5D Temporal Regression of Avatars With Dynamic Cameras in 3D Environments Yu Sun (Harbin Institute of Technology), Qian Bao (Explore Academy of JD.com), Wu Liu (Explore Academy of JD.com), Tao Mei (HiDream.ai Inc.), and Michael J. Black (Max Planck Institute for Intelligent Systems)	8856
BITE: Beyond Priors for Improved Three-D Dog Pose Estimation Nadine Rüegg (ETH Zürich, Switzerland; Max Planck Institute for Intelligent Systems, Germany), Shashank Tripathi (Max Planck Institute for Intelligent Systems, Germany), Konrad Schindler (ETH Zürich, Switzerland), Michael J. Black (Max Planck Institute for Intelligent Systems, Germany), and Silvia Zuffi (IMATI-CNR, Italy)	8867
PoseFormerV2: Exploring Frequency Domain for Efficient and Robust 3D Human Pose Estin 8877 Qitao Zhao (Shandong University), Ce Zheng (Center for Research in Computer Vision, University of Central Florida), Mengyuan Liu (Key Laboratory of Machine Perception, Peking University), Pichao Wang (Amazon Prime Video), and Chen Chen (Center for Research in Computer Vision, University of Central Florida)	nation.
Global-to-Local Modeling for Video-Based 3D Human Pose and Shape Estimation	8887
TokenHPE: Learning Orientation Tokens for Efficient Head Pose Estimation via Transforme 8897 Cheng Zhang (Central China Normal University, China), Hai Liu (Central China Normal University, China), Yongjian Deng (Beijing University of Technology, China; Engineering Research Center of Intelligence Perception and Autonomous Control, Ministry of Education, China), Bochen Xie (City University of Hong Kong, China), and Youfu Li (City University of Hong Kong, China)	rs
GFIE: A Dataset and Baseline for Gaze-Following From 2D to 3D in Indoor Environments Zhengxi Hu (IRAIS, Nankai University; tjKLIR, Nankai University; TBI center, Nankai University), Yuxue Yang (IRAIS, Nankai University), Xiaolin Zhai (IRAIS, Nankai University; tjKLIR, Nankai University; TBI center, Nankai University), Dingye Yang (IRAIS, Nankai University; tjKLIR, Nankai University; TBI center, Nankai University), Bohan Zhou (IRAIS, Nankai University), and Jingtai Liu (IRAIS, Nankai University; tjKLIR, Nankai University; TBI center, Nankai University)	8907

Robot Structure Prior Guided Temporal Attention for Camera-to-Robot Pose Estimation F Image Sequence	From 8917
Yang Tian (CFCS, Peking University), Jiyao Zhang (CFCS, Peking University), Zekai Yin (CFCS, Peking University), and Hao Dong (CFCS, Peking University)	
Rigidity-Aware Detection for 6D Object Pose Estimation Yang Hai (Xidian University), Rui Song (Xidian University), Jiaojiao Li (Xidian University), Mathieu Salzmann (EPFL; ClearSpace), and Yinlin Hu (MagicLeap)	8927
Crowd3D: Towards Hundreds of People Reconstruction From a Single Image	8937
Object Pose Estimation With Statistical Guarantees: Conformal Keypoint Detection and Geometric Uncertainty Propagation	8947
expOSE: Accurate Initialization-Free Projective Factorization Using Exponential Regularization	8959
Neural Voting Field for Camera-Space 3D Hand Pose Estimation Lin Huang (University at Buffalo), Chung-Ching Lin (Microsoft), Kevin Lin (Microsoft), Lin Liang (Microsoft), Lijuan Wang (Microsoft), Junsong Yuan (University at Buffalo), and Zicheng Liu (Microsoft)	8969
Two-View Geometry Scoring Without Correspondences Axel Barroso-Laguna (Niantic), Eric Brachmann (Niantic), Victor Adrian Prisacariu (Niantic; University of Oxford), Gabriel J. Brostow (Niantic; University College London), and Daniyar Turmukhambetov (Niantic)	8979
Four-View Geometry With Unknown Radial Distortion	8990
BKinD-3D: Self-Supervised 3D Keypoint Discovery From Multi-View Videos Jennifer J. Sun (Caltech), Lili Karashchuk (U Washington), Amil Dravid (Northwestern), Serim Ryou (SAIT), Sonia Fereidooni (U Washington), John C. Tuthill (U Washington), Aggelos Katsaggelos (Northwestern), Bingni W. Brunton (U Washington), Georgia Gkioxari (Caltech), Ann Kennedy (Northwestern), Yisong Yue (Caltech), and Pietro Perona (Caltech)	9001

BAAM: Monocular 3D Pose and Shape Reconstruction With Bi-Contextual Attention Attention-Guided Modeling	
Multi-Object Manipulation via Object-Centric Neural Scattering Functions	9021
Neural Part Priors: Learning To Optimize Part-Based Object Completion in RGB-D S Aleksei Bokhovkin (Technical University of Munich) and Angela Dai (Technical University of Munich)	cans 9032
Panoptic Lifting for 3D Scene Understanding With Neural Fields	9043
Virtual Occlusions Through Implicit Depth	9053
Multiview Compressive Coding for 3D Reconstruction	9065
Behind the Scenes: Density Fields for Single View Reconstruction	9076
VoxFormer: Sparse Voxel Transformer for Camera-Based 3D Semantic Scene Comp Yiming Li (NYU), Zhiding Yu (NVIDIA), Christopher Choy (NVIDIA), Chaowei Xiao (NVIDIA; ASU), Jose M. Alvarez (NVIDIA), Sanja Fidler (NVIDIA; University of Toronto; Vector Institute), Chen Feng (NYU), and Anima Anandkumar (NVIDIA; Caltech)	oletion 9087
Renderable Neural Radiance Map for Visual Navigation	9099
Learning To Detect Mirrors From Videos via Dual Correspondences	9109

Temporally Consistent Online Depth Estimation Using Point-Based Fusion	19
Zero-Shot Dual-Lens Super-Resolution	.30
Fully Self-Supervised Depth Estimation From Defocus Clue	40
MVImgNet: A Large-Scale Dataset of Multi-View Images	50
Revisiting the Stack-Based Inverse Tone Mapping	62
Combining Implicit-Explicit View Correlation for Light Field Semantic Segmentation	72
3D Spatial Multimodal Knowledge Accumulation for Scene Graph Prediction in Point Cloud 918 Mingtao Feng (Xidian University), Haoran Hou (Xidian University), Liang Zhang (Xidian University), Zijie Wu (Hunan University), Yulan Guo (Sun Yat-Sen University), and Ajmal Mian (The University of Western Australia)	82

Role of Transients in Two-Bounce Non-Line-of-Sight Imaging	9192
3D Concept Learning and Reasoning From Multi-View Images	9202
Viewpoint Equivariance for Multi-View 3D Object Detection	9213
Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction Yuanhui Huang (Beijing National Research Center for Information Science and Technology, China; Department of Automation, Tsinghua University, China), Wenzhao Zheng (Beijing National Research Center for Information Science and Technology, China; Department of Automation, Tsinghua University, China), Yunpeng Zhang (Beijing National Research Center for Information Science and Technology, China; Department of Automation, Tsinghua University, China), Jie Zhou (Beijing National Research Center for Information Science and Technology, China; Department of Automation, Tsinghua University, China), and Jiwen Lu (Beijing National Research Center for Information Science and Technology, China; Department of Automation, Tsinghua University, China)	9223
BEV@DC: Bird's-Eye View Assisted Training for Depth Completion Wending Zhou (FNii, CUHK-Shenzhen; SSE, CUHK-Shenzhen), Xu Yan (FNii, CUHK-Shenzhen; SSE, CUHK-Shenzhen), Yinghong Liao (FNii, CUHK-Shenzhen; SSE, CUHK-Shenzhen), Yuankai Lin (Huazhong University of Science and Technology), Jin Huang (Cardiff University), Gangming Zhao (The University of Hong Kong), Shuguang Cui (FNii, CUHK-Shenzhen; SSE, CUHK-Shenzhen), and Zhen Li (FNii, CUHK-Shenzhen; SSE, CUHK-Shenzhen)	9233
Collaboration Helps Camera Overtake LiDAR in 3D Detection Yue Hu (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University), Yifan Lu (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University), Runsheng Xu (University of California, Los Angeles), Weidi Xie (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University; Shanghai Al Laboratory), Siheng Chen (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University; Shanghai Al Laboratory), and Yanfeng Wang (Cooperative Medianet Innovation Center, Shanghai Jiao Tong University; Shanghai Al Laboratory)	9243

Uni3D: A Unified Baseline for Multi-Dataset 3D Object Detection	. 9253
Towards Building Self-Aware Object Detectors via Reliable Uncertainty Quantification and Calibration	9263
Depth Estimation From Camera Image and mmWave Radar Point Cloud	. 9275
SGLoc: Scene Geometry Encoding for Outdoor LiDAR Localization	. 9286
ConQueR: Query Contrast Voxel-DETR for 3D Object Detection	. 9296
DeepMapping2: Self-Supervised Large-Scale LiDAR Map Optimization	.9306
Towards Unsupervised Object Detection From LiDAR Point Clouds	. 9317
MoDAR: Using Motion Forecasting for 3D Object Detection in Point Cloud Sequences Yingwei Li (Waymo LLC), Charles R. Qi (Waymo LLC), Yin Zhou (Waymo LLC), Chenxi Liu (Waymo LLC), and Dragomir Anguelov (Waymo LLC)	.9329
Hidden Gems: 4D Radar Scene Flow Learning Using Cross-Modal Supervision	. 9340
Instant Domain Augmentation for LiDAR Semantic Segmentation	. 9350

ess Is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation . 361	
Li Li (Durham University, UK), Hubert P. H. Shum (Durham University, UK), and Toby P. Breckon (Durham University, UK)	
NarS3D: A Plug-and-Play Motion-Aware Model for Semantic Segmentation on Multi-Scan 3D oint Clouds937	72
Jiahui Liu (The University of Hong Kong), Chirui Chang (The University of Hong Kong), Jianhui Liu (The University of Hong Kong), Xiaoyang Wu (The University of Hong Kong), Lan Ma (TCL AI Lab), and Xiaojuan Qi (The University of Hong Kong)	
D Semantic Segmentation in the Wild: Learning Generalized Models for Adverse-Condition oint Clouds	82
Aoran Xiao (Nanyang Technological University), Jiaxing Huang (Nanyang Technological University), Weihao Xuan (Waseda University), Ruijie Ren (Technical University of Denmark), Kangcheng Liu (Nanyang Technological University), Dayan Guan (Mohamed bin Zayed University of Artificial Intelligence), Abdulmotaleb El Saddik (Mohamed bin Zayed University of Artificial Intelligence; University of Ottawa), Shijian Lu (Nanyang Technological University), and Eric P. Xing (Mohamed bin Zayed University of Artificial Intelligence; Carnegie Mellon University)	
lovel Class Discovery for 3D Point Cloud Semantic Segmentation	93
iD-MAE: Generative Decoder for MAE Pre-Training on LiDAR Point Clouds	Э3
lasked Scene Contrast: A Scalable Framework for Unsupervised 3D Representation Learning	•••
Xiaoyang Wu (The University of Hong Kong), Xin Wen (The University of Hong Kong), Xihui Liu (The University of Hong Kong), and Hengshuang Zhao (The University of Hong Kong)	
Open-Set Semantic Segmentation for Point Clouds via Adversarial Prototype Framework 942 Jianan Li (University of Chinese Academy of Sciences, China; Chinese Academy of Sciences, Beijing, China) and Qiulei Dong (University of Chinese Academy of Sciences, China; Chinese Academy of Sciences, China; Chinese Academy of Sciences, Beijing, China)	25
CL-SPC: Adaptive Closed-Loop System for Self-Supervised Point Cloud Completion	35

Fast Point Cloud Generation With Straight Flows	. 9445
PointVector: A Vector Representation in Point Cloud Analysis	. 9455
ProxyFormer: Proxy Alignment Assisted Point Cloud Completion With Missing Part Sensitive Transformer Shanshan Li (Nanjing University of Aeronautics and Astronautics), Pan Gao (Nanjing University of Aeronautics and Astronautics), Xiaoyang Tan (Nanjing University of Aeronautics and Astronautics), and Mingqiang Wei (Nanjing University of Aeronautics and Astronautics)	. 9466
FAC: 3D Representation Learning via Foreground Aware Feature Contrast	. 9476
Rethinking the Approximation Error in 3D Surface Fitting for Point Cloud Normal Estimation Hang Du (Hikvision Research Institute, Hangzhou, China), Xuejun Yan (Hikvision Research Institute, Hangzhou, China), Jingjing Wang (Hikvision Research Institute, Hangzhou, China), Di Xie (Hikvision Research Institute, Hangzhou, China), and Shiliang Pu (Hikvision Research Institute, Hangzhou, China)	. 9486
PointCert: Point Cloud Classification With Deterministic Certified Robustness Guarantees Jinghuai Zhang (Duke University), Jinyuan Jia (UIUC), Hongbin Liu (Duke University), and Neil Zhenqiang Gong (Duke University)	. 9496
Robust Multiview Point Cloud Registration With Reliable Pose Graph Initialization and History Reweighting	. 9506
Visual Prompt Multi-Modal Tracking Jiawen Zhu (Dalian University of Technology, China), Simiao Lai (Dalian University of Technology, China), Xin Chen (Dalian University of Technology, China), Dong Wang (Dalian University of Technology, China), and Huchuan Lu (Dalian University of Technology, China; Peng Cheng Laboratory, China)	. 9516
Progressive Neighbor Consistency Mining for Correspondence Pruning	. 9527

Geometric Visual Similarity Learning in 3D Medical Image Self-Supervised Pre-Training Yuting He (Southeast University), Guanyu Yang (Southeast University), Rongjun Ge (Nanjing University of Aeronautics and Astronautics), Yang Chen (Southeast University), Jean-Louis Coatrieux (University of Rennes), Boyu Wang (Western University), and Shuo Li (Case Western Reserve University)	. 9538
Unsupervised Visible-Infrared Person Re-Identification via Progressive Graph Matching and Alternate Learning	. 9548
Domain Generalized Stereo Matching via Hierarchical Visual Transformation	. 9559
Unsupervised Cumulative Domain Adaptation for Foggy Scene Optical Flow	9569
PVO: Panoptic Visual Odometry Weicai Ye (Zhejiang University; ZJU-SenseTime Joint Lab of 3D Vision), Xinyue Lan (ZJU-SenseTime Joint Lab of 3D Vision), Shuo Chen (ZJU-SenseTime Joint Lab of 3D Vision), Yuhang Ming (Hangzhou Dianzi University; University of Bristol), Xingyuan Yu (Zhejiang University; ZJU-SenseTime Joint Lab of 3D Vision), Hujun Bao (Zhejiang University; ZJU-SenseTime Joint Lab of 3D Vision), Zhaopeng Cui (Zhejiang University), and Guofeng Zhang (Zhejiang University; ZJU-SenseTime Joint Lab of 3D Vision)	. 9579
BAEFormer: Bi-Directional and Early Interaction Transformers for Bird's Eye View Semantic Segmentation	. 9590
Are We Ready for Vision-Centric Driving Streaming Perception? The ASAP Benchmark	. 9600

Visual Exemplar Driven Task-Prompting for Unified Perception in Autonomous Driving Xiwen Liang (Shenzhen Campus of Sun Yat-sen University), Minzhe Niu (Huawei Noah's Ark Lab), Jianhua Han (Huawei Noah's Ark Lab), Hang Xu (Huawei Noah's Ark Lab), Chunjing Xu (Huawei Noah's Ark Lab), and Xiaodan Liang (Shenzhen Campus of Sun Yat-sen University)	9611
MixSim: A Hierarchical Framework for Mixed Reality Traffic Simulation	9622
Uncovering the Missing Pattern: Unified Framework Towards Trajectory Imputation and Prediction Yi Xu (Northeastern University; Honda Research Institute, USA), Armin Bazarjani (Honda Research Institute, USA; University of Southern California), Hyung-gun Chi (Honda Research Institute, USA; Purdue University), Chiho Choi (Honda Research Institute, USA; Samsung Semiconductor US), and Yun Fu (Northeastern University)	9632
MotionDiffuser: Controllable Multi-Agent Motion Prediction Using Diffusion	9644
Learning Human-to-Robot Handovers From Point Clouds Sammy Christen (ETH Zurich; NVIDIA), Wei Yang (NVIDIA), Claudia Pérez-D'Arpino (NVIDIA), Otmar Hilliges (ETH Zurich), Dieter Fox (NVIDIA; University of Washington), and Yu-Wei Chao (NVIDIA)	9654
Phone2Proc: Bringing Robust Robots Into Our Chaotic World	9665
GazeNeRF: 3D-Aware Gaze Redirection With Neural Radiance Fields Alessandro Ruzzi (Department of Computer Science, ETH Zürich), Xiangwei Shi (Delft University of Technology), Xi Wang (Department of Computer Science, ETH Zürich), Gengyan Li (Department of Computer Science, ETH Zürich), Shalini De Mello (NVIDIA), Hyung Jin Chang (University of Birmingham), Xucong Zhang (Delft University of Technology), and Otmar Hilliges (Department of Computer Science, ETH Zürich)	9676
Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking	9686
Autoregressive Visual Tracking	9697

OpenGait: Revisiting Gait Recognition Towards Better Practicality	9707
Pose-Disentangled Contrastive Learning for Self-Supervised Facial Representation	9717
Identity-Preserving Talking Face Generation With Landmark and Appearance Priors Weizhi Zhong (Sun Yat-sen University), Chaowei Fang (Xidian University), Yinqi Cai (Sun Yat-sen University), Pengxu Wei (Sun Yat-sen University), Gangming Zhao (The University of Hong Kong), Liang Lin (Sun Yat-sen University), and Guanbin Li (Sun Yat-sen University)	9729
DF-Platter: Multi-Face Heterogeneous Deepfake Dataset	9739
Physics-Driven Diffusion Models for Impact Sound Synthesis From Videos Kun Su (University of Washington), Kaizhi Qian (MIT-IBM Watson Al Lab), Eli Shlizerman (University of Washington), Antonio Torralba (MIT), and Chuang Gan (MIT-IBM Watson Al Lab; UMass Amherst)	9749
Mofusion: A Framework for Denoising-Diffusion-Based Motion Synthesis	9760
Adaptive Global Decay Process for Event Cameras	9771
Frame-Event Alignment and Fusion Network for High Frame Rate Tracking	9781

Exploring Discontinuity for Video Frame Interpolation	791
AMT: All-Pairs Multi-Field Transforms for Efficient Frame Interpolation	301
Frame Interpolation Transformer and Uncertainty Guidance	811
A Simple Baseline for Video Restoration With Grouped Spatial-Temporal Shift	322
Recurrent Homography Estimation Using Homography-Guided Image Warping and Focus Transformer	833
HyperCUT: Video Sequence From a Single Blurry Image Using Unsupervised Ordering	343
Indescribable Multi-Modal Spatial Evaluator	353
Structured Kernel Estimation for Photon-Limited Deconvolution	363
Polarized Color Image Denoising	373

	Certainty-Aware Unsupervised Image Deblurring With Deep Residual Prior	9883
	v-Light Image Enhancement via Structure Modeling and Guidance	9893
(Irning Sample Relationship for Exposure Correction Jie Huang (University of Science and Technology of China), Feng Zhao (University of Science and Technology of China), Man Zhou (University of Science and Technology of China), Jie Xiao (University of Science and Technology of China), Naishan Zheng (University of Science and Technology of China), Kaiwen Zheng (University of Science and Technology of China), and Zhiwei Xiong (University of Science and Technology of China)	9904
	Itially Adaptive Self-Supervised Learning for Real-World Image Denoising	9914
J	antum-Inspired Spectral-Spatial Pyramid Network for Hyperspectral Image Classification Jie Zhang (University of Macau, China), Yongshan Zhang (China University of Geosciences, China; University of Macau, China), and Yicong Zhou (University of Macau, China)	9925
(nerative Diffusion Prior for Unified Image Restoration and Enhancement	9935
	ound-Truth Free Meta-Learning for Deep Compressive Sampling	9947

	bedding Enhancement for Very Low-Resol	
University), Chen	Chai (Yonsei University), Tiong-Sik Ng (Yonse g-Yaw Low (Institute for Basic Science), Jaew y), and Andrew Beng Jin Teoh (Yonsei Univer	oo Park
Nicolas Chahine normale superiet Garcia-Civiero (D (DXOMARK), and normale superiet	ssessment Dataset for Portraits	l'Ecole le adans e l'Ecole
Framework for Ima Wenyang Liu (Na (Nanyang Techno Technological Un	ed JPEG Images Are Restorable: Two-Stage age Restoration	9979 Yi Wang (Nanyang
Simon Grosche (I Germany), Andy I Erlangen-Nürnbe (Friedrich-Alexan	ution Using T-Tetromino Pixels Friedrich-Alexander-Univeristät Erlangen-Nü Regensky (Friedrich-Alexander-Univeristät erg, Germany), Jürgen Seiler Ider-Univeristät Erlangen-Nürnberg, German drich-Alexander-Univeristät Erlangen-Nürnb	rnberg, ny), and
Cristina N. Vasco Tagliasacchi), Cei Tagliasacchi), Ma Tagliasacchi), Mii Tagliasacchi), Kei	psampling Filters oncelos (Milad Hashemi Kevin Swersky Andre ngiz Oztireli (Milad Hashemi Kevin Swersky A ark Matthews (Milad Hashemi Kevin Swersky lad Hashemi (Milad Hashemi Kevin Swersky A vin Swersky (Milad Hashemi Kevin Swersky A d Andrea Tagliasacchi (Milad Hashemi Kevin cchi)	a Andrea Andrea Andrea ndrea
Arbitrary-Scale Ima Gaochao Song (T Information Scien University), Ran S University of Info	al Position Encoding for Designing a Parange Super-Resolution	sity of Fechnological
Sicheng Gao (Bei Bohan Zeng (Beil Yanjing Li (Beiha Jianzhuang Liu (S Xiantong Zhen (U	Models for Continuous Super-Resolution ihang University), Xuhui Liu (Beihang Univers hang University), Sheng Xu (Beihang Univers ng University), Xiaoyan Luo (Beihang Univers Shenzhen Institute of Advanced Technology, United Imaging), and Baochang Zhang (Beiho gguancun Laboratory, China)	ity), ity), sity), China),

Pixels, Regions, and Objects: Multiple Enhancement for Salient Object Detection)31
VILA: Learning Image Aesthetics From User Comments With Vision-Language Pretraining 100 Junjie Ke (Google Research), Keren Ye (Google Research), Jiahui Yu (Google Research), Yonghui Wu (Google Research), Peyman Milanfar (Google Research), and Feng Yang (Google Research))41
lmage Cropping With Spatial-Aware Feature and Rank Consistency)52
B-Spline Texture Coefficients Estimator for Screen Content Image Super-Resolution	162
Delving StyleGAN Inversion for Image Editing: A Foundation Latent Space Viewpoint 100 Hongyu Liu (Hong Kong University of Science and Technology), Yibing Song (AI), and Qifeng Chen (Institute, Fudan University))72
Learning Dynamic Style Kernels for Artistic Style Transfer	183
SVGformer: Representation Learning for Continuous Vector Graphics Using Transformers . 100 Defu Cao (University of Southern California), Zhaowen Wang (Adobe Research, Inc.), Jose Echevarria (Adobe Research, Inc.), and Yan Liu (University of Southern California)	193
Learning Generative Structure Prior for Blind Text Image Super-Resolution	03
Unsupervised Domain Adaption With Pixel-Level Discriminator for Image-Aware Layout Generation	14
Scaling Up GANs for Text-to-Image Synthesis	24

ERNIE-ViLG 2.0: Improving Text-to-Image Diffusion Model With Knowledge-Enhanced Mixture-of-Denoising-Experts	5
Inversion-Based Style Transfer With Diffusion Models	6
Shifted Diffusion for Text-to-Image Generation	7
LayoutDM: Discrete Diffusion Model for Controllable Layout Generation	7
Unpaired Image-to-Image Translation With Shortest Path Regularization	7
DiffCollage: Parallel Generation of Large Content With Diffusion Models	8
Wavelet Diffusion Models Are Fast and Scalable Image Generators	9

VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation)209
MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and Video Generation 10219 Ludan Ruan (Renmin University of China), Yiyang Ma (Peking University), Huan Yang (Microsoft Research), Huiguo He (Microsoft Research), Bei Liu (Microsoft Research), Jianlong Fu (Microsoft Research), Nicholas Jing Yuan (Microsoft Research), Qin Jin (Renmin University of China), and Baining Guo (Microsoft Research)	
Adaptive Human Matting for Dynamic Videos)229
LVQAC: Lattice Vector Quantization Coupled With Spatially Adaptive Companding for Efficient Learned Image Compression)239
Hierarchical B-Frame Video Coding Using Two-Layer CANF Without Motion Coding)249
Towards High-Quality and Efficient Video Super-Resolution via Spatial-Temporal Data Overfitting)259
HNeRV: A Hybrid Neural Representation for Videos)270
Regularize Implicit Neural Representation by Itself)280

SMPConv: Self-Moving Point Representations for Continuous Convolution)289
Long Range Pooling for 3D Large-Scale Scene Understanding)300
Progressive Random Convolutions for Single Domain Generalization)312
BiFormer: Vision Transformer With Bi-Level Routing Attention)323
Beyond Attentive Tokens: Incorporating Token Importance and Diversity for Efficient Vision Transformers)334
BioNet: A Biologically-Inspired Network for Face Recognition)344
Dual-Bridging With Adversarial Noise Generation for Domain Adaptive rPPG Estimation 10. Jingda Du (Hong Kong Baptist University, Hong Kong), Si-Qi Liu (Hong Kong Baptist University, Hong Kong), Bochao Zhang (Hong Kong Baptist University, Hong Kong), and Pong C. Yuen (Hong Kong Baptist University, Hong Kong))355
On Data Scaling in Masked Image Modeling)365

Hard Patches Mining for Masked Image Modeling	75
Haochen Wang (Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy	
of Sciences), Kaiyou Song (Megvii Technology), Junsong Fan (Center for	
Research on Intelligent Perception and Computing, National Laboratory	
of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences; Centre for Artificial Intelligence and Robotics, Hong Kong	
Institute of Science & Innovation, Chinese Academy of Science), Yuxi	
Wang (Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation,	
Chinese Academy of Sciences; Centre for Artificial Intelligence and	
Robotics, Hong Kong Institute of Science & Innovation, Chinese Academy of Science), Jin Xie (Megvii Technology), and Zhaoxiang Zhang (Center	
for Research on Intelligent Perception and Computing, National	
Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Centre	
for Artificial Intelligence and Robotics, Hong Kong Institute of	
Science & Innovation, Chinese Academy of Science)	
Evolved Part Masking for Self-Supervised Learning	86
BASiS: Batch Aligned Spectral Embedding Space	96
OmniMAE: Single Model Masked Pretraining on Images and Videos	06
ViTs for SITS: Vision Transformers for Satellite Image Time Series	18
Probabilistic Debiasing of Scene Graphs	29
Blind Video Deflickering by Neural Filtering With a Flawed Atlas	39

SCOTCH and SODA: A Transformer Video Shadow Detection Framework Lihao Liu (University of Cambridge, United Kingdom), Jean Prost (Univ. Bordeaux, CNRS, France), Lei Zhu (The Hong Kong University of Science and Technology (Guangzhou), China; The Hong Kong University of Science and Technology, HK SAR, China), Nicolas Papadakis (Univ. Bordeaux, CNRS, France), Pietro Liò (University of Cambridge, United Kingdom), Carola-Bibiane Schönlieb (University of Cambridge, United Kingdom), and Angelica I. Aviles-Rivero (University of Cambridge, United Kingdom)	10449
MAGVIT: Masked Generative Video Transformer Lijun Yu (Carnegie Mellon University; Google Research), Yong Cheng (Google Research), Kihyuk Sohn (Google Research), José Lezama (Google Research), Han Zhang (Google Research), Huiwen Chang (Google Research), Alexander G. Hauptmann (Carnegie Mellon University), Ming-Hsuan Yang (Google Research), Yuan Hao (Google Research), Irfan Essa (Google Research; Georgia Institute of Technology), and Lu Jiang (Google Research)	10459
Improving Robustness of Semantic Segmentation to Motion-Blur Using Class-Centric Augmentation	10470
MobileVOS: Real-Time Video Object Segmentation Contrastive Learning Meets Knowledge Distillation Roy Miles (Samsung Research UK), Mehmet Kerim Yucel (Samsung Research UK), Bruno Manganelli (Samsung Research UK), and Albert Saà-Garriga (Samsung Research UK)	10480
Self-Supervised Video Forensics by Audio-Visual Anomaly Detection	10491
Frame Flexible Network Yitian Zhang (Northeastern University), Yue Bai (Northeastern University), Chang Liu (Northeastern University), Huan Wang (Northeastern University), Sheng Li (University of Virginia), and Yun Fu (Northeastern University)	10504
System-Status-Aware Adaptive Network for Online Streaming Video Understanding	10514
MDQE: Mining Discriminative Query Embeddings To Segment Occluded Instances on Challet Videos	
Spatio-Temporal Pixel-Level Contrastive Learning-Based Source-Free Domain Adaptation for Video Semantic Segmentation	

Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation	10544
Chat2Map: Efficient Scene Mapping From Multi-Ego Conversations	10554
Audio-Visual Grouping Network for Sound Localization From Mixtures	10565
Language-Guided Audio-Visual Source Separation via Trimodal Consistency	10575
Fine-Grained Audible Video Description	10585
Neural Koopman Pooling: Control-Inspired Temporal Dynamics Encoding for Skeleto Action Recognition	
Learning Discriminative Representations for Skeleton Based Action Recognition Huanyu Zhou (Beihang University, Beijing, China), Qingjie Liu (Beihang University, Beijing, China; Zhongguancun Laboratory; Hangzhou Innovation Institute of Beihang University), and Yunhong Wang (Beihang University, Beijing, China)	10608
Therbligs in Action: Video Understanding Through Motion Primitives Eadom Dessalene (University of Maryland, USA), Michael Maynord (University of Maryland, USA), Cornelia Fermüller (University of Maryland, USA), and Yiannis Aloimonos (University of Maryland, USA)	10618
Search-Map-Search: A Frame Selection Paradigm for Action Recognition	10627

Re2TAL: Rewiring Pretrained Video Backbones for Reversible Temporal Action Localization 106 Chen Zhao (King Abdullah University of Science and Technology (KAUST), Saudi Arabia), Shuming Liu (King Abdullah University of Science and Technology (KAUST), Saudi Arabia), Karttikeya Mangalam (UC Berkeley, US), and Bernard Ghanem (King Abdullah University of Science and Technology (KAUST), Saudi Arabia)	37
Boosting Weakly-Supervised Temporal Action Localization With Text Information	48
Perception and Semantic Aware Regularization for Sequential Confidence Calibration 106 Zhenghua Peng (South China University of Technology), Yu Luo (South China University of Technology), Tianshui Chen (Guangdong University of Technology), Keke Xu (South China University of Technology), and Shuangping Huang (South China University of Technology; Pazhou Laboratory)	58
NewsNet: A Novel Dataset for Hierarchical Temporal Segmentation	69
Tell Me What Happened: Unifying Text-Guided Video Completion via Multimodal Masked Video Generation	81
Leveraging Temporal Context in Low Representational Power Regimes	93
Cap4Video: What Can Auxiliary Captions Do for Text-Video Retrieval?	04
Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video Captioning 107 Antoine Yang (PSL Research University), Arsha Nagrani (Google Research), Paul Hongsuck Seo (Google Research), Antoine Miech (DeepMind), Jordi Pont-Tuset (Google Research), Ivan Laptev (PSL Research University), Josef Sivic (Czech Technical University, Prague), and Cordelia Schmid (Google Research)	14

Procedure-Aware Pretraining for Instructional Video Understanding	10727
VindLU: A Recipe for Effective Video-and-Language Pretraining	10739
Modular Memorability: Tiered Representations for Video Memorability Prediction	10751
Multivariate, Multi-Frequency and Multimodal: Rethinking Graph Neural Networks for Emoti Recognition in Conversation	on 10761
Distilling Cross-Temporal Contexts for Continuous Sign Language Recognition	0771
You Need Multiple Exiting: Dynamic Early Exiting for Accelerating Unified Vision Language Model	10781
Layout-Based Causal Inference for Object Navigation	10792

Jialu Li (UNC Chapel Hill) and Mohit Bansal (UNC Chapel Hill)	3
A New Path: Scaling Vision-and-Language Navigation With Synthetic Instructions and Imitation Learning	3
A-Cap: Anticipation Captioning With Commonsense Knowledge	4
Are Deep Neural Networks SMARTer Than Second Graders?	4
Fusing Pre-Trained Language Models With Multimodal Prompts Through Reinforcement Learning	_
Youngjae Yu (Yonsei University), Jiwan Chung (Yonsei University), Heeseung Yun (Seoul National University), Jack Hessel (Allen Institute for Artificial Intelligence), Jae Sung Park (Allen Institute for Artificial Intelligence; University of Washington), Ximing Lu (Allen Institute for Artificial Intelligence; University of Washington), Rowan Zellers (OpenAl), Prithviraj Ammanabrolu (Allen Institute for Artificial Intelligence), Ronan Le Bras (Allen Institute for Artificial Intelligence), Gunhee Kim (Seoul National University), and Yejin Choi (Allen Institute for Artificial Intelligence; University of Washington)	
Language Adaptive Weight Generation for Multi-Task Visual Grounding	7
From Images to Textual Prompts: Zero-Shot Visual Question Answering With Frozen Large Language Models	7

Diversity-Aware Meta Visual Prompting	0878
Hierarchical Prompt Learning for Multi-Task Learning	0888
Task Residual for Tuning Vision-Language Models	0899
CREPE: Can Vision-Language Foundation Models Reason Compositionally?	0910
LOCATE: Localize and Transfer Object Parts for Weakly Supervised Affordance Grounding 1 Gen Li (University of Edinburgh), Varun Jampani (Google Research), Deqing Sun (Google Research), and Laura Sevilla-Lara (University of Edinburgh)	0922
Overlooked Factors in Concept-Based Explanations: Dataset Choice, Concept Learnability, and Human Capability	0932
Grounding Counterfactual Explanation of Image Classifiers to Textual Concept Space 1 Siwon Kim (Data Science and Artificial Intelligence Lab, Seoul National University, Korea), Jinoh Oh (Amazon Alexa AI, USA), Sungjin Lee (Amazon Alexa AI, USA), Seunghak Yu (NAVER Search US), Jaeyoung Do (Amazon Alexa AI, USA), and Tara Taghavi (Amazon Alexa AI, USA)	0942
GIVL: Improving Geographical Inclusivity of Vision-Language Models With Pre-Training Methods	0951
Learning Bottleneck Concepts in Image Classification	0962

SceneTrilogy: On Human Scene-Sketch and Its Complementarity With Photo and Text 10972 Pinaki Nath Chowdhury (University of Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on Artificial Intelligence), Ayan Kumar Bhunia (University of Surrey, United Kingdom), Aneeshan Sain (University of Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on Artificial Intelligence), Subhadeep Koley (University of Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on Artificial Intelligence), Tao Xiang (University of Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on Artificial Intelligence), and Yi-Zhe Song (University of Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on Artificial Intelligence)	
Context-Aware Alignment and Mutual Masking for 3D-Language Pre-Training	
MaskCLIP: Masked Self-Distillation Advances Contrastive Language-Image Pretraining 10995 Xiaoyi Dong (University of Science and Technology of China), Jianmin Bao (Microsoft Research Asia), Yinglin Zheng (Xiamen University), Ting Zhang (University of Science and Technology of China), Dongdong Chen (Microsoft Cloud + Al), Hao Yang (Microsoft Research Asia), Ming Zeng (Xiamen University), Weiming Zhang (University of Science and Technology of China), Lu Yuan (Microsoft Cloud + Al), Dong Chen (Microsoft Research Asia), Fang Wen (Microsoft Research Asia), and Nenghai Yu (University of Science and Technology of China)	
CLIPPO: Image-and-Language Understanding From Pixels Only	
Vilem: Visual-Language Error Modeling for Image-Text Retrieval	
Non-Contrastive Learning Meets Language-Image Pre-Training	

HAAV: Hierarchical Aggregation of Augmented Views for Image Captioning	39
Learning Attribute and Class-Specific Representation Duet for Fine-Grained Fashion Analysis	50
Yang Jiao (Amazon), Yan Gao (Amazon), Jingjing Meng (Amazon), Jin Shang (Amazon), and Yi Sun (Amazon)	
Learning Instance-Level Representation for Large-Scale Multi-Modal Pretraining in E-Commerce	60
Cross-Image-Attention for Conditional Embeddings in Deep Metric Learning	70
Asymmetric Feature Fusion for Image Retrieval	82
Improving Zero-Shot Generalization and Robustness of Multi-Modal Models	93
Hint-Aug: Drawing Hints From Foundation Vision Transformers Towards Boosted Few-Shot Parameter-Efficient Tuning	02
Visual DNA: Representing and Comparing Images Using Distributions of Neuron Activations 11113 Benjamin Ramtoula (Mobile Robotics Group, University of Oxford), Matthew Gadd (Mobile Robotics Group, University of Oxford), Paul Newman (Mobile Robotics Group, University of Oxford), and Daniele De Martini (Mobile Robotics Group, University of Oxford)	
End-to-End 3D Dense Captioning With Vote2Cap-DETR	24

Improving Table Structure Recognition With Visual-Alignment Sequential Coor 11134	dinate Modeling
Yongshuai Huang (Huawei Technologies Ltd.), Ning Lu (Huawei Technologies Ltd.), Dapeng Chen (Huawei Technologies Ltd.), Yibo Li (Peking University), Zecheng Xie (Huawei Technologies Ltd.), Shenggao Zhu (Huawei Technologies Ltd.), Liangcai Gao (Peking University), and Wei Peng (Huawei Technologies Ltd.)	
Region-Aware Pretraining for Open-Vocabulary Object Detection With Vision T 11144	ransformers
Dahun Kim (Google Research, Brain Team), Anelia Angelova (Google Research, Brain Team), and Weicheng Kuo (Google Research, Brain Team)	
Mobile User Interface Element Detection via Adaptively Prompt Tuning Zhangxuan Gu (Tiansuan Lab, Ant Group), Zhuoer Xu (Tiansuan Lab, Ant Group), Haoxing Chen (Tiansuan Lab, Ant Group), Jun Lan (Tiansuan Lab, Ant Group), Changhua Meng (Tiansuan Lab, Ant Group), and Weiqiang Wang (Tiansuan Lab, Ant Group)	11155
Learning To Generate Text-Grounded Mask for Open-World Semantic Segmer Image-Text Pairs	-
ZegCLIP: Towards Adapting CLIP for Zero-Shot Semantic Segmentation Ziqin Zhou (The University of Adelaide, Australia), Yinjie Lei (Sichuan University, China), Bowen Zhang (The University of Adelaide, Australia), Lingqiao Liu (The University of Adelaide, Australia), and Yifan Liu (The University of Adelaide, Australia)	11175
Object-Aware Distillation Pyramid for Open-Vocabulary Object Detection Luting Wang (Beihang University; Beihang University), Yi Liu (Beihang University; Beihang University), Penghui Du (Beihang University; Beihang University), Zihan Ding (Beihang University; Beihang University), Yue Liao (Beihang University; Beihang University), Qiaosong Qi (Alibaba Group), Biaolong Chen (Alibaba Group), and Si Liu (Beihang University; Beihang University)	11186
Learning Conditional Attributes for Compositional Zero-Shot Learning Qingsheng Wang (Northwestern Polytechnical University, China), Lingqiao Liu (University of Adelaide, Australia), Chenchen Jing (Zhejiang University, China), Hao Chen (Zhejiang University, China), Guoqiang Liang (Northwestern Polytechnical University, China), Peng Wang (Northwestern Polytechnical University, China), and Chunhua Shen (Zhejiang University, China)	11197
CLIP-S4: Language-Guided Self-Supervised Semantic Segmentation	11207

StructVPR: Distill Structural Knowledge With Weighting Samples for Visual Place Recognition
Yanqing Shen (Xi'an Jiaotong University), Sanping Zhou (Xi'an Jiaotong University), Jingwen Fu (Xi'an Jiaotong University), Ruotong Wang (Xi'an Jiaotong University), Shitao Chen (Xi'an Jiaotong University), and Nanning Zheng (Xi'an Jiaotong University)
UniDAformer: Unified Domain Adaptive Panoptic Segmentation Transformer via Hierarchical Mask Calibration
(Nanyang Technological University), Xiaoqin Zhang (Wenzhou University), and Shijian Lu (Nanyang Technological University)
Primitive Generation and Semantic-Related Alignment for Universal Zero-Shot Segmentation 11238
Shuting He (Zhejiang University), Henghui Ding (Nanyang Technological University), and Wei Jiang (Zhejiang University; Nanyang Technological University)
Inferring and Leveraging Parts From Object Shape for Improving Semantic Image Synthesis
Yuxiang Wei (Harbin Institute of Technology; The Hong Kong Polytechnic University), Zhilong Ji (Tomorrow Advancing Life), Xiaohe Wu (Harbin Institute of Technology), Jinfeng Bai (Harbin Institute of Technology), Lei Zhang (The Hong Kong Polytechnic University), and Wangmeng Zuo (Harbin Institute of Technology)
Compositor: Bottom-Up Clustering and Compositing for Robust Part and Object Segmentation 11259
Ju He (Johns Hopkins University), Jieneng Chen (Johns Hopkins University), Ming-Xian Lin (Chinese Academy of Sciences), Qihang Yu (Johns Hopkins University), and Alan L. Yuille (Johns Hopkins University)
A Strong Baseline for Generalized Few-Shot Semantic Segmentation
DynaMask: Dynamic Mask Selection for Instance Segmentation
Focus on Details: Online Multi-Object Tracking With Diverse Fine-Grained Representation 11289 Hao Ren (Huazhong University of Science and Technology), Shoudong Han (Huazhong University of Science and Technology), Huilin Ding (Huazhong University of Science and Technology), Ziwen Zhang (Huazhong University of Science and Technology), Hongwei Wang (Huazhong University of Science and Technology), and Faquan Wang (Huazhong University of Science and Technology)

Dynamic Focus-Aware Positional Queries for Semantic Segmentation
Beyond mAP: Towards Better Evaluation of Instance Segmentation
Learning Orthogonal Prototypes for Generalized Few-Shot Semantic Segmentation
Weakly Supervised Semantic Segmentation via Adversarial Learning of Classifier and Reconstructor
SemiCVT: Semi-Supervised Convolutional Vision Transformer for Semantic Segmentation 11340 Huimin Huang (Zhejiang University), Shiao Xie (Zhejiang University), Lanfen Lin (Zhejiang University), Ruofeng Tong (Zhejiang University; Zhejiang Lab), Yen-Wei Chen (Ritsumeikan University), Yuexiang Li (Tencent Jarvis Lab), Hong Wang (Tencent Jarvis Lab), Yawen Huang (Tencent Jarvis Lab), and Yefeng Zheng (Tencent Jarvis Lab)
Augmentation Matters: A Simple-Yet-Effective Approach to Semi-Supervised Semantic Segmentation
The Devil Is in the Points: Weakly Semi-Supervised Instance Segmentation via Point-Guided Mask Representation
Class-Incremental Exemplar Compression for Class-Incremental Learning

Full or Weak Annotations? An Adaptive Strategy for Budget-Constrained Annotation Campaigns 11381	•••
Javier Gamazo Tejero (University of Bern), Martin S. Zinkernagel (Inselspital Bern, Switzerland), Sebastian Wolf (Inselspital Bern, Switzerland), Raphael Sznitman (University of Bern), and Pablo Márquez-Neila (University of Bern)	
Learning Common Rationale To Improve Self-Supervised Representation for Fine-Grained Visual Recognition Problems	12
University of Adelaide), and Lingqiao Liu (The University of Adelaide)	
Detection Hub: Unifying Object Detection Datasets via Query Adaptation on Language Embedding)2
Lingchen Meng (Shanghai Key Lab of Intell. Info. Processing, Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), Xiyang Dai (Microsoft), Yinpeng Chen (Microsoft), Pengchuan Zhang (Microsoft), Dongdong Chen (Microsoft), Mengchen Liu (Microsoft), Jianfeng Wang (Microsoft), Zuxuan Wu (Shanghai Key Lab of Intell. Info. Processing, Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), Lu Yuan (Microsoft), and Yu-Gang Jiang (Shanghai Key Lab of Intell. Info. Processing, Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing)	2
Self-Supervised AutoFlow	2
DETR With Additional Global Aggregation for Cross-Domain Weakly Supervised Object Detection	!2
Detecting Everything in the Open World: Towards Universal Object Detection	3
PROB: Probabilistic Objectness for Open World Object Detection	4

Annealing-Based Label-Transfer Learning for Open World Object Detection	54
Learning Transformation-Predictive Representations for Detection and Description of Local Features	54
Bridging Precision and Confidence: A Train-Time Loss for Calibrating Object Detection 1147 Muhammad Akhtar Munir (Mohamed bin Zayed University of AI; Information Technology University), Muhammad Haris Khan (Mohamed bin Zayed University of AI), Salman Khan (Mohamed bin Zayed University of AI; Australian National University), and Fahad Shahbaz Khan (Mohamed bin Zayed University of AI; Linkoping University)	' 4
2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection	}4
Zero-Shot Generative Model Adaptation via Image-Specific Prompt Learning)4
AutoLabel: CLIP-Based Framework for Open-Set Video Domain Adaptation)4
Bidirectional Copy-Paste for Semi-Supervised Medical Image Segmentation	4
Directional Connectivity-Based Segmentation of Medical Images	<u>2</u> 5

Ambiguous Medical Image Segmentation Using Diffusion Models
Sparse Multi-Modal Graph Transformer With Shared-Context Processing for Representation Learning of Giga-Pixel Images
METransformer: Radiology Report Generation by Transformer With Multiple Learnable Expert Tokens
Towards Trustable Skin Cancer Diagnosis via Rewriting Model's Decision
Rethinking Out-of-Distribution (OOD) Detection: Masked Image Modeling Is All You Need 11578 Jingyao Li (The Chinese University of Hong Kong), Pengguang Chen (SmartMore), Zexin He (The Chinese University of Hong Kong), Shaozuo Yu (The Chinese University of Hong Kong), Shu Liu (SmartMore), and Jiaya Jia (The Chinese University of Hong Kong; SmartMore)
MetaViewer: Towards a Unified Multi-View Representation
Deep Incomplete Multi-View Clustering With Cross-View Partial Sample and Prototype Alignment
RONO: Robust Discriminative Learning With Noisy Labels for 2D-3D Cross-Modal Retrieval .11610 Yanglin Feng (Sichuan University), Hongyuan Zhu (Sichuan Zhiqian Technology Co., Ltd), Dezhong Peng (Sichuan University), Xi Peng (Sichuan University), and Peng Hu (Sichuan University)

Mind the Label Shift of Augmentation-Based Graph OOD Generalization	620
Zero-Shot Model Diagnosis	631
ProtoCon: Pseudo-Label Refinement via Online Clustering and Prototypical Consistency for Efficient Semi-Supervised Learning	641
Fine-Grained Classification With Noisy Labels	651
Twin Contrastive Learning With Noisy Labels	661
RMLVQA: A Margin Loss Approach for Visual Question Answering With Language Biases 110 Abhipsa Basu (Vision and AI Lab, Indian Institute of Science, Bangalore), Sravanti Addepalli (Vision and AI Lab, Indian Institute of Science, Bangalore), and R. Venkatesh Babu (Vision and AI Lab, Indian Institute of Science, Bangalore)	671
Generative Bias for Robust Visual Question Answering	681
On-the-Fly Category Discovery	691

Co-Training 2L Submodels for Visual Recognition
Neural Dependencies Emerging From Learning Massive Categories
MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation
Towards Better Stability and Adaptability: Improve Online Self-Training for Model Adaptation in Semantic Segmentation
DARE-GRAM: Unsupervised Domain Adaptation Regression by Aligning Inverse Gram Matrices 11744 Ismail Nejjar (EPFL, Switzerland), Qin Wang (ETH Zurich, Switzerland), and Olga Fink (EPFL, Switzerland)
Equiangular Basis Vectors
Enhanced Multimodal Representation Learning With Cross-Modal KD
Decompose, Adjust, Compose: Effective Normalization by Playing With Frequency for Domain Generalization
Back to the Source: Diffusion-Driven Adaptation To Test-Time Corruption

Deep Frequency Filtering for Domain Generalization	797
Generalizable Implicit Neural Representations via Instance Pattern Composers	808
Train-Once-for-All Personalization	818
Mod-Squad: Designing Mixtures of Experts As Modular Multi-Task Learners	828
Few-Shot Class-Incremental Learning via Class-Aware Bilateral Distillation	838
Multi-Mode Online Knowledge Distillation for Self-Supervised Visual Representation	
Learning	848
Dense Network Expansion for Class Incremental Learning	858
Class Attention Transfer Based Knowledge Distillation	868
Dealing With Cross-Task Class Discrimination in Online Continual Learning	878

Real-Time Evaluation in Online Continual Learning: A New Hope	11888
DisWOT: Student Architecture Search for Distillation WithOut Training	11898
CODA-Prompt: COntinual Decomposed Attention-Based Prompting for Rehearsal-Free Co Learning	
EcoTTA: Memory-Efficient Continual Test-Time Adaptation via Self-Distilled Regularization Junha Song (Qualcomm AI Research; KAIST), Jungsoo Lee (Qualcomm AI Research), In So Kweon (KAIST), and Sungha Choi (Qualcomm AI Research)	11920
Achieving a Better Stability-Plasticity Trade-Off via Auxiliary Networks in Continual Learning	11930
PA&DA: Jointly Sampling Path and Data for Consistent NAS Shun Lu (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Yu Hu (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Longxing Yang (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Zihao Sun (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jilin Mei (Institute of Computing Technology, Chinese Academy of Sciences), Jianchao Tan (Kuaishou Technology), and Chengru Song (Kuaishou Technology)	11940
Accelerating Dataset Distillation via Model Augmentation Lei Zhang (Zhejiang University), Jie Zhang (Zhejiang University), Bowen Lei (Texas A&M University), Subhabrata Mukherjee (Microsoft Research), Xiang Pan (New York University), Bo Zhao (Beijing Academy of Artificial Intelligence), Caiwen Ding (University of Connecticut), Yao Li (University of North Carolina, Chapel Hill), and Dongkuan Xu (North Carolina State University)	11950

Model Associate Assessment of Mandeless Languages	11060
Multi-Agent Automated Machine Learning Zhaozhi Wang (Peking University; Peng Cheng Lab; University of Chinese Academy of Sciences), Kefan Su (Peking University), Jian Zhang (Huawei), Huizhu Jia (Peking University), Qixiang Ye (Peng Cheng Lab; University of Chinese Academy of Sciences), Xiaodong Xie (Peking University), and Zongqing Lu (Peking University)	11960
Transformer-Based Learned Optimization	11970
Solving Relaxations of MAP-MRF Problems: Combinatorial In-Face Frank-Wolfe Directions Vladimir Kolmogorov (Institute of Science and Technology Austria (ISTA), Austria)	s 11980
HOTNAS: Hierarchical Optimal Transport for Neural Architecture Search Jiechao Yang (Renmin University of China, China; Beijing Key Laboratory of Big Data Management and Analysis Methods), Yong Liu (Renmin University of China, China; Beijing Key Laboratory of Big Data Management and Analysis Methods), and Hongteng Xu (Renmin University of China, China; Beijing Key Laboratory of Big Data Management and Analysis Methods)	11990
Disentangled Representation Learning for Unsupervised Neural Quantization	12001
FFCV: Accelerating Training by Removing Data Bottlenecks Guillaume Leclerc (Massachussets Institute of Technology), Andrew Ilyas (Massachussets Institute of Technology), Logan Engstrom (Massachussets Institute of Technology), Sung Min Park (Massachussets Institute of Technology), Hadi Salman (Massachussets Institute of Technology), and Aleksander Mądry (Massachussets Institute of Technology)	12011
Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks	12021
FIANCEE: Faster Inference of Adversarial Networks via Conditional Early Exits Polina Karpikova (Samsung Al Center - Moscow, Russia; Higher School of Economics - Moscow, Russia), Ekaterina Radionova (Samsung Al Center - Moscow, Russia), Anastasia Yaschenko (Samsung Al Center - Moscow, Russia; Higher School of Economics - Moscow, Russia), Andrei Spiridonov (Samsung Al Center - Moscow, Russia), Leonid Kostyushko (Lomonosov Moscow State University, Russia), Riccardo Fabbricatore (Samsung Al Center - Moscow, Russia), and Aleksei Ivakhnenko (Samsung Al Center - Moscow, Russia)	12032
Gradient-Based Uncertainty Attribution for Explainable Bayesian Deep Learning	12044

How To Prevent the Continuous Damage of Noises To Model Training?	12054
Genie: Show Me the Data for Quantization	12064
OpenMix: Exploring Outlier Samples for Misclassification Detection	12074
Data-Free Sketch-Based Image Retrieval	12084
GLeaD: Improving GANs With a Generator-Leading Task	12094
Learning on Gradients: Generalized Artifacts Representation for GAN-Generated Images Detection Chuangchuang Tan (Beijing Jiaotong University; Beijing Key Laboratory of Advanced Information Science and Network Technology), Yao Zhao (Beijing Jiaotong University; Beijing Key Laboratory of Advanced Information Science and Network Technology), Shikui Wei (Beijing Jiaotong University; Beijing Key Laboratory of Advanced Information Science and Network Technology), Guanghua Gu (Yanshan University; Hebei Key Laboratory of Information Transmission and Signal Processing), and Yunchao Wei (Beijing Jiaotong University; Beijing Key Laboratory of Advanced Information Science and Network Technology)	12105
Adversarial Normalization: I Can Visualize Everything (ICE)	12115
Semi-Supervised Hand Appearance Recovery via Structure Disentanglement and Dual Adversarial Discrimination	12125

Look Around for Anomalies: Weakly-Supervised Anomaly Detection via Context-Motion Relational Learning	2137
MyeongAh Cho (Yonsei University), Minjung Kim (Yonsei University), Sangwon Hwang (Hyundai Motor Company), Chaewon Park (Yong In University), Kyungjae Lee (Yong In University), and Sangyoun Lee (Yonsei University)	-137
Diversity-Measurable Anomaly Detection	2147
Cloud-Device Collaborative Adaptation to Continual Changing Environments in the Real-World 12157 Yulu Gan (Peking University), Mingjie Pan (Peking University), Rongyu Zhang (The Chinese University of Hong Kong, Shenzhen), Zijian Ling (Imperial College London), Lingran Zhao (Peking University), Jiaming Liu (Peking University), and Shanghang Zhang (Peking University)	ik
How To Prevent the Poor Performance Clients for Personalized Federated Learning?	2167
DynaFed: Tackling Client Data Heterogeneity With Global Dynamics	2177
Elastic Aggregation for Federated Optimization	2187
Breaching FedMD: Image Recovery via Paired-Logits Inversion Attack	2198
Learning To Measure the Point Cloud Reconstruction Loss in a Representation Space	2208

Backdoor Cleansing With Unlabeled Data	2218
Backdoor Defense via Deconfounded Representation Learning	2228
Defending Against Patch-Based Backdoor Attacks on Self-Supervised Learning	2239
Backdoor Attacks Against Deep Image Compression via Adaptive Frequency Trigger	2250
CAP: Robust Point Cloud Classification via Semantic and Structural Modeling	2260
Evading DeepFake Detectors via Adversarial Statistical Consistency	2271
Enhancing the Self-Universality for Transferable Targeted Attacks	2281
Black-Box Sparse Adversarial Attack via Multi-Objective Optimisation	2291

Demystifying Causal Features on Adversarial Examples and Causal Inoculation for Robust Network by Adversarial Instrumental Variable Regression	12302
Seasoning Model Soups for Robustness to Adversarial and Natural Distribution Shifts 1 Francesco Croce (University of Tübingen), Sylvestre-Alvise Rebuffi (DeepMind), Evan Shelhamer (DeepMind), and Sven Gowal (DeepMind)	12313
Towards Benchmarking and Assessing Visual Naturalness of Physical World Adversarial Attacks	12324
Simin Li (Beihang University), Shuning Zhang (Tsinghua University), Gujun Chen (Tsinghua University), Dong Wang (Tsinghua University), Pu Feng (Beihang University), Jiakai Wang (Zhongguancun Laboratory), Aishan Liu (Beihang University), Xin Yi (Tsinghua University; Zhongguancun Laboratory), and Xianglong Liu (Beihang University; Zhongguancun Laboratory; Institute of data space, Hefei Comprehensive National Science Center)	
Physically Adversarial Infrared Patches With Learnable Shapes and Locations	12334
MaLP: Manipulation Localization Using a Proactive Scheme	12343
Poster-Wed-PM	
Polarimetric iToF: Measuring High-Fidelity Depth Through Scattering Media	12353
NeRFLix: High-Quality Neural View Synthesis by Learning a Degradation-Driven Inter-Viewpoint MiXer	12363
Wang (Shanghai Al Laboratory), Tao Hu (CUHK), Nianjuan Jiang (SmartMore Corporation), Xiaoguang Han (CUHK-Shenzhen), and Jiangbo Lu (SmartMore Corporation)	
SUDS: Scalable Urban Dynamic Scenes	12375
DP-NeRF: Deblurred Neural Radiance Field With Physical Scene Priors	12386

DyLiN: Making Light Field Networks Dynamic	2397
Multi-Space Neural Radiance Fields	2407
NeRFLight: Fast and Light Neural Radiance Fields Using a Shared Feature Grid	2417
Cross-Guided Optimization of Radiance Fields With Multi-View Image Super-Resolution for High-Resolution Novel View Synthesis	2428
NeuralEditor: Editing Neural Radiance Fields via Manipulating Point Clouds	2439
DINER: Depth-Aware Image-Based NEural Radiance Fields	2449
Modernizing Old Photos Using Multiple References via Photorealistic Style Transfer	2460
Efficient Map Sparsification Based on 2D and 3D Discretized Grids	2470
K-Planes: Explicit Radiance Fields in Space, Time, and Appearance	2479

I2-SDF: Intrinsic Indoor Scene Reconstruction and Editing via Raytracing in Neural SDFs 12489 Jingsen Zhu (State Key Lab of CAD&CG, Zhejiang University), Yuchi Huo (State Key Lab of CAD&CG, Zhejiang University; Zhejiang Lab), Qi Ye (Zhejiang University; Key Lab of CS&AUS of Zhejiang Province), Fujun Luan (Adobe Research), Jifan Li (State Key Lab of CAD&CG, Zhejiang University), Dianbing Xi (State Key Lab of CAD&CG, Zhejiang University), Lisha Wang (State Key Lab of CAD&CG, Zhejiang University), Rui Tang (KooLab, Manycore), Wei Hua (Zhejiang Lab), Hujun Bao (State Key Lab of CAD&CG, Zhejiang University), and Rui Wang (State Key Lab of CAD&CG, Zhejiang University)
Multi-View Inverse Rendering for Large-Scale Real-World Indoor Scenes
Inverse Rendering of Translucent Objects Using Physical and Neural Renderers
Accidental Light Probes
Humans As Light Bulbs: 3D Human Reconstruction From Thermal Reflection
HumanGen: Generating Human Radiance Fields With Explicit Priors
Seeing Through the Glass: Neural 3D Reconstruction of Object Inside a Transparent Container
3D Shape Reconstruction of Semi-Transparent Worms
Dionysus: Recovering Scene Structures by Dividing Into Semantic Pieces
SparseFusion: Distilling View-Conditioned Diffusion for 3D Reconstruction

PET-NeuS: Positional Encoding Tri-Planes for Neural Surfaces	598
RenderDiffusion: Image Diffusion for 3D Reconstruction, Inpainting and Generation	508
Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation	519
Infinite Photorealistic Worlds Using Procedural Generation	530
Diffusion-SDF: Text-To-Shape via Voxelized Diffusion	542
3D-Aware Multi-Class Image-to-Image Translation With NeRFs	552
Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures	563
Local 3D Editing via 3D Distillation of CLIP Knowledge	574
ShapeTalk: A Language Dataset and Framework for 3D Shape Edits and Deformations 126 Panos Achlioptas (Stanford University; Snap Inc.), Ian Huang (Stanford University), Minhyuk Sung (KAIST), Sergey Tulyakov (Snap Inc.), and Leonidas Guibas (Stanford University)	585
CoralStyleCLIP: Co-Optimized Region and Layer Selection for Image Editing	595

3D-Aware Face Swapping	2705
DCFace: Synthetic Face Generation With Dual Condition Diffusion Model	2715
HairStep: Transfer Synthetic to Real Using Strand and Depth Maps for Single-View 3D Hair Modeling	2726
DiffusionRig: Learning Personalized Priors for Facial Appearance Editing	2736
3D-Aware Facial Landmark Detection via Multi-View Consistent Training on Synthetic Data . 1: Libing Zeng (Texas A&M University), Lele Chen (OPPO US Research Center, InnoPeak Technology, Inc), Wentao Bao (Michigan State University), Zhong Li (OPPO US Research Center, InnoPeak Technology, Inc), Yi Xu (OPPO US Research Center, InnoPeak Technology, Inc), Junsong Yuan (University at Buffalo), and Nima Khademi Kalantari (Texas A&M University)	2747
Parametric Implicit Face Representation for Audio-Driven Facial Reenactment	2759
MEGANE: Morphable Eyeglass and Avatar Network	2769
CodeTalker: Speech-Driven 3D Facial Animation With Discrete Motion Prior	2780

Reconstructing Signing Avatars From Video Using Linguistic Priors Maria-Paola Forte (Max Planck Institute for Intelligent Systems, Germany), Peter Kulits (Max Planck Institute for Intelligent Systems, Germany), Chun-Hao P. Huang (Max Planck Institute for Intelligent Systems, Germany), Vasileios Choutas (Max Planck Institute for Intelligent Systems, Germany), Dimitrios Tzionas (Max Planck Institute for Intelligent Systems, Germany), Katherine J. Kuchenbecker (Max Planck Institute for Intelligent Systems, Germany), and Michael J. Black (Max Planck Institute for Intelligent Systems, Germany)	12791
HARP: Personalized Hand Reconstruction From a Monocular RGB Video	. 12802
OmniAvatar: Geometry-Guided Controllable 3D Head Synthesis	. 12814
RaBit: Parametric Modeling of 3D Biped Cartoon Characters With a Topological-Consistent Dataset Zhongjin Luo (SSE, CUHKSZ), Shengcai Cai (SSE, CUHKSZ; Huawei Technologies Co., Ltd.), Jinguo Dong (SSE, CUHKSZ), Ruibo Ming (Tsinghua University; Tsinghua University), Liangdong Qiu (SSE, CUHKSZ; FNii, CUHKSZ), Xiaohang Zhan (Huawei Technologies Co., Ltd.), and Xiaoguang Han (SSE, CUHKSZ; FNii, CUHKSZ)	
Transfer4D: A Framework for Frugal Motion Capture and Deformation Transfer	12836
CLOTH4D: A Dataset for Clothed Human Reconstruction	12847
Vid2Avatar: 3D Avatar Reconstruction From Videos in the Wild via Self-Supervised Scene Decomposition	12858
High-Fidelity 3D Human Digitization From Single 2K Resolution Images Sang-Hun Han (Gwangju Institute of Science and Technology (GIST)), Min-Gyu Park (Korea Electronics Technology Institute (KETI)), Ju Hong Yoon (Korea Electronics Technology Institute (KETI)), Ju-Mi Kang (Korea Electronics Technology Institute (KETI)), Young-Jae Park (Gwangju Institute of Science and Technology (GIST)), and Hae-Gon Jeon (Gwangju Institute of Science and Technology (GIST))	12869

Sampling Is Matter: Point-Guided 3D Human Mesh Reconstruction	2880
gSDF: Geometry-Driven Signed Distance Functions for 3D Hand-Object Reconstruction 12 Zerui Chen (PSL Research Univ., 75005 Paris, France), Shizhe Chen (PSL Research Univ., 75005 Paris, France), Cordelia Schmid (PSL Research Univ., 75005 Paris, France), and Ivan Laptev (PSL Research Univ., 75005 Paris, France)	2890
Human Body Shape Completion With Implicit Shape and Flow Learning	2901
ShapeClipper: Scalable 3D Shape Learning From Single-View Images via Geometric and CLIP-Based Consistency	2912
PC2: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D Reconstruction 12 Luke Melas-Kyriazi (Visual Geometry Group, Department of Engineering Science, University of Oxford), Christian Rupprecht (Visual Geometry Group, Department of Engineering Science, University of Oxford), and Andrea Vedaldi (Visual Geometry Group, Department of Engineering Science, University of Oxford)	2923
NIKI: Neural Inverse Kinematics With Invertible Neural Networks for 3D Human Pose and Shape Estimation	2933
ARCTIC: A Dataset for Dexterous Bimanual Hand-Object Manipulation	2943
ACR: Attention Collaboration-Based Regressor for Arbitrary Two-Hand Reconstruction 12 Zhengdi Yu (Tencent Al Lab; Durham University), Shaoli Huang (Tencent Al Lab), Chen Fang (Tencent Al Lab), Toby P. Breckon (Durham University), and Jue Wang (Tencent Al Lab)	2955

MIME: Human-Aware 3D Scene Generation	12965
CIMI4D: A Large Multimodal Climbing Motion Dataset Under Human-Scene Interactions 'Ming Yan (Xiamen University; Xiamen University; Xiamen University), Xin Wang (Xiamen University; Xiamen University), Yudi Dai (Xiamen University; Xiamen University; Xiamen University; Xiamen University; Xiamen University), Chenglu Wen (Xiamen University; Xiamen University), Lan Xu (ShanghaiTech University), Yuexin Ma (ShanghaiTech University), and Cheng Wang (Xiamen University; Xiamen University)	12977
Harmonious Feature Learning for Interactive Hand-Object Pose Estimation	12989
AssemblyHands: Towards Egocentric Activity Understanding via 3D Hand Pose Estimation . Takehiko Ohkawa (Meta Reality Labs; The University of Tokyo), Kun He (Meta Reality Labs), Fadime Sener (Meta Reality Labs), Tomas Hodan (Meta Reality Labs), Luan Tran (Meta Reality Labs), and Cem Keskin (Meta Reality Labs)	12999
A Characteristic Function-Based Method for Bottom-Up Human Pose Estimation	13009
Unified Pose Sequence Modeling	13019
Scene-Aware Egocentric 3D Human Pose Estimation Jian Wang (MPI Informatics; Saarland Informatics Campus), Diogo Luvizon (MPI Informatics; Saarland Informatics Campus), Weipeng Xu (Meta Reality Labs), Lingjie Liu (MPI Informatics; Saarland Informatics Campus), Kripasindhu Sarkar (Google), and Christian Theobalt (MPI Informatics; Saarland Informatics Campus)	13031
DiffPose: Toward More Reliable 3D Pose Estimation	13041

Objaverse: A Universe of Annotated 3D Objects Matt Deitke (PRIOR @ Allen Institute for Al; University of Washington, Seattle), Dustin Schwenk (PRIOR @ Allen Institute for Al), Jordi Salvador (PRIOR @ Allen Institute for Al), Luca Weihs (PRIOR @ Allen Institute for Al), Oscar Michel (PRIOR @ Allen Institute for Al), Eli VanderBilt (PRIOR @ Allen Institute for Al), Ludwig Schmidt (University of Washington, Seattle), Kiana Ehsani (PRIOR @ Allen Institute for Al), Aniruddha Kembhavi (PRIOR @ Allen Institute for Al; University of Washington, Seattle), and Ali Farhadi (University of Washington, Seattle)	13142
Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild	. 13154
HelixSurf: A Robust and Efficient Neural Implicit Surface Learning of Indoor Scenes With Iterative Intertwined Regularization	. 13165
Visual Localization Using Imperfect 3D Models From the Internet	13175
PRISE: Demystifying Deep Lucas-Kanade With Strongly Star-Convex Constraints for Multime Image Alignment	
Scalable, Detailed and Mask-Free Universal Photometric Stereo	. 13198
Enhanced Stable View Synthesis	. 13208
End-to-End Vectorized HD-Map Construction With Piecewise Bezier Curve	13218
DynamicStereo: Consistent Dynamic Depth From Stereo Videos Nikita Karaev (Meta Al; Visual Geometry Group, University of Oxford), Ignacio Rocco (Meta Al), Benjamin Graham (Meta Al), Natalia Neverova (Meta Al), Andrea Vedaldi (Meta Al), and Christian Rupprecht (Visual Geometry Group, University of Oxford)	13229
Shakes on a Plane: Unsupervised Depth Estimation From Unstabilized Photography	13240

Gated Stereo: Joint Depth Estimation From Gated and Wide-Baseline Active Stereo Cues Stefanie Walz (Mercedes-Benz), Mario Bijelic (Princeton University), Andrea Ramazzina (Mercedes-Benz), Amanpreet Walia (Algolux), Fahim Mannan (Algolux), and Felix Heide (Mercedes-Benz)	13252
K3DN: Disparity-Aware Kernel Estimation for Dual-Pixel Defocus Deblurring	13263
HRDFuse: Monocular 360° Depth Estimation by Collaboratively Learning Holistic-With-Regional Depth Distributions Hao Ai (AI Thrust, HKUST(GZ)), Zidong Cao (ARC Lab, Tencent PCG), Yan-Pei Cao (ARC Lab, Tencent PCG), Ying Shan (ARC Lab, Tencent PCG), and Lin Wang (AI Thrust, HKUST(GZ); Dept. of CSE, HKUST)	13273
OSRT: Omnidirectional Image Super-Resolution With Distortion-Aware Transformer	13283
Co-SLAM: Joint Coordinate and Sparse Parametric Encodings for Neural Real-Time SLAM Hengyi Wang (University College London), Jingwen Wang (University College London), and Lourdes Agapito (University College London)	13293
Few-Shot Non-Line-of-Sight Imaging With Signal-Surface Collaborative Regularization Xintong Liu (Tsinghua University), Jianyu Wang (Tsinghua University), Leping Xiao (Tsinghua University), Xing Fu (Tsinghua University), Lingyun Qiu (Tsinghua University; Yanqi Lake Beijing Institute of Mathematical Sciences and Applications), and Zuoqiang Shi (Tsinghua University; Yanqi Lake Beijing Institute of Mathematical Sciences and Applications)	13303
NLOST: Non-Line-of-Sight Imaging With Transformer Yue Li (University of Science and Technology of China), Jiayong Peng (University of Science and Technology of China), Juntian Ye (University of Science and Technology of China), Yueyi Zhang (University of Science and Technology of China), Feihu Xu (University of Science and Technology of China), and Zhiwei Xiong (University of Science and Technology of China)	13313
Listening Human Behavior: 3D Human Pose Estimation With Acoustic Signals	13323

Towards Domain Generalization for Multi-View 3D Object Detection in Bird-Eye-View	3333
X3KD: Knowledge Distillation Across Modalities, Tasks and Stages for Multi-Camera 3D Object Detection	3343
Phase-Shifting Coder: Predicting Accurate Orientation in Oriented Object Detection	3354
Learned Two-Plane Perspective Prior Based Image Resampling for Efficient Object Detection . 13364 Anurag Ghosh (Carnegie Mellon University), N. Dinesh Reddy (Carnegie Mellon University), Christoph Mertz (Carnegie Mellon University), and Srinivasa G. Narasimhan (Carnegie Mellon University)	
Resource-Efficient RGBD Aerial Tracking	3374
Toward RAW Object Detection: A New Benchmark and a New Model	3384
Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object Detection	3394
LiDAR-in-the-Loop Hyperparameter Optimization	3404

Learning and Aggregating Lane Graphs for Urban Automated Driving	5
Center Focusing Network for Real-Time LiDAR Panoptic Segmentation	5
Adaptive Sparse Convolutional Networks With Global Context Enhancement for Faster Object Detection on Drone Images	5
MV-JAR: Masked Voxel Jigsaw and Reconstruction for LiDAR-Based Self-Supervised Pre-Training	5
ALSO: Automotive Lidar Self-Supervision by Occupancy Estimation	5
Unsupervised Intrinsic Image Decomposition With LiDAR Intensity	6

PVT-SSD: Single-Stage 3D Object Detector With Point-Voxel Transformer	13476
LargeKernel3D: Scaling Up Kernels in 3D Sparse CNNs	13488
WeatherStream: Light Transport Automation of Single Image Deweathering	13499
Mask3D: Pre-Training 2D Vision Transformers by Learning Masked 3D Priors	13510
DSVT: Dynamic Sparse Voxel Transformer With Rotated Sets Haiyang Wang (Peking University), Chen Shi (Peking University), Shaoshuai Shi (Max Planck Institute for Informatics, Saarland Informatics Campus), Meng Lei (Peking University; Zhejiang Lab), Sen Wang (Huawei), Di He (Peking University), Bernt Schiele (Max Planck Institute for Informatics, Saarland Informatics Campus), and Liwei Wang (Peking University)	13520
IterativePFN: True Iterative Point Cloud Filtering Dasith de Silva Edirimuni (Deakin University), Xuequan Lu (Deakin University), Zhiwen Shao (Deakin University; China University of Mining and Technology), Gang Li (Deakin University), Antonio Robles-Kelly (Deakin University; Defense Science and Technology Group, Australia), and Ying He (Nanyang Technological University)	13530
itKD: Interchange Transfer-Based Knowledge Distillation for 3D Object Detection	13540
ISBNet: A 3D Point Cloud Instance Segmentation Network With Instance-Aware Sampli Box-Aware Dynamic Convolution	

Symmetric Shape-Preserving Autoencoder for Unsupervised Real Scene Point Cloud Completion 13560
Changfeng Ma (Nanjing University, China), Yinuo Chen (Nanjing University, China), Pengxiao Guo (Nanjing University, China), Jie Guo (Nanjing University, China), Chongjun Wang (Nanjing University, China), and Yanwen Guo (Nanjing University, China)
GeoMAE: Masked Geometric Target Prediction for Self-Supervised Point Cloud Pre-Training
AnchorFormer: Point Cloud Completion From Discriminative Nodes
SHS-Net: Learning Signed Hyper Surfaces for Oriented Normal Estimation of Point Clouds . 1359 Qing Li (Tsinghua University, China), Huifang Feng (Xiamen University, China), Kanle Shi (Kuaishou Technology, China), Yue Gao (Tsinghua University, China), Yi Fang (New York University Abu Dhabi, UAE), Yu-Shen Liu (Tsinghua University, China), and Zhizhong Han (Wayne State University, USA)
NerVE: Neural Volumetric Edges for Parametric Curve Extraction From Point Cloud
Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration
Local Connectivity-Based Density Estimation for Face Clustering

Br	idging Search Region Interaction With Template for RGB-T Tracking	13630
	(Institute of Information Engineering, Chinese Academy of Sciences; University of Chinese Academy of Sciences), and Si Liu (Beihang University; Beihang University)	
Qι	uantum Multi-Model Fitting	13640
Gε	eneralizable Local Feature Pre-Training for Deformable Shape Analysis Souhaib Attaiki (LIX, École Polytechnique, IP Paris), Lei Li (LIX, École Polytechnique, IP Paris), and Maks Ovsjanikov (LIX, École Polytechnique, IP Paris)	13650
Sir	milarity Metric Learning for RGB-Infrared Group Re-Identification	13662
Ur	nsupervised Deep Asymmetric Stereo Matching With Spatially-Adaptive Self-Similarity Taeyong Song (Hyundai Motor Company R&D Division), Sunok Kim (Korea Aerospace University), and Kwanghoon Sohn (Yonsei University; Korea Institute of Science and Technology (KIST))	13672
Sli	ced Optimal Partial Transport	13681
	stractFlow: Improving Optical Flow Estimation via Realistic Distractions and eudo-Labeling	13691
Ва	yesian Posterior Approximation With Stochastic Ensembles Oleksandr Balabanov (Stockholm University), Bernhard Mehlig (University of Gothenburg), and Hampus Linander (University of Gothenburg; Chalmers University of Technology)	13701

V2V4Real: A Real-World Large-Scale Dataset for Vehicle-to-Vehicle Cooperative Perception . 137 Runsheng Xu (University of California, Los Angeles), Xin Xia (University of California, Los Angeles), Jinlong Li (Cleveland State University), Hanzhao Li (University of California, Los Angeles), Shuo Zhang (University of California, Los Angeles), Zhengzhong Tu (University of Texas at Austin), Zonglin Meng (University of California, Los Angeles), Hao Xiang (University of California, Los Angeles), Xiaoyu Dong (Northwestern University), Rui Song (Technical University of Munich; Fraunhofer Institute), Hongkai Yu (Cleveland State University), Bolei Zhou (University of California, Los Angeles), and Jiaqi Ma (University of California, Los Angeles)	12
ReasonNet: End-to-End Driving With Temporal and Global Reasoning	23
Open-World Multi-Task Control Through Goal-Aware Representation Learning and Adaptive Horizon Prediction	34
FJMP: Factorized Joint Multi-Agent Motion Prediction Over Learned Directed Acyclic Interaction Graphs	45
Trace and Pace: Controllable Pedestrian Animation via Guided Trajectory Diffusion	56
Galactic: Scaling End-to-End Reinforcement Learning for Rearrangement at 100k Steps-per-Second	67
Affordances From Human Videos as a Versatile Representation for Robotics	78
Indiscernible Object Counting in Underwater Scenes	91

Tracking Through Containers and Occluders in the Wild	13802
Simple Cues Lead to a Strong Multi-Object Tracker	13813
An In-Depth Exploration of Person Re-Identification and Gait Recognition in Cloth-Changing Conditions	13824
SelfME: Self-Supervised Motion Learning for Micro-Expression Recognition	13834
LipFormer: High-Fidelity and Generalizable Talking Face Generation With a Pre-Learned Facial Codebook Jiayu Wang (Alibaba Group), Kang Zhao (Alibaba Group), Shiwei Zhang (Alibaba Group), Yingya Zhang (Alibaba Group), Yujun Shen (Ant Group), Deli Zhao (Alibaba Group), and Jingren Zhou (Alibaba Group)	13844
Real-Time Multi-Person Eyeblink Detection in the Wild for Untrimmed Video Wenzheng Zeng (Huazhong University of Science and Technology, Wuhan 430074, China), Yang Xiao (Huazhong University of Science and Technology, Wuhan 430074, China), Sicheng Wei (Huazhong University of Science and Technology, Wuhan 430074, China), Jinfang Gan (Huazhong University of Science and Technology, Wuhan 430074, China), Xintao Zhang (Huazhong University of Science and Technology, Wuhan 430074, China), Zhiguo Cao (Huazhong University of Science and Technology, Wuhan 430074, China), Zhiwen Fang (Southern Medical University, China; Technology and Research (A*STAR), Singapore), and Joey Tianyi Zhou (Technology and Research (A*STAR), Singapore; Technology and Research (A*STAR), Singapore)	13854
Skinned Motion Retargeting With Residual Perception of Motion Semantics & Geometry Jiaxu Zhang (Wuhan University), Junwu Weng (Tencent Al Lab), Di Kang (Tencent Al Lab), Fang Zhao (Tencent Al Lab), Shaoli Huang (Tencent Al Lab), Xuefei Zhe (Tencent Al Lab), Linchao Bao (Tencent Al Lab), Ying Shan (Tencent Al Lab), Jue Wang (Tencent Al Lab), and Zhigang Tu (Wuhan University)	13864

MoDi: Unconditional Motion Synthesis From Diverse Data
Recurrent Vision Transformers for Object Detection With Event Cameras
Continuous Intermediate Token Learning With Implicit Motion Manifold for Keyframe Based Motion Interpolation
EvShutter: Transforming Events for Unconstrained Rolling Shutter Correction
Multi Domain Learning for Motion Magnification
Learning Event Guided High Dynamic Range Video Reconstruction
Joint Video Multi-Frame Interpolation and Deblurring Under Unknown Exposure Time 13935 Wei Shang (Harbin Institute of Technology), Dongwei Ren (Harbin Institute of Technology), Yi Yang (Harbin Institute of Technology), Hongzhi Zhang (Harbin Institute of Technology), Kede Ma (City University of Hong Kong), and Wangmeng Zuo (Harbin Institute of Technology; Peng Cheng Laboratory, Shenzhen)
FeatER: An Efficient Network for Human Reconstruction via Feature Map-Based TransformER 13945
Ce Zheng (University of Central Florida), Matias Mendieta (University of Central Florida), Taojiannan Yang (University of Central Florida), Guo-Jun Qi (OPPO Seattle Research Center, USA; Westlake University), and Chen Chen (University of Central Florida)
MetaFusion: Infrared and Visible Image Fusion via Meta-Feature Embedding From Object Detection

Joint HDR Denoising and Fusion: A Real-World Mobile HDR Image Dataset	13966
Visibility Constrained Wide-Band Illumination Spectrum Design for Seeing-in-the-Dark Muyao Niu (The University of Tokyo), Zhuoxiao Li (The University of Tokyo), Zhihang Zhong (The University of Tokyo), and Yinqiang Zheng (The University of Tokyo)	13976
Self-Supervised Blind Motion Deblurring With Deep Expectation Maximization	13986
Structure Aggregation for Cross-Spectral Stereo Image Guided Denoising	13997
Rawgment: Noise-Accounted RAW Augmentation Enables Recognition in a Wide Variety of Environments Masakazu Yoshimura (Sony Group Corporation), Junji Otsuka (Sony Group Corporation), Atsushi Irie (Sony Group Corporation), and Takeshi Ohashi (Sony Group Corporation)	
Zero-Shot Noise2Noise: Efficient Image Denoising Without Any Data	. 14018
Real-Time Controllable Denoising for Image and Video	14028
Probability-Based Global Cross-Modal Upsampling for Pansharpening	14039
ShadowDiffusion: When Degradation Prior Meets Diffusion Model for Shadow Removal Lanqing Guo (Nanyang Technological University, Singapore), Chong Wang (Nanyang Technological University, Singapore), Wenhan Yang (Peng Cheng Laboratory, China), Siyu Huang (Harvard University, USA), Yufei Wang (Nanyang Technological University, Singapore), Hanspeter Pfister (Harvard University, USA), and Bihan Wen (Nanyang Technological University, Singapore)	14049

Visual Recognition-Driven Image Restoration for Multiple Degradation With Intrinsic Semantics Recovery	159
Blind Image Quality Assessment via Vision-Language Correspondence: A Multitask Learning Perspective	171
Human Guided Ground-Truth Generation for Realistic Image Super-Resolution	182
Real-Time 6K Image Rescaling With Rate-Distortion Optimization	192
Equivalent Transformation and Dual Stream Network Construction for Mobile Image Super-Resolution	02
Ultrahigh Resolution Image/Video Matting With Spatio-Temporal Sparsity	12
Comprehensive and Delicate: An Efficient Transformer for Image Restoration	22
PHA: Patch-Wise High-Frequency Augmentation for Transformer-Based Person Re-Identification 14133 Guiwei Zhang (Beihang University), Yongfei Zhang (Beihang University; Pengcheng Laboratory), Tianyu Zhang (Beihang University), Bo Li (Beihang University), and Shiliang Pu (Hikvision Research Institute)	n

PyramidFlow: High-Resolution Defect Contrastive Localization Using Pyramid Normalizing Flow	14143
Jiarui Lei (Zhejiang University; ZJU-Hangzhou Global Scientific and Technological Innovation Center, China), Xiaobo Hu (Zhejiang University; ZJU-Hangzhou Global Scientific and Technological Innovation Center, China), Yue Wang (Zhejiang University; ZJU-Hangzhou Global Scientific and Technological Innovation Center, China), and Dong Liu (Zhejiang University; ZJU-Hangzhou Global Scientific and Technological Innovation Center, China; Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, China; Jiaxing Research Institute Zhejiang University)	
Neural Fourier Filter Bank	14153
Restoration of Hand-Drawn Architectural Drawings Using Latent Space Mapping With Degradation Generator Nakkwan Choi (Dept. of Electrical Engineering, Ulsan National Institute of Science and Technology, Korea), Seungjae Lee (Electronics and Telecommunications Research Institute, Korea), Yongsik Lee (Electronics and Telecommunications Research Institute, Korea), and Seungjoon Yang (Dept. of Electrical Engineering, Ulsan National Institute of Science and Technology, Korea)	14164
Neural Preset for Color Style Transfer Zhanghan Ke (City University of Hong Kong), Yuhao Liu (City University of Hong Kong), Lei Zhu (City University of Hong Kong), Nanxuan Zhao (Adobe Research), and Rynson W.H. Lau (City University of Hong Kong)	14173
NÜWA-LIP: Language-Guided Image Inpainting With Defect-Free VQGAN	14183
DualVector: Unsupervised Vector Font Synthesis With Dual-Part Representation	14193
DATID-3D: Diversity-Preserved Domain Adaptation Using Text-to-Image Diffusion for 3D Generative Model	14203
GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis	14214

Fix	x the Noise: Disentangling Source Feature for Controllable Domain Translation	14224
Co	onditional Text Image Generation With Diffusion Models Yuanzhi Zhu (Alibaba DAMO Academy, China), Zhaohai Li (Alibaba DAMO Academy, China), Tianwei Wang (Alibaba DAMO Academy, China), Mengchao He (Alibaba DAMO Academy, China), and Cong Yao (Alibaba DAMO Academy, China)	14235
Re	eCo: Region-Controlled Text-to-Image Generation Zhengyuan Yang (Microsoft), Jianfeng Wang (Microsoft), Zhe Gan (Microsoft), Linjie Li (Microsoft), Kevin Lin (Microsoft), Chenfei Wu (Microsoft), Nan Duan (Microsoft), Zicheng Liu (Microsoft), Ce Liu (Microsoft), Michael Zeng (Microsoft), and Lijuan Wang (Microsoft)	14246
Fr	reestyle Layout-to-Image Synthesis Han Xue (Shanghai Jiao Tong University; Singapore Management University), Zhiwu Huang (Singapore Management University; University of Southampton), Qianru Sun (Singapore Management University), Li Song (Shanghai Jiao Tong University; Shanghai Jiao Tong University), and Wenjun Zhang (Shanghai Jiao Tong University)	14256
	pecialist Diffusion: Plug-and-Play Sample-Efficient Fine-Tuning of Text-to-Image iffusion Models To Learn Any Unseen Style	14267
To	oward Verifiable and Reproducible Human Evaluation for Text-to-Image Generation Mayu Otani (CyberAgent, Inc.), Riku Togashi (CyberAgent, Inc.), Yu Sawai (CyberAgent, Inc.), Ryosuke Ishigami (CyberAgent, Inc.), Yuta Nakashima (Osaka University), Esa Rahtu (Tampere University), Janne Heikkilä (University of Oulu), and Shin'ichi Satoh (CyberAgent, Inc.)	14277
To	owards Flexible Multi-Modal Document Models Naoto Inoue (CyberAgent, Japan), Kotaro Kikuchi (CyberAgent, Japan), Edgar Simo-Serra (Waseda University, Japan), Mayu Otani (CyberAgent, Japan), and Kota Yamaguchi (CyberAgent, Japan)	14287
O	n Distillation of Guided Diffusion Models Chenlin Meng (Stanford University), Robin Rombach (Stability AI & LMU Munich), Ruiqi Gao (Google Research, Brain Team), Diederik Kingma (Google Research, Brain Team), Stefano Ermon (Stanford University), Jonathan Ho (Google Research, Brain Team), and Tim Salimans (Google Research, Brain Team)	14297
Di	imensionality-Varying Diffusion Process Han Zhang (Shanghai Jiao Tong University; Alibaba Group), Ruili Feng (University of Science and Technology of China; Alibaba Group), Zhantao Yang (Shanghai Jiao Tong University; Alibaba Group), Lianghua Huang (Alibaba Group), Yu Liu (Alibaba Group), Yifei Zhang (Shanghai Jiao Tong University; Alibaba Group), Yujun Shen (Ant Group), Deli Zhao (Alibaba Group), Jingren Zhou (Alibaba Group), and Fan Cheng (Shanghai Jiao Tong University)	14307

Shape-Aware Text-Driven Layered Video Editing	317
Rethinking Image Super Resolution From Long-Tailed Distribution Learning Perspective 143 Yuanbiao Gou (Sichuan University, China), Peng Hu (Sichuan University, China), Jiancheng Lv (Sichuan University, China), Hongyuan Zhu (Institute for Infocomm Research (I2R), A*STAR, Singapore), and Xi Peng (Sichuan University, China)	327
End-to-End Video Matting With Trimap Propagation	337
Context-Based Trit-Plane Coding for Progressive Image Compression	348
Complexity-Guided Slimmable Decoder for Efficient Deep Video Compression	358
Efficient Hierarchical Entropy Model for Learned Point Cloud Compression	368
NIRVANA: Neural Implicit Representations of Videos With Adaptive Networks and Autoregressive Patch-Wise Modeling	378
Learned Image Compression With Mixed Transformer-CNN Architectures	388
Memory-Friendly Scalable Super-Resolution via Rewinding Lottery Ticket Hypothesis 143 Jin Lin (Xiamen University, China), Xiaotong Luo (Xiamen University, China), Ming Hong (Xiamen University, China), Yanyun Qu (Xiamen University, China), Yuan Xie (East China Normal University, China), and Zongze Wu (Shenzhen University, China)	398

nternimage: Exploring Large-Scale vision Foundation Models with Deformable Convolutions . 4408	••••
Wenhai Wang (Shanghai Al Laboratory), Jifeng Dai (Tsinghua University; Shanghai Al Laboratory), Zhe Chen (Nanjing University; Shanghai Al Laboratory), Zhenhang Huang (Shanghai Al Laboratory), Zhiqi Li (Nanjing University; Shanghai Al Laboratory), Xizhou Zhu (SenseTime Research), Xiaowei Hu (Shanghai Al Laboratory), Tong Lu (Nanjing University), Lewei Lu (SenseTime Research), Hongsheng Li (The Chinese University of Hong Kong), Xiaogang Wang (SenseTime Research; The Chinese University of Hong Kong), and Yu Qiao (Shanghai Al Laboratory)	
EfficientViT: Memory Efficient Vision Transformer With Cascaded Group Attention	420
Castling-ViT: Compressing Self-Attention via Switching Towards Linear-Angular Attention at Vision Transformer Inference	431
RIFormer: Keep Your Vision Backbone Effective but Removing Token Mixer	443
High-Resolution Image Reconstruction With Latent Diffusion Models From Human Brain Activity	453
Non-Contrastive Unsupervised Learning of Physiological Signals From Video	464
Revealing the Dark Secrets of Masked Image Modeling	475
mproving Visual Representation Learning Through Perceptual Understanding	486

FlexiViT: One Model for All Patch Sizes	6
AdaMAE: Adaptive Masking for Efficient Spatiotemporal Learning With Masked Autoencoders 14507 Wele Gedara Chaminda Bandara (Johns Hopkins University), Naman Patel (Zippin), Ali Gholami (Zippin), Mehdi Nikkhah (Zippin), Motilal Agrawal (Zippin), and Vishal M. Patel (Johns Hopkins University)	••
SimpSON: Simplifying Photo Cleanup With Single-Click Distracting Object Segmentation Network	8
Visual Dependency Transformers: Dependency Tree Emerges From Reversed Attention 1452 Mingyu Ding (The University of Hong Kong; MIT), Yikang Shen (MIT-IBM Watson AI Lab), Lijie Fan (MIT), Zhenfang Chen (MIT-IBM Watson AI Lab), Zitian Chen (UMass Amherst), Ping Luo (The University of Hong Kong), Joshua B. Tenenbaum (MIT), and Chuang Gan (MIT-IBM Watson AI Lab; UMass Amherst)	8
Iterative Next Boundary Detection for Instance Segmentation of Tree Rings in Microscopy Images of Shrub Cross Sections	0
VideoMAE V2: Scaling Video Masked Autoencoders With Dual Masking	9

DropMAE: Masked Autoencoders With Spatial-Attention Dropout for Tracking Tasks	51
SeqTrack: Sequence to Sequence Learning for Visual Object Tracking	'2
Bootstrapping Objectness From Videos by Relaxed Common Fate and Visual Grouping 1458 Long Lian (UC Berkeley), Zhirong Wu (Microsoft Research Asia), and Stella X. Yu (UC Berkeley; University of Michigan)	32
Video Event Restoration Based on Keyframes for Video Anomaly Detection	12
Streaming Video Model	12
LSTFE-Net:Long Short-Term Feature Enhancement Network for Video Small Object Detection 14613 Jinsheng Xiao (Wuhan University, China), Yuanxu Wu (Wuhan University, China), Yunhua Chen (Guangdong University of Technology, China), Shurui Wang (Wuhan University, China), Zhongyuan Wang (Wuhan University, China), and Jiayi Ma (Wuhan University, China)	•••
A Generalized Framework for Video Instance Segmentation	:3
Referring Multi-Object Tracking	13
Source-Free Video Domain Adaptation With Spatial-Temporal-Historical Consistency Learning 14643 Kai Li (NEC Labs, America), Deep Patel (NEC Labs, America), Erik Kruus (NEC Labs, America), and Martin Rengiang Min (NEC Labs, America)	• •

Seeing What You Said: Talking Face Generation Guided by a Lip Reading Expert Jiadong Wang (National University of Singapore), Xinyuan Qian (University of Science and Technology Beijing), Malu Zhang (University of Electronic Science and Technology of China), Robby T. Tan (National University of Singapore), and Haizhou Li (The Chinese University of Hong Kong, Shenzhen, China; National University of Singapore)	14653
Egocentric Auditory Attention Localization in Conversations	14663
iQuery: Instruments As Queries for Audio-Visual Sound Separation	14675
Learning To Dub Movies via Hierarchical Prosody Models	14687
A Large-Scale Robustness Analysis of Video Action Recognition Models Madeline Chantry Schiappa (CRCV, University of Central Florida), Naman Biyani (IIT Kanpur), Prudvi Kamtam (CRCV, University of Central Florida), Shruti Vyas (CRCV, University of Central Florida), Hamid Palangi (Microsoft Research), Vibhav Vineet (Microsoft Research), and Yogesh S. Rawat (CRCV, University of Central Florida)	14698
The Wisdom of Crowds: Temporal Progressive Attention for Early Action Prediction Alexandros Stergiou (Vrije University of Brussels, Belgium; imec, Belgium) and Dima Damen (University of Bristol, UK)	14709
STMixer: A One-Stage Sparse Action Detector	14720
Generating Human Motion From Textual Descriptions With Discrete Representations . Jianrong Zhang (Jilin University; Tencent AI Lab), Yangsong Zhang (Shanghai Jiao Tong University; Tencent AI Lab), Xiaodong Cun (Tencent AI Lab), Yong Zhang (Tencent AI Lab), Hongwei Zhao (Jilin University), Hongtao Lu (Shanghai Jiao Tong University), Xi Shen (Tencent AI Lab), and Ying Shan (Tencent AI Lab)	14730

Cascade Evidential Learning for Open-World Weakly-Supervised Temporal Action Localization 14741
Mengyuan Chen (Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences (UCAS)), Junyu Gao (Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences (UCAS)), and Changsheng Xu (Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences (UCAS); Peng Cheng Laboratory, China)
Distilling Vision-Language Pre-Training To Collaborate With Weakly-Supervised Temporal Action Localization
Simultaneously Short- and Long-Term Temporal Modeling for Semi-Supervised Video Semantic Segmentation
MIST: Multi-Modal Iterative Spatial-Temporal Transformer for Long-Form Video Question Answering
Language-Guided Music Recommendation for Video via Prompt Analogies
Text-Visual Prompting for Efficient 2D Temporal Video Grounding
CelebV-Text: A Large-Scale Facial Text-Video Dataset
CNVid-3.5M: Build, Filter, and Pre-Train the Large-Scale Public Chinese Video-Text Dataset 14815 Tian Gan (Shandong University), Qing Wang (Ant Group), Xingning Dong (Shandong University), Xiangyuan Ren (Ant Group), Liqiang Nie (Harbin Institute of Technology (Shenzhen)), and Qingpei Guo (Ant Group)

Learning Procedure-Aware Video Representation From Instructional Videos and Their Narrations	14825
PDPP:Projected Diffusion for Procedure Planning in Instructional Videos	14836
Towards Fast Adaptation of Pretrained Contrastive Models for Multi-Channel Video-Lang Retrieval	guage 14846
Clover: Towards a Unified Video-Language Alignment and Fusion Model	14856
Align and Attend: Multimodal Summarization With Dual Contrastive Losses	14867
Learning Situation Hyper-Graphs for Video Question Answering	14879
Natural Language-Assisted Sign Language Recognition Ronglai Zuo (The Hong Kong University of Science and Technology), Fangyun Wei (Microsoft Research Asia), and Brian Mak (The Hong Kong University of Science and Technology)	14890
SkyEye: Self-Supervised Bird's-Eye-View Semantic Mapping Using Monocular Frontal View Images	
Adaptive Zone-Aware Hierarchical Planner for Vision-Language Navigation	14911

Iterative Vision-and-Language Navigation	14921
EXCALIBUR: Encouraging and Evaluating Embodied Exploration Hao Zhu (Carnegie Mellon University), Raghav Kapoor (Carnegie Mellon University), So Yeon Min (Carnegie Mellon University), Winson Han (Allen Institute for Artificial Intelligence), Jiatai Li (Carnegie Mellon University), Kaiwen Geng (Carnegie Mellon University), Graham Neubig (Carnegie Mellon University), Yonatan Bisk (Carnegie Mellon University), Aniruddha Kembhavi (Allen Institute for Artificial Intelligence), and Luca Weihs (Allen Institute for Artificial Intelligence)	14931
Multimodal Prompting With Missing Modalities for Visual Recognition	14943
Visual Programming: Compositional Visual Reasoning Without Training	14953
Super-CLEVR: A Virtual Benchmark To Diagnose Domain Robustness in Visual Reasoning Zhuowan Li (Johns Hopkins University), Xingrui Wang (University of Southern California), Elias Stengel-Eskin (Johns Hopkins University), Adam Kortylewski (Max Planck Institute for Informatics; University of Freiburg), Wufei Ma (Johns Hopkins University), Benjamin Van Durme (Johns Hopkins University), and Alan L. Yuille (Johns Hopkins University)	14963
Prompting Large Language Models With Answer Heuristics for Knowledge-Based Visual Que Answering	estion 14974
À-La-Carte Prompt Tuning (APT): Combining Distinct Data via Composable Prompting Benjamin Bowman (AWS AI Labs; UCLA), Alessandro Achille (AWS AI Labs), Luca Zancato (AWS AI Labs), Matthew Trager (AWS AI Labs), Pramuditha Perera (AWS AI Labs), Giovanni Paolini (AWS AI Labs), and Stefano Soatto (AWS AI Labs)	14984
ConStruct-VL: Data-Free Continual Structured VL Concepts Learning James Seale Smith (MIT-IBM Watson AI Lab; Georgia Institute of Technology), Paola Cascante-Bonilla (MIT-IBM Watson AI Lab; Rice University), Assaf Arbelle (IBM Research), Donghyun Kim (MIT-IBM Watson AI Lab; IBM Research), Rameswar Panda (MIT-IBM Watson AI Lab; IBM Research), David Cox (MIT-IBM Watson AI Lab; IBM Research), Diyi Yang (Stanford University), Zsolt Kira (Georgia Institute of Technology), Rogerio Feris (MIT-IBM Watson AI Lab; IBM Research), and Leonid Karlinsky (MIT-IBM Watson AI Lab; IBM Research)	14994

	How To Specialize Large Vision-Language Models to Data-Scarce VQA Tasks? A: Self-Train Unlabeled Images!	15005
	Zaid Khan (Northeastern University), Vijay Kumar BG (NEC Labs America), Samuel Schulter (NEC Labs America), Xiang Yu (Amazon), Yun Fu (Northeastern University), and Manmohan Chandraker (NEC Labs America; UC San Diego)	
Lea	Shruthi Bannur (Microsoft Health Futures), Stephanie Hyland (Microsoft Health Futures), Stephanie Hyland (Microsoft Health Futures), Qianchu Liu (Microsoft Health Futures), Fernando Pérez-García (Microsoft Health Futures), Maximilian Ilse (Microsoft Health Futures), Daniel C. Castro (Microsoft Health Futures), Benedikt Boecking (Microsoft Health Futures), Harshita Sharma (Microsoft Health Futures), Kenza Bouzid (Microsoft Health Futures), Anja Thieme (Microsoft Health Futures), Anton Schwaighofer (Microsoft Health Futures), Maria Wetscherek (Microsoft Health Futures), Matthew P. Lungren (Microsoft Health Futures), Aditya Nori (Microsoft Health Futures), Javier Alvarez-Valle (Microsoft Health Futures), and Ozan Oktay (Microsoft Health Futures)	15016
	shionSAP: Symbols and Attributes Prompt for Fine-Grained Fashion Vision-Language 2-Training	15028
Ad	vancing Visual Grounding With Scene Knowledge: Benchmark and Method	15039
	yond Appearance: A Semantic Controllable Self-Supervised Learning Framework for man-Centric Visual Tasks	15050
OC	TET: Object-Aware Counterfactual Explanations	15062
Lo	cal-Guided Global: Paired Similarity Representation for Visual Reinforcement Learning 1 Hyesong Choi (Ewha W. University), Hunsang Lee (Hyundai Motor Company), Wonil Song (Yonsei University), Sangryul Jeon (University of Michigan), Kwanghoon Sohn (Yonsei University), and Dongbo Min (Ewha W. University)	15072

What Can Human Sketches Do for Object Detection?	083
Revisiting Multimodal Representation in Contrastive Learning: From Patch and Token Embeddings to Finite Discrete Tokens	095
Correlational Image Modeling for Self-Supervised Visual Pre-Training	105
Generalized Decoding for Pixel, Image, and Language	116
Towards Modality-Agnostic Person Re-Identification With Descriptive Query	128
M6Doc: A Large-Scale Multi-Format, Multi-Type, Multi-Layout, Multi-Language, Multi-Annotation Category Dataset for Modern Document Layout Analysis	138
Learning Customized Visual Models With Retrieval-Augmented Knowledge	148

Learning Semantic Relationship Among Instances for Image-Text Matching	5159
I2MVFormer: Large Language Model Generated Multi-View Document Supervision for Zero-SI Image Classification	
ImageBind: One Embedding Space To Bind Them All	5180
Model-Agnostic Gender Debiased Image Captioning	5191
Boundary-Aware Backward-Compatible Representation via Adversarial Learning in Image Retrieval	5201
Prompt, Generate, Then Cache: Cascade of Foundation Models Makes Strong Few-Shot Learn 15211 Renrui Zhang (CUHK MMLab; Shanghai Artificial Intelligence Laboratory), Xiangfei Hu (Shanghai Artificial Intelligence Laboratory), Bohao Li (Shanghai Artificial Intelligence Laboratory), Siyuan Huang (Shanghai Artificial Intelligence Laboratory), Hanqiu Deng (Shanghai Artificial Intelligence Laboratory), Yu Qiao (Shanghai Artificial Intelligence Laboratory), Peng Gao (Shenzhen Institute of Advanced Technology, Chinese Academy of Science; Shanghai Artificial Intelligence Laboratory), and Hongsheng Li (CUHK MMLab; CPII under InnoHK)	iers .
Towards Unified Scene Text Spotting Based on Sequence Generation	5223
CapDet: Unifying Dense Captioning and Open-World Detection Pretraining	5233

CLIP2: Contrastive Language-Image-Point Pretraining From Real-World Point Cloud Data 15 Yihan Zeng (Huawei Noah's Ark Lab), Chenhan Jiang (Hong Kong University of Science and Technology), Jiageng Mao (The Chinese University of Hong Kong), Jianhua Han (Huawei Noah's Ark Lab), Chaoqiang Ye (Huawei Noah's Ark Lab), Qingqiu Huang (Huawei Noah's Ark Lab), Dit-Yan Yeung (Hong Kong University of Science and Technology), Zhen Yang (Huawei Noah's Ark Lab), Xiaodan Liang (Sun Yat-san University), and Hang Xu (Huawei Noah's Ark Lab)	5244
Aligning Bag of Regions for Open-Vocabulary Object Detection	;254
Visual Recognition by Request	5265
Category Query Learning for Human-Object Interaction Classification	5275
Self-Supervised Implicit Glyph Attention for Text Recognition	5285
Enlarging Instance-Specific and Class-Specific Information for Open-Set Action Recognition. 15 Jun Cen (The Hong Kong University of Science and Technology; Alibaba Group), Shiwei Zhang (Alibaba Group), Xiang Wang (Huazhong University of Science and Technology), Yixuan Pei (Xi'an Jiaotong University), Zhiwu Qing (Huazhong University of Science and Technology), Yingya Zhang (Alibaba Group), and Qifeng Chen (The Hong Kong University of Science and Technology)	;295
CLIP Is Also an Efficient Segmenter: A Text-Driven Approach for Weakly Supervised Semantic Segmentation	5305
Learning Attention As Disentangler for Compositional Zero-Shot Learning	315

Universal Instance Perception As Object Discovery and Retrieval Bin Yan (Dalian University of Technology, China), Yi Jiang (ByteDance), Jiannan Wu (The University of Hong Kong), Dong Wang (Dalian University of Technology, China), Ping Luo (The University of Hong Kong), Zehuan Yuan (ByteDance), and Huchuan Lu (Dalian University of Technology, China; Peng Cheng Laboratory)	15325
Progressive Semantic-Visual Mutual Adaption for Generalized Zero-Shot Learning	15337
DPF: Learning Dense Prediction Fields With Weak Supervision	15347
Modeling Entities As Semantic Points for Visual Information Extraction in the Wild	15358
GeoNet: Benchmarking Unsupervised Adaptation Across Geographies	15368
SegLoc: Learning Segmentation-Based Representations for Privacy-Preserving Visual Localization	15380
Towards Open-World Segmentation of Parts	15392

Pruning Parameterization With Bi-Level Optimization for Efficient Semantic Se the Edge	egmentation on 15402
Changdi Yang (Northeastern University), Pu Zhao (Northeastern University), Yanyu Li (Northeastern University), Wei Niu (College of William & Mary), Jiexiong Guan (College of William & Mary), Hao Tang (CVL, ETH Zurich), Minghai Qin (Northeastern University), Bin Ren (College of William & Mary), Xue Lin (College of William & Mary), and Yanzhi Wang (College of William & Mary)	
HGFormer: Hierarchical Grouping Transformer for Domain Generalized Sema 15413	ntic Segmentation
Jian Ding (Wuhan University, China; Wuhan University, China; Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), Nan Xue (Wuhan University, China), Gui-Song Xia (Wuhan University, China), Bernt Schiele (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), and Dengxin Dai (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany)	
Exemplar-FreeSOLO: Enhancing Unsupervised Instance Segmentation With Ex Taoseef Ishtiak (Carleton University, Canada), Qing En (Carleton University, Canada), and Yuhong Guo (Carleton University, Canada; CIFAR AI Chair, Canada)	kemplars 15424
Weakly-Supervised Domain Adaptive Semantic Segmentation With Prototypical Learning	al Contrastive 15434
Spatial-Temporal Concept Based Explanation of 3D ConvNets	15444
Sparsely Annotated Semantic Segmentation With Adaptive Gaussian Mixtures Linshan Wu (Hunan University), Zhun Zhong (University of Trento), Leyuan Fang (Hunan University), Xingxin He (Hunan University), Qiang Liu (Hunan University), Jiayi Ma (Wuhan University), and Hao Chen (Hong Kong University of Science and Technology)	5 15454
Fuzzy Positive Learning for Semi-Supervised Semantic Segmentation	15465

STAR Loss: Reducing Semantic Ambiguity in Facial Landmark Detection	15475
Boosting Low-Data Instance Segmentation by Unsupervised Pre-Training With Saliency F 15485	rompt
Hao Li (Northwestern Polytechnical University; Zhejiang Lab), Dingwen Zhang (Northwestern Polytechnical University), Nian Liu (Mohamed bin Zayed University of Artificial Intelligence), Lechao Cheng (Zhejiang Lab), Yalun Dai (University of Chinese Academy of Sciences), Chao Zhang (NetEase), Xinggang Wang (Huazhong University of Science and Technology), and Junwei Han (Northwestern Polytechnical University)	
Decoupled Semantic Prototypes Enable Learning From Diverse Annotation Types for Semi-Weakly Segmentation in Expert-Driven Domains	15495
The Treasure Beneath Multiple Annotations: An Uncertainty-Aware Edge Detector	15507
Knowledge Combination To Learn Rotated Detection Without Rotated Annotation	15518
Mapping Degeneration Meets Label Evolution: Learning Infrared Small Target Detection Single Point Supervision	
SAP-DETR: Bridging the Gap Between Salient Points and Queries-Based Transformer Det for Fast Model Convergency	

Zero-Shot Object Counting	548
SOOD: Towards Semi-Supervised Oriented Object Detection	558
Large-Scale Training Data Search for Object Re-Identification	568
Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection	579
Towards Effective Visual Representations for Partial-Label Learning	589
Bi3D: Bi-Domain Active Learning for Cross-Domain 3D Object Detection	599
Boosting Detection in Crowd Analysis via Underutilized Output Features	609
Self-Supervised Learning From Images With a Joint-Embedding Predictive Architecture 156 Mahmoud Assran (Meta AI (FAIR); McGill University; Mila, Quebec AI Institute), Quentin Duval (Meta AI (FAIR)), Ishan Misra (Meta AI (FAIR)), Piotr Bojanowski (Meta AI (FAIR)), Pascal Vincent (Meta AI (FAIR)), Michael Rabbat (Meta AI (FAIR); Mila, Quebec AI Institute), Yann LeCun (Meta AI (FAIR); New York University), and Nicolas Ballas (Meta AI (FAIR))	519
Weakly Supervised Segmentation With Point Annotations for Histopathology Images via Contrast-Based Variational Model	530

Do	DNet: Deep De-Overlapping Network for Cytology Instance Segmentation	15641
M	CF: Mutual Correction Framework for Semi-Supervised Medical Image Segmentation Yongchao Wang (Chongqing University of Posts and Telecommunications, China), Bin Xiao (Chongqing University of Posts and Telecommunications, China), Xiuli Bi (Chongqing University of Posts and Telecommunications, China), Weisheng Li (Chongqing University of Posts and Telecommunications, China), and Xinbo Gao (Chongqing University of Posts and Telecommunications, China)	15651
	stopathology Whole Slide Image Analysis With Heterogeneous Graph Representation Lead	rning.
	Tsai Hor Chan (The University of Hong Kong), Fernando Julio Cendra (The University of Hong Kong; TCL Corporate Research Hong Kong), Lan Ma (TCL Corporate Research Hong Kong), Guosheng Yin (The University of Hong Kong; Imperial College London), and Lequan Yu (The University of Hong Kong)	
	FAT: Boosting Semi-Supervised Medical Image Classification via Pseudo-Loss Estimation and Feature Adversarial Training	15671
Ca	ausally-Aware Intraoperative Imputation for Overall Survival Time Prediction	15681
Ва	Alanced Energy Regularization Loss for Out-of-Distribution Detection	15691
Blo	ock Selection Method for Using Feature Norm in Out-of-Distribution Detection	15701

Highly Confident Local Structure Based Consensus Graph Learning for Incomplete Multi-View Clustering	<i>ı</i> 5712
(Harbin Institute of Technology, China), Gehui Xu (Harbin Institute of Technology, China), Technology, China), Zhihao Wu (Harbin Institute of Technology, China), Chao Huang (Shenzhen Campus of Sun Yat-sen University, China), Lunke	
Fei (Guangdong University of Technology, China), and Yong Xu (Harbin Institute of Technology, China; Pengcheng Laboratory, China)	
Siamese DETR	5722
Towards Bridging the Performance Gaps of Joint Energy-Based Models	5732
Three Guidelines You Should Know for Universally Slimmable Self-Supervised Learning 15 Yun-Hao Cao (Nanjing University), Peiqin Sun (MEGVII Technology), and Shuchang Zhou (MEGVII Technology)	5742
Boosting Transductive Few-Shot Fine-Tuning With Margin-Based Uncertainty Weighting and Probability Regularization	5752
CHMATCH: Contrastive Hierarchical Matching and Robust Adaptive Threshold Boosted Semi-Supervised Learning	5762
MarginMatch: Improving Semi-Supervised Learning with Pseudo-Margins	5773
Ranking Regularization for Critical Rare Classes: Minimizing False Positives at a High True Positive Rate	5783
Learning Imbalanced Data With Vision Transformers	5793
No One Left Behind: Improving the Worst Categories in Long-Tailed Learning	5804

	15814
Fei Du (Yunnan University, China; Yunnan Key Laboratory of Software Engineering), Peng Yang (Yunnan University, China; Yunnan Key Laboratory of Software Engineering), Qi Jia (Yunnan University, China; Yunnan Key Laboratory of Software Engineering), Fengtao Nan (Yunnan University, China; Yunnan Key Laboratory of Software Engineering), Xiaoting Chen (Yunnan University, China; Yunnan Key Laboratory of Software Engineering), and Yun Yang (Yunnan University, China; Yunnan Key Laboratory of Software Engineering)	
Curvature-Balanced Feature Manifold Learning for Long-Tailed Classification	15824
DAA: A Delta Age AdaIN Operation for Age Estimation via Binary Code Transformer Ping Chen (Jiayu Intelligent Technology Co., Ltd.), Xingpeng Zhang (Southwest Petroleum University, Chengdu, China), Ye Li (Jiayu Intelligent Technology Co., Ltd.), Ju Tao (Jiayu Intelligent Technology Co., Ltd.), Bin Xiao (Southwest Petroleum University, Chengdu, China), Bing Wang (Southwest Petroleum University, Chengdu, China), and Zongjie Jiang (Jiayu Intelligent Technology Co., Ltd.)	15836
DLBD: A Self-Supervised Direct-Learned Binary Descriptor	15846
Progressive Open Space Expansion for Open-Set Model Attribution Tianyun Yang (Institute of Computing Technology, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Danding Wang (Institute of Computing Technology, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Fan Tang (Institute of Computing Technology, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Xinying Zhao (Institute of Computing Technology, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Juan Cao (Institute of Computing Technology, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), and Sheng Tang (Institute of Computing Technology, Chinese Academy of Sciences, China; Research Institute of Intelligent Computing, Zhejiang Lab, China)	15856
DiGA: Distil To Generalize and Then Adapt for Domain Adaptive Semantic Segmentation Fengyi Shen (Technical University of Munich; Huawei Munich Research Center; Peking University), Akhil Gurram (Huawei Munich Research Center), Ziyuan Liu (Huawei Munich Research Center), He Wang (Peking University), and Alois Knoll (Technical University of Munich)	ın 15866

Multi-Modal Learning With Missing Modality via Shared-Specific Feature Modelling Hu Wang (The University of Adelaide, Adelaide, Australia), Yuanhong Chen (The University of Adelaide, Adelaide, Australia), Congbo Ma (The University of Adelaide, Adelaide, Australia), Jodie Avery (The University of Adelaide, Adelaide, Australia), Louise Hull (The University of Adelaide, Adelaide, Australia), and Gustavo Carneiro (University of Surrey, UK)	15878
Towards All-in-One Pre-Training via Maximizing Multi-Modal Mutual Information	15888
Bi-Level Meta-Learning for Few-Shot Domain Generalization	15900
Train/Test-Time Adaptation With Retrieval	15911
Robust Test-Time Adaptation in Dynamic Scenarios	15922
Domain Expansion of Image Generators	15933
Switchable Representation Learning Framework With Self-Compatibility	15943

A New Benchmark: On the Utility of Synthetic Data With Blender for Bare Supervised Learning and Downstream Domain Adaptation	15954
Adapting Shortcut With Normalizing Flow: An Efficient Tuning Framework for Visual Recognition Yaoming Wang (Shanghai Jiao Tong University), Bowen Shi (Shanghai Jiao Tong University), Xiaopeng Zhang (Huawei Cloud), Jin Li (Shanghai Jiao Tong University), Yuchen Liu (Shanghai Jiao Tong University), Wenrui Dai (Shanghai Jiao Tong University), Chenglin Li (Shanghai Jiao Tong University), Hongkai Xiong (Shanghai Jiao Tong University), and Qi Tian (Huawei Cloud)	15965
Manipulating Transfer Learning for Property Inference	15975
Heterogeneous Continual Learning	15985
Generic-to-Specific Distillation of Masked Autoencoders Wei Huang (University of Chinese Academy of Sciences), Zhiliang Peng (University of Chinese Academy of Sciences), Li Dong (Microsoft Research), Furu Wei (Microsoft Research), Jianbin Jiao (University of Chinese Academy of Sciences), and Qixiang Ye (University of Chinese Academy of Sciences)	15996
Towards a Smaller Student: Capacity Dynamic Distillation for Efficient Image Retrieval Yi Xie (South China University of Technology), Huaidong Zhang (South China University of Technology), Xuemiao Xu (South China University of Technology; State Key Laboratory of Subtropical Building Science; Ministry of Education Key Laboratory of Big Data and Intelligent Robot; Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information), Jianqing Zhu (Huaqiao University), and Shengfeng He (Singapore Management University)	16006
CafeBoost: Causal Feature Boost To Eliminate Task-Induced Bias for Class Incremental Learning	16016

Bilateral Memory Consolidation for Continual Learning	16026
NICO++: Towards Better Benchmarking for Domain Generalization Xingxuan Zhang (Tsinghua University), Yue He (Tsinghua University), Renzhe Xu (Tsinghua University), Han Yu (Tsinghua University), Zheyan Shen (Tsinghua University), and Peng Cui (Tsinghua University)	16036
DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks . Samyak Jain (Vision and AI Lab, Indian Institute of Science, Bangalore), Sravanti Addepalli (Vision and AI Lab, Indian Institute of Science, Bangalore), Pawan Kumar Sahu (Vision and AI Lab, Indian Institute of Science, Bangalore), Priyam Dey (Vision and AI Lab, Indian Institute of Science, Bangalore), and R. Venkatesh Babu (Vision and AI Lab, Indian Institute of Science, Bangalore)	16048
Differentiable Architecture Search With Random Features Xuanyang Zhang (MEGVII Technology), Yonggang Li (Peking University), Xiangyu Zhang (MEGVII Technology), Yongtao Wang (Peking University), and Jian Sun (MEGVII Technology)	16060
Class Adaptive Network Calibration Bingyuan Liu (ÉTS Montreal, Canada), Jérôme Rony (ÉTS Montreal, Canada), Adrian Galdran (Universität Pompeu Fabra, Spain), Jose Dolz (ÉTS Montreal, Canada), and Ismail Ben Ayed (ÉTS Montreal, Canada)	16070
Meta-Learning With a Geometry-Adaptive Preconditioner Suhyun Kang (Seoul National University), Duhun Hwang (Seoul National University), Moonjung Eo (Seoul National University), Taesup Kim (Seoul National University), and Wonjong Rhee (IPAI and AIIS, Seoul National University)	16080
DepGraph: Towards Any Structural Pruning	16091
Stitchable Neural Networks	16102
Integral Neural Networks	16113

Re	egularization of Polynomial Networks for Image Recognition	6123
Co	onvNeXt V2: Co-Designing and Scaling ConvNets With Masked Autoencoders	6133
	nortcomings of Top-Down Randomization-Based Sanity Checks for Evaluations of Deep Neuetwork Explanations	
De	on't Lie to Me! Robust and Efficient Explainability With Verified Perturbation Analysis 1 Thomas Fel (Brown University, USA; Artificial and Natural Intelligence Toulouse Institute; IRT Saint-Exupery, France; Innovation & Research Division, SNCF), Melanie Ducoffe (Artificial and Natural Intelligence Toulouse Institute; IRT Saint-Exupery, France; Airbus AI Research), David Vigouroux (Artificial and Natural Intelligence Toulouse Institute; IRT Saint-Exupery, France), Rémi Cadène (Sorbonne Université, CNRS, France), Mikaël Capelle (Thales Alenia Space, France), Claire Nicodème (Innovation & Research Division, SNCF), and Thomas Serre (Brown University, USA; Artificial and Natural Intelligence Toulouse Institute)	6153
0	T-Filter: An Optimal Transport Filter for Learning With Noisy Labels	6164
	bbust Generalization Against Photon-Limited Corruptions via Worst-Case Sharpness inimization	6175
Le	earning With Noisy Labels via Self-Supervised Adversarial Noisy Masking	6186

Bit-Shrinking: Limiting Instantaneous Sharpness for Improving Post-Training Quantization . 1619 Chen Lin (Hikvision Research Institute), Bo Peng (Hikvision Research Institute), Zheyang Li (Hikvision Research Institute), Wenming Tan (Hikvision Research Institute), Ye Ren (Hikvision Research Institute), Jun Xiao (Zhe Jiang University), and Shiliang Pu (Hikvision Research Institute)
Enhancing Multiple Reliability Measures via Nuisance-Extended Information Bottleneck 1620 Jongheon Jeong (Korea Advanced Institute of Science and Technology (KAIST)), Sihyun Yu (Korea Advanced Institute of Science and Technology (KAIST)), Hankook Lee (LG AI Research), and Jinwoo Shin (Korea Advanced Institute of Science and Technology (KAIST))
AdaptiveMix: Improving GAN Training via Feature Space Shrinkage
Re-GAN: Data-Efficient GANs Training via Architectural Reconfiguration
Soft Augmentation for Image Classification
Boosting Verified Training for Robust Image Classifications via Abstraction
A New Dataset Based on Images Taken by Blind People for Testing the Robustness of Image Classification Models Trained for ImageNet Categories

Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly Supervised Video Anomaly Detection	. 16271
Prototypical Residual Networks for Anomaly Detection and Localization	16281
Class Balanced Adaptive Pseudo Labeling for Federated Semi-Supervised Learning	. 16292
Fair Federated Medical Image Segmentation via Client Contribution Estimation	. 16302
Rethinking Federated Learning With Domain Shift: A Prototype View	16312
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning Yuanhao Xiong (UCLA), Ruochen Wang (UCLA), Minhao Cheng (HKUST), Felix Yu (Google Research), and Cho-Jui Hsieh (UCLA)	.16323
Alias-Free Convnets: Fractional Shift Invariance via Polynomial Activations	. 16333

STDLens: Model Hijacking-Resilient Federated Learning for Object Detection
Detecting Backdoors in Pre-Trained Encoders
Detecting Backdoors During the Inference Stage Based on Corruption Robustness Consistency 16363 Xiaogeng Liu (Huazhong University of Science and Technology; National Engineering Research Center for Big Data Technology and System; Hubei Key Laboratory of Distributed System Security; Hubei Engineering Research Center on Big Data Security), Minghui Li (Huazhong University of Science and Technology), Haoyu Wang (Huazhong University of Science and Technology), Shengshan Hu (Huazhong University of Science and Technology; National Engineering Research Center for Big Data Technology and System; Hubei Key Laboratory of Distributed System Security; Hubei Engineering Research Center on Big Data Security), Dengpan Ye (Wuhan University), Hai Jin (Huazhong University of Science and Technology; National Engineering Research Center for Big Data Technology and System; Services Computing Technology and System Lab; Cluster and Grid Computing Lab), Libing Wu (Wuhan University), and Chaowei Xiao (Arizona State University)
Can't Steal? Cont-Steal! Contrastive Stealing Attacks Against Image Encoders
Re-Thinking Model Inversion Attacks Against Deep Neural Networks
Turning Strengths Into Weaknesses: A Certified Robustness Inspired Attack Framework Against Graph Neural Networks

Dynamic Generative Targeted Attacks With Pattern Injection
Transferable Adversarial Attacks on Vision Transformers With Token Gradient Regularization 16415
Jianping Zhang (The Chinese University of Hong Kong), Yizhan Huang (The Chinese University of Hong Kong), Weibin Wu (Sun Yat-sen University), and Michael R. Lyu (The Chinese University of Hong Kong)
Adversarial Counterfactual Visual Explanations
TWINS: A Fine-Tuning Framework for Improved Transferability of Adversarial Robustness and Generalization
Randomized Adversarial Training via Taylor Expansion
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization
Evading Forensic Classifiers With Attribute-Conditioned Adversarial Faces
DartBlur: Privacy Preservation With Detection Artifact Suppression
Poster-Thu-AM
Fresnel Microfacet BRDF: Unification of Polari-Radiometric Surface-Body Reflection

JacobiNeRF: NeRF Shaping With Mutual Information Gradients
Xiaomeng Xu (Tsinghua University), Yanchao Yang (The University of Hong Kong; Stanford University), Kaichun Mo (Stanford University; NVIDIA Research), Boxiao Pan (Stanford University), Li Yi (Tsinghua University; Shanghai Al Laboratory; Shanghai Qizhi Institute), and Leonidas Guibas (Stanford University; Google Research)
ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-Real Novel View Synthesis via Contrastive Learning
SCADE: NeRFs from Space Carving With Ambiguity-Aware Depth Estimates
Removing Objects From Neural Radiance Fields
Progressively Optimized Local Radiance Fields for Robust View Synthesis
NeRFVS: Neural Radiance Fields for Free View Synthesis via Geometry Scaffolds
ABLE-NeRF: Attention-Based Rendering With Learnable Embeddings for Neural Radiance Field 16559 Zhe Jun Tang (Nanyang Technological University), Tat-Jen Cham (Nanyang
Technological University), and Haiyu Zhao (SenseTime Research) MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures
pCON: Polarimetric Coordinate Networks for Neural Scene Representations

Bal	lanced Spherical Grid for Egocentric View Synthesis
	mplementary Intrinsics From Neural Radiance Fields and CNNs for Outdoor Scene Relighting 600
	Siqi Yang (Peking University), Xuanning Cui (Peking University), Yongjie Zhu (Beijing University of Posts and Telecommunications), Jiajun Tang (Peking University), Si Li (Beijing University of Posts and Telecommunications), Zhaofei Yu (Peking University), and Boxin Shi (Peking University)
Ну	perReel: High-Fidelity 6-DoF Video With Ray-Conditioned Sampling
	Volumes for Real-Time Rendering of Editable Free-View Human Performance
	nsor4D: Efficient Neural 4D Decomposition for High-Fidelity Dynamic Reconstruction and ndering
Pix	Ht-Lab: Pixel Height Based Light Effect Generation for Image Compositing
Coi	mputational Flash Photography Through Intrinsics
Rel	lightableHands: Efficient Neural Relighting of Articulated Hand Models

TMO: Textured Mesh Acquisition of Objects With a Mobile Device by Using Differentiable Rendering Jaehoon Choi (NAVER LABS; University of Maryland), Dongki Jung (NAVER LABS), Taejae Lee (NAVER LABS), Sangwook Kim (NAVER LABS), Youngdong Jung (NAVER LABS), Dinesh Manocha (University of Maryland), and Donghwan Lee (NAVER LABS)	16674
VolRecon: Volume Rendering of Signed Ray Distance Functions for Generalizable Multi-View Reconstruction	
Multi-View Reconstruction Using Signed Ray Distance Functions (SRDF) Pierre Zins (Inria centre at the University Grenoble Alpes; Meta Reality Labs, USA), Yuanlu Xu (Meta Reality Labs, USA), Edmond Boyer (Inria centre at the University Grenoble Alpes; Meta Reality Labs, Switzerland), Stefanie Wuhrer (Inria centre at the University Grenoble Alpes), and Tony Tung (Meta Reality Labs, USA)	16696
Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction	16707
Octree Guided Unoriented Surface Reconstruction	16717
Neural Vector Fields: Implicit Representation by Explicit Learning	16727
DA Wand: Distortion-Aware Selection Using Neural Mesh Parameterization	16739

Diffusion-Based Generation, Optimization, and Planning in 3D Scenes Siyuan Huang (National Key Laboratory of General Artificial Intelligence, BIGAI), Zan Wang (National Key Laboratory of General Artificial Intelligence, BIGAI; School of Computer Science & Technology, Beijing Institute of Technology), Puhao Li (National Key Laboratory of General Artificial Intelligence, BIGAI; Dept. of Automation, Tsinghua University 4 Institute for AI, Peking University), Baoxiong Jia (National Key Laboratory of General Artificial Intelligence, BIGAI), Tengyu Liu (National Key Laboratory of General Artificial Intelligence, BIGAI), Yixin Zhu (Institute for AI, Peking University), Wei Liang (School of Computer Science & Technology, Beijing Institute of Technology; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing), and Song-Chun Zhu (National Key Laboratory of General Artificial Intelligence, BIGAI; Dept. of Automation, Tsinghua University 4 Institute for AI, Peking University; Institute for AI, Peking University)	750
Patch-Based 3D Natural Scene Generation From a Single Example	762
Consistent View Synthesis With Pose-Guided Diffusion Models	773
Generalized Deep 3D Shape Prior via Part-Discretized Diffusion Process	784
High Fidelity 3D Hand Shape Reconstruction via Scalable Graph Frequency Decomposition 167 Tianyu Luan (State University of New York at Buffalo), Yuanhao Zhai (State University of New York at Buffalo), Jingjing Meng (State University of New York at Buffalo), Zhong Li (OPPO US Research Center, InnoPeak Technology, Inc.), Zhang Chen (OPPO US Research Center, InnoPeak Technology, Inc.), Yi Xu (OPPO US Research Center, InnoPeak Technology, Inc.), and Junsong Yuan (State University of New York at Buffalo)	795
TAPS3D: Text-Guided 3D Textured Shape Generation From Pseudo Supervision	805

Pu Un Ch Au Of Ch	D-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude Operations of Li (MAIS, Institute of Automation, Chinese Academy of Sciences; iniversity of Chinese Academy of Sciences), Jianwei Guo (MAIS, institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Xiaopeng Zhang (MAIS, Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences), and Dong-Ming Yan (MAIS, Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences; University of Chinese Academy of Sciences; University of Chinese Academy of Sciences)	6816
No Bo	active Cartoonization With Controllable Perceptual Factors amhyuk Ahn (NAVER WEBTOON AI), Patrick Kwon (NAVER WEBTOON AI), Jihye ack (NAVER WEBTOON AI), Kibeom Hong (Yonsei University), and eungkwon Kim (NAVER WEBTOON AI)	6827
De Re (T	Res Facial Appearance Capture From Polarized Smartphone Images	6836
Subs _l <i>Ri</i> <i>Lj</i>	sesGAN: Eyewear Personalization Using Synthetic Appearance Discovery and Targeted pace Modeling	6847
Pr Re	inuous Landmark Detection With 3D Queries rashanth Chandran (Disney Research Studios), Gaspard Zoss (Disney esearch Studios), Paulo Gotardo (Disney Research Studios), and Derek radley (Disney Research Studios)	6858
M Ui	Face: Realistic 3D Neural Face Rendering From Multi-View Images	6868
Ag	ce: Towards Detailed Audio-Visual 4D Face Reconstruction ggelina Chatziagapi (Stony Brook University) and Dimitris Samaras itony Brook University)	6878
Zi Ze (G (G Po	ning Personalized High Quality Volumetric Head Avatars From Monocular RGB Videos .´ iqian Bai (Google; Simon Fraser University), Feitong Tan (Google), eng Huang (Google), Kripasindhu Sarkar (Google), Danhang Tang Google), Di Qiu (Google), Abhimitra Meka (Google), Ruofei Du Google), Mingsong Dou (Google), Sergio Orts-Escolano (Google), Rohit andey (Google), Ping Tan (Simon Fraser University), Thabo Beeler Google), Sean Fanello (Google), and Yinda Zhang (Google)	6890
Zh Zh Po	vatar: One-Shot Talking Face Avatar With Controllable Tri-Plane Rendering	6901

X-Avatar: Expressive Human Avatars	5911
InstantAvatar: Learning Avatars From Monocular Video in 60 Seconds	5922
JAWS: Just a Wild Shot for Cinematic Transfer in Neural Radiance Fields	5933
MonoHuman: Animatable Human Neural Field From Monocular Video	5943
Structured 3D Features for Reconstructing Controllable Avatars	5954
HOOD: Hierarchical Graphs for Generalized Modelling of Clothing Dynamics	5965
Physically Realizable Natural-Looking Clothing Textures Evade Person Detectors via 3D Modeling	6975
Learning Semantic-Aware Disentangled Representation for Flexible 3D Human Body Editing 16985 Xiaokun Sun (Tianjin University, China), Qiao Feng (Tianjin University, China), Xiongzheng Li (Tianjin University, China), Jinsong Zhang (Tianjin University, China), Yu-Kun Lai (Cardiff University, United Kingdom), Jingyu Yang (Tianjin University, China), and Kun Li (Tianjin University, China)	
Reconstructing Animatable Categories From Videos	5995

Deformable Mesh Transformer for 3D Human Mesh Recovery	17006
Hi4D: 4D Instance Segmentation of Close Human Interaction Yifei Yin (ETH Zurich), Chen Guo (ETH Zurich), Manuel Kaufmann (ETH Zurich), Juan Jose Zarate (ETH Zurich), Jie Song (ETH Zurich), and Otmar Hilliges (ETH Zurich)	17016
Bringing Inputs to Shared Domains for 3D Interacting Hands Recovery in the Wild	17028
Learning Human Mesh Recovery in 3D Scenes Zehong Shen (Zhejiang University), Zhi Cen (Zhejiang University), Sida Peng (Zhejiang University), Qing Shuai (Zhejiang University), Hujun Bao (Zhejiang University), and Xiaowei Zhou (Zhejiang University)	17038
H2ONet: Hand-Occlusion-and-Orientation-Aware Network for Real-Time 3D Hand Mesh Reconstruction	17048
What You Can Reconstruct From a Shadow	17059
Autonomous Manipulation Learning for Similar Deformable Objects via Only One Demonst 17069 Yu Ren (State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, China), Ronghan Chen (State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, China), and Yang Cong (State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences)	ration.
In-Hand 3D Object Scanning From an RGB Sequence	17079

Putting People in Their Place: Affordance-Aware Human Insertion Into Scenes
Detecting Human-Object Contact in Images
What Happened 3 Seconds Ago? Inferring the Past With Thermal Imaging
Trajectory-Aware Body Interaction Transformer for Multi-Person Pose Forecasting
Mutual Information-Based Temporal Difference Learning for Human Pose Estimation in Video 17131
Runyang Feng (Jilin University; Ministry of Education, China), Yixing Gao (Jilin University; Ministry of Education, China), Xueqing Ma (Jilin University; Ministry of Education, China), Tze Ho Elden Tse (University of Birmingham), and Hyung Jin Chang (University of Birmingham)
Ego-Body Pose Estimation via Ego-Head Pose Estimation
ViPLO: Vision Transformer Based Pose-Conditioned Self-Loop Graph for Human-Object Interaction Detection
HS-Pose: Hybrid Scope Feature Extraction for Category-Level Object Pose Estimation
ScarceNet: Animal Pose Estimation With Scarce Annotations
Cross-Domain 3D Hand Pose Estimation With Dual Modalities

.inking Garment With Person via Semantically Associated Landmarks for Virtual Try-On 17194 Keyu Yan (Alibaba Group; Hefei Institute of Physical Science, Chinese Academy of Sciences, China), Tingwei Gao (Alibaba Group), Hui Zhang (Hefei Institute of Physical Science, Chinese Academy of Sciences, China; University of Science and Technology of China, China), and Chengjun Xie (Hefei Institute of Physical Science, Chinese Academy of Sciences, China)	
evel-S2fM: Structure From Motion on Neural Level Set of Implicit Surfaces	
Revisiting Rotation Averaging: Uncertainties and Robust Losses	
SliceMatch: Geometry-Guided Aggregation for Cross-View Pose Estimation	
earning the Distribution of Errors in Stereo Matching for Joint Disparity and Uncertainty	
stimation	
ong-Term Visual Localization With Mobile Sensors	
earning To Predict Scene-Level Implicit 3D From Posed RGBD Data	
Paired-Point Lifting for Enhanced Privacy-Preserving Visual Localization	
The ObjectFolder Benchmark: Multisensory Learning With Neural and Real Objects	

Learning Accurate 3D Shape Based on Stereo Polarimetric Imaging Tianyu Huang (The Chinese University of Hong Kong, China), Haoang Li (The Chinese University of Hong Kong, China; Technical University of Munich, Germany), Kejing He (The Chinese University of Hong Kong, China), Congying Sui (The Chinese University of Hong Kong, China), Bin Li (The Chinese University of Hong Kong, China), and Yun-Hui Liu (The Chinese University of Hong Kong, China)	17287
RUST: Latent Neural Scene Representations From Unposed Imagery	17297
Perspective Fields for Single Image Camera Calibration	17307
VisFusion: Visibility-Aware Online 3D Scene Reconstruction From Videos	17317
DeepLSD: Line Segment Detection and Refinement With Deep Image Gradients	17327
Disentangling Orthogonal Planes for Indoor Panoramic Room Layout Estimation With Cross-Scale Distortion Awareness	17337
Single Image Depth Prediction Made Better: A Multivariate Gaussian Take	17346

Wide-Angle Rectification via Content-Aware Conformal Mapping	17357
All-in-Focus Imaging From Event Focal Stack	. 17366
Multi-View Stereo Representation Revist: Region-Aware MVSNet Yisu Zhang (Zhejiang University), Jianke Zhu (Zhejiang University; Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies), and Lixiang Lin (Zhejiang University)	. 17376
Semantic Ray: Learning a Generalizable Semantic Field With Cross-Reprojection Attention . Fangfu Liu (MEGVII Technology), Chubin Zhang (MEGVII Technology), Yu Zheng (MEGVII Technology), and Yueqi Duan (MEGVII Technology)	17386
OmniCity: Omnipotent City Understanding With Multi-Level and Multi-View Images	.17397
ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of Signed Distance Fields	17408
Non-Line-of-Sight Imaging With Signal Superresolution Network Jianyu Wang (Tsinghua University), Xintong Liu (Tsinghua University), Leping Xiao (Tsinghua University), Zuoqiang Shi (Tsinghua University; Yanqi Lake Beijing Institute of Mathematical Sciences and Applications), Lingyun Qiu (Tsinghua University; Yanqi Lake Beijing Institute of Mathematical Sciences and Applications), and Xing Fu (Tsinghua University)	. 17420
Look, Radiate, and Learn: Self-Supervised Localisation via Radio-Visual Correspondence Mohammed Alloulah (Nokia Bell Labs) and Maximilian Arnold (Nokia Bell Labs)	17430
Learning Transformations To Reduce the Geometric Shift in Object Detection	. 17441
Anchor3DLane: Learning To Regress 3D Anchors for Monocular 3D Lane Detection	. 17451

BEV-SAN: Accurate BEV 3D Object Detection via Slice Attention Networks
Semi-Supervised Stereo-Based 3D Object Detection via Cross-View Consensus
Weakly Supervised Monocular 3D Object Detection Using Multi-View Projection and Direction Consistency
MonoATT: Online Monocular 3D Object Detection With Adaptive Token Transformer 1749 Yunsong Zhou (Shanghai Jiao Tong University), Hongzi Zhu (Shanghai Jiao Tong University), Quan Liu (Shanghai Jiao Tong University), Shan Chang (Donghua University), and Minyi Guo (Shanghai Jiao Tong University)
Azimuth Super-Resolution for FMCW Radar in Autonomous Driving
Pix2map: Cross-Modal Retrieval for Inferring Street Maps From Images
LoGoNet: Towards Accurate 3D Object Detection With Local-to-Global Cross-Modal Fusion 1752 Xin Li (East China Normal University), Tao Ma (The Chinese University of Hong Kong), Yuenan Hou (Shanghai Al Laboratory), Botian Shi (Shanghai Al Laboratory), Yuchen Yang (Fudan University), Youquan Liu (Hochschule Bremerhaven), Xingjiao Wu (Fudan University), Qin Chen (East China Normal University), Yikang Li (Shanghai Al Laboratory), Yu Qiao (Shanghai Al Laboratory), and Liang He (East China Normal University; Shanghai Key Laboratory of Multidimensional Information Processing)
Neural Map Prior for Autonomous Driving
Spherical Transformer for LiDAR-Based 3D Recognition

Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection
PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR Point Clouds 1756 Jinyu Li (QCraft), Chenxu Luo (QCraft), and Xiaodong Yang (QCraft)
PeakConv: Learning Peak Receptive Field for Radar Semantic Segmentation
Single Domain Generalization for LiDAR Semantic Segmentation
Weakly Supervised Class-Agnostic Motion Prediction for Autonomous Driving
MethaneMapper: Spectral Absorption Aware Hyperspectral Transformer for Methane Detection 17609
Satish Kumar (University of California Santa Barbara), Ivan Arevalo (University of California Santa Barbara), ASM Iftekhar (University of California Santa Barbara), and B S Manjunath (University of California Santa Barbara)
GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds

SCoDA: Domain Adaptive Shape Completion for Real Scans	30
SCPNet: Semantic Scene Completion on Point Cloud	42
ViewNet: A Novel Projection-Based Backbone With View Pooling for Few-Shot Point Cloud Classification	52
University, USA), and Senem Velipasalar (Syracuse University, USA) Complete-to-Partial 4D Distillation for Self-Supervised Point Cloud Sequence Representation Learning	51
Learnable Skeleton-Aware 3D Point Cloud Sampling	71
Meta Architecture for Point Cloud Analysis	32
PointListNet: Deep Learning on 3D Point Lists	92
PEAL: Prior-Embedded Explicit Attention Learning for Low-Overlap Point Cloud Registration 17702 Junle Yu (Hangzhou Dianzi University), Luwei Ren (Hangzhou Dianzi University), Yu Zhang (Shanghai Jiaotong University), Wenhui Zhou (Hangzhou Dianzi University), Lili Lin (Zhejiang Gongshang University), and Guojun Dai (Hangzhou Dianzi University)	•••

Unsupervised Inference of Signed Distance Functions From Single Sparse Point Clouds Without Learning Priors	. 17712
Chao Chen (Tsinghua University, Beijing, China), Yu-Shen Liu (Tsinghua University, Beijing, China), and Zhizhong Han (Wayne State University, Detroit, USA)	
Towards Better Gradient Consistency for Neural Signed Distance Functions via Level Set	
Alignment Baorui Ma (Tsinghua University, Beijing, China), Junsheng Zhou (Tsinghua University, Beijing, China), Yu-Shen Liu (Tsinghua University, Beijing, China), and Zhizhong Han (Wayne State University, Detroit, USA)	.,17724
Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching	. 17735
3D Registration With Maximal Cliques	17745
PanoSwin: A Pano-Style Swin Transformer for Panorama Understanding	. 17755
DKM: Dense Kernelized Feature Matching for Geometry Estimation	. 17765
PATS: Patch Area Transportation With Subdivision for Local Feature Matching	17776
Correspondence Transformers With Asymmetric Feature Learning and Matching Flow Super-Resolution Yixuan Sun (Academy of Engineering & Technology, Fudan University, China), Dongyang Zhao (Fudan University, China), Zhangyue Yin (Fudan University, China), Yiwen Huang (Fudan University, China), Tao Gui (Fudan University, China), Wenqiang Zhang (Academy of Engineering & Technology, Fudan University, China; Fudan University, China), and Weifeng Ge (Fudan University, China)	. 17787
Learning Adaptive Dense Event Stereo From the Image Domain	. 17797

On the Convergence of IRLS and Its Variants in Out Liangzu Peng (Johns Hopkins University), Christian Charlotte), and René Vidal (University of Pennsylva	Kümmerle (UNC
You Only Segment Once: Towards Real-Time Panop Jie Hu (Xiamen University), Linyan Huang (Xiamen U Ren (Xiamen University), Shengchuan Zhang (Xiame Rongrong Ji (Xiamen University), and Liujuan Cao (Xiamen University)	Jniversity), Tianhe en University),
BEVFormer v2: Adapting Modern Image Backbones Perspective Supervision	Tentre for Artificial seTime Research), demy of Science ang Zhang (Centre for ate of Gao Huang (Tsinghua rence se Laboratory), University), and Intelligence
UniHCP: A Unified Model for Human-Centric Percept Yuanzheng Ci (The University of Sydney), Yizhou Wo University; Shanghai Al Laboratory), Meilin Chen (Zuniversity), Shixiang Tang (The University of Sydney (Shanghai Al Laboratory), Feng Zhu (SenseTime Research; Shanghai Jiao Tong University Fengwei Yu (SenseTime Research), Donglian Qi (Zheand Wanli Ouyang (Shanghai Al Laboratory)	ang (Zhejiang hejiang v), Lei Bai search), Rui Zhao y, Shanghai, China),
Planning-Oriented Autonomous Driving	ai Al Laboratory; Wuhan VLab, Shanghai Al ab, Shanghai Al OpenGVLab, Shanghai Al OpenGVLab and Uhan University), Of University), Wenhai I Laboratory), Lewei Lu OpenGVLab, Sity), Jifeng Dai ratory), Yu Qiao ratory), and Hongyang Li
Query-Centric Trajectory Prediction	iversity of Hong (City University of Research Institute),

Unsupervised Sampling Promoting for Stochastic Human Trajectory Prediction
AdamsFormer for Spatial Action Localization in the Future
PIRLNav: Pretraining With Imitation and RL Finetuning for ObjectNav
NeRF in the Palm of Your Hand: Corrective Augmentation for Robotics via Novel-View Synthesis
Camouflaged Instance Segmentation via Explicit De-Camouflaging
Standing Between Past and Future: Spatio-Temporal Modeling for Multi-Camera 3D Multi-Object Tracking
MotionTrack: Learning Robust Short-Term and Long-Term Motions for Multi-Object Tracking 17939 Zheng Qin (Xi'an Jiaotong University), Sanping Zhou (Xi'an Jiaotong University), Le Wang (Xi'an Jiaotong University), Jinghai Duan (Xi'an Jiaotong University), Gang Hua (Wormpex Al Research), and Wei Tang (University of Illinois at Chicago)
Multi-Modal Gait Recognition via Effective Spatial-Temporal Feature Fusion

Rethinking the Learning Paradigm for Dynamic Facial Expression Recognition	17958
One-Shot High-Fidelity Talking-Head Synthesis With Deformable Neural Radiance Field Weichuang Li (Shanghai Al Laboratory), Longhao Zhang (DAMO Academy, Alibaba Group), Dong Wang (Shanghai Al Laboratory), Bin Zhao (Shanghai Al Laboratory; Northwestern Polytechnical University), Zhigang Wang (Shanghai Al Laboratory), Mulin Chen (Shanghai Al Laboratory; Northwestern Polytechnical University), Bang Zhang (DAMO Academy, Alibaba Group), Zhongjian Wang (DAMO Academy, Alibaba Group), Liefeng Bo (DAMO Academy, Alibaba Group), and Xuelong Li (Shanghai Al Laboratory; Northwestern Polytechnical University)	l 17969
Progressive Disentangled Representation Learning for Fine-Grained Controllable Talki Head Synthesis Duomin Wang (Xiaobing.AI), Yu Deng (Xiaobing.AI), Zixin Yin (Xiaobing.AI), Heung-Yeung Shum (Xiaobing.AI), and Baoyuan Wang (Xiaobing.AI)	
Event-Guided Person Re-Identification via Sparse-Dense Complementary Learning Chengzhi Cao (University of Science and Technology of China, China), Xueyang Fu (University of Science and Technology of China, China), Hongjian Liu (University of Science and Technology of China, China), Yukun Huang (University of Science and Technology of China, China), Kunyu Wang (University of Science and Technology of China, China), Jiebo Luo (University of Rochester, USA), and Zheng-Jun Zha (University of Science and Technology of China, China)	17990
Executing Your Commands via Motion Diffusion in Latent Space	18000
MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Action Recognistion 18011 Xiang Wang (Huazhong University of Science and Technology; Alibaba Group), Shiwei Zhang (Alibaba Group), Zhiwu Qing (Huazhong University of Science and Technology), Changxin Gao (Huazhong University of Science and Technology), Yingya Zhang (Alibaba Group), Deli Zhao (Alibaba Group), and Nong Sang (Huazhong University of Science and Technology)	nition
"Seeing" Electric Network Frequency From Events	18022

Fields	3032
Taewoo Kim (Korea Advanced Institute of Science and Technology), Yujeong Chae (Korea Advanced Institute of Science and Technology), Hyun-Kurl Jang (Korea Advanced Institute of Science and Technology), and Kuk-Jin Yoon (Korea Advanced Institute of Science and Technology)	
Event-Based Frame Interpolation With Ad-Hoc Deblurring	3043
Video Dehazing via a Multi-Range Temporal Alignment Network With Physical Prior	3053
TransFlow: Transformer As Flow Learner	3063
MP-Former: Mask-Piloted Transformer for Image Segmentation	3074
GradICON: Approximate Diffeomorphisms via Gradient Inverse Consistency	3084
Neural Texture Synthesis With Guided Correspondence	3095

elf-Supervised Non-Uniform Kernel Estimation With Flow-Based Motion Prior for Blind Image)5
Zhenxuan Fang (Xidian University), Fangfang Wu (Xidian University), Weisheng Dong (Xidian University), Xin Li (West Virginia University), Jinjian Wu (Xidian University), and Guangming Shi (Xidian University)	
Decoupling-and-Aggregating for Image Exposure Correction	5
ou Do Not Need Additional Priors or Regularizers in Retinex-Based Low-Light Image nhancement	25
Huiyuan Fu (Beijing University of Posts and Telecommunications), Wenkai Zheng (Beijing University of Posts and Telecommunications), Xiangyu Meng (Beijing University of Posts and Telecommunications), Xin Wang (Stony Brook University), Chuanming Wang (Beijing University of Posts and Telecommunications), and Huadong Ma (Beijing University of Posts and Telecommunications)	
NF: Decouple and Feedback Network for Seeing in the Dark	}5
Contrastive Semi-Supervised Learning for Underwater Image Restoration via Reliable Bank 8145 Shirui Huang (Xidian University), Keyan Wang (Xidian University), Huan Liu (McMaster University), Jun Chen (McMaster University), and Yunsong Li (Xidian University)	•••
G-BPN: Local and Global Blind-Patch Network for Self-Supervised Real-World Denoising 1815 Zichun Wang (Beijing Institute of Technology), Ying Fu (Beijing Institute of Technology), Ji Liu (Baidu Inc., China), and Yulun Zhang (ETH Zurich)	56
pectral Bayesian Uncertainty for Image Super-Resolution	56
Deep Random Projector: Accelerated Deep Image Prior	'6
ontext-Aware Pretraining for Efficient Blind Image Decomposition	}6

Metadata-Based RAW Reconstruction via Implicit Neural Functions	18196
Raw Image Reconstruction With Learned Compact Metadata	18206
AccelIR: Task-Aware Image Compression for Accelerating Neural Restoration Juncheol Ye (Korea Advanced Institute of Science and Technology (KAIST)), Hyunho Yeo (Korea Advanced Institute of Science and Technology (KAIST)), Jinwoo Park (Korea Advanced Institute of Science and Technology (KAIST)), and Dongsu Han (Korea Advanced Institute of Science and Technology (KAIST))	18216
AutoFocusFormer: Image Segmentation off the Grid	18227
Guided Depth Super-Resolution by Deep Anisotropic Diffusion	18237
Super-Resolution Neural Operator	18247
Cascaded Local Implicit Transformer for Arbitrary-Scale Super-Resolution	18257
GamutMLP: A Lightweight MLP for Color Loss Recovery	18268
Efficient and Explicit Modelling of Image Hierarchies for Image Restoration	18278
LEMaRT: Label-Efficient Masked Region Transform for Image Harmonization	18290
CAP-VSTNet: Content Affinity Preserved Versatile Style Transfer Linfeng Wen (Sun Yat-Sen University), Chengying Gao (Sun Yat-Sen University), and Changaing Zou (Zheijang University: Zheijang Lah)	18300

ObjectStitch: Object Compositing With Diffusion Model	10
DeepVecFont-v2: Exploiting Transformers To Synthesize Vector Fonts With Higher Quality 183 Yuqing Wang (Peking University, China), Yizhi Wang (Peking University, China), Longhui Yu (Peking University, China), Yuesheng Zhu (Peking University, China), and Zhouhui Lian (Peking University, China)	20
Master: Meta Style Transformer for Controllable Zero-Shot and Few-Shot Artistic Style Transfer	29
CLIP-Sculptor: Zero-Shot Generation of High-Fidelity and Diverse Shapes From Natural Language	39
LayoutDM: Transformer-Based Diffusion Model for Layout Generation	49
Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting 183 Su Wang (Google Research), Chitwan Saharia (Google Research), Ceslee Montgomery (Google Research), Jordi Pont-Tuset (Google Research), Shai Noy (Google Research), Stefano Pellegrini (Google Research), Yasumasa Onoe (Google Research), Sarah Laszlo (Google Research), David J. Fleet (Google Research), Radu Soricut (Google Research), Jason Baldridge (Google Research), Mohammad Norouzi (Google Research), Peter Anderson (Google Research), and William Chan (Google Research)	59
SpaText: Spatio-Textual Representation for Controllable Image Generation	70
Paint by Example: Exemplar-Based Image Editing With Diffusion Models	81

InstructPix2Pix: Learning To Follow Image Editing Instructions	. 18392
LayoutFormer++: Conditional Graphic Layout Generation via Constraint Serialization and Decoding Space Restriction	. 18403
Self-Guided Diffusion Models	. 18413
HOLODIFFUSION: Training a 3D Diffusion Model Using 2D Images	. 18423
Class-Balancing Diffusion Models	. 18434
Conditional Image-to-Video Generation With Latent Flow Diffusion Models	. 18444
Video Probabilistic Diffusion Models in Projected Latent Space	. 18456
Regularized Vector Quantization for Tokenized Image Synthesis	. 18467
EfficientSCI: Densely Connected Network With Space-Time Factorization for Large-Scale Video Snapshot Compressive Imaging	. 18477
MMVC: Learned Multi-Mode Video Compression With Block-Based Prediction Mode Selection Density-Adaptive Entropy Coding	

Video Compression With Entropy-Constrained Neural Representations	18497
WIRE: Wavelet Implicit Neural Representations	18507
TINC: Tree-Structured Implicit Neural Compression	18517
CompletionFormer: Depth Completion With Convolutions and Vision Transformers	18527
Lite-Mono: A Lightweight CNN and Transformer Architecture for Self-Supervised Monocular Depth Estimation	
Global Vision Transformer Pruning With Hessian-Aware Saliency	18547
Lite DETR: An Interleaved Multi-Scale Encoder for Efficient DETR Feng Li (The Hong Kong University of Science and Technology.), Ailing Zeng (International Digital Economy Academy (IDEA).), Shilong Liu (International Digital Economy Academy (IDEA).; BNRist Center, Institute for AI, Tsinghua University.), Hao Zhang (The Hong Kong University of Science and Technology.; International Digital Economy Academy (IDEA).), Hongyang Li (International Digital Economy Academy (IDEA); South China University of Science and Technology.), Lei Zhang (The Hong Kong University of Science and Technology.; International Digital Economy Academy (IDEA).), and Lionel M. Ni (International Digital Economy Academy (IDEA).)	18558
PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers Ryan Grainger (Department of ECE, NC State), Thomas Paniagua (Department of ECE, NC State), Xi Song (An Independent Researcher), Naresh Cuntoor (BlueHalo), Mun Wai Lee (BlueHalo), and Tianfu Wu (Department of ECE, NC State)	18568
Visual Atoms: Pre-Training Vision Transformers With Sinusoidal Waves Sora Takashima (National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Institute of Technology), Ryo Hayamizu (National Institute of Advanced Industrial Science and Technology (AIST)), Nakamasa Inoue (National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Institute of Technology), Hirokatsu Kataoka (National Institute of Advanced Industrial Science and Technology (AIST)), and Rio Yokota (Tokyo Institute of Technology)	18579

Neuron Structure Modeling for Generalizable Remote Physiological Measurement	89
Explaining Image Classifiers With Multiscale Directional Image Representation	00
Integrally Pre-Trained Transformer Pyramid Networks	i10
PartMix: Regularization Strategy To Learn Part Discovery for Visible-Infrared Person Re-Identification	521
Knowledge Distillation for 6D Pose Estimation by Aligning Distributions of Local Predictions	33
Focused and Collaborative Feedback Integration for Interactive Image Segmentation	43
PolyFormer: Referring Image Segmentation As Sequential Polygon Generation	53
Devil's on the Edges: Selective Quad Attention for Scene Graph Generation	64

Panoptic Video Scene Graph Generation Jingkang Yang (Nanyang Technological University, Singapore), Wenxuan Peng (Nanyang Technological University, Singapore), Xiangtai Li (Nanyang Technological University, Singapore), Zujin Guo (Nanyang Technological University, Singapore), Liangyu Chen (Nanyang Technological University, Singapore), Bo Li (Nanyang Technological University, Singapore), Zheng Ma (SenseTime Research, China), Kaiyang Zhou (Nanyang Technological University, Singapore), Wayne Zhang (SenseTime Research, China), Chen Change Loy (Nanyang Technological University, Singapore), and Ziwei Liu (Nanyang Technological University, Singapore)	18675
Generalized Relation Modeling for Transformer Tracking	18686
Representation Learning for Visual Object Tracking by Masked Appearance Transfer Haojie Zhao (Dalian University of Technology, China), Dong Wang (Dalian University of Technology, China), and Huchuan Lu (Dalian University of Technology, China; Peng Cheng Laboratory, China)	18696
Unified Mask Embedding and Correspondence Learning for Self-Supervised Video Segme 18706 Liulei Li (Zhejiang University; Baidu VIS), Wenguan Wang (Zhejiang University), Tianfei Zhou (ETH Zurich), Jianwu Li (Beijing Institute of Technology), and Yi Yang (Zhejiang University)	ntation .
EVAL: Explainable Video Anomaly Localization Ashish Singh (CICS, University of Massachusetts Amherst; Mitsubishi Electric Research Labs), Michael J. Jones (Mitsubishi Electric Research Labs), and Erik G. Learned-Miller (CICS, University of Massachusetts Amherst; Mitsubishi Electric Research Labs)	18717
MOSO: Decomposing MOtion, Scene and Object for Video Prediction Mingzhen Sun (The Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences (UCAS)), Weining Wang (The Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation, Chinese Academy of Sciences (CASIA)), Xinxin Zhu (The Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation, Chinese Academy of Sciences (CASIA)), and Jing Liu (The Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences (UCAS))	18727
TarViS: A Unified Approach for Target-Based Video Segmentation Ali Athar (RWTH Aachen University, Germany), Alexander Hermans (RWTH Aachen University, Germany), Jonathon Luiten (RWTH Aachen University, Germany; Carnegie Mellon University, USA), Deva Ramanan (Carnegie Mellon University, USA), and Bastian Leibe (RWTH Aachen University, Germany)	18738

Efficient Movie Scene Detection Using State-Space Transformers	18749
Latency Matters: Real-Time Action Forecasting Transformer Harshayu Girase (Honda Research Institute, USA; UC Berkeley), Nakul Agarwal (Honda Research Institute, USA), Chiho Choi (Honda Research Institute, USA), and Karttikeya Mangalam (UC Berkeley)	18759
Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning	18770
Watch or Listen: Robust Audio-Visual Speech Recognition With Visual Corruption Modeling	10702
and Reliability Scoring	10703
ReVISE: Self-Supervised Speech Resynthesis With Visual Input for Universal and Generalized	
Speech Regeneration	18795
SynthVSR: Scaling Up Visual Speech Recognition With Synthetic Supervision	.18806
SVFormer: Semi-Supervised Video Transformer for Action Recognition Zhen Xing (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), Qi Dai (Microsoft Research Asia), Han Hu (Microsoft Research Asia), Jingjing Chen (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), Zuxuan Wu (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), and Yu-Gang Jiang (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing)	18816
Collecting Cross-Modal Presence-Absence Evidence for Weakly-Supervised Audio-Visual Evereption	

Post-Processing Temporal Action Detection	17
HaLP: Hallucinating Latent Positives for Skeleton-Based Self-Supervised Learning of Actions	ŀ6
TriDet: Temporal Action Detection With Relative Boundary Modeling	7
Hybrid Active Learning via Deep Clustering for Video Action Detection	57
Two-Stream Networks for Weakly-Supervised Temporal Action Localization With Semantic-Aware Mechanisms	
Weakly Supervised Video Emotion Detection and Prediction via Cross-Modal Temporal Erasing Network	88
Collaborative Noisy Label Cleaner: Learning Scene-Aware Trailers for Multi-Modal Highlight Detection in Movies	8
Weakly Supervised Temporal Sentence Grounding With Uncertainty-Guided Self-Training 1890 Yifei Huang (The University of Tokyo; Shanghai Artificial Intelligence Laboratory), Lijin Yang (The University of Tokyo), and Yoichi Sato (The University of Tokyo)	18
SViTT: Temporal Learning of Sparse Video-Text Transformers	9

AutoAD: Movie Description in Context	18930
Text With Knowledge Graph Augmented Transformer for Video Captioning	18941
StepFormer: Self-Supervised Step Discovery and Localization in Instructional Videos Nikita Dvornik (Samsung AI Centre Toronto), Isma Hadji (Samsung AI Centre Toronto), Ran Zhang (Samsung AI Centre Toronto), Konstantinos G. Derpanis (Samsung AI Centre Toronto; York University), Richard P. Wildes (Samsung AI Centre Toronto; York University), and Allan D. Jepson (Samsung AI Centre Toronto)	18952
Dual Alignment Unsupervised Domain Adaptation for Video-Text Retrieval	18962
Hierarchical Semantic Correspondence Networks for Video Paragraph Grounding	18973
CLIPPING: Distilling CLIP-Based Models With a Student Base for Video-Language Retrieval Renjing Pei (Huawei Noah's Ark Lab), Jianzhuang Liu (Huawei Noah's Ark Lab), Weimian Li (Huawei Noah's Ark Lab), Bin Shao (Huawei Noah's Ark Lab), Songcen Xu (Huawei Noah's Ark Lab), Peng Dai (Huawei Noah's Ark Lab), Juwei Lu (Huawei Noah's Ark Lab), and Youliang Yan (Huawei Noah's Ark Lab)	18983

Learning Emotion Representations From Verbal and Nonverbal Communication	18993
Context De-Confounded Emotion Recognition	19005
CiCo: Domain-Aware Sign Language Retrieval via Cross-Lingual Contrastive Learning 1 Yiting Cheng (Fudan University), Fangyun Wei (Microsoft Research Asia), Jianmin Bao (Microsoft Research Asia), Dong Chen (Microsoft Research Asia), and Wenqiang Zhang (Fudan University)	19016
Discovering the Real Association: Multimodal Causal Reasoning in Video Question Answering 19027 Chuanqi Zang (Beijing Institute of Technology), Hanqing Wang (Beijing Institute of Technology), Mingtao Pei (Beijing Institute of Technology), and Wei Liang (Beijing Institute of Technology; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing)	ž
LEGO-Net: Learning Regular Rearrangements of Objects in Rooms	19037
LANA: A Language-Capable Navigator for Instruction Following and Generation	19048
Policy Adaptation From Foundation Model Feedback	19059
Token Turing Machines	19070
Unicode Analogies: An Anti-Objectivist Visual Reasoning Challenge	19082

Exploring the Effect of Primitives for Compositional Generalization in Vision-and-Language Chuanhao Li (Beijing Institute of Technology, China), Zhen Li (Beijing Institute of Technology, China), Chenchen Jing (Zhejiang University, Hangzhou, China), Yunde Jia (Shenzhen MSU-BIT University, China; Beijing Institute of Technology, China), and Yuwei Wu (Shenzhen MSU-BIT University, China; Beijing Institute of Technology, China)	e. 19092
VQACL: A Novel Visual Question Answering Continual Learning Setting	19102
MaPLe: Multi-Modal Prompt Learning	19113
Meta-Personalizing Vision-Language Models To Find Named Instances in Video	19123
Understanding and Improving Visual Prompting: A Label-Mapping Perspective	19133
RefTeacher: A Strong Baseline for Semi-Supervised Referring Expression Comprehension Jiamu Sun (Xiamen University), Gen Luo (Xiamen University), Yiyi Zhou (Xiamen University), Xiaoshuai Sun (Xiamen University), Guannan Jiang (Contemporary Amperex Technology), Zhiyu Wang (Contemporary Amperex Technology), and Rongrong Ji (Xiamen University; Shenzhen Research Institute of Xiamen University)	19144
Leveraging per Image-Token Consistency for Vision-Language Pre-Training	19155
Improving Visual Grounding by Encouraging Consistent Gradient-Based Explanations Ziyan Yang (Rice University), Kushal Kafle (Adobe Research), Franck Dernoncourt (Adobe Research), and Vicente Ordonez (Rice University)	19165

Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks)175
Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification	9187
Shepherding Slots to Objects: Towards Stable and Robust Object-Centric Learning	}198
Learning Visual Representations via Language-Guided Sampling	}208
L-Colns: Language-Based Colorization With Instance Awareness	9221
EDA: Explicit Text-Decoupling and Dense Alignment for 3D Visual Grounding	9231
MSINet: Twins Contrastive Search of Multi-Scale Interaction for Object ReID)243

Unifying Vision, Text, and Layout for Universal Document Processing	9254
RA-CLIP: Retrieval Augmented Contrastive Language-Image Pre-Training	9265
Fine-Grained Image-Text Matching by Cross-Modal Hard Aligning Network	9275
Text-Guided Unsupervised Latent Transformation for Multi-Attribute Image Manipulation . 19 Xiwen Wei (South China University of Technology), Zhen Xu (South China University of Technology), Cheng Liu (Shantou University), Si Wu (South China University of Technology; Peng Cheng Laboratory), Zhiwen Yu (South China University of Technology), and Hau San Wong (City University of Hong Kong)	9285
Improving Image Recognition by Retrieving From Web-Scale Image-Text Data	9295
Pic2Word: Mapping Pictures to Words for Zero-Shot Composed Image Retrieval	9305
DATE: Domain Adaptive Product Seeker for E-Commerce	9315
Multimodality Helps Unimodality: Cross-Modal Few-Shot Learning With Multimodal Models 19325 Zhiqiu Lin (Carnegie Mellon University), Samuel Yu (Carnegie Mellon University), Zhiyi Kuang (Carnegie Mellon University), Deepak Pathak (Carnegie Mellon University), and Deva Ramanan (Carnegie Mellon University)	
Finetune Like You Pretrain: Improved Finetuning of Zero-Shot Vision Models	9338

De	epSolo: Let Transformer Decoder With Explicit Points Solo for Text Spotting	9348
	A: Exploring the Limits of Masked Visual Representation Learning at Scale	9358
R2I	Former: Unified Retrieval and Reranking Transformer for Place Recognition	9370
Op	pen-Set Fine-Grained Retrieval via Prompting Vision-Language Evaluator	9381
193	pen-Category Human-Object Interaction Pre-Training via Language Modeling Framework 392 Sipeng Zheng (Renmin University of China), Boshen Xu (UESTC), and Qin Jin (Renmin University of China)	
Ne	tural Congealing: Aligning Images to a Joint Semantic Atlas	9403
	pen Vocabulary Semantic Segmentation With Patch Aligned Contrastive Learning	9413
	mantic Human Parsing via Scalable Semantic Transfer Over Multiple Label Domains 1 Jie Yang (The Chinese University of Hong Kong, Shenzhen), Chaoqun Wang (The Chinese University of Hong Kong, Shenzhen), Zhen Li (The Chinese University of Hong Kong, Shenzhen), Junle Wang (Tencent), and Ruimao Zhang (The Chinese University of Hong Kong, Shenzhen)	9424

Explicit Visual Prompting for Low-Level Structure Segmentations	19434
FreeSeg: Unified, Universal and Open-Vocabulary Image Segmentation	9446
Zero-Shot Referring Image Segmentation With Global-Local Context Features	19456
DejaVu: Conditional Regenerative Learning To Enhance Dense Prediction	19466
Meta Compositional Referring Expression Segmentation	19478
Interactive Segmentation As Gaussion Process Classification	9488
Semantic-Promoted Debiasing and Background Disambiguation for Zero-Shot Instance Segmentation	19498
Principles of Forgetting in Domain-Incremental Semantic Segmentation in Adverse Weather Conditions	19508

AttentionShift: Iteratively Estimated Part-Based Attention Map for Pointly Supervised Instance Segmentation	9519
PIDNet: A Real-Time Semantic Segmentation Network Inspired by PID Controllers	9529
Leveraging Hidden Positives for Unsupervised Semantic Segmentation	9540
Understanding Imbalanced Semantic Segmentation Through Neural Collapse	9550
Balancing Logit Variation for Long-Tailed Semantic Segmentation	9561
Boundary-Enhanced Co-Training for Weakly Supervised Semantic Segmentation	9574
Conflict-Based Cross-View Consistency for Semi-Supervised Semantic Segmentation	9585
Learning Multi-Modal Class-Specific Tokens for Weakly Supervised Dense Object Localization 19596 Lian Xu (The University of Western Australia), Wanli Ouyang (Shanghai Al Laboratory), Mohammed Bennamoun (The University of Western Australia), Farid Boussaid (The University of Western Australia), and Dan Xu (Hong Kong University of Science and Technology)	
WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation	9606

DualRel: Semi-Supervised Mitochondria Segmentation From a Prototype Perspective)617
Distilling Self-Supervised Vision Transformers for Weakly-Supervised Few-Shot Classification & Segmentation	9627
Co-Salient Object Detection With Uncertainty-Aware Group Exchange-Masking	1639
Supervised Masked Knowledge Distillation for Few-Shot Transformers)649
Modeling the Distributional Uncertainty for Salient Object Detection Models	966C
Weak-Shot Object Detection Through Mutual Knowledge Transfer	9671
CAT: LoCalization and IdentificAtion Cascade Detection Transformer for Open-World Object	0001
Detection	1681
Adaptive Sparse Pairwise Loss for Object Re-Identification	≀ 691

DETRs With Hybrid Matching
Generating Features With Increased Crop-Related Diversity for Few-Shot Object Detection . 19713 Jingyi Xu (Stony Brook University), Hieu Le (EPFL), and Dimitris Samaras (Stony Brook University)
ScaleKD: Distilling Scale-Aware Knowledge in Small Object Detector
Multiclass Confidence and Localization Calibration for Object Detection
Open-Set Representation Learning Through Combinatorial Embedding
ProD: Prompting-To-Disentangle Domain Knowledge for Cross-Domain Few-Shot Image Classification
Visual Language Pretrained Multiple Instance Zero-Shot Transfer for Histopathology Images 19764 Ming Y. Lu (Massachusetts Institute of Technology; Harvard University; Mass General Brigham), Bowen Chen (Harvard University; Mass General Brigham), Andrew Zhang (Massachusetts Institute of Technology; Harvard University; Mass General Brigham), Drew F. K. Williamson (Harvard University; Mass General Brigham), Richard J. Chen (Harvard University; Mass General Brigham), Tong Ding (Harvard University; Mass General Brigham), Long Phi Le (Harvard University; Mass General Brigham), Yung-Sung Chuang (Massachusetts Institute of Technology), and Faisal Mahmood (Harvard University; Mass General Brigham)
FFF: Fragment-Guided Flexible Fitting for Building Complete Protein Structures
Pseudo-Label Guided Contrastive Learning for Semi-Supervised Medical Image Segmentation 19786 Hritam Basak (Stony Brook University, NY, USA) and Zhaozheng Yin (Stony Brook University, NY, USA)

Microscopy Cheng Jiang (University of Michigan), Xinhai Hou (University of Michigan), Akhil Kondepudi (University of Michigan), Asadur Chowdury (University of Michigan), Christian W. Freudiger (Invenio Imaging), Daniel A. Orringer (New York University), Honglak Lee (University of Michigan) Michigan; LG Al Research), and Todd C. Hollon (University of Michigan)	. 19798
KiUT: Knowledge-Injected U-Transformer for Radiology Report Generation	. 19809
Image Quality-Aware Diagnosis via Meta-Knowledge Co-Embedding	. 19819
Interventional Bag Multi-Instance Learning on Whole-Slide Pathological Images	. 19830
Visual Prompt Tuning for Generative Transfer Learning	. 19840
LINe: Out-of-Distribution Detection by Leveraging Important Neurons	. 19852
GCFAgg: Global and Cross-View Feature Aggregation for Multi-View Clustering	. 19863

Exploring and Exploiting Uncertainty for Incomplete Multi-View Classification	19873
BiCro: Noisy Correspondence Rectification for Multi-Modality Data via Bi-Directional Cross-Modal Similarity Consistency	19883
Bi-Directional Distribution Alignment for Transductive Zero-Shot Learning	19893
HIER: Metric Learning Beyond Class Labels via Hierarchical Regularization	19903
MaskCon: Masked Contrastive Learning for Coarse-Labelled Dataset	19913
Class Prototypes Based Contrastive Learning for Classifying Multi-Label and Fine-Grained Educational Videos Rohit Gupta (University of Central Florida), Anirban Roy (SRI International), Claire Christensen (SRI International), Sujeong Kim (SRI International), Sarah Gerard (SRI International), Madeline Cincebeaux (SRI International), Ajay Divakaran (SRI International), Todd Grindal (SRI International), and Mubarak Shah (University of Central Florida)	19923
Learning From Noisy Labels With Decoupled Meta Label Purifier Yuanpeng Tu (Dept. of Electronic and Information Engineering, Tongji Univeristy, Shanghai), Boshen Zhang (YouTu Lab, Tencent, Shanghai), Yuxi Li (YouTu Lab, Tencent, Shanghai), Liang Liu (YouTu Lab, Tencent, Shanghai), Jian Li (YouTu Lab, Tencent, Shanghai), Yabiao Wang (YouTu Lab, Tencent, Shanghai), Chengjie Wang (YouTu Lab, Tencent, Shanghai; Shanghai Jiao Tong University), and Cai Rong Zhao (Dept. of Electronic and Information Engineering, Tongji Univeristy, Shanghai)	19934
SuperDisco: Super-Class Discovery Improves Visual Recognition for the Long-Tail	19944

Matthias Eisenmann (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Annika Reinke (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany; Heidelberg University, Germany), Vivienn Weru (Division of Biostatistics, German Cancer Research Center (DKFZ), Germany), Minu D. Tizabi (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Fabian Isensee (Division of Medical Image Computing, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Tim J. Adler (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany), Sharib Ali (University of Leeds, UK), Vincent Andrearczyk (HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Switzerland; Lausanne University Hospital, Switzerland), Marc Aubreville (Technische Hochschule Ingolstadt, Germany), Uiiwal Baid (University of Pennsylvania, USA; University of Pennsylvania, USA; University of Pennsylvania, USA), Spyridon Bakas (University of Pennsylvania, USA; University of Pennsylvania, USA; University of Pennsylvania, USA), Niranjan Balu (University of Washington, USA), Sophia Bano (University College London, UK), Jorge Bernal (Universitat Autònoma de Barcelona & Computer Vision Center, Spain), Sebastian Bodenstedt (Division of Translational Surgical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, Germany), Alessandro Casella (Department of Advanced Robotics, Istituto Italiano di Tecnologia, Italy and Department of Electronics, Information and Bioengineering, Italy), Veronika Cheplygina (IT University of Copenhagen, Denmark), Marie Daum (Heidelberg University Hospital, Germany), Marleen de Bruiine (Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC, The Netherlands; University of Copenhagen, Denmark), Adrien Depeursinge (University of Applied Sciences Western Switzerland (HES-SO), Switzerland; Lausanne University Hospital, Switzerland), Reuben Dorent (Harvard Medical School, Brigham and Women's Hospital, USA; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK), Ian Egger (University Hospital Essen (AöR), Germany), David G. Ellis (University of Nebraska Medical Center, USA), Sandy Engelhardt (Heidelberg University Hospital, Germany), Melanie Ganz (Copenhagen University Hospital, Denmark; University of Copenhagen, Denmark), Noha Ghatwary (Arab Academy of Science and Technology, Egypt), Gabriel Girard (CIBM Center for Biomedical Imaging, Switzerland; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland), Patrick Godau (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany; Heidelberg University, Germany; National Center for Tumor Diseases (NCT), Germany), Anubha Gupta (SBILab, Department of ECE, IIIT-Delhi, India), Lasse Hansen (University of

Lübeck, Germany), Kanako Harada (The University of Tokyo, Japan), Mattias P. Heinrich (University of Lübeck, Germany), Nicholas Heller (University of Minnesota, USA), Alessa Hering (Radboud University Medical Center, The Netherlands; Fraunhofer MEVIS, Germany), Arnaud Huaulmé (Univ Rennes, INSERM, France), Pierre Jannin (Univ Rennes, INSERM, France), Ali Emre Kavur (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Oldřich Kodym (Brno University of Technology, Czech Republic), Michal Kozubek (Masaryk University, Czech Republic), Jianning Li (University Hospital Essen (AöR), Germany), Hongwei Li (University of Zurich, Switzerland), Jun Ma (University of Toronto, Canada), Carlos Martín-Isla (Universitat de Barcelona, Spain), Bjoern Menze (University of Zurich, Switzerland), Alison Noble (University of Oxford, UK), Valentin Oreiller (University of Applied Sciences Western Switzerland (HES-SO), Switzerland; Lausanne University Hospital, Switzerland), Nicolas Padoy (University of Strasbourg, CNRS, France; IHU Strasbourg, France), Sarthak Pati (University of Pennsylvania, USA; University of Pennsylvania, USA: University of Pennsylvania, USA: Technical University of Munich, Germany), Kelly Payette (University Children's Hospital Zurich, University of Zurich, Switzerland; University of Zurich, Switzerland), Tim Rädsch (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Jonathan Rafael-Patiño (Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland), Vivek Singh Bawa (Oxford Brookes University, UK), Stefanie Speidel (Division of Translational Surgical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI), TU Dresden, Germany), Carole H. Sudre (University College London, UK; University College London, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, UK; University College London, UK), Kimberlin van Wijnen (Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC, The Netherlands), Martin Wagner (Heidelberg University Hospital, Germany), Donglai Wei (Computer Science, Boston College, USA), Amine Yamlahi (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany), Moi Hoon Yap (Manchester Metropolitan University, UK), Chun Yuan (University of Washington, USA), Maximilian Zenk (Division of Medical Image Computing, German Cancer Research Center (DKFZ), Germany; Heidelberg University, Germany), Aneeg Zia (Intuitive Surgical, Inc., Sunnyvale, USA), David Zimmerer (Division of Medical Image Computing, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Dogu Baran Aydogan (University of Eastern Finland, Finland; Aalto University School of Science, Finland), Binod Bhattarai (University of Aberdeen, UK), Louise Bloch (University of Applied Sciences and Arts Dortmund, Germany; University Hospital Essen, Germany; University Hospital Essen, Germany), Raphael Brüngel (University of Applied Sciences and Arts Dortmund, Germany; University Hospital Essen,

Germany; University Hospital Essen, Germany), Jihoon Cho (School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Chanyeol Choi (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA), Qi Dou (The Chinese University of Hong Kong, Hong Kong), Ivan Ezhov (Technical University of Munich, Germany), Christoph M. Friedrich (University of Applied Sciences and Arts Dortmund, Germany; University Hospital Essen, Germany), Clifton D. Fuller (The University of Texas MD Anderson Cancer Center, USA), Rebati Raman Gaire (Nepal Applied Mathematics and Informatics Institute for Research (NAAMII), Nepal), Adrian Galdran (Universidad Pompeu Fabra, Spain; University of Adelaide, Australia), Álvaro García Faura (XLAB d.o.o., Ljubljana, Slovenia), Maria Grammatikopoulou (Touch Surgery, Medtronic, UK), SeulGi Hong (CJ Al Center, Seoul, Republic of Korea), Mostafa Jahanifar (University of Warwick, UK), Ikbeom Jang (Hankuk University of Foreign Studies, Republic of Korea; Massachusetts General Hospital, USA; Harvard Medical School, USA), Abdolrahim Kadkhodamohammadi (Touch Surgery, Medtronic, UK), Inha Kang (School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Florian Kofler (Helmholtz AI, Helmholtz Zentrum München, Germany; Technical University Munich, Germany; Technical University of Munich, Germany; Technical University of Munich, Germany), Satoshi Kondo (Muroran Institute of Technology, Japan), Hugo Kuijf (UMC Utrecht, Utrecht, The Netherlands), Mingxing Li (University of Science and Technology of China, China), Minh Luu (Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Tomaž Martinčič (XLAB d.o.o., Ljubljana, Slovenia), Pedro Morais (2Ai, School of Technology, IPCA, Portugal), Mohamed A. Naser (The University of Texas MD Anderson Cancer Center, USA), Bruno Oliveira (2Ai, School of Technology, IPCA, Portugal; University of Minho, Portugal; University of Minho, Portugal), David Owen (Touch Surgery, Medtronic, UK), Subeen Pang (Massachusetts Institute of Technology, USA), Jinah Park (School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Sung-Hong Park (Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Szymon Plotka (Sano Centre for Computational Medicine, Poland; University of Amsterdam, The Netherlands; Amsterdam University Medical Center, University of Amsterdam, The Netherlands), Elodie Puybareau (LRE, EPITA, France), Nasir Rajpoot (University of Warwick, UK), Kanghyun Ryu (Artificial Intelligence and Robotics Institute, Korea Institute of Science and Technology, Republic of Korea), Numan Saeed (Mohamed Bin Zayed University of Artificial Intelligence, UAE), Adam Shephard (University of Warwick, UK), Pengcheng Shi (Mohamed Bin Zayed University of Artificial Intelligence, UAE), Dejan Štepec (XLAB d.o.o., Ljubljana, Slovenia; University of Ljubljana, Slovenia), Ronast Subedi (Nepal Applied Mathematics and Informatics Institute for Research (NAAMII), Nepal), Guillaume Tochon (LRE, EPITA, France), Helena R. Torres (2Ai, School of Technology, IPCA, Portugal; University of Minho, Portugal; University of Minho, Portugal), Helene Urien (ISEP, France), João L. Vilaça (2Ai, School of Technology, IPCA, Portugal), Kareem A. Wahid (The University of Texas MD Anderson Cancer Center, USA), Haojie Wang (Xiamen University, China), Jiacheng Wang

7
3
3
3
3
)
3

(Xiamen University, China), Liansheng Wang (Xiamen University, China),

PMR: Prototypical Modal Rebalance for Multimodal Learning	029
MMANet: Margin-Aware Distillation and Modality-Aware Regularization for Incomplete Multimodal Learning	039
Feature Alignment and Uniformity for Test Time Adaptation	050
Revisiting Prototypical Network for Cross Domain Few-Shot Learning	061
A Whac-a-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others 20071 Zhiheng Li (University of Rochester), Ivan Evtimov (Meta AI), Albert Gordo (Meta AI), Caner Hazirbas (Meta AI), Tal Hassner (Meta AI), Cristian Canton Ferrer (Meta AI), Chenliang Xu (University of Rochester), and Mark Ibrahim (Meta AI)	
Independent Component Alignment for Multi-Task Learning	083
MDL-NAS: A Joint Multi-Domain Learning Framework for Vision Transformer	094
MELTR: Meta Loss Transformer for Learning To Fine-Tune Video Foundation Models	105

1% VS 100%: Parameter-Efficient Low Rank Adapter for Dense Predictions	116
Rebalancing Batch Normalization for Exemplar-Based Class-Incremental Learning	127
Partial Network Cloning	137
ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer	147
Rethinking Feature-Based Knowledge Distillation for Face Recognition	156
Regularizing Second-Order Influences for Continual Learning	166
Generalization Matters: Loss Minima Flattening via Parameter Hybridization for Efficient Online Knowledge Distillation	176
Decoupling Learning and Remembering: A Bilevel Memory Framework With Knowledge Project for Task-Incremental Learning	

On the Stability-Plasticity Dilemma of Class-Incremental Learning	20196
Simulated Annealing in Early Layers Leads to Better Generalization	20205
Frustratingly Easy Regularization on Representation Can Boost Deep Reinfo 20215	rcement Learning
Qiang He (Institute of Automation, Chinese Academy of Sciences, China), Huangyuan Su (Carnegie Mellon University, United States), Jieyu Zhang (University of Washington, United States), and Xinwen Hou (Institute of Automation, Chinese Academy of Sciences, China)	
Tunable Convolutions With Parametric Multi-Loss Optimization	20226
Re-Basin via Implicit Sinkhorn Differentiation	20237
Gradient Norm Aware Minimization Seeks First-Order Flatness and Improve 20247 Xingxuan Zhang (Tsinghua University), Renzhe Xu (Tsinghua University),	s Generalization
Han Yu (Tsinghua University), Hao Zou (Tsinghua University), and Peng Cui (Tsinghua University)	
AstroNet: When Astrocyte Meets Artificial Neural Network	20258
Network Expansion for Practical Training Acceleration Ning Ding (Peking University; Huawei Noah's Ark Lab), Yehui Tang (Peking University; Huawei Noah's Ark Lab), Kai Han (Huawei Noah's Ark Lab), Chao Xu (Peking University), and Yunhe Wang (Huawei Noah's Ark Lab)	20269
Defining and Quantifying the Emergence of Sparse Concepts in DNNs Jie Ren (Shanghai Jiao Tong University), Mingjie Li (Shanghai Jiao Tong University), Qirui Chen (Shanghai Jiao Tong University), Huiqi Deng (Shanghai Jiao Tong University), and Quanshi Zhang (Shanghai Jiao Tong University)	20280

Samples With Low Loss Curvature Improve Data Efficiency)290
Masked Images Are Counterfactual Samples for Robust Fine-Tuning)301
Bias Mimicking: A Simple Sampling Approach for Bias Mitigation)311
NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for Vision Transformers	0321
Practical Network Acceleration With Tiny Sets	0331
TeSLA: Test-Time Self-Learning With Automatic Adversarial Augmentation)341
Discriminator-Cooperated Feature Map Distillation for GAN Compression)351
Private Image Generation With Dual-Purpose Auxiliary Classifier	0361
ImageNet-E: Benchmarking Neural Network Robustness via Attribute Editing)371
Masked Jigsaw Puzzle: A Versatile Position Embedding for Vision Transformers)382

A New Comprehensive Benchmark for Semi-Supervised Video Anomaly Detection and Anticipation	20392
Congqi Cao (Northwestern Polytechnical University, China), Yue Lu (Northwestern Polytechnical University, China), Peng Wang (Northwestern Polytechnical University, China), and Yanning Zhang (Northwestern Polytechnical University, China)	
SimpleNet: A Simple Network for Image Anomaly Detection and Localization	20402
DaFKD: Domain-Aware Federated Knowledge Distillation	20412
Reliable and Interpretable Personalized Federated Learning	20422
Adaptive Channel Sparsity for Federated Learning Under System Heterogeneity	20432
Bias-Eliminating Augmentation Learning for Debiased Federated Learning	20442
Instance-Aware Domain Generalization for Face Anti-Spoofing Qianyu Zhou (Shanghai Jiao Tong University; Shanghai Key Laboratory of Computer Software Evaluating and Testing), Ke-Yue Zhang (Youtu Lab, Tencent), Taiping Yao (Youtu Lab, Tencent), Xuequan Lu (Deakin University), Ran Yi (Shanghai Jiao Tong University), Shouhong Ding (Youtu Lab, Tencent; Deakin University), and Lizhuang Ma (Shanghai Jiao Tong University; Deakin University)	20453
Adversarially Masking Synthetic To Mimic Real: Adaptive Noise Injection for Point Cloud Segmentation Adaptation	20464

Model Barrier: A Compact Un-Transferable Isolation Domain for Model Intellectual Property
Protection
China; Institute of High Performance Computing (IHPC), Agency for
Science, Technology and Research (A*STAR), Singapore), Meng Wang
(Nanjing University of Aeronautics and Astronautics, China; Institute of High Performance Computing (IHPC), Agency for Science, Technology
and Research (A*STAR), Singapore), Daoqiang Zhang (Nanjing University
of Aeronautics and Astronautics, China; Institute of High Performance
Computing (IHPC), Agency for Science, Technology and Research
(A*STAR), Singapore), and Huazhu Fu (Nanjing University of Aeronautics and Astronautics, China; Institute of High Performance Computing
(IHPC), Agency for Science, Technology and Research (A*STAR),
Singapore)
MEDIC: Remove Model Backdoors via Importance Driven Cloning
Qiuling Xu (Purdue University), Guanhong Tao (Purdue University), Jean
Honorio (Purdue University), Yingqi Liu (Purdue University), Shengwei
An (Purdue University), Guangyu Shen (Purdue University), Siyuan Cheng (Purdue University), and Xiangyu Zhang (Purdue University)
Progressive Backdoor Erasing via Connecting Backdoor and Adversarial Attacks
Bingxu Mu (Xi'an Jiaotong University), Zhenxing Niu (Xidian
University), Le Wang (IAIR, Xi'an Jiaotong University), Xue Wang
(Alibaba Group), Qiguang Miao (Xidian University), Rong Jin (Alibaba
Group), and Gang Hua (Wormpex Al Research)
Reinforcement Learning-Based Black-Box Model Inversion Attacks
Gyojin Han (KAIST), Jaehyun Choi (KAIST), Haeil Lee (KAIST), and Junmo Kim (KAIST)
T-SEA: Transfer-Based Self-Ensemble Attack on Object Detection
University Beijing, China), Huanran Chen (Peking University Beijing,
China), Yongtao Wang (Peking University Beijing, China), and Kevin
Zhang (Peking University Beijing, China)
Proximal Splitting Adversarial Attack for Semantic Segmentation
Jérôme Rony (ÉTS Montréal), Jean-Christophe Pesquet (Université Paris-Saclay, CentraleSupélec, Inria), and Ismail Ben Ayed (ÉTS
Montréal)
Towards Transferable Targeted Adversarial Examples
Zhibo Wang (Zhejiang University, P. R. China; ZJU-Hangzhou Global
Scientific and Technological Innovation Center), Hongshan Yang
(Zhejiang University, P. R. China), Yunhe Feng (Zhejiang University,
P. R. China), Peng Sun (Hunan University, P. R. China), Hengchang Guo (Wuhan University, P. R. China), Zhifei Zhang (Adobe Research), and
Kui Ren (Zhejiang University, P. R. China)
. , , , , , , , , , , , , , , , , , , ,

AGAIN: Adversarial Training With Attribution Span Enlargement and Hybrid Feature Fusion 20544	•••••
Shenglin Yin (Peking University, China), Kelu Yao (Zhejiang Laboratory, China; Institute of Computing Technology, Chinese Academy of Sciences, China), Sheng Shi (Northwest University, P. R. China; Al Lab, Lenovo Research, P. R. China), Yangzhou Du (Al Lab, Lenovo Research, P. R. China), and Zhen Xiao (Peking University, China)	
Generalist: Decoupling Natural and Robust Generalization	20554
Cooperation or Competition: Avoiding Player Domination for Multi-Target Robustness via Adaptive Budgets	20564
Discrete Point-Wise Attack Is Not Enough: Generalized Manifold Adversarial Attack for Face Recognition	20575
RIATIG: Reliable and Imperceptible Adversarial Text-to-Image Generation With Natural Prompts	20585
CLIP2Protect: Protecting Facial Privacy Using Text-Guided Makeup via Adversarial Latent Search	20595
TruFor: Leveraging All-Round Clues for Trustworthy Image Forgery Detection and Localization	20606
Poster-Thu-PM	
High-Fidelity Event-Radiance Recovery via Transient Event Frequency	<u>2</u> 0616

RobustNeRF: Ignoring Distractors With Robust Losses
NeRDi: Single-View NeRF Synthesis With Language-Guided Diffusion As General Image Priors 20637
Congyue Deng (Stanford University), Chiyu Max Jiang (Waymo), Charles R. Qi (Waymo), Xinchen Yan (Waymo), Yin Zhou (Waymo), Leonidas Guibas (Stanford University; Google Research), and Dragomir Anguelov (Waymo)
GM-NeRF: Learning Generalizable Model-Based Neural Radiance Fields From Multi-View Images . 20648
Jianchuan Chen (Dalian University of Technology, China), Wentao Yi (Dalian University of Technology, China), Liqian Ma (ZMO AI Inc.), Xu Jia (Dalian University of Technology, China), and Huchuan Lu (Dalian University of Technology, China)
MixNeRF: Modeling a Ray With Mixture Density for Novel View Synthesis From Sparse Inputs 20659
Seunghyeon Seo (Seoul National Univeristy), Donghoon Han (Seoul National Univeristy), Yeonjin Chang (Seoul National Univeristy), and Nojun Kwak (Seoul National Univeristy)
SPIn-NeRF: Multiview Segmentation and Perceptual Inpainting With Neural Radiance Fields 20669
Ashkan Mirzaei (Samsung Al Centre Toronto; University of Toronto), Tristan Aumentado-Armstrong (Samsung Al Centre Toronto; University of Toronto; Vector Institute for Al), Konstantinos G. Derpanis (Samsung Al Centre Toronto; York University; Vector Institute for Al), Jonathan Kelly (University of Toronto), Marcus A. Brubaker (Samsung Al Centre Toronto; York University; Vector Institute for Al), Igor Gilitschenski (University of Toronto), and Alex Levinshtein (Samsung Al Centre Toronto)
Masked Wavelet Representation for Compact Neural Radiance Fields
PaletteNeRF: Palette-Based Appearance Editing of Neural Radiance Fields
SteerNeRF: Accelerating NeRF Rendering via Smooth Viewpoint Trajectory

Transforming Radiance Field With Lipschitz Network for Photorealistic 3D Scene Stylization 2 Zicheng Zhang (University of Chinese Academy of Sciences), Yinglu Liu (JD AI Research), Congying Han (University of Chinese Academy of Sciences), Yingwei Pan (HiDream.ai Inc.), Tiande Guo (University of Chinese Academy of Sciences), and Ting Yao (HiDream.ai Inc.)	20712
Occlusion-Free Scene Recovery via Neural Radiance Fields	20722
TriVol: Point Cloud Rendering via Triple Volumes	20732
DyNCA: Real-Time Dynamic Texture Synthesis Using Neural Cellular Automata	20742
Neural Scene Chronology	20752
ReLight My NeRF: A Dataset for Novel View Synthesis and Relighting of Real World Objects .2 Marco Toschi (Eyecan.ai), Riccardo De Matteo (Eyecan.ai), Riccardo Spezialetti (Eyecan.ai), Daniele De Gregorio (Eyecan.ai), Luigi Di Stefano (University of Bologna), and Samuele Salti (University of Bologna)	20762
ORCa: Glossy Objects As Radiance-Field Cameras	20773
Nighttime Smartphone Reflective Flare Removal Using Optical Center Symmetry Prior 2 Yuekun Dai (Nanyang Technological University), Yihang Luo (Nanyang Technological University), Shangchen Zhou (Nanyang Technological University), Chongyi Li (Nanyang Technological University), and Chen Change Loy (Nanyang Technological University)	20783
SunStage: Portrait Reconstruction and Relighting Using the Sun as a Light Stage	20792

The Differentiable Lens: Compound Lens Search Over Glass Surfaces and Materials for Object Detection
Geoffroi Côté (Universite Laval; Princeton University), Fahim Mannan (Algolux), Simon Thibault (Universite Laval), Jean-François Lalonde (Universite Laval), and Felix Heide (Princeton University; Algolux)
Teleidoscopic Imaging System for Microscale 3D Shape Reconstruction
Looking Through the Glass: Neural Surface Reconstruction Against High Specular Reflections 20823
Jiaxiong Qiu (VCIP, CS, Nankai University), Peng-Tao Jiang (Zhejiang University), Yifan Zhu (VCIP, CS, Nankai University), Ze-Xin Yin (VCIP, CS, Nankai University), Ming-Ming Cheng (VCIP, CS, Nankai University), and Bo Ren (VCIP, CS, Nankai University)
NeuralUDF: Learning Unsigned Distance Fields for Multi-View Reconstruction of Surfaces With Arbitrary Topologies
Sphere-Guided Training of Neural Implicit Surfaces
OReX: Object Reconstruction From Planar Cross-Sections Using Neural Fields
Persistent Nature: A Generative Model of Unbounded 3D Worlds
3D Neural Field Generation Using Triplane Diffusion
Diffusion-Based Signed Distance Fields for 3D Shape Generation

Efficient View Synthesis and 3D-Based Multi-Frame Denoising With Multiplane Feature Representations	98
Ark Lab), and Matteo Maggioni (Huawei Noah's Ark Lab) Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and Text-to-Image Diffusion	
Models	18
SINE: Semantic-Driven Image-Based NeRF Editing With Prior-Guided Editing Field	9
3D Highlighter: Localizing Regions on 3D Shapes via Text Descriptions	30
Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion	ŀΟ
PanoHead: Geometry-Aware 3D Full-Head Synthesis in 360°	50
StyleGene: Crossover and Mutation of Region-Level Facial Genes for Kinship Face Synthesis 20960 Hao Li (Computer Vision Institute, Shenzhen University), Xianxu Hou (National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University; Xi'an Jiaotong-Liverpool University), Zepeng Huang (Computer Vision Institute, Shenzhen University), and Linlin Shen (Computer Vision Institute, Shenzhen University; National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University; Shenzhen Institute of Artificial Intelligence and Robotics for Society; Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University)	,
Parameter Efficient Local Implicit Image Function Network for Face Segmentation	'0

Chang Yu (State Key Lab Systems, Institute of Aut University of Chinese Ac Laboratory of Multimod Automation, Chinese Ac of Sciences), Xiaomei Zh Artificial Intelligence Sys Academy of Sciences; Un Zhaoxiang Zhang (State Intelligence Systems, Ins Sciences; University of C Artificial Intelligence and Innovation, Chinese Aca Laboratory of Multimod Automation, Chinese Aca of Sciences; Centre for A	Ing Hierarchical 3D Face Representations From 2D boratory of Multimodal Artificial Intelligence tomation, Chinese Academy of Sciences; cademy of Sciences), Xiangyu Zhu (State Key dal Artificial Intelligence Systems, Institute of cademy of Sciences; University of Chinese Academy hang (State Key Laboratory of Multimodal stems, Institute of Automation, Chinese Iniversity of Chinese Academy of Sciences), at Key Laboratory of Multimodal Artificial stitute of Automation, Chinese Academy of Chinese Academy of Sciences; Centre for and Robotics, Hong Kong Institute of Science & Cademy of Sciences), and Zhen Lei (State Key dal Artificial Intelligence Systems, Institute of Chinese Academy of Sciences; University of Chinese Academy Artificial Intelligence and Robotics, Hong Sciences)	Images 20981
Jingxiang Sun (Tsinghua Wang (Tsinghua Univers	ral Texture Rasterization for 3D-Aware Head Avata o University), Xuan Wang (Ant Group), Lizhen sity; NNKosmos), Xiaoyu Li (Tencent Al Lab), Yong Hongwen Zhang (Tsinghua University), and Yebin y)	rs 20991
Simon Giebenhain (Tech (Technical University of	ric Head Modelshnical University of Munich), Tobias Kirschstein Munich), Markos Georgopoulos (Synthesia),), Lourdes Agapito (University College London), (Synthesia)	21003
Rui Zhao (Netease Fuxi . (Netease Fuxi Al Lab), Li	eter Translation for Game Character Auto-Creatior Al Lab), Wei Li (Nankai University), Zhipeng Hu incheng Li (Netease Fuxi Al Lab), Zhengxia Zou nenwei Shi (Beihang University), and Changjie b)	n21013
Hsuan-I Ho (Departmen (Department of Comput	Virtual Humans	21024
Yonggan Fu (Georgia In: Chenghui Li (Meta), Jasc	Robust Codec Avatar Driving for Real-Time Mobile stitute of Technology), Yuecheng Li (Meta), on Saragih (Meta), Peizhao Zhang (Meta), nd Yingyan Celine Lin (Georgia Institute of	Telepresence 21036
Rotem Shalev Arkushin	gn Language Notation Into Pose Sequences (Reichman University), Amit Moryossef (Bar-llan Fried (Reichman University)	21046

PointAvatar: Deformable Point-Based Head Avatars From Videos	21057
PAniC-3D: Stylized Single-View 3D Reconstruction From Portraits of Anime Characters Shuhong Chen (University of Maryland - College Park, USA; ByteDance), Kevin Zhang (ByteDance), Yichun Shi (University of Maryland - College Park, USA), Heng Wang (University of Maryland - College Park, USA), Yiheng Zhu (University of Maryland - College Park, USA), Guoxian Song (University of Maryland - College Park, USA), Sizhe An (University of Maryland - College Park, USA), Janus Kristjansson (ByteDance), Xiao Yang (University of Maryland - College Park, USA), and Matthias Zwicker (ByteDance)	21068
HandNeRF: Neural Radiance Fields for Animatable Interacting Hands	21078
VGFlow: Visibility Guided Flow Network for Human Reposing	. 21088
Clothed Human Performance Capture With a Double-Layer Neural Radiance Fields	21098
POEM: Reconstructing Hand in a Point Embedded Multi-View Stereo Lixin Yang (Shanghai Jiao Tong University; Shanghai Qi Zhi Institute), Jian Xu (Nreal), Licheng Zhong (Shanghai Jiao Tong University), Xinyu Zhan (Shanghai Jiao Tong University), Zhicheng Wang (Nreal), Kejian Wu (Nreal), and Cewu Lu (Shanghai Jiao Tong University; Shanghai Qi Zhi Institute)	21108
FlexNeRF: Photorealistic Free-Viewpoint Rendering of Moving Humans From Sparse Views . Vinoj Jayasundara (University of Maryland, College Park), Amit Agrawal (Amazon.com, Inc.), Nicolas Heron (Amazon.com, Inc.), Abhinav Shrivastava (University of Maryland, College Park), and Larry S. Davis (University of Maryland, College Park; Amazon.com, Inc.)	21118

Flow Supervision for Deformable NeRF	128
Building Rearticulable Models for Arbitrary 3D Objects From 4D Point Clouds	138
Implicit 3D Human Mesh Recovery Using Consistency With Pose and Shape From Unseen-View 21148	٧
Hanbyel Cho (Korea Advanced Institute of Science and Technology (KAIST), South Korea), Yooshin Cho (Korea Advanced Institute of Science and Technology (KAIST), South Korea), Jaesung Ahn (Korea Advanced Institute of Science and Technology (KAIST), South Korea), and Junmo Kim (Korea Advanced Institute of Science and Technology (KAIST), South Korea)	
One-Stage 3D Whole-Body Mesh Recovery With Component Aware Transformer	159
Im2Hands: Learning Attentive Implicit Representation of Interacting Two-Hand Shapes 21 Jihyun Lee (KAIST), Minhyuk Sung (KAIST), Honggyu Choi (KAIST), and Tae-Kyun Kim (KAIST; Imperial College London)	169
FLEX: Full-Body Grasping Without Full-Body Grasps	179
DexArt: Benchmarking Generalizable Dexterous Manipulation With Articulated Objects 21 Chen Bao (Shanghai Jiao Tong University), Helin Xu (Tsinghua University), Yuzhe Qin (UC San Diego), and Xiaolong Wang (UC San Diego)	190
CARTO: Category and Joint Agnostic Reconstruction of ARTiculated Objects	201
CIRCLE: Capture in Rich Contextual Environments	211

Decoupling Human and Camera Motion From Videos in the Wild	2
GarmentTracking: Category-Level Garment Pose Tracking	3
Hierarchical Temporal Transformer for 3D Hand Pose Estimation and Action Recognition From Egocentric RGB Videos	3
PSVT: End-to-End Multi-Person 3D Pose and Shape Estimation With Progressive Video Transformers	4
Delving Into Discrete Normalizing Flows on SO(3) Manifold for Probabilistic Rotation Modeling	4

3D-POP – An Automated Annotation Approach to Facilitate Markerless 2D-3D Tracking of	
Freely Moving Birds With Marker-Based Motion Capture	<u>2</u> 74
Hemal Naik (Dept. of Collective Behavior and Dept. of Ecology of	
Animal Societies, Max Planck Institute of Animal Behavior; Dept. of	
Biology, University of Konstanz; Centre for the Advanced Study of	
Collective Behaviour, University of Konstanz; Informatik Department,	
Technische Universitat München), Alex Hoi Hang Chan (Dept. of	
Collective Behavior and Dept. of Ecology of Animal Societies, Max	
Planck Institute of Animal Behavior; Dept. of Biology, University of	
Konstanz), Junran Yang (Dept. of Biology, University of Konstanz),	
Mathilde Delacoux (Dept. of Collective Behavior and Dept. of Ecology	
of Animal Societies, Max Planck Institute of Animal Behavior; Dept. of	
Biology, University of Konstanz), Iain D. Couzin (Dept. of Collective	
Behavior and Dept. of Ecology of Animal Societies, Max Planck	
Institute of Animal Behavior; Dept. of Biology, University of	
Konstanz; Centre for the Advanced Study of Collective Behaviour,	
University of Konstanz), Fumihiro Kano (Dept. of Collective Behavior	
and Dept. of Ecology of Animal Societies, Max Planck Institute of	
Animal Behavior; Dept. of Biology, University of Konstanz), and Máté	
Nagy (Dept. of Collective Behavior and Dept. of Ecology of Animal	
Societies, Max Planck Institute of Animal Behavior; Dept. of Biology,	
University of Konstanz; Centre for the Advanced Study of Collective	
Behaviour, University of Konstanz; Dept. of Biological Physics, Eotvos	
Lorand University; MTA-ELTE 'Lendület' Collective Behaviour Research	
Group, Hungarian Academy of Sciences)	
TTA-COPE: Test-Time Adaptation for Category-Level Object Pose Estimation	<u>?</u> 85
Markerless Camera-to-Robot Pose Estimation via Self-Supervised Sim-to-Real Transfer 212 Jingpei Lu (University of California, San Diego), Florian Richter (University of California, San Diego), and Michael C. Yip (University of California, San Diego)	<u>2</u> 96
SMOC-Net: Leveraging Camera Pose for Self-Supervised Monocular Object Pose Estimation	
21307	• • • • •
Tao Tan (School of Artificial Intelligence, UCAS; State Key Laboratory	
of Multimodal Artificial Intelligence Systems, CASIA) and Qiulei Dong	
(School of Artificial Intelligence, UCAS; State Key Laboratory of	
Multimodal Artificial Intelligence Systems, CASIA; Center for	
Excellence in Brain Science and Intelligence Technology, CAS)	
IMP: Iterative Matching and Pose Estimation With Adaptive Pooling	17
Fei Xue (University of Cambridge), Ignas Budvytis (University of Cambridge), and Roberto Cipolla (University of Cambridge)) /
Self-Supervised Representation Learning for CAD	327
Benjamin T. Jones (University of Washington), Michael Hu (University	,
of Washington), Milin Kodnongbua (University of Washington), Vladimir	
G. Kim (Adobe Research), and Adriana Schulz (University of Washington)	

Few-Shot Geometry-Aware Keypoint Localization	21337
SparsePose: Sparse-View Camera Pose Regression and Refinement Samarth Sinha (University of Toronto), Jason Y. Zhang (Carnegie Mellon University), Andrea Tagliasacchi (University of Toronto; Simon Fraser University; Google), Igor Gilitschenski (University of Toronto), and David B. Lindell (University of Toronto; Vector Institute)	21349
A Large-Scale Homography Benchmark Daniel Barath (Computer Vision and Geometry Group, ETH Zurich, Switzerland), Dmytro Mishkin (VRG, Faculty of Electrical Engineering, CTU in Prague, Czech Republic; HOVER Inc.), Michal Polic (VRG, Faculty of Electrical Engineering, CTU in Prague, Czech Republic; CIIRC, CTU in Prague, Czech Republic), Wolfgang Förstner (University Bonn), and Jiri Matas (VRG, Faculty of Electrical Engineering, CTU in Prague, Czech Republic)	21360
Learning Geometric-Aware Properties in 2D Representation Using Lightweight CAD Models, Zero Real 3D Pairs	, or 21371
AutoRecon: Automated 3D Object Discovery and Reconstruction	21382
Multi-Sensor Large-Scale Dataset for Multi-View 3D Reconstruction Oleg Voynov (Skolkovo Institute of Science and Technology; Artificial Intelligence Research Institute), Gleb Bobrovskikh (Skolkovo Institute of Science and Technology), Pavel Karpyshev (Skolkovo Institute of Science and Technology), Saveliy Galochkin (Skolkovo Institute of Science and Technology), Andrei-Timotei Ardelean (Skolkovo Institute of Science and Technology), Arseniy Bozhenko (Skolkovo Institute of Science and Technology), Ekaterina Karmanova (Skolkovo Institute of Science and Technology), Pavel Kopanev (Skolkovo Institute of Science and Technology), Yaroslav Labutin-Rymsho (Moscow Engineering Physics Institute), Ruslan Rakhimov (Skolkovo Institute of Science and Technology), Aleksandr Safin (Skolkovo Institute of Science and Technology), Valerii Serpiva (Skolkovo Institute of Science and Technology), Alexey Artemov (Technical University of Munich), Evgeny Burnaev (Skolkovo Institute of Science and Technology; Artificial Intelligence Research Institute), Dzmitry Tsetserukou (Skolkovo Institute of Science and Technology), and Denis Zorin (New York University)	21392
NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization	21404

Self-Supervised Super-Plane for Neural 3D Reconstruction
PlaneDepth: Self-Supervised Depth Estimation via Orthogonal Planes
Single View Scene Scale Estimation Using Scale Field
3D Line Mapping Revisited
Inverting the Imaging Process by Learning an Implicit Camera Model
SfM-TTR: Using Structure From Motion for Test-Time Refinement of Single-View Depth Networks
iDisc: Internal Discretization for Monocular Depth Estimation
DC2: Dual-Camera Defocus Control by Learning To Refocus
A Practical Stereo Depth System for Smart Glasses

GeoMVSNet: Learning Multi-View Stereo With Geometry Perception
DINN360: Deformable Invertible Neural Network for Latitude-Aware 360° Image Rescaling 21519 Yichen Guo (Beihang University, China), Mai Xu (Beihang University, China), Lai Jiang (University of British Columbia, Canada), Leonid Sigal (University of British Columbia, Canada), and Yunjin Chen (Beihang University, China)
OmniVidar: Omnidirectional Depth Estimation From Multi-Fisheye Images
Learning To Fuse Monocular and Multi-View Cues for Multi-Frame Depth Estimation in Dynamic
Scenes Rui Li (Northwestern Polytechnical University), Dong Gong (The University of New South Wales), Wei Yin (DJI), Hao Chen (Zhejiang University), Yu Zhu (Northwestern Polytechnical University), Kaixuan Wang (DJI), Xiaozhi Chen (DJI), Jinqiu Sun (Northwestern Polytechnical University), and Yanning Zhang (Northwestern Polytechnical University)
Modality-Invariant Visual Odometry for Embodied Vision
VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud
CAPE: Camera View Position Embedding for Multi-View 3D Object Detection
AeDet: Azimuth-Invariant Multi-View 3D Object Detection
Object Detection With Self-Supervised Scene Adaptation

Understanding the Robustness of 3D Object Detection With Bird's-Eye-View Representation Autonomous Driving	ons 21600
BEVHeight: A Robust Framework for Vision-Based Roadside 3D Object Detection	21611
Uncertainty-Aware Vision-Based Metric Cross-View Geolocalization	. 21621
OrienterNet: Visual Localization in 2D Public Maps With Neural Matching	21632
MSMDFusion: Fusing LiDAR and Camera at Multiple Scales With Multi-Depth Seeds for 3D Object Detection	21643
Virtual Sparse Convolution for Multimodal 3D Object Detection	21653
Optimal Transport Minimization: Crowd Localization on Density Maps for Semi-Supervised Counting	
VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking	21674
GraVoS: Voxel Selection for 3D Point-Cloud Detection	. 21684

MSeg3D: Multi-Modal 3D Semantic Segmentation for Autonomous Driving	594
LaserMix for Semi-Supervised LiDAR Semantic Segmentation	705
Implicit Surface Contrastive Clustering for LiDAR Point Clouds	716
Semi-Weakly Supervised Object Kinematic Motion Prediction	726
PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained Image-Language Models	736
Learning Weather-General and Weather-Specific Features for Image Restoration Under Multiple Adverse Weather Conditions	747
Geometry and Uncertainty-Aware 3D Point Cloud Class-Incremental Semantic Segmentation 21759 Yuwei Yang (Sichuan University), Munawar Hayat (Monash University), Zhao Jin (Sichuan University), Chao Ren (Sichuan University), and Yinjie Lei (Sichuan University)	••••
Learning 3D Representations From 2D Pre-Trained Models via Image-to-Point Masked Autoencoders	769
ToThePoint: Efficient Contrastive Learning of 3D Point Clouds via Recycling	781

PointDistiller: Structured Knowledge Distillation Towards Efficient and Compact 3D Detection	21791
PointConvFormer: Revenge of the Point-Based Convolution	21802
Self-Positioning Point-Based Transformer for Point Cloud Understanding	21814
PointClustering: Unsupervised Point Cloud Pre-Training Using Transformation Invariance in Clustering	1 . 21824
Neural Intrinsic Embedding for Non-Rigid Point Cloud Matching	21835
HGNet: Learning Hierarchical Geometry From Points, Edges, and Surfaces	21846
LP-DIF: Learning Local Pattern-Specific Deep Implicit Function for 3D Objects and Scenes Meng Wang (Tsinghua University, China), Yu-Shen Liu (Tsinghua University, China), Yue Gao (Tsinghua University, China), Kanle Shi (Kuaishou Technology, China), Yi Fang (New York University Abu Dhabi, UAE), and Zhizhong Han (Wayne State University, USA)	21856
Conjugate Product Graphs for Globally Optimal 2D-3D Shape Matching	21866
UTM: A Unified Multiple Object Tracking Model With Identity-Aware Feature Enhancement Sisi You (Nanjing University of Posts and Telecommunications), Hantao Yao (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences (CASIA)), Bing-Kun Bao (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences), and Changsheng Xu (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences)	21876

Learning Rotation-Equivariant Features for Visual Correspondence
Adaptive Spot-Guided Transformer for Consistent Local Feature Matching
PMatch: Paired Masked Image Modeling for Dense Geometric Matching
Iterative Geometry Encoding Volume for Stereo Matching
Adaptive Annealing for Robust Geometric Estimation
Tangentially Elongated Gaussian Belief Propagation for Event-Based Incremental Optical Flow Estimation
Robust and Scalable Gaussian Process Regression and Its Applications
BEV-Guided Multi-Modality Fusion for Driving Perception
HumanBench: Towards General Human-Centric Perception With Projector Assisted Pretraining 21970 Shixiang Tang (The University of Sydney; SenseTime Research), Cheng Chen (SenseTime Research), Qingsong Xie (SenseTime Research), Meilin Chen (Zhejiang University; SenseTime Research), Yizhou Wang (Zhejiang University; SenseTime Research), Yuanzheng Ci (The University of Sydney), Lei Bai (Shanghai Al Laboratory), Feng Zhu (SenseTime Research), Haiyang Yang (SenseTime Research), Li Yi (SenseTime Research), Rui Zhao (SenseTime Research; Shanghai Jiao Tong University, China), and Wanli Ouyang (Shanghai Al Laboratory)

21983	owards Scalable Decoders for End-to-End Au	tonomous Driving
Xiaosong Jia (Shanghai Jiao Penghao Wu (Shanghai Al I Diego), Li Chen (Shanghai A Laboratory), Conghui He (S Jiao Tong University; Shang	Tong University; Shanghai Al Laboratory), Laboratory; University of California at San Al Laboratory), Jiangwei Xie (Shanghai Al hanghai Al Laboratory), Junchi Yan (Shanghai rhai Al Laboratory), and Hongyang Li hanghai Jiao Tong University)	
	ntric Motion Forecasting With Anchor-Inform g Su (QCraft), Fang Da (QCraft), and Xiaodong	ed Proposals 21995
Environments	r Prototyping Spatial Reasoning Methods for ersity), Nicholas R. Waytowich (ARL), James Inouye (Purdue University)	Multi-Agent 22004
Prediction Jianhua Sun (Shanghai Jiao (Shanghai Jiao Tong Univer	versal and Effective Sampler in Multi-Modal F Tong University, China), Yuxuan Li sity, China), Liang Chai (Shanghai Jiao Tong yu Lu (Shanghai Jiao Tong University, China)	
Chen Wang (Carnegie Mello York, USA), Dasong Gao (Constitute of Technology, USA) University, Singapore), Juny Yaoyu Hu (Carnegie Mellon Mellon University, USA), Bo Fan Yang (ETH Zürich, Switt University, USA), Abhinav Paryan Aryan (Carnegie Mellon University, India), Jiahe Xu Tianhao Wu (University of University, USA), Daning Hu Zhongqiang Ren (Carnegie Mellon University, USA), Takong, China), Pranay Redd Xiao Lin (Georgia Institute (Carnegie Mellon University Institute of Technology, USA), Technology, USA), Kun Cao Singapore), Yi Du (State Un (Nanyang Technological Ur University, China), Shanzho Chen (Nanyang Technological Ur University, China), Shanzho Chen (Nanyang Technological Ur University, China), Karthik Danto Jiajun Wu (Stanford University, Singapore), Luce	Learning With Physics-Based Optimization on University, USA; State University of New Grinegie Mellon University, USA; Massachusetts A), Kuan Xu (Nanyang Technological vi Geng (Carnegie Mellon University, USA), University, USA), Yuheng Qiu (Carnegie Wen Li (Carnegie Mellon University, USA), Verland), Brady Moon (Carnegie Mellon andey (Pennsylvania State University, USA), Verland), Brady Moon (Carnegie Mellon University, USA), Verland, USA; Delhi Technological (Carnegie Mellon University, USA), Virginia, USA), Haonan He (Carnegie Mellon University, USA), Mellon University, USA), Shibo Zhao (Carnegie Imeng Fu (The Chinese University of Hong V (University of Massachusetts Amherst, USA), Of Technology, USA), Wenshan Wang V (University of Massachusetts Institute of (Nanyang Technological University, VISA), Shipa Wang (University, Singapore), Huai Yu (Wuhan No Wang (University of Michigan, USA), Siyu Cal University, Singapore), Ananth Kashyap Ool, USA), Rohan Bandaru (Lexington High Out (State University of New York, USA), Sity, USA), Lihua Xie (Nanyang Technological Carlone (Massachusetts Institute of Utter (ETH Zürich, Switzerland), and Wellon University, USA)	22024

Source-Free Adaptive Gaze Estimation by Uncertainty Reduction Xin Cai (Institute of Computing Technology, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Jiabei Zeng (Institute of Computing Technology, Chinese Academy of Sciences, China), Shiguang Shan (Institute of Computing Technology, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; Peng Cheng Laboratory, China), and Xilin Chen (Institute of Computing Technology, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China)	22035
Camouflaged Object Detection With Feature Decomposition and Edge Reconstruction	22046
MOTRv2: Bootstrapping End-to-End Multi-Object Tracking by Pretrained Object Detectors Yuang Zhang (Shanghai Jiao Tong University), Tiancai Wang (MEGVII Technology), and Xiangyu Zhang (MEGVII Technology; Beijing Academy of Artificial Intelligence)	22056
Clothing-Change Feature Augmentation for Person Re-Identification	22066
Dynamic Aggregated Network for Gait Recognition Kang Ma (Beijing Institute of Technology), Ying Fu (Beijing Institute of Technology), Dezhi Zheng (Beijing Institute of Technology), Chunshui Cao (WATRIX.AI), Xuecai Hu (WATRIX.AI), and Yongzhen Huang (WATRIX.AI; Beijing Normal University)	22076
Feature Representation Learning With Adaptive Displacement Generation and Transformer Fusion for Micro-Expression Recognition	
MetaPortrait: Identity-Preserving Talking Head Generation With Fast Personalized Adaptation Bowen Zhang (USTC), Chenyang Qi (HKUST), Pan Zhang (USTC), Bo Zhang (Microsoft), HsiangTao Wu (Microsoft), Dong Chen (HKUST), Qifeng Chen (HKUST), Yong Wang (USTC), and Fang Wen (Microsoft)	22096
FLAG3D: A 3D Fitness Activity Dataset With Language Instruction Yansong Tang (Tsinghua University), Jinpeng Liu (Tsinghua University), Aoyang Liu (Tsinghua University), Bin Yang (Tsinghua University), Wenxun Dai (Tsinghua University), Yongming Rao (Tsinghua University), Jiwen Lu (Tsinghua University), Jie Zhou (Tsinghua University), and Xiu Li (Tsinghua University)	22106

TranSG: Transformer-Based Skeleton Graph Prototype Contrastive Learni Structure-Trajectory Prompted Reconstruction for Person Re-Identification Haocong Rao (Nanyang Technological University, Singapore) and Chunyan Miao (Nanyang Technological University, Singapore)	n 22118
NeMo: Learning 3D Neural Motion Fields From Multiple Video Instances o 22129	f the Same Action
Kuan-Chieh Wang (Stanford University), Zhenzhen Weng (Stanford University), Maria Xenochristou (Stanford University), João Pedro Araújo (Stanford University), Jeffrey Gu (Stanford University), Karen Liu (Stanford University), and Serena Yeung (Stanford University)	
Unsupervised Space-Time Network for Temporally-Consistent Segmentati 22139	on of Multiple Motions.
Etienne Meunier (Inna, France) and Patrick Bouthemy (Inna, France)	
Deep Polarization Reconstruction With PDAVIS Events	22149
Range-Nullspace Video Frame Interpolation With Focalized Motion Estima Zhiyang Yu (Harbin Institute of Technology, China), Yu Zhang (SenseTime Research and Tetras.Al, China), Dongqing Zou (SenseTime Research and Tetras.Al, China; Shanghai Jiao Tong University, China), Xijun Chen (Harbin Institute of Technology, China), Jimmy S. Ren (SenseTime Research and Tetras.Al, China; Shanghai Jiao Tong University, China), and Shunqing Ren (Harbin Institute of Technology, China)	tion 22159
Exploring Motion Ambiguity and Alignment for High-Quality Video Frame Kun Zhou (SSE, CUHK-Shenzhen; SmartMore Corporation), Wenbo Li (CUHK Xiaoguang Han (SSE, CUHK-Shenzhen), and Jiangbo Lu (SmartMore Corporation)	
1000 FPS HDR Video With a Spike-RGB Hybrid Camera	22180
Deep Discriminative Spatial and Temporal Network for Efficient Video Deb Jinshan Pan (Nanjing University of Science and Technology), Boming Xu (Nanjing University of Science and Technology), Jiangxin Dong (Nanjing University of Science and Technology), Jianjun Ge (China Electronics Technology Group Corporation), and Jinhui Tang (Nanjing University of Science and Technology)	olurring 22191

Gated Multi-Resolution Transfer Network for Burst Restoration and Enhancement	1
A Unified HDR Imaging Method With Pixel and Patch Level	1
BiasBed – Rigorous Texture Bias Evaluation	1
Learning a Practical SDR-to-HDRTV Up-Conversion Using New Dataset and Degradation Models 22231 Cheng Guo (Communication University of China; Peng Cheng Laboratory), Leidong Fan (Peng Cheng Laboratory; Peking University), Ziyu Xue (Academy of Broadcasting Science, National Radio and Television Administration; Communication University of China), and Xiuhua Jiang (Peng Cheng Laboratory; Peking University)	
Learning a Deep Color Difference Metric for Photographic Images	2
Learning a Simple Low-Light Image Enhancer From Paired Low-Light Instances	2
Residual Degradation Learning Unfolding Framework With Mixing Priors Across Spectral and Spatial for Compressive Spectral Imaging	2
Toward Stable, Interpretable, and Lightweight Hyperspectral Super-Resolution	2

RIDCP: Revitalizing Real Image Dehazing via High-Quality Codebook Priors	22282
Robust Unsupervised StyleGAN Image Restoration	22292
Quality-Aware Pre-Trained Models for Blind Image Quality Assessment	. 22302
Learning To Exploit the Sequence-Specific Prior Knowledge for Image Processing Pipelines Optimization	
Haina Qin (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Longfei Han (Beijing Technology and Business University), Weihua Xiong (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences), Juan Wang (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences), Wentao Ma (Zeku Technology), Bing Li (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences), and Weiming Hu (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences; School of Artificial Intelligence, University of Chinese Academy of Sciences)	. 22314
Multi-Realism Image Compression With a Conditional Generator	22324
RGB No More: Minimally-Decoded JPEG Vision Transformers	22334
Kernel Aware Resampler	22347
Spatial-Frequency Mutual Learning for Face Super-Resolution	22356

Activating More Pixels in Image Super-Resolution Transformer
Omni Aggregation Networks for Lightweight Image Super-Resolution
Towards Artistic Image Aesthetics Assessment: A Large-Scale Dataset and a New Method 22388 Ran Yi (Shanghai Jiao Tong University), Haoyuan Tian (Shanghai Jiao Tong University), Zhihao Gu (Shanghai Jiao Tong University), Yu-Kun Lai (Cardiff University), and Paul L. Rosin (Cardiff University)
RWSC-Fusion: Region-Wise Style-Controlled Fusion Network for the Prohibited X-Ray Security Image Synthesis
Efficient Scale-Invariant Generator With Column-Row Entangled Pixel Synthesis
Masked and Adaptive Transformer for Exemplar Based Image Translation
SmartBrush: Text and Shape Guided Object Inpainting With Diffusion Model
Neural Transformation Fields for Arbitrary-Styled Font Generation
Referring Image Matting

Handwritten Text Generation From Visual Archetypes	. 22458
SceneComposer: Any-Level Semantic Image Synthesis	. 22468
Affordance Diffusion: Synthesizing Hand-Object Interactions	. 22479
LayoutDiffusion: Controllable Diffusion Model for Layout-to-Image Generation	. 22490
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation Nataniel Ruiz (Google Research; Boston University), Yuanzhen Li (Google Research), Varun Jampani (Google Research), Yael Pritch (Google Research), Michael Rubinstein (Google Research), and Kfir Aberman (Google Research)	. 22500
GLIGEN: Open-Set Grounded Text-to-Image Generation Yuheng Li (University of Wisconsin-Madison), Haotian Liu (University of Wisconsin-Madison), Qingyang Wu (Columbia University), Fangzhou Mu (University of Wisconsin-Madison), Jianwei Yang (Microsoft), Jianfeng Gao (Microsoft), Chunyuan Li (Microsoft), and Yong Jae Lee (University of Wisconsin-Madison)	. 22511
Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models	. 22522
EDICT: Exact Diffusion Inversion via Coupled Transformations	. 22532
Solving 3D Inverse Problems Using Pre-Trained 2D Diffusion Models	. 22542

Diffusion Probabilistic Model Made Slim	. 22552
Align Your Latents: High-Resolution Video Synthesis With Latent Diffusion Models	. 22563
Binary Latent Diffusion	22576
Semi-Supervised Video Inpainting With Cycle Consistency Constraints	. 22586
Towards Accurate Image Coding: Improved Autoregressive Image Generation With Dynam Vector Quantization	ic . 22596
Large-Capacity and Flexible Video Steganography via Invertible Neural Network Chong Mou (Peking University Shenzhen Graduate School, China), Youmin Xu (Peking University Shenzhen Graduate School, China), Jiechong Song (Peking University Shenzhen Graduate School, China), Chen Zhao (King Abdullah University of Science and Technology (KAUST), Saudi Arabia), Bernard Ghanem (King Abdullah University of Science and Technology (KAUST), Saudi Arabia), and Jian Zhang (Peking University Shenzhen Graduate School, China; Peng Cheng Laboratory, China)	. 22606
Neural Video Compression With Diverse Contexts	. 22616
Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos	. 22627

Structured Sparsity Learning for Efficient Video Super-Resolution	. 22638
DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training	. 22648
Boost Vision Transformer With GPU-Friendly Sparsity and Quantization	. 22658
All Are Worth Words: A ViT Backbone for Diffusion Models Fan Bao (Tsinghua University, China), Shen Nie (Renmin University of China; Beijing Key Laboratory of Big Data Management and Analysis Methods, China), Kaiwen Xue (Renmin University of China; Beijing Key Laboratory of Big Data Management and Analysis Methods, China), Yue Cao (Beijing Academy of Artificial Intelligence), Chongxuan Li (Renmin University of China; Beijing Key Laboratory of Big Data Management and Analysis Methods, China), Hang Su (Tsinghua University, China), and Jun Zhu (Tsinghua University, China)	. 22669
Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers Cong Wei (University of Toronto; Modiface, Inc.), Brendan Duke (University of Toronto; Modiface, Inc.), Ruowei Jiang (Modiface, Inc.), Parham Aarabi (University of Toronto; Modiface, Inc.), Graham W. Taylor (University of Guelph; Vector Institute), and Florian Shkurti (University of Toronto; Vector Institute)	22680
Vision Transformer With Super Token Sampling Huaibo Huang (MAIS&CRIPAC, Institute of Automation, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Xiaoqiang Zhou (MAIS&CRIPAC, Institute of Automation, Chinese Academy of Sciences, China; University of Science and Technology of China, China), Jie Cao (MAIS&CRIPAC, Institute of Automation, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Ran He (MAIS&CRIPAC, Institute of Automation, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; ShanghaiTech University, China), and Tieniu Tan (MAIS&CRIPAC, Institute of Automation, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; University of Science and Technology of China, China; Nanjing University, Nanjing, China)	. 22690
DropKey for Vision Transformer Bonan Li (University of Chinese Academy of Sciences), Yinhan Hu (University of Chinese Academy of Sciences), Xuecheng Nie (MT Lab, Meitu Inc.), Congying Han (University of Chinese Academy of Sciences), Xiangjian Jiang (University of Cambridge), Tiande Guo (University of Chinese Academy of Sciences), and Luoqi Liu (MT Lab, Meitu Inc.)	. 22700

Seeing Beyond the Brain: Conditional Diffusion Model With Sparse Masked Modeling for Vision Decoding	22710
Zijiao Chen (National University of Singapore), Jiaxin Qing (The Chinese University of Hong Kong), Tiange Xiang (Stanford University), Wan Lin Yue (National University of Singapore), and Juan Helen Zhou (National University of Singapore)	
ResFormer: Scaling ViTs With Multi-Resolution Training	22721
Stare at What You See: Masked Image Modeling Without Reconstruction Hongwei Xue (University of Science and Technology of China; Shanghai Artificial Intelligence Laboratory), Peng Gao (Shanghai Artificial Intelligence Laboratory; Shenzhen Institutes of Advanced Technology, Chinese Academy of Science), Hongyang Li (Shanghai Artificial Intelligence Laboratory), Yu Qiao (Shanghai Artificial Intelligence Laboratory), Hao Sun (China Telecom Corporation Ltd. Data&Al Technology Company), Houqiang Li (University of Science and Technology of China), and Jiebo Luo (University of Rochester)	22732
Mixed Autoencoder for Self-Supervised Visual Representation Learning	22742
Shape-Erased Feature Learning for Visible-Infrared Person Re-Identification	22752
G-MSM: Unsupervised Multi-Shape Matching With Graph-Based Affinity Priors	22762
Efficient Mask Correction for Click-Based Interactive Image Segmentation	22773
Prototype-Based Embedding Network for Scene Graph Generation Chaofan Zheng (University of Electronic Science and Technology of China, China), Xinyu Lyu (University of Electronic Science and Technology of China, China), Lianli Gao (University of Electronic Science and Technology of China, China), Bo Dai (University of Electronic Science and Technology of China, China), and Jingkuan Song (University of Electronic Science and Technology of China, China)	22783

Graph Representation for Order-Aware Visual Transformation	. 22793
Unbiased Scene Graph Generation in Videos Sayak Nag (University of California, USA), Kyle Min (Intel Comparation, USA), Subgraph Trionthic (Intel Comparation, USA), and April	. 22803
Corporation, USA), Subarna Tripathi (Intel Corporation, USA), and Amit K. Roy-Chowdhury (University of California, USA)	
Recurrence Without Recurrence: Stable Video Landmark Detection With Deep Equilibrium Models	. 22814
Paul Micaelli (University of Edinburgh), Arash Vahdat (NVIDIA), Hongxu Yin (NVIDIA), Jan Kautz (NVIDIA), and Pavlo Molchanov (NVIDIA)	
VideoTrack: Learning To Track Objects via Video Transformer Fei Xie (Shanghai Jiao Tong University), Lei Chu (Microsoft Research Asia), Jiahao Li (Microsoft Research Asia), Yan Lu (Microsoft Research Asia), and Chao Ma (Shanghai Jiao Tong University)	. 22826
Breaking the "Object" in Video Object Segmentation	22836
Hierarchical Semantic Contrast for Scene-Aware Video Anomaly Detection	22846
Mask-Free Video Instance Segmentation Lei Ke (ETH Zurich; HKUST), Martin Danelljan (ETH Zurich), Henghui Ding (ETH Zurich), Yu-Wing Tai (HKUST), Chi-Keung Tang (HKUST), and Fisher Yu (ETH Zurich)	22857
Hierarchical Neural Memory Network for Low Latency Event Processing Ryuhei Hamaguchi (National Institute of Advanced Industrial Science and Technology (AIST)), Yasutaka Furukawa (Simon Fraser University), Masaki Onishi (National Institute of Advanced Industrial Science and Technology (AIST)), and Ken Sakurada (National Institute of Advanced Industrial Science and Technology (AIST))	. 22867
Unifying Short and Long-Term Tracking With Graph Hierarchies	. 22877
Towards End-to-End Generative Modeling of Long Videos With Memory-Efficient Bidirectio	
Transformers Jaehoon Yoo (KAIST), Semin Kim (KAIST), Doyup Lee (Kakao Brain), Chiheon Kim (Kakao Brain), and Seunghoon Hong (KAIST)	. 22888

An Empirical Study of End-to-End Video-Language Transformers With Masked Visual Model 22898	ing
Tsu-Jui Fu (UC Santa Barbara), Linjie Li (UC Santa Barbara), Zhe Gan (UC Santa Barbara), Kevin Lin (Microsoft), William Yang Wang (UC Santa Barbara), Lijuan Wang (Microsoft), and Zicheng Liu (Microsoft)	
Egocentric Audio-Visual Object Localization	. 22910
AVFormer: Injecting Vision Into Frozen Speech Models for Zero-Shot AV-ASR	. 22922
A Light Weight Model for Active Speaker Detection	. 22932
Dense-Localizing Audio-Visual Events in Untrimmed Videos: A Large-Scale Benchmark and Baseline	22942
Video Test-Time Adaptation for Action Recognition Wei Lin (Graz University of Technology, Austria; Christian Doppler Laboratory for Semantic 3D Computer Vision), Muhammad Jehanzeb Mirza (Graz University of Technology, Austria; Christian Doppler Laboratory for Embedded Machine Learning), Mateusz Kozinski (Graz University of Technology, Austria), Horst Possegger (Graz University of Technology, Austria), Hilde Kuehne (Goethe University Frankfurt, Germany; MIT-IBM Watson Al Lab), and Horst Bischof (Christian Doppler Laboratory for Embedded Machine Learning)	22952
Unified Keypoint-Based Action Recognition Framework via Structured Keypoint Pooling Ryo Hachiuma (Konica Minolta, Inc.), Fumiaki Sato (Konica Minolta, Inc.), and Taiki Sekii (Konica Minolta, Inc.)	22962
Object Discovery From Motion-Guided Tokens Zhipeng Bao (CMU), Pavel Tokmakov (Toyota Research Institute), Yu-Xiong Wang (UIUC), Adrien Gaidon (Toyota Research Institute), and Martial Hebert (CMU)	22972
Open Set Action Recognition via Multi-Label Evidential Learning	22982

PivoTAL: Prior-Driven Supervision for Weakly-Supervised Temporal Action Localization Mamshad Nayeem Rizve (University of Central Florida), Gaurav Mittal (Microsoft), Ye Yu (Microsoft), Matthew Hall (Microsoft), Sandra Sajeev (Microsoft), Mubarak Shah (University of Central Florida), and Mei Chen (Microsoft)	22992
Improving Weakly Supervised Temporal Action Localization by Bridging Train-Test Gap in Pseudo Labels Jingqiu Zhou (The Chinese University of Hong Kong), Linjiang Huang (The Chinese University of Hong Kong; Centre for Perceptual and Interactive Intelligence, Hong Kong), Liang Wang (Institute of Automation Chinese Academy of Science), Si Liu (Beihang University), and Hongsheng Li (The Chinese University of Hong Kong; Centre for Perceptual and Interactive Intelligence, Hong Kong; Xidian Uniersity)	23003
Are Binary Annotations Sufficient? Video Moment Retrieval via Hierarchical Uncertainty-Based Active Learning Wei Ji (National University of Singapore), Renjie Liang (National University of Singapore), Zhedong Zheng (National University of Singapore), Wenqiao Zhang (Zhejiang University), Shengyu Zhang (Zhejiang University), Juncheng Li (Zhejiang University), Mengze Li (Zhejiang University), and Tat-seng Chua (National University of Singaporea)	23013
Query-Dependent Video Representation for Moment Retrieval and Highlight Detection WonJun Moon (Sungkyunkwan University), Sangeek Hyun (Sungkyunkwan University), SangUk Park (Pyler), Dongchan Park (Pyler), and Jae-Pil Heo (Sungkyunkwan University)	. 23023
Vita-CLIP: Video and Text Adaptive CLIP via Multimodal Prompting	. 23034
Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection to Image-Text Pre-Training	. 23045
Hierarchical Video-Moment Retrieval and Step-Captioning	. 23056
HierVL: Learning Hierarchical Video-Language Embeddings	23066

Learning Transferable Spatiotemporal Representations From Natural Script Knowledge 23079 Ziyun Zeng (Tsinghua University; Applied Research Center (ARC), Tencent PCG), Yuying Ge (The University of Hong Kong), Xihui Liu (The University of Hong Kong), Bin Chen (Harbin Institute of Technology, Shenzhen), Ping Luo (The University of Hong Kong), Shu-Tao Xia (Tsinghua University), and Yixiao Ge (Applied Research Center (ARC), Tencent PCG)
WINNER: Weakly-Supervised hlerarchical decomposition and alignment for Spatio-temporal Video gRounding
Collaborative Static and Dynamic Vision-Language Streams for Spatio-Temporal Video Grounding
Learning Action Changes by Measuring Verb-Adverb Textual Relationships
LAVENDER: Unifying Video-Language Understanding As Masked Language Modeling 23119 Linjie Li (Microsoft), Zhe Gan (Microsoft), Kevin Lin (Microsoft), Chung-Ching Lin (Microsoft), Zicheng Liu (Microsoft), Ce Liu (Microsoft), and Lijuan Wang (Microsoft)
DeCo: Decomposition and Reconstruction for Compositional Temporal Grounding via Coarse-To-Fine Contrastive Ranking

CVT-SLR: Contrastive Visual-Textual Transformation for Sign Language Recognition With Variational Alignment
Jiangbin Zheng (Research Center for Industries of the Future, Westlake University), Yile Wang (Research Center for Industries of the Future, Westlake University; Institute for AI Industry Research (AIR), Tsinghua University), Cheng Tan (Research Center for Industries of the Future, Westlake University), Siyuan Li (Research Center for Industries of the Future, Westlake University), Ge Wang (Research Center for Industries of the Future, Westlake University), Jun Xia (Research Center for Industries of the Future, Westlake University), Yidong Chen (Xiamen University), and Stan Z. Li (Research Center for Industries of the Future, Westlake University)
Joint Visual Grounding and Tracking With Natural Language Specification
Accelerating Vision-Language Pretraining With Free Language Modeling
CoWs on Pasture: Baselines and Benchmarks for Language-Driven Zero-Shot Object Navigation 23171 Samir Yitzhak Gadre (Columbia University), Mitchell Wortsman (University of Washington), Gabriel Ilharco (University of Washington), Ludwig Schmidt (University of Washington), and Shuran Song (Columbia University)
Where We Are and What We're Looking At: Query Based Worldwide Image Geo-Localization Using Hierarchies and Scenes
ANetQA: A Large-Scale Benchmark for Fine-Grained Compositional Reasoning Over Untrimmed Videos

MetaCLUE: Towards Comprehensive Visual Metaphors Research	23201
GeoVLN: Learning Geometry-Enhanced Visual Representation With Slot Attention for Vision-and-Language Navigation	23212
Junfan Lin (Sun Yat-sen University The Hong; Kong Polytechnic University), Jianlong Chang (Huawei Cloud), Lingbo Liu (Kong Polytechnic University), Guanbin Li (Sun Yat-sen University The Hong), Liang Lin (Sun Yat-sen University The Hong), Qi Tian (Huawei Cloud), and Chang-Wen Chen (Kong Polytechnic University)	23222
LASP: Text-to-Text Optimization for Language-Aware Soft Prompting of Vision & Language Models	23232
Position-Guided Text Prompt for Vision-Language Pre-Training	23242
Intrinsic Physical Concepts Discovery With Object-Centric Predictive Models Qu Tang (University of Chinese Academy of Sciences; MAIS, Institute of Automation, Chinese Academy of Sciences), Xiangyu Zhu (University of Chinese Academy of Sciences; MAIS, Institute of Automation, Chinese Academy of Sciences), Zhen Lei (University of Chinese Academy of Sciences; MAIS, Institute of Automation, Chinese Academy of Sciences; Centre for Artificial Intelligence and Robotics, Hong Kong Institute of Science & Innovation), and Zhaoxiang Zhang (University of Chinese Academy of Sciences; MAIS, Institute of Automation, Chinese Academy of Sciences; Centre for Artificial Intelligence and Robotics, Hong Kong Institute of Science & Innovation)	23252
MAP: Multimodal Uncertainty-Aware Vision-Language Pre-Training Model	23262
CLAMP: Prompt-Based Contrastive Learning for Connecting Language and Animal Pose Xu Zhang (The University of Sydney, Australia), Wen Wang (Zhejiang University, China), Zhe Chen (The University of Sydney, Australia), Yufei Xu (The University of Sydney, Australia), Jing Zhang (The University of Sydney, Australia), and Dacheng Tao (The University of Sydney, Australia)	23272

Teacher-Generated Spatial-Attention Labels Boost Robustness and Accuracy of Contrastive Models Yushi Yao (Waymo), Chang Ye (Google), Junfeng He (Google), and Gamaleldin F. Elsayed (Google)	23282
DegAE: A New Pretraining Paradigm for Low-Level Vision Yihao Liu (Shanghai Artificial Intelligence Laboratory; Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jingwen He (Shanghai Artificial Intelligence Laboratory), Jinjin Gu (Shanghai Artificial Intelligence Laboratory; The University of Sydney), Xiangtao Kong (Shanghai Artificial Intelligence Laboratory; Chinese Academy of Sciences; University of Chinese Academy of Sciences), Yu Qiao (Shanghai Artificial Intelligence Laboratory; Chinese Academy of Sciences), and Chao Dong (Shanghai Artificial Intelligence Laboratory; Chinese Academy of Sciences)	23292
RILS: Masked Visual Reconstruction in Language Semantic Space	23304
Learning Geometry-Aware Representations by Sketching	23315
SketchXAI: A First Look at Explainability for Human Sketches Zhiyu Qu (SkctchX, CVSSP, University of Surrey; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence), Yulia Gryaditskaya (SkctchX, CVSSP, University of Surrey), Ke Li (SkctchX, CVSSP, University of Surrey; Beijing University of Posts and Telecommunications), Kaiyue Pang (SkctchX, CVSSP, University of Surrey), Tao Xiang (SkctchX, CVSSP, University of Surrey; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence), and Yi-Zhe Song (SkctchX, CVSSP, University of Surrey; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence)	23327
MAGVLT: Masked Generative Vision-and-Language Transformer	23338
Zero-Shot Everything Sketch-Based Image Retrieval, and in Explainable Style	23349

Semantic-Conditional Diffusion Networks for Image Captioning Jianjie Luo (Sun Yat-sen University, China; HiDream.ai Inc.), Yehao Li (Sun Yat-sen University, China; HiDream.ai Inc.), Yingwei Pan (Sun Yat-sen University, China; HiDream.ai Inc.), Ting Yao (Sun Yat-sen University, China; HiDream.ai Inc.), Jianlin Feng (Sun Yat-sen University, China; HiDream.ai Inc.), Hongyang Chao (Sun Yat-sen University, China; HiDream.ai Inc.), and Tao Mei (Sun Yat-sen University, China; HiDream.ai Inc.)	23359
REVEAL: Retrieval-Augmented Visual-Language Pre-Training With Multi-Source Multimodal Knowledge Memory	. 23369
Variational Distribution Learning for Unsupervised Text-to-Image Generation	23380
Scaling Language-Image Pre-Training via Masking	23390
LANIT: Language-Driven Image-to-Image Translation for Unlabeled Data Jihye Park (Korea University, Korea), Sunwoo Kim (Korea University, Korea), Soohyun Kim (Korea University, Korea), Seokju Cho (Korea University, Korea), Jaejun Yoo (UNIST, Korea), Youngjung Uh (Korea University, Korea), and Seungryong Kim (Korea University, Korea)	23401
Revisiting Self-Similarity: Structural Embedding for Image Retrieval	. 23412
Improving Cross-Modal Retrieval With Set of Diverse Embeddings	23422
Masked Autoencoding Does Not Help Natural Language Supervision at Scale	. 23432
Few-Shot Learning With Visual Distribution Calibration and Cross-Modal Distribution Alignment Runqi Wang (Beihang University; Huawei Noah's Ark Lab), Hao Zheng (Huawei Noah's Ark Lab; Tokyo Institute of Technology), Xiaoyue Duan (Beihang University), Jianzhuang Liu (Huawei Noah's Ark Lab), Yuning Lu (Huawei Noah's Ark Lab; University of Science and Technology of China), Tian Wang (Beihang University), Songcen Xu (Huawei Noah's Ark Lab), and Baochang Zhang (Beihang University: Zhongguancun Laboratory)	. 23445

Deep Hashing With Minimal-Distance-Separated Hash Centers Liangdao Wang (Sun Yat-Sen University), Yan Pan (Sun Yat-Sen University), Cong Liu (Sun Yat-Sen University), Hanjiang Lai (Sun Yat-Sen University), Jian Yin (Sun Yat-Sen University), and Ye Liu (Sun Yat-Sen University; Big Data Department, Lizhi Inc.)	23455
ConZIC: Controllable Zero-Shot Image Captioning by Sampling-Based Polishing	23465
Learning To Name Classes for Vision and Language Models	23477
Data-Efficient Large Scale Place Recognition With Graded Similarity Supervision	23487
DetCLIPv2: Scalable Open-Vocabulary Object Detection Pre-Training via Word-Region Alignment Lewei Yao (Hong Kong University of Science and Technology; Huawei Noah's Ark Lab), Jianhua Han (Huawei Noah's Ark Lab), Xiaodan Liang (Shenzhen Campus of Sun Yat-Sen University), Dan Xu (Hong Kong University of Science and Technology), Wei Zhang (Hong Kong University of Science and Technology), Zhenguo Li (Hong Kong University of Science and Technology), and Hang Xu (Hong Kong University of Science and Technology)	23497
HOICLIP: Efficient Knowledge Transfer for HOI Detection With Vision-Language Models . Shan Ning (ShanghaiTech University, China), Longtian Qiu (ShanghaiTech University, China), Yongfei Liu (ByteDance Inc.), and Xuming He (ShanghaiTech University, China; Shanghai Engineering Research Center of Intelligent Vision and Imaging)	23507
OvarNet: Towards Open-Vocabulary Object Attribute Recognition	23518
NeRF-RPN: A General Framework for Object Detection in NeRFs Benran Hu (The Hong Kong University of Science and Technology), Junkai Huang (The Hong Kong University of Science and Technology), Yichen Liu (The Hong Kong University of Science and Technology), Yu-Wing Tai (The Hong Kong University of Science and Technology; Kuaishou Technology), and Chi-Keung Tang (The Hong Kong University of Science and Technology)	23528

Mask-Free OVIS: Open-Vocabulary Instance Segmentation Without Manual Mask Annotations 23539	
Vibashan VS (Johns Hopkins University), Ning Yu (Salesforce Research), Chen Xing (Salesforce Research), Can Qin (Northeastern University), Mingfei Gao (Salesforce Research), Juan Carlos Niebles (Salesforce Research), Vishal M. Patel (Johns Hopkins University), and Ran Xu (Salesforce Research)	
GP-VTON: Towards General Purpose Virtual Try-On via Collaborative Local-Flow Global-Parsing Learning	550
Decomposed Soft Prompt Guided Fusion Enhancing for Compositional Zero-Shot Learning 23560 Xiaocheng Lu (The Hong Kong Polytechnic University), Song Guo (The Hong Kong Polytechnic University; The Hong Kong Polytechnic University Shenzhen Research Institute), Ziming Liu (The Hong Kong Polytechnic University), and Jingcai Guo (The Hong Kong Polytechnic University; The Hong Kong Polytechnic University Shenzhen Research Institute)	
Contrastive Grouping With Transformer for Referring Image Segmentation	570
Semantic Prompt for Few-Shot Image Recognition	581
GRES: Generalized Referring Expression Segmentation	592
Network-Free, Unsupervised Semantic Segmentation With Synthetic Images	502
Few-Shot Semantic Image Synthesis With Class Affinity Transfer	511

Ultra-High Resolution Segmentation With Ultra-Rich Context: A Novel Benchmark
Content-Aware Token Sharing for Efficient Semantic Segmentation With Vision Transformers 23631
Chenyang Lu (Eindhoven University of Technology), Daan de Geus (Eindhoven University of Technology), and Gijs Dubbelman (Eindhoven University of Technology)
Hierarchical Dense Correlation Distillation for Few-Shot Segmentation
On Calibrating Semantic Segmentation Models: Analyses and an Algorithm
FastInst: A Simple Query-Based Model for Real-Time Instance Segmentation
Out-of-Candidate Rectification for Weakly Supervised Semantic Segmentation
Foundation Model Drives Weakly Incremental Learning for Semantic Segmentation
Long-Tailed Visual Recognition via Self-Heterogeneous Integration With Knowledge Excavation
Instance-Specific and Model-Adaptive Supervision for Semi-Supervised Semantic Segmentation 23705 Zhen Zhao (University of Sydney; Baidu VIS), Sifan Long (Baidu VIS; Jilin University), Jimin Pi (Baidu VIS), Jingdong Wang (Baidu VIS), and Luping Zhou (University of Sydney)

Active Finetuning: Exploiting Annotation Budget in the Pretraining-Finetuning Paradign Yichen Xie (University of California, Berkeley), Han Lu (Shanghai Jiao Tong University), Junchi Yan (Shanghai Jiao Tong University), Xiaokang Yang (Shanghai Jiao Tong University), Masayoshi Tomizuka (University of California, Berkeley), and Wei Zhan (University of California, Berkeley)	า23715
IDGI: A Framework To Eliminate Explanation Noise From Integrated Gradients	23725
Weakly Supervised Posture Mining for Fine-Grained Classification	23735
Vision Transformers Are Good Mask Auto-Labelers	23745
Enhanced Training of Query-Based Object Detection via Selective Query Recollection Fangyi Chen (Carnegie Mellon University), Han Zhang (Carnegie Mellon University), Kai Hu (Carnegie Mellon University), Yu-Kai Huang (Carnegie Mellon University), Chenchen Zhu (Meta AI), and Marios Savvides (Meta AI)	23756
Box-Level Active Detection Mengyao Lyu (Tsinghua University; BNRist; Hangzhou Zhuoxi Institute of Brain and Intelligence), Jundong Zhou (Tsinghua University; BNRist; Hangzhou Zhuoxi Institute of Brain and Intelligence), Hui Chen (Tsinghua University; BNRist), Yijie Huang (OPPO Research Institute), Dongdong Yu (OPPO Research Institute), Yaqian Li (OPPO Research Institute), Yandong Guo (OPPO Research Institute), Yuchen Guo (Tsinghua University; BNRist), Liuyu Xiang (Beijing University of Posts and Telecommunications), and Guiguang Ding (Tsinghua University; BNRist)	23766
CIGAR: Cross-Modality Graph Reasoning for Domain Adaptive Object Detection	23776
DA-DETR: Domain Adaptive Detection Transformer With Information Fusion	23787

Continual Detection Transformer for Incremental Object Detection	23799
Semi-DETR: Semi-Supervised Object Detection With Detection Transformers Jiacheng Zhang (Sun Yat-sen University, China; department of Computer Vision Technology (VIS), Baidu Inc., China), Xiangru Lin (Department of Computer Vision Technology (VIS), Baidu Inc., China), Wei Zhang (Department of Computer Vision Technology (VIS), Baidu Inc., China), Kuo Wang (Sun Yat-sen University, China), Xiao Tan (Department of Computer Vision Technology (VIS), Baidu Inc., China), Junyu Han (Department of Computer Vision Technology (VIS), Baidu Inc., China), Errui Ding (Department of Computer Vision Technology (VIS), Baidu Inc., China), Jingdong Wang (Department of Computer Vision Technology (VIS), Baidu Inc., China), and Guanbin Li (Sun Yat-sen University, China)	. 23809
Hierarchical Supervision and Shuffle Data Augmentation for 3D Semi-Supervised Object Detection	23819
Harmonious Teacher for Cross-Domain Object Detection Jinhong Deng (University of Electronic Science and Technology of China), Dongli Xu (University of Sydney), Wen Li (Shenzhen Institute for Advanced Study, UESTC), and Lixin Duan (Shenzhen Institute for Advanced Study, UESTC; Sichuan Provincial People's Hospital, UESTC)	23829
Contrastive Mean Teacher for Domain Adaptive Object Detectors	. 23839
Out-of-Distributed Semantic Pruning for Robust Semi-Supervised Learning Yu Wang (Peking University, China; Peking University Shenzhen), Pengchong Qiao (Peking University, China; Peng Cheng Laboratory, China; Peking University Shenzhen), Chang Liu (Tsinghua University, China), Guoli Song (Peng Cheng Laboratory, China; Peking University Shenzhen), Xiawu Zheng (Peng Cheng Laboratory, China; Peking University Shenzhen), and Jie Chen (Peking University, China; Peng Cheng Laboratory, China; Peking University Shenzhen)	. 23849

wljzp-Encoder: On Exploration of Channel-Class Correlation for Multi-Label Zero-Shot earning	23859
Ziming Liu (The Hong Kong Polytechnic University, China), Song Guo (The Hong Kong Polytechnic University, China; The Hong Kong Polytechnic University Shenzhen Research Institute, China), Xiaocheng Lu (The Hong Kong Polytechnic University, China), Jingcai Guo (The Hong Kong Polytechnic University, China; The Hong Kong Polytechnic University Shenzhen Research Institute, China), Jiewei Zhang (The Hong Kong Polytechnic University, China), Yue Zeng (The Hong Kong Polytechnic University, China), and Fushuo Huo (The Hong Kong Polytechnic University, China)	
NagicNet: Semi-Supervised Multi-Organ Segmentation via Magic-Cube Partition and Recover 3869	γ
Duowen Chen (East China Normal University), Yunhao Bai (East China Normal University), Wei Shen (Shanghai Jiao Tong University), Qingli Li (East China Normal University), Lequan Yu (The University of Hong Kong), and Yan Wang (East China Normal University)	
Devil Is in the Queries: Advancing Mask Transformers for Real-World Medical Image segmentation and Out-of-Distribution Localization	23879
QUID: Deep Feature In-Painting for Unsupervised Anomaly Detection	23890
OCELOT: Overlapped Cell on Tissue Dataset for Histopathology	23902
DeGPR: Deep Guided Posterior Regularization for Multi-Class Cell Detection and Counting . 2 Aayush Kumar Tyagi (IIT Delhi), Chirag Mohapatra (IIT Delhi), Prasenjit Das (AIIMS, New Delhi), Govind Makharia (AIIMS, New Delhi), Lalita Mehra (AIIMS, New Delhi), Prathosh AP (IISc, Bangalore), and Mausam Mausam (IIT Delhi)	23913

Best of Both Worlds: Multimodal Contrastive Learning With Tabular and Imaging Data 23924 Paul Hager (Technical University of Munich; Klinikum Rechts der Isar), Martin J. Menten (Technical University of Munich; Klinikum Rechts der Isar; Imperial College London), and Daniel Rueckert (Technical University of Munich; Klinikum Rechts der Isar; Imperial College London)
RankMix: Data Augmentation for Weakly Supervised Learning of Classifying Whole Slide Images With Diverse Sizes and Imbalanced Categories
GEN: Pushing the Limits of Softmax-Based Out-of-Distribution Detection
Discriminating Known From Unknown Objects via Structure-Enhanced Recurrent Variational AutoEncoder
Sample-Level Multi-View Graph Clustering
On the Effects of Self-Supervision and Contrastive Alignment in Deep Multi-View Clustering 23976 Daniel J. Trosten (UiT The Arctic University of Norway), Sigurd Løkse (UiT The Arctic University of Norway), Robert Jenssen (UiT The Arctic University of Norway), and Michael C. Kampffmeyer (UiT The Arctic University of Norway)
Deep Fair Clustering via Maximizing and Minimizing Mutual Information: Theory, Algorithm and Metric
Transductive Few-Shot Learning With Prototype-Based Label Propagation by Iterative Graph Refinement
Open-Set Likelihood Maximization for Few-Shot Learning
HyperMatch: Noise-Tolerant Semi-Supervised Learning via Relaxed Contrastive Constraint .24017 Beitong Zhou (Hikvision Research Institute), Jing Lu (Hikvision Research Institute), Kerui Liu (Hikvision Research Institute), Yunlu Xu (Hikvision Research Institute), Zhanzhan Cheng (Hikvision Research Institute), and Yi Niu (Hikvision Research Institute)

	ken Boosting for Robust Self-Supervised Visual Transformer Pre-Training	127
Dif	ficulty-Based Sampling for Debiased Contrastive Representation Learning240 Taeuk Jang (Purdue University) and Xiaoqian Wang (Purdue University)	39
	oroving Selective Visual Question Answering by Learning From Your Peers	49
	Derclass Learning With Representation Enhancement	60
	C: Learning From Noisy Labels via Dynamic Instance-Specific Selection and Correction 240 Yifan Li (Institute of Computing Technology, CAS, China; University of the Chinese Academy of Sciences, China), Hu Han (Institute of Computing Technology, CAS, China; University of the Chinese Academy of Sciences, China; Peng Cheng Laboratory, China), Shiguang Shan (Institute of Computing Technology, CAS, China; University of the Chinese Academy of Sciences, China; Peng Cheng Laboratory, China), and Xilin Chen (Institute of Computing Technology, CAS, China; University of the Chinese Academy of Sciences, China)	70
	C: Feature Clusters Compression for Long-Tailed Visual Recognition	80
-	namically Instance-Guided Adaptation: A Backward-Free Approach for Test-Time Domain aptive Semantic Segmentation	190
Ser	ni-Supervised Domain Adaptation With Source Label Adaptation	00

Adjustment and Alignment for Unbiased Open Set Domain Adaptation	24110
C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation Nazmul Karim (Department of ECE, UCF, USA), Niluthpol Chowdhury Mithun (SRI International, Princeton, USA), Abhinav Rajvanshi (SRI International, Princeton, USA), Han-pang Chiu (SRI International, Princeton, USA), Supun Samarasekera (SRI International, Princeton, USA), and Nazanin Rahnavard (Department of ECE, UCF, USA)	24120
ALOFT: A Lightweight MLP-Like Architecture With Dynamic Low-Frequency Transform for Generalization Jintao Guo (Nanjing University), Na Wang (Nanjing University; Nanjing University), Lei Qi (Southeast University), and Yinghuan Shi (Nanjing University; Nanjing University)	
Modality-Agnostic Debiasing for Single Domain Generalization	24142
ActMAD: Activation Matching To Align Distributions for Test-Time-Training	24152
TIPI: Test Time Adaptation With Transformation Invariance A. Tuan Nguyen (University of Oxford), Thanh Nguyen-Tang (Johns Hopkins University), Ser-Nam Lim (Meta Al), and Philip H.S. Torr (University of Oxford)	24162
Improved Test-Time Adaptation for Domain Generalization	24172
Learning With Fantasy: Semantic-Aware Virtual Contrastive Constraint for Few-Shot Class-Incremental Learning	24183

NIFF: Alleviating Forgetting in Generalized Few-Shot Object Detection via Neural Instance Feature Forging Karim Guirguis (Robert Bosch GmbH; Karlsruhe Institute of Technology), Johannes Meier (Robert Bosch GmbH), George Eskandar (University of Stuttgart), Matthias Kayser (Robert Bosch GmbH), Bin Yang (University of Stuttgart), and Jürgen Beyerer (Karlsruhe Institute of Technology; Fraunhofer IOSB)	. 24193
MixPHM: Redundancy-Aware Parameter-Efficient Tuning for Low-Resource Visual Question Answering	
Jingjing Jiang (Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University) and Nanning Zheng (Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University)	. 2 1203
PIVOT: Prompting for Video Continual Learning	. 24214
BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning	. 24224
DKT: Diverse Knowledge Transfer Transformer for Class Incremental Learning	. 24236
PCR: Proxy-Based Contrastive Replay for Online Class-Incremental Continual Learning Huiwei Lin (Harbin Institute of Technology, Shenzhen), Baoquan Zhang (Harbin Institute of Technology, Shenzhen), Shanshan Feng (Harbin Institute of Technology, Shenzhen), Xutao Li (Harbin Institute of Technology, Shenzhen), and Yunming Ye (Harbin Institute of Technology, Shenzhen)	. 24246
Masked Autoencoders Enable Efficient Knowledge Distillers Yutong Bai (Johns Hopkins University), Zeyu Wang (University of California, Santa Cruz), Junfei Xiao (Johns Hopkins University), Chen Wei (Johns Hopkins University), Huiyu Wang (Johns Hopkins University), Alan L. Yuille (Johns Hopkins University), Yuyin Zhou (University of California, Santa Cruz), and Cihang Xie (University of California, Santa Cruz)	. 24256

Data-Free Knowledge Distillation via Feature Exchange and Activation Region Constraint Shikang Yu (Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, China; University of Chinese Academy of Sciences, China), Jiachen Chen (Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, China; University of Chinese Academy of Sciences, China; Peng Cheng Laboratory, China), and Shuqiang Jiang (Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, China; University of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, China; University of Chinese Academy of Sciences, China)	24266
Multi-Level Logit Distillation	24276
Preserving Linear Separability in Continual Learning by Backward Feature Projection Qiao Gu (University of Toronto), Dongsub Shim (LG Al Research), and Florian Shkurti (University of Toronto)	24286
Critical Learning Periods for Multisensory Integration in Deep Networks	24296
SLACK: Stable Learning of Augmentations With Cold-Start and KL Regularization	24306
Improving Generalization With Domain Convex Game Fangrui Lv (Beijing Institute of Technology, China), Jian Liang (Beijing Institute of Technology, China), Shuang Li (Beijing Institute of Technology, China), Jinming Zhang (Beijing Institute of Technology, China), and Di Liu (Beijing Institute of Technology, China)	24315
Exploring Data Geometry for Continual Learning	24325
FlowGrad: Controlling the Output of Generative ODEs With Gradients	24335
Deep Graph Reprogramming	24345

X-Pruner: eXplainable Pruning for Vision Transformers	24355
Bias in Pruned Vision Models: In-Depth Analysis and Countermeasures	24364
Compacting Binary Neural Networks by Sparse Kernel Selection Yikai Wang (BNRist Center, State Key Lab on Intelligent Technology and Systems, Tsinghua University), Wenbing Huang (Gaoling School of Artificial Intelligence, Renmin University of China), Yinpeng Dong (BNRist Center, State Key Lab on Intelligent Technology and Systems, Tsinghua University; RealAl), Fuchun Sun (BNRist Center, State Key Lab on Intelligent Technology and Systems, Tsinghua University), and Anbang Yao (Intel Labs China)	24374
Deep Deterministic Uncertainty: A New Simple Baseline	24384
Understanding Deep Generative Models With Generalized Empirical Likelihoods Suman Ravuri (DeepMind London, UK), Mélanie Rey (DeepMind London, UK), Shakir Mohamed (DeepMind London, UK), and Marc Peter Deisenroth (University College London London, UK)	24395
Fair Scratch Tickets: Finding Fair Sparse Networks Without Weight Training	24406
Hard Sample Matters a Lot in Zero-Shot Quantization	24417
PD-Quant: Post-Training Quantization Based on Prediction Difference Metric	24427

Vector Quantization With Self-Attention for Quality-Independent Representation Learning . 244 Zhou Yang (Xidian University), Weisheng Dong (Xidian University), Xin Li (West Virginia University), Mengluan Huang (Xidian University), Yulin Sun (Xidian University), and Guangming Shi (Xidian University)	438
Masked Auto-Encoders Meet Generative Adversarial Networks and Beyond	149
Sequential Training of GANs Against GAN-Classifiers Reveals Correlated "Knowledge Gaps" Present Among Independently Trained GAN Instances	460
Edges to Shapes to Concepts: Adversarial Augmentation for Robust Vision	170
Towards Universal Fake Image Detectors That Generalize Across Generative Models 244 Utkarsh Ojha (University of Wisconsin-Madison), Yuheng Li (University of Wisconsin-Madison), and Yong Jae Lee (University of Wisconsin-Madison)	180
Explicit Boundary Guided Semi-Push-Pull Contrastive Learning for Supervised Anomaly Detection	490
Generating Anomalies for Video Anomaly Detection With Prompt-Based Feature Mapping . 245 Zuhao Liu (Sun Yat-sen University, China; Ministry of Education, China), Xiao-Ming Wu (Sun Yat-sen University, China; Ministry of Education, China), Dian Zheng (Sun Yat-sen University, China; Ministry of Education, China), Kun-Yu Lin (Sun Yat-sen University, China; Ministry of Education, China), and Wei-Shi Zheng (Sun Yat-sen University, China; Ministry of Education, China)	500
Revisiting Reverse Distillation for Anomaly Detection	511
MetaMix: Towards Corruption-Robust Continual Learning With Temporally Self-Adaptive Data Transformation	521

ScaleFL: Resource-Adaptive Federated Learning With Heterogeneous Clients	32
Confidence-Aware Personalized Federated Learning via Variational Expectation Maximization 24542	
Junyi Zhu (ESAT-PSI, KU Leuven), Xingchen Ma (Amazon Web Services), and Matthew B. Blaschko (ESAT-PSI, KU Leuven)	
Make Landscape Flatter in Differentially Private Federated Learning	52
Rethinking Domain Generalization for Face Anti-Spoofing: Separability and Alignment 2456 Yiyou Sun (University of Wisconsin-Madison), Yaojie Liu (Google Research), Xiaoming Liu (Google Research; Michigan State University), Yixuan Li (University of Wisconsin-Madison), and Wen-Sheng Chu (Google Research)	63
StyleAdv: Meta Style Adversarial Training for Cross-Domain Few-Shot Learning	75
The Dark Side of Dynamic Routing Neural Networks: Towards Efficiency Backdoor Injection 24585 Simin Chen (University of Texas at Dallas), Hanlin Chen (Purdue University), Mirazul Haque (University of Texas at Dallas), Cong Liu (University of California, Riverside), and Wei Yang (University of Texas at Dallas)	
Architectural Backdoors in Neural Networks	95
You Are Catching My Attention: Are Vision Transformers Bad Learners Under Backdoor Attacks?	05
Zenghui Yuan (Huazhong University of Science and Technology), Pan Zhou (Huazhong University of Science and Technology), Kai Zou (Protagolabs Inc), and Yu Cheng (Microsoft Research)	
A Practical Upper Bound for the Worst-Case Attribution Deviations	16

Zexin Taipin Dallas	attack: Rethinking Transferable Adversarial Attacks Against Face Recognition Li (University of California, Riverside), Bangjie Yin (Tencent), Ing Yao (Tencent), Junfeng Guo (The University of Texas at s), Shouhong Ding (Tencent), Simin Chen (The University of Texas Illas), and Cong Liu (University of California, Riverside)	24626
Wenw Penns Georg	Patches for Improving Third-Party Object Detector Performance	24638
Through Junyon (KAIST Techn and To	Ting Competition To Boost the Transferability of Targeted Adversarial Examples Clean Feature Mixup Ting Byun (Korea Advanced Institute of Science and Technology Ti), Myung-Joon Kwon (Korea Advanced Institute of Science and Toology (KAIST)), Seungju Cho (Korea Advanced Institute of Science Technology (KAIST)), Yoonji Kim (Korea Advanced Institute of The ce and Technology (KAIST)), and Changick Kim (Korea Advanced Tute of Science and Technology (KAIST))	24648
Composi Lei Hs Hong Resea	Compositional Adversarial Robustness: Generalizing Adversarial Training to ite Semantic Perturbations Siung (National Tsing Hua University; The Chinese University of Kong), Yun-Yun Tsai (Columbia University), Pin-Yu Chen (IBM arch), and Tsung-Yi Ho (National Tsing Hua University; The Chinese ersity of Hong Kong)	24658
Bo Hu Mingy China (Macq Unive	Accuracy and Robustness of Student Models via Adaptive Adversarial Distillation Luang (The Hong Kong University of Science and Technology, China), Lyang Chen (The Hong Kong University of Science and Technology, La), Yi Wang (Dongguan University of Technology, China), Junda Lu Lyaurie University, Australia), Minhao Cheng (The Hong Kong Lyarity of Science and Technology, China), and Wei Wang (The Hong University of Science and Technology, China)	24668
Adversar Junha Moose (Guan China Provir	my of My Enemy Is My Friend: Exploring Inverse Adversaries for Improving rial Training	24678
Zhenb Zhang (Austr Yat-se Ren (S	Single Image Reflection Removal Against Adversarial Attacks	24688

Physical-World Optical Adversarial Attacks on 3D Face Recognition
AUNet: Learning Relations Between Action Units for Face Forgery Detection
Author Index