2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) CVPR 2024

Table of Contents

Message from the Program and General Chairs	
Organizers Senior Area Chairs and Area Chairs Outstanding Reviewers	cccxlviii
Orals 1A Low-level Vision	
Specularity Factorization for Low-Light Enhancement Saurabh Saini (IIIT-Hyderabad, India) and P J Narayanan (IIIT-Hyderabad, India)	1
FlowIE: Efficient Image Enhancement via Rectified Flow Yixuan Zhu (Tsinghua University, China), Wenliang Zhao (Tsinghua University, China), Ao Li (Tsinghua University, China), Yansong Tang (Tsinghua University, China), Jie Zhou (Tsinghua University, China), and Jiwen Lu (Tsinghua University, China)	13
Towards Robust Event-guided Low-Light Image Enhancement: A Large-Scale Real-Wo Event-Image Dataset and Novel Approach	
Bilateral Event Mining and Complementary for Event Stream Super-Resolution	34

FMA-Net: Flow-Guided Dynamic Filtering and Iterative Feature Refinement with Multi-Attention for Joint Video Super-Resolution and Deblurring	44
Orals 1B Vision and Graphics	
GPLD3D: Latent Diffusion of 3D Shape Generative Models by Enforcing Geometric and Physical Priors Yuan Dong (Institute for Intelligent Computing, Alibaba Group), Qi Zuo (Institute for Intelligent Computing, Alibaba Group), Xiaodong Gu (Institute for Intelligent Computing, Alibaba Group), Weihao Yuan (Institute for Intelligent Computing, Alibaba Group), Zhengyi Zhao (Institute for Intelligent Computing, Alibaba Group), Zilong Dong (Institute for Intelligent Computing, Alibaba Group), Liefeng Bo (Institute for Intelligent Computing, Alibaba Group), and Qixing Huang (The University of Texas at Austin)	56
Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation	67
Eclipse: Disambiguating Illumination and Materials using Unintended Shadows Dor Verbin (Google Research, USA), Ben Mildenhall (Google Research, USA), Peter Hedman (Google Research, UK), Jonathan T. Barron (Google Research, USA), Todd Zickler (Harvard University, USA), and Pratul P. Srinivasan (Google Research, USA)	77
Objects as Volumes: A Stochastic Geometry View of Opaque Solids	87
DiffusionLight: Light Probes for Free by Painting a Chrome Ball Pakkapon Phongthawee (VISTEC, Thailand), Worameth Chinchuthakun (Tokyo Institute of Technology, Japan), Nontaphat Sinsunthithet (VISTEC, Thailand), Varun Jampani (Stability AI, USA), Amit Raj (Google Research, USA), Pramook Khungurn (Pixiv, Japan), and Supasorn Suwajanakorn (VISTEC, Thailand)	98
Orals 1C Humans: Face, Body, Pose, Gesture, Movement	
MultiPly: Reconstruction of Multiple People from Monocular Video in the Wild	.09

URHand: Universal Relightable Hands Zhaoxi Chen (Nanyang Technological University), Gyeongsik Moon (Codec Avatars Lab, Meta), Kaiwen Guo (Codec Avatars Lab, Meta), Chen Cao (Codec Avatars Lab, Meta), Stanislav Pidhorskyi (Codec Avatars Lab, Meta), Tomas Simon (Codec Avatars Lab, Meta), Rohan Joshi (Codec Avatars Lab, Meta), Yuan Dong (Codec Avatars Lab, Meta), Yichen Xu (Codec Avatars Lab, Meta), Bernardo Pires (Codec Avatars Lab, Meta), He Wen (Codec Avatars Lab, Meta), Lucas Evans (Codec Avatars Lab, Meta), Bo Peng (Codec Avatars Lab, Meta), Julia Buffalini (Codec Avatars Lab, Meta), Autumn Trimble (Codec Avatars Lab, Meta), Kevyn McPhail (Codec Avatars Lab, Meta), Melissa Schoeller (Codec Avatars Lab, Meta), Shoou-I Yu (Codec Avatars Lab, Meta), Javier Romero (Codec Avatars Lab, Meta), Michael Zollhofer (Codec Avatars Lab, Meta), Yaser Sheikh (Codec Avatars Lab, Meta), Ziwei Liu (Nanyang Technological	119
University), and Shunsuke Saito (Codec Avatars Lab, Meta)	120
Relightable Gaussian Codec Avatars	130
Semantic Human Mesh Reconstruction with Textures	142
Stratified Avatar Generation from Sparse Observations Han Feng (Wuhan University, China), Wenchao Ma (Pennsylvania State University, USA), Quankai Gao (University of Southern California, USA), Xianwei Zheng (Wuhan University, China), Nan Xue (Ant Group, China; Wuhan University, China), and Huijuan Xu (Pennsylvania State University, USA)	153
Poster Session 1	
SEAS: ShapE-Aligned Supervision for Person Re-Identification	164
Test-Time Domain Generalization for Face Anti-Spoofing	175
Gradient Alignment for Cross-Domain Face Anti-Spoofing	188

BigGait: Learning Gait Representation You Want by Large Vision Models Dingqiang Ye (Southern University of Science and Technology, China), Chao Fan (Southern University of Science and Technology, China), Jingzhe Ma (Southern University of Science and Technology, China), Xiaoming Liu (Michigan State University, USA), and Shiqi Yu (Southern University of Science and Technology, China)	200
Suppress and Rebalance: Towards Generalized Multi-Modal Face Anti-Spoofing	211
CFPL-FAS: Class Free Prompt Learning for Generalizable Face Anti-spoofing	222
Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity	233
KeyPoint Relative Position Encoding for Face Recognition Minchul Kim (Michigan State University), Yiyang Su (Michigan State University), Feng Liu (Michigan State University), Anil Jain (Michigan State University), and Xiaoming Liu (Michigan State University)	244
Distilling CLIP with Dual Guidance for Learning Discriminative Human Body Shape Representation Feng Liu (Michigan State University), Minchul Kim (Michigan State University), Zhiyuan Ren (Michigan State University), and Xiaoming Liu (Michigan State University)	256
Flexible Biometrics Recognition: Bridging the Multimodality Gap through Attention, Alignment and Prompt Tuning	267
One-Class Face Anti-spoofing via Spoof Cue Map-Guided Feature Learning Pei-Kai Huang (National Tsing Hua University), Cheng-Hsuan Chiang (National Tsing Hua University), Tzu-Hsien Chen (National Tsing Hua University), Jun-Xiong Chong (National Tsing Hua University), Tyng-Luh Liu (Academia Sinica), and Chiou-Ting Hsu (National Tsing Hua University)	277
Activity-Biometrics: Person Identification from Daily Activities	287

Privacy-Preserving Face Recognition Using Trainable Feature Subtraction Yuxi Mi (Fudan University), Zhizhou Zhong (Fudan University), Yuge Huang (Youtu Lab, Tencent), Jiazhen Ji (Youtu Lab, Tencent), Jianqing Xu (Youtu Lab, Tencent), Jun Wang (WeChat Pay Lab33, Tencent), Shaoming Wang (WeChat Pay Lab33, Tencent), Shouhong Ding (Youtu Lab, Tencent), and Shuigeng Zhou (Fudan University)	297
Molecular Data Programming: Towards Molecule Pseudo-labeling with Systematic Weak	
Supervision	308
Clustering for Protein Representation Learning	319
Fun with Flags: Robust Principal Directions via Flag Manifolds	330
CAM Back Again: Large Kernel CNNs from a Weakly Supervised Object Localization Perspective Shunsuke Yasuki (Rikkyo University) and Masato Taki (Rikkyo University)	ve. 341
Confronting Ambiguity in 6D Object Pose Estimation via Score-Based Diffusion on SE(3) Tsu-Ching Hsiao (National Tsing Hua University, Taiwan), Hao-Wei Chen (National Tsing Hua University, Taiwan), Hsuan-Kung Yang (National Tsing Hua University, Taiwan), and Chun-Yi Lee (National Tsing Hua University, Taiwan)	352
Quantifying Task Priority for Multi-Task Optimization	363
Unbiased Estimator for Distorted Conics in Camera Calibration Chaehyeon Song (Seoul National University), Jaeho Shin (Seoul National University), Myung-Hwan Jeon (Seoul National University), Jongwoo Lim (Seoul National University), and Ayoung Kim (Seoul National University)	373
Multi-Object Tracking in the Dark Xinzhe Wang (Beijing Institute of Technology, China), Kang Ma (Beijing Institute of Technology, China), Qiankun Liu (Beijing Institute of Technology, China), Yunhao Zou (Beijing Institute of Technology, China), and Ying Fu (Beijing Institute of Technology, China)	382
Implicit Discriminative Knowledge Learning for Visible-Infrared Person Re-Identification Kaijie Ren (Chongqing University, China) and Lei Zhang (Chongqing University, China)	393
From Correspondences to Pose: Non-minimal Certifiably Optimal Relative Pose without Disambiguation Javier Tirado-Garín (I3A, University of Zaragoza) and Javier Civera (I3A, University of Zaragoza)	403

From Activation to Initialization: Scaling Insights for Optimizing Neural Fields	3
PairDETR: Joint Detection and Association of Human Bodies and Faces	3
Move as You Say, Interact as You Can: Language-guided Human Motion Generation with Scene Affordance	3
OAKINK2: A Dataset of Bimanual Hands-Object Manipulation in Complex Task Completion 44. Xinyu Zhan (Shanghai Jiao Tong University, China), Lixin Yang (Shanghai Jiao Tong University, China), Yifei Zhao (Shanghai Jiao Tong University, China), Kangrui Mao (Shanghai Jiao Tong University, China), Hanlin Xu (Shanghai Jiao Tong University, China), Zenan Lin (South China University of Technology, China), Kailin Li (Shanghai Jiao Tong University, China), and Cewu Lu (Shanghai Jiao Tong University, China)	5
Seamless Human Motion Composition with Blended Positional Encodings	7
VideoRF: Rendering Dynamic Radiance Fields as 2D Feature Video Streams	0

OMG: Towards Open-vocabulary Motion Generation via Mixture of Controllers Han Liang (ShanghaiTech University, China), Jiacheng Bao (ShanghaiTech University, China), Ruichi Zhang (ShanghaiTech University, China), Sihan Ren (ShanghaiTech University, China), Yuecheng Xu (ShanghaiTech University, China), Sibei Yang (ShanghaiTech University, China), Xin Chen (Tencent PCG, China), Jingyi Yu (ShanghaiTech University, China), and Lan Xu (ShanghaiTech University, China)	482
HOLD: Category-agnostic 3D Reconstruction of Interacting Hands and Objects from Video	494
HUGS: Human Gaussian Splats	505
HOI-M^3: Capture Multiple Humans and Objects Interaction within Contextual Environment Juze Zhang (ShanghaiTech University, China; University of Chinese Academy of Sciences, China), Jingyan Zhang (ShanghaiTech University, China), Zining Song (ShanghaiTech University, China), Zhanhe Shi (ShanghaiTech University, China), Chengfeng Zhao (ShanghaiTech University, China), Ye Shi (ShanghaiTech University, China), Jingyi Yu (ShanghaiTech University, China), Lan Xu (ShanghaiTech University, China), and Jingya Wang (ShanghaiTech University, China)	516
InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion	527
SiTH: Single-view Textured Human Reconstruction with Image-Conditioned Diffusion	538
4D-DRESS: A 4D Dataset of Real-World Human Clothing With Semantic Annotations	550
FinePOSE: Fine-Grained Prompt-Driven 3D Human Pose Estimation via Diffusion Models Jinglin Xu (University of Science and Technology Beijing, China), Yijie Guo (Peking University, China), and Yuxin Peng (Peking University, China)	561

Real-Time Simulated Avatar from Head-Mounted Sensors Zhengyi Luo (Carnegie Mellon University, USA), Jinkun Cao (Carnegie Mellon University, USA), Rawal Khirodkar (Meta Platforms, Inc., USA), Alexander Winkler (Meta Platforms, Inc., USA), Kris Kitani (Carnegie Mellon University, USA), and Weipeng Xu (Meta Platforms, Inc., USA)	571
Digital Life Project: Autonomous 3D Characters with Social Intelligence Zhongang Cai (S-Lab, Nanyang Technological University, Singapore), Jianping Jiang (SenseTime Research, China), Zhongfei Qing (SenseTime Research, China), Xinying Guo (S-Lab, Nanyang Technological University, Singapore), Mingyuan Zhang (S-Lab, Nanyang Technological University, Singapore), Zhengyu Lin (SenseTime Research, China), Haiyi Mei (SenseTime Research, China), Chen Wei (SenseTime Research, Singapore), Ruisi Wang (S-Lab, Nanyang Technological University, Singapore), Wanqi Yin (SenseTime Research, Singapore), Liang Pan (S-Lab, Nanyang Technological University, Singapore), Xiangyu Fan (SenseTime Research, China), Han Du (SenseTime Research, China), Peng Gao (SenseTime Research, China), Zhitao Yang (SenseTime Research, China), Yang Gao (SenseTime Research, China), Jiaqi Li (SenseTime Research, China), Tianxiang Ren (SenseTime Research, China), Yukun Wei (SenseTime Research, China), Xiaogang Wang (SenseTime Research, China), Chen Change Loy (S-Lab, Nanyang Technological University, Singapore), Lei Yang (SenseTime Research, China), and Ziwei Liu (S-Lab, Nanyang Technological University, Singapore)	582
Learning Visual Prompt for Gait Recognition	593
Hourglass Tokenizer for Efficient Transformer-Based 3D Human Pose Estimation Wenhao Li (National Key Laboratory of General Artificial Intelligence, Peking University, Shenzhen Graduate School), Mengyuan Liu (National Key Laboratory of General Artificial Intelligence, Peking University, Shenzhen Graduate School), Hong Liu (National Key Laboratory of General Artificial Intelligence, Peking University, Shenzhen Graduate School), Pichao Wang (Amazon Prime Video), Jialun Cai (National Key Laboratory of General Artificial Intelligence, Peking University, Shenzhen Graduate School), and Nicu Sebe (University of Trento)	604
LocLLM: Exploiting Generalizable Human Keypoint Localization via Large Language Model Dongkai Wang (Peking University, China), Shiyu Xuan (Peking University, China), and Shiliang Zhang (Peking University, China)	614
Spatial-Aware Regression for Keypoint Localization	624

GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatablo 3D Gaussians	e 634
Liangxiao Hu (Harbin Institute of Technology, China), Hongwen Zhang (Beijing Normal University, China), Yuxiang Zhang (Tsinghua University, China), Boyao Zhou (Tsinghua University, China), Boning Liu (Tsinghua University, China), Shengping Zhang (Harbin Institute of Technology, China), and Liqiang Nie (Harbin Institute of Technology, China)	
HHMR: Holistic Hand Mesh Recovery by Enhancing the Multimodal Controllability of Graph Diffusion Models Mengcheng Li (Tsinghua University, China), Hongwen Zhang (Beijing Normal University, China), Yuxiang Zhang (Tsinghua University, China), Ruizhi Shao (Tsinghua University, China), Tao Yu (Tsinghua University, China), and Yebin Liu (Tsinghua University, China)	645
Capturing Closely Interacted Two-Person Motions with Reaction Priors Qi Fang (NetEase Games AI Lab, China), Yinghui Fan (NetEase Games AI Lab, China), Yanjun Li (NetEase Games AI Lab, China), Junting Dong (Shanghai AI Lab, China), Dingwei Wu (NetEase Games AI Lab, China), Weidong Zhang (NetEase Games AI Lab, China), and Kang Chen (NetEase Games AI Lab, China)	655
SyncTalk: The Devil is in the Synchronization for Talking Head Synthesis	666
Single-to-Dual-View Adaptation for Egocentric 3D Hand Pose Estimation	677
Bidirectional Autoregessive Diffusion Model for Dance Generation Canyu Zhang (University of South Carolina, USA), Youbao Tang (PAII Inc., USA), Ning Zhang (PAII Inc., USA), Ruei-Sung Lin (PAII Inc., USA), Mei Han (PAII Inc., USA), Jing Xiao (Ping An Technology, China), and Song Wang (University of South Carolina, USA)	687
High-Quality Facial Geometry and Appearance Capture at Home Yuxuan Han (Tsinghua University, China), Junfeng Lyu (Tsinghua University, China), and Feng Xu (Tsinghua University, China)	697
Multiple View Geometry Transformers for 3D Human Pose Estimation Ziwei Liao (University of Toronto, Canada), Jialiang Zhu (Southeast University, China), Chunyu Wang (Microsoft Research Asia, China), Han Hu (Microsoft Research Asia, China), and Steven L. Waslander (University of Toronto, Canada)	708
PACER+: On-Demand Pedestrian Animation Controller in Driving Scenarios Jingbo Wang (Shanghai AI LAB, China), Zhengyi Luo (Carnegie Mellon University, USA), Ye Yuan (NVIDIA, USA), Yixuan Li (The Chinese University of Hong Kong, Hong Kong), and Bo Dai (Shanghai AI LAb, China)	718

I'M HOI: Inertia-aware Monocular Capture of 3D Human-Object Interactions Chengfeng Zhao (ShanghaiTech University, China), Juze Zhang (ShanghaiTech University, China), Jiashen Du (ShanghaiTech University, China), Ziwei Shan (ShanghaiTech University, China), Junye Wang (ShanghaiTech University, China), Jingyi Yu (ShanghaiTech University, China), Jingya Wang (ShanghaiTech University, China), and Lan Xu (ShanghaiTech University, China)	729
HAVE-FUN: Human Avatar Reconstruction from Few-Shot Unconstrained Images	742
Can Language Beat Numerical Regression? Language-Based Multimodal Trajectory Prediction! Inhwan Bae (Gwangju Institute of Science and Technology, South Korea), Junoh Lee (Gwangju Institute of Science and Technology, South Korea), and Hae-Gon Jeon (Gwangju Institute of Science and Technology, South Korea)	753
3D Human Pose Perception from Egocentric Stereo Videos	767
Egocentric Whole-Body Motion Capture with FisheyeViT and Diffusion-Based Motion Refinement. 777 Jian Wang (Max Planck Institute for Informatics, Germany), Zhe Cao (Google, USA), Diogo Luvizon (Max-Planck Institute for Informatics, Germany), Lingjie Liu (University of Pennsylvania, USA), Kripasindhu Sarkar (Google, Switzerland), Danhang Tang (Google, USA), Thabo Beeler (Google, Switzerland), and Christian Theobalt (Max Planck Institute for Informatics, Germany)	
Human Gaussian Splatting: Real-time Rendering of Animatable Avatars Arthur Moreau (Huawei Noah's Ark Lab), Jifei Song (Huawei Noah's Ark Lab), Helisa Dhamo (Huawei Noah's Ark Lab), Richard Shaw (Huawei Noah's Ark Lab), Yiren Zhou (Huawei Noah's Ark Lab), and Eduardo Pérez-Pellitero (Huawei Noah's Ark Lab)	788
OHTA: One-shot Hand Avatar via Data-driven Implicit Priors Xiaozheng Zheng (ByteDance, China), Chao Wen (ByteDance, China), Zhuo Su (ByteDance, China), Zeran Xu (ByteDance, China), Zhaohu Li (ByteDance, China), Yang Zhao (ByteDance, China), and Zhou Xue (ByteDance, China)	799

HOIAnimator: Generating Text-prompt Human-object Animations using Novel Perceptive Diffusion Models
Wenfeng Song (Beijing Information Science and Technology University, China), Xinyu Zhang (Beijing Information Science and Technology University), Shuai Li (Zhongguancun Laboratory, China), Yang Gao (State Key Laboratory of Virtual Reality Technology and Systems, Beihang University), Aimin Hao (State Key Laboratory of Virtual Reality Technology and Systems, Beihang University), Xia Hou (Beijing Information Science and Technology University), Chenglizhao Chen (China University of Petroleum (East China)), Ning Li (Beijing Information Science and Technology University), and Hong Qin (Stony Brook University (SUNY at Stony Brook), New York)
Arbitrary Motion Style Transfer with Multi-condition Motion Latent Diffusion Model
Single-View Scene Point Cloud Human Grasp Generation
Attention-Propagation Network for Egocentric Heatmap to 3D Pose Lifting
AnySkill: Learning Open-Vocabulary Physical Skill for Interactive Agents
From a Bird's Eye View to See: Joint Camera and Subject Registration without the Camera Calibration
Calibration
 HMD-Poser: On-Device Real-time Human Motion Tracking from Scalable Sparse Observations 87 Peng Dai (PICO, ByteDance), Yang Zhang (PICO, ByteDance), Tao Liu (PICO, ByteDance), Zhen Fan (PICO, ByteDance), Tianyuan Du (PICO, ByteDance), Zhuo Su (PICO, ByteDance), Xiaozheng Zheng (PICO, ByteDance), and Zeming Li (PICO, ByteDance)

Monocular Identity-Conditioned Facial Reflectance Reconstruction Xingyu Ren (Shanghai Jiao Tong University, China), Jiankang Deng (Imperial College London, UK), Yuhao Cheng (Shanghai Jiao Tong University, China), Jia Guo (InsigtFace, China), Chao Ma (Shanghai Jiao Tong University, China), Yichao Yan (Shanghai Jiao Tong University, China), Wenhan Zhu (Shanghai Jiao Tong University, China), and Xiaokang Yang (Shanghai Jiao Tong University, China)	885
GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning	896
Score-Guided Diffusion for 3D Human Recovery	906
3D-Aware Face Editing via Warping-Guided Latent Direction Learning Yuhao Cheng (Shanghai Jiao Tong University, China), Zhuo Chen (Shanghai Jiao Tong University, China), Xingyu Ren (Shanghai Jiao Tong University, China), Wenhan Zhu (Shanghai Jiao Tong University, China), Zhengqin Xu (Shanghai Jiao Tong University, China), Di Xu (Huawei Cloud Computing Technologies Co., Ltd, China), Changpeng Yang (Huawei Cloud Computing Technologies Co., Ltd, China), and Yichao Yan (Shanghai Jiao Tong University, China)	916
WANDR: Intention-guided Human Motion Generation	927
Exploring Vision Transformers for 3D Human Motion-Language Models with Motion Patches <i>Qing Yu (LY Corporation, Japan), Mikihiro Tanaka (LY Corporation, Japan), and Kent Fujiwara (LY Corporation, Japan)</i>	937
NIFTY: Neural Object Interaction Fields for Guided Human Motion Synthesis	947
DreamAvatar: Text-and-Shape Guided 3D Human Avatar Generation via Diffusion Models Yukang Cao (The University of Hong Kong), Yan-Pei Cao (Tencent), Kai Han (The University of Hong Kong), Ying Shan (Tencent), and Kwan-Yee K. Wong (The University of Hong Kong)	958
Person-in-WiFi 3D: End-to-End Multi-Person 3D Pose Estimation with Wi-Fi Kangwei Yan (Xi'an Jiaotong University), Fei Wang (Xi'an Jiaotong University), Bo Qian (Xi'an Jiaotong University), Han Ding (Xi'an Jiaotong University), Jinsong Han (Zhejiang University), and Xing Wei (Xi'an Jiaotong University)	969

ScoreHypo: Probabilistic Human Mesh Estimation with Hypothesis Scoring	9
Relightable and Animatable Neural Avatar from Sparse-View Video	0
From Audio to Photoreal Embodiment: Synthesizing Humans in Conversations	1
Closely Interactive Human Reconstruction with Proxemics and Physics-Guided Adaption	1
Video-Based Human Pose Regression via Decoupled Space-Time Aggregation	2
Rethinking Generalizable Face Anti-spoofing via Hierarchical Prototype-guided Distribution Refinement in Hyperbolic Space	2
MoML: Online Meta Adaptation for 3D Human Motion Prediction	2
KITRO: Refining Human Mesh by 2D Clues and Kinematic-tree Rotation	2
Guess The Unseen: Dynamic 3D Scene Reconstruction from Partial 2D Glimpses	2

PEGASUS: Personalized Generative 3D Avatars with Composable Attributes
SDPose: Tokenized Pose Estimation via Circulation-Guide Self-Distillation 1082 Sichen Chen (Shanghai Jiao Tong University, China), Yingyi Zhang (Tencent Youtu Lab, China), Siming Huang (Tencent Youtu Lab, China), Ran Yi (Shanghai Jiao Tong University, China), Ke Fan (Shanghai Jiao Tong University, China), Ruixin Zhang (Tencent Youtu Lab, China), Peixian Chen (Tencent Youtu Lab, China), Jun Wang (Tencent Youtu Lab, China), Shouhong Ding (Tencent Youtu Lab, China), and Lizhuang Ma (Shanghai Jiao Tong University, China)
Mocap Everyone Everywhere: Lightweight Motion Capture With Smartwatches and a Head-Mounted
Camera
DPMesh: Exploiting Diffusion Prior for Occluded Human Mesh Recovery
DPHMs: Diffusion Parametric Head Models for Depth-based Tracking
KTPFormer: Kinematics and Trajectory Prior Knowledge-Enhanced Transformer for 3D Human Pose Estimation
Exploiting Style Latent Flows for Generalizing Deepfake Video Detection
EMAGE: Towards Unified Holistic Co-Speech Gesture Generation via Expressive Masked Audio Gesture Modeling

A Unified Framework for Human-centric Point Cloud Video Understanding
ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering
CLOAF: CoLlisiOn-Aware Human Flow
EventEgo3D: 3D Human Motion Capture from Egocentric Event Streams
A Call to Reflect on Evaluation Practices for Age Estimation: Comparative Analysis of the State-of-the-Art and a Unified Benchmark
Holoported Characters: Real-time Free-viewpoint Rendering of Humans from Sparse RGB Cameras
Synergistic Global-space Camera and Human Reconstruction from Videos Yizhou Zhao (Carnegie Mellon University, USA), Tuanfeng Yang Wang (Adobe Research, UK), Bhiksha Raj (Carnegie Mellon University, USA), Min Xu (Carnegie Mellon University, USA), Jimei Yang (Adobe Research, USA), and Chun-Hao Paul Huang (Adobe Research, UK)
3D Face Tracking from 2D Video through Iterative Dense UV to Image Flow

UltrAvatar: A Realistic Animatable 3D Avatar Diffusion Model with Authenticity Guided Textures	1238
Mingyuan Zhou (Innopeak Technology), Rakib Hyder (Innopeak Technology), Ziwei Xuan (Innopeak Technology), and Guojun Qi (Westlake University)	
OmniMotionGPT: Animal Motion Generation with Limited Data Zhangsihao Yang (Arizona State University, USA), Mingyuan Zhou (OPPO Seattle Research Center, USA), Mengyi Shan (University of Washington, USA), Bingbing Wen (University of Washington, USA), Ziwei Xuan (OPPO Seattle Research Center, USA), Mitch Hill (OPPO Seattle Research Center, USA), Junjie Bai (OPPO Seattle Research Center, USA), Guo-Jun Qi (OPPO Seattle Research Center, USA; Westlake University, China), and Yalin Wang (Arizona State University, USA)	1249
Text-Guided 3D Face Synthesis - From Generation to Editing Yunjie Wu (Netease Fuxi AI Lab, China), Yapeng Meng (Tsinghua University, China), Zhipeng Hu (Netease Fuxi AI Lab, China), Lincheng Li (Netease Fuxi AI Lab, China), Haoqian Wu (Netease Fuxi AI Lab, China), Kun Zhou (Zhejiang University, China), Weiwei Xu (Zhejiang University, China), and Xin Yu (University of Queensland, Australia)	1260
Multi-scale Dynamic and Hierarchical Relationship Modeling for Facial Action Units Recognition	.1270
LiveHPS: LiDAR-based Scene-level Human Pose and Shape Estimation in Free Environment Yiming Ren (ShanghaiTech University), Xiao Han (ShanghaiTech University), Chengfeng Zhao (ShanghaiTech University), Jingya Wang (ShanghaiTech University), Lan Xu (ShanghaiTech University), Jingyi Yu (ShanghaiTech University), and Yuexin Ma (ShanghaiTech University)	1281
FaceChain-ImagineID: Freely Crafting High-Fidelity Diverse Talking Faces from Disentangled Audio Chao Xu (Alibaba Group), Yang Liu (Alibaba Group), Jiazheng Xing (FaceChain Community), Weida Wang (FaceChain Community), Mingze Sun (FaceChain Community), Jun Dan (FaceChain Community), Tianxin Huang (National University of Singapore), Siyuan Li (FaceChain Community), Zhi-Qi Cheng (Carnegie Mellon University), Ying Tai (Nanjing University), and Baigui Sun (Alibaba Group)	1292
OpticalDR: A Deep Optical Imaging Model for Privacy-Protective Depression Recognition Yuchen Pan (Harbin Institute of Technology, China), Junjun Jiang (Harbin Institute of Technology, China), Kui Jiang (Harbin Institute of Technology, China), Zhihao Wu (Harbin Institute of Technology, China), Keyuan Yu (Harbin Institute of Technology, China), and Xianming Liu (Harbin Institute of Technology, China)	1303

SCE-MAE: Selective Correspondence Enhancement with Masked Autoencoder for Self-Supervised Landmark Estimation
TokenHMR: Advancing Human Mesh Recovery with a Tokenized Pose Representation
Optimizing Diffusion Noise Can Serve As Universal Motion Priors
M&M VTO: Multi-Garment Virtual Try-On and Editing
AvatarGPT: All-in-One Framework for Motion Understanding, Planning, Generation and Beyond 1357 Zixiang Zhou (Xiaobing.ai), Yu Wan (Xiaobing.ai), and Baoyuan Wang (Xiaobing.ai)
A Simple Baseline for Efficient Hand Mesh Reconstruction
VINECS: Video-based Neural Character Skinning 137 Zhouyingcheng Liao (The University of Hong Kong, Hong Kong; Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), Vladislav Golyanik (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), Marc Habermann (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany; Saarbruecken Research Center for Visual Computing, Interaction and AI, Germay), and Christian Theobalt (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany; Saarbruecken Research Center for Visual Computing, Interaction and AI, Germay)
ConvoFusion: Multi-Modal Conversational Diffusion for Co-Speech Gesture Synthesis

Programmable Motion Generation for Open-Set Motion Control Tasks
From Feature to Gaze: A Generalizable Replacement of Linear Layer for Gaze Estimation
Unsupervised Gaze Representation Learning from Multi-view Face Images
Joint2Human: High-Quality 3D Human Generation via Compact Spherical Embedding of 3D Joints 1429
Muxin Zhang (Tianjin University, China), Qiao Feng (Tianjin University, China), Zhuo Su (ByteDance, China), Chao Wen (ByteDance, China), Zhou Xue (Li Auto, China), and Kun Li (Tianjin University, China)
DiffHuman: Probabilistic Photorealistic 3D Reconstruction of Humans
Bi-Causal: Group Activity Recognition via Bidirectional Causality
HumanNeRF-SE: A Simple yet Effective Approach to Animate HumanNeRF with Diverse Poses . 1460 Caoyuan Ma (Wuhan University, China), Yu-Lun Liu (National Yang Ming Chiao Tung University, China), Zhixiang Wang (The University of Tokyo, Japan, National Institute of Informatics, Japan), Wu Liu (University of Science and Technology of China, China), Xinchen Liu (JD Explore Academy, China), and Zheng Wang (Wuhan University, China)
LPSNet: End-to-End Human Pose and Shape Estimation with Lensless Imaging
MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model
RTMO: Towards High-Performance One-Stage Real-Time Multi-Person Pose Estimation

Human Motion Prediction Under Unexpected Perturbation	1501
Cross-view and Cross-pose Completion for 3D Human Understanding	1512
Lodge: A Coarse to Fine Diffusion Network for Long Dance Generation Guided by the Characteristic Dance Primitives	1524
GALA: Generating Animatable Layered Assets from a Single Scan	1535
MMM: Generative Masked Motion Model	1546
What Do You See in Vehicle? Comprehensive Vision Solution for In-Vehicle Gaze Estimation Yihua Cheng (University of Birmingham, UK), Yaning Zhu (Huazhong University of Science and Technology, China), Zongji Wang (Chinese Academy of Sciences, China), Hongquan Hao (CalmCar, China), Yongwei Liu (Calmcar, China), Shiqing Cheng (Calmcar, China), Xi Wang (Calmcar, China), and Hyung Jin Chang (University of Birmingham, UK)	1556
Towards Variable and Coordinated Holistic Co-Speech Motion Generation Yifei Liu (South China University of Technology, China), Qiong Cao (JD Explore Academy, China), Yandong Wen (Max Planck Institute for Intelligent Systems, Germany), Huaiguang Jiang (South China University of Technology, China), and Changxing Ding (South China University of Technology, China)	1566
Text2HOI: Text-guided 3D Motion Generation for Hand-Object Interaction Junuk Cha (Ulsan National Institute of Science and Technology, South Korea), Jihyeon Kim (Korea Electronics Technology Institute, South Korea), Jae Shin Yoon (Adobe Research, USA), and Seungryul Baek (Ulsan National Institute of Science and Technology, South Korea)	1577
Garment Recovery with Shape and Deformation Priors Ren Li (EPFL, Switzerland), Corentin Dumery (EPFL, Switzerland), Benoît Guillard (EPFL, Switzerland), and Pascal Fua (EPFL, Switzerland)	1586

Tri-Modal Motion Retrieval by Learning a Joint Embedding Space	596
SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded Gaussian Splatting 16 Zhijing Shao (The Hong Kong University of Science and Technology (Guangzhou)), Zhaolong Wang (Prometheus Vision Technology Co., Ltd.), Zhuang Li (Prometheus Vision Technology Co., Ltd.), Duotun Wang (The Hong Kong University of Science and Technology (Guangzhou)), Xiangru Lin (Prometheus Vision Technology Co., Ltd.), Yu Zhang (Prometheus Vision Technology Co., Ltd.), Mingming Fan (The Hong Kong University of Science and Technology (Guangzhou)), and Zeyu Wang (The Hong Kong University of Science and Technology (Guangzhou))	506
Multi-agent Long-term 3D Human Pose Forecasting via Interaction-aware Trajectory Conditioning	617
HardMo: A Large-Scale Hardcase Dataset for Motion Capture	529
LAFS: Landmark-based Facial Self-supervised Learning for Face Recognition	539
Motion Diversification Networks	650
NRDF: Neural Riemannian Distance Fields for Learning Articulated Pose Priors 10 Yannan He (University of Tübingen, Germany; Tübingen AI Center, Germany), Garvita Tiwari (University of Tübingen, Germany; Tübingen AI Center, Germany; Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), Tolga Birdal (Imperial College London, United Kindom), Jan Eric Lenssen (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), and Gerard Pons-Moll (University of Tübingen, Germany; Tübingen AI Center, Germany; Max Planck Institute for Informatics, Saarland Informatics Campus, Germany)	561

3D Face Reconstruction with the Geometric Guidance of Facial Part Segmentation	1672
Unifying Top-down and Bottom-up Scanpath Prediction Using Transformers Zhibo Yang (Stony Brook University; Waymo LLC), Sounak Mondal (Stony Brook University), Seoyoung Ahn (Stony Brook University), Ruoyu Xue (Stony Brook University), Gregory Zelinsky (Stony Brook University), Minh Hoai (Stony Brook University; VinAI Research), and Dimitris Samaras (Stony Brook University)	1683
CLIB-FIQA: Face Image Quality Assessment with Confidence Calibration Fu-Zhao Ou (City University of Hong Kong, Hong Kong SAR, China), Chongyi Li (Nankai University, Tianjin, China; NKIARI (Shenzhen-Futian), Shenzhen, China), Shiqi Wang (City University of Hong Kong, Hong Kong SAR, China), and Sam Kwong (Lingnan University, Hong Kong SAR, China)	1694
MoST: Motion Style Transformer Between Diverse Action Contents Boeun Kim (Korea Electronics Technology Institute, Republic of Korea; Seoul National University, Republic of Korea; University of Birmingham, UK), Jungho Kim (Korea Electronics Technology Institute, Republic of Korea), Hyung Jin Chang (University of Birmingham, UK), and Jin Young Choi (Seoul National University, Republic of Korea)	1705
TexVocab: Texture Vocabulary-conditioned Human Avatars	1715
Forecasting of 3D Whole-body Human Poses with Grasping Objects Haitao Yan (Fudan University), Qiongjie Cui (Nanjing University of Science and Technology), Jiexin Xie (Fudan University), and Shijie Guo (Fudan University)	1726
Scaling Up Dynamic Human-Scene Interaction Modeling	1737
Design2Cloth: 3D Cloth Generation from 2D Masks	1748

ReGenNet: Towards Human Action-Reaction Synthesis	1759
MoSAR: Monocular Semi-Supervised Model for Avatar Reconstruction using Differentiable Shading	1770
Abdallah Dib (Ubisoft LaForge, Canada), Luiz Gustavo Hafemann (Ubisoft LaForge, Canada), Emeline Got (Ubisoft LaForge, Canada), Trevor Anderson (Ubisoft LaForge, Canada), Amin Fadaeinejad (York University, Canada), Rafael M. O. Cruz (Ecole de Technologie Supérieure, Canada), and Marc-André Carbonneau (Ubisoft LaForge, Canada)	
FaceLift: Semi-supervised 3D Facial Landmark Localization	1781
Fast Adaptation for Human Pose Estimation via Meta-Optimization	1792
FlashAvatar: High-fidelity Head Avatar with Efficient Gaussian Embedding Jun Xiang (University of Science and Technology of China, China), Xuan Gao (University of Science and Technology of China, China), Yudong Guo (University of Science and Technology of China, China), and Juyong Zhang (University of Science and Technology of China, China)	1802
AAMDM: Accelerated Auto-regressive Motion Diffusion Model Tianyu Li (Georgia Institute of Technology, USA), Calvin Qiao (University of British Columbia, Canada), Guanqiao Ren (Beihang University, China), KangKang Yin (Simon Fraser University, Canada), and Sehoon Ha (Georgia Institute of Technology, USA)	1813
SynSP: Synergy of Smoothness and Precision in Pose Sequences Refinement Tao Wang (Beijing University of Posts and Telecommunications, China), Lei Jin (Beijing University of Posts and Telecommunications, China), Zheng Wang (Wuhan University, China), Jianshu Li (Ant Group, China), Liang Li (Institute of computing technology Chinese Academy of Sciences, China), Fang Zhao (Nanjing University, China), Yu Cheng (National University of Singapore, Singapore), Li Yuan (Peking University, China), Li Zhou (Peking University, China), Junliang Xing (Tsinghua University, China), and Jian Zhao (China Telecom Institute of AI, China; Northwestern Polytechnical University, China)	1824

AiOS: All-in-One-Stage Expressive Human Pose and Shape Estimation	1834
HumanRef: Single Image to 3D Human Generation via Reference-Guided Diffusion	1844
Generating Human Motion in 3D Scenes from Text Descriptions Zhi Cen (Zhejiang University, China), Huaijin Pi (Zhejiang University, China), Sida Peng (Zhejiang University, China), Zehong Shen (Zhejiang University, China), Minghui Yang (Ant Group, China), Shuai Zhu (Ant Group, China), Hujun Bao (Zhejiang University, China), and Xiaowei Zhou (Zhejiang University, China)	1855
Locally Adaptive Neural 3D Morphable Models	1867
IntrinsicAvatar: Physically Based Inverse Rendering of Dynamic Humans from Monocular Videos via Explicit Ray Tracing	1877
Dynamic Inertial Poser (DynaIP): Part-Based Motion Dynamics Learning for Enhanced Human Pose Estimation with Sparse Inertial Sensors	1889
MoMask: Generative Masked Modeling of 3D Human Motions	1900
G-HOP: Generative Hand-Object Prior for Interaction Reconstruction and Grasp Synthesis Yufei Ye (Carnegie Mellon University, USA), Abhinav Gupta (Carnegie Mellon University, USA), Kris Kitani (Carnegie Mellon University, USA; Meta AI, USA), and Shubham Tulsiani (Carnegie Mellon University, USA)	1911

Dynamic Support Information Mining for Category-Agnostic Pose Estimation	1921
Gaussian Head Avatar: Ultra High-fidelity Head Avatar via Dynamic Gaussians	1931
Emotional Speech-driven 3D Body Animation via Disentangled Latent Diffusion	1942
ProxyCap: Real-time Monocular Full-body Capture in World Space via Human-Centric Proxy-to-Motion Learning	1954
MAS: Multi-view Ancestral Sampling for 3D Motion Generation Using 2D Diffusion	1965
Efficient 3D Implicit Head Avatar with Mesh-anchored Hash Table Blendshapes	1975
Neural Sign Actors: A Diffusion Model for 3D Sign Language Production from Text	1985

RAM-Avatar: Real-time Photo-Realistic Avatar from Monocular Videos with Full-body Control 19 Xiang Deng (Tsinghua University), Zerong Zheng (NNKosmos), Yuxiang Zhang (Tsinghua University), Jingxiang Sun (Tsinghua University), Chao Xu (NNKosmos), Xiaodong Yang (Li Auto), Lizhen Wang (Tsinghua University), and Yebin Liu (Tsinghua University)	996
Sharingan: A Transformer Architecture for Multi-Person Gaze Following	008
Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories	018
Authentic Hand Avatar from a Phone Scan via Universal Hand Model	029
UniHuman: A Unified Model For Editing Human Images in the Wild	039
BlockGCN: Redefine Topology Awareness for Skeleton-Based Action Recognition	049
GoMAvatar: Efficient Animatable Human Modeling from Monocular Video Using Gaussians-on-Mesh	059
WHAM: Reconstructing World-grounded Humans with Accurate 3D Motion	070
Self-Supervised Facial Representation Learning with Facial Region Awareness	081

ChatPose: Chatting about 3D Human Pose
AUEditNet: Dual-Branch Facial Action Unit Intensity Manipulation with Implicit Disentanglement
Towards a Simultaneous and Granular Identity-Expression Control in Personalized Face Generation
PoseIRM: Enhance 3D Human Pose Estimation on Unseen Camera Settings via Invariant Risk Minimization
Rethinking Human Motion Prediction with Symplectic Integral Haipeng Chen (Jilin University, Changchun, China), Kedi Lyu (Jilin University, Changchun, China), Zhenguang Liu (Zhejiang University, Hangzhou, China), Yifang Yin (Institute for Infocomm Research (I2R), A*STAR, Singapore), Xun Yang (University of Science and Technology of China, HeFei, China), and Yingda Lyu (Jilin University, Changchun, China)
Multimodal Sense-Informed Forecasting of 3D Human Motions
Semantics-aware Motion Retargeting with Vision-Language Models Haodong Zhang (Zhejiang University, China), Zhike Chen (Zhejiang University, China), Haocheng Xu (Zhejiang University, China), Lei Hao (Huawei Noah's Ark Lab, China), Xiaofei Wu (Huawei Noah's Ark Lab, China), Songcen Xu (Huawei Noah's Ark Lab, China), Zhensong Zhang (Huawei Noah's Ark Lab, China), Yue Wang (Zhejiang University, China), and Rong Xiong (Zhejiang University, China)
Makeup Prior Models for 3D Facial Makeup Estimation and Applications

aceCom: Towards High-fidelity 3D Facial Shape Completion via Optimization and Inpainting	
Guidance Yinglong Li (Beihang University, China), Hongyu Wu (Beihang University, China), Xiaogang Wang (Southwest University, China), Qingzhao Qin (Peking University School and Hospital of Stomatology, China), Yijiao Zhao (Peking University School and Hospital of Stomatology, China), Yong Wang (Peking University School and Hospital of Stomatology, China), and Aimin Hao (Beihang University, China)	177
Vhen StyleGAN Meets Stable Diffusion: a W+ Adapter for Personalized Image Generation	187
MANUS: Markerless Grasp Capture using Articulated 3D Gaussians	197
oose Inertial Poser: Motion Capture with IMU-attached Loose-Wear Jacket	209
Anatomically Constrained Implicit Face Models	22 0
DiffusionRegPose: Enhancing Multi-Person Pose Estimation using a Diffusion-Based and-to-End Regression Approach	230
A Dual-Augmentor Framework for Domain Generalization in 3D Human Pose Estimation	24 0
RELI11D: A Comprehensive Multimodal Human Motion Dataset and Method	250

Co-Speech Gesture Video Generation via Motion-Decoupled Diffusion Model Xu He (Tsinghua University, China), Qiaochu Huang (Tsinghua University, China), Zhensong Zhang (Huawei Noah's Ark Lab, China), Zhiwei Lin (Tsinghua University, China), Zhiyong Wu (Tsinghua University, China; The Chinese University of Hong Kong, China), Sicheng Yang (Tsinghua University, China), Minglei Li (Huawei Cloud Computing Technologies Co., Ltd, China), Zhiyi Chen (Huawei Cloud Computing Technologies Co., Ltd, China), Songcen Xu (Huawei Noah's Ark Lab, China), and Xiaofei Wu (Huawei Noah's Ark Lab, China)	263
HandDiff: 3D Hand Pose Estimation with Diffusion on Image-Point Cloud	274
Normalizing Flows on the Product Space of SO(3) Manifolds for Probabilistic Human Pose Modeling	285
Towards Robust 3D Pose Transfer with Adversarial Learning	295
PhysPT: Physics-aware Pretrained Transformer for Estimating Human Dynamics from Monocular Videos	305
HumMUSS: Human Motion Understanding using State Space Models	318
MultiPhys: Multi-Person Physics-aware 3D Motion Estimation	331
Physics-Aware Hand-Object Interaction Denoising	341
HOIST-Former: Hand-held Objects Identification, Segmentation, and Tracking in the Wild	351

CULPT: Shape-Conditioned Unpaired Learning of Pose-dependent Clothed and Textured Human	
Meshes	52
FStorer: Personalized Face Restoration and Super-Resolution	⁷ 2
IS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints	32
OTH2Hands: Inferring 3D Hands from Both Text Prompts and Body Dynamics	€3
MeshPose: Unifying DensePose and 3D Body Mesh Reconstruction)5
fustomListener: Text-guided Responsive Interaction for User-friendly Listening Head Generation	15
Generalizable Face Landmarking Guided by Conditional Face Warping	25
keleton-in-Context: Unified Skeleton Sequence Modeling with In-Context Learning	36

A Unified and Interpretable Emotion Representation and Expression Generation	2447
Artist-Friendly Relightable and Animatable Neural Heads	2457
HanDiffuser: Text-to-Image Generation With Realistic Hand Appearances Supreeth Narasimhaswamy (Stony Brook University), Uttaran Bhattacharya (Adobe), Xiang Chen (Adobe), Ishita Dasgupta (Adobe), Saayan Mitra (Adobe), and Minh Hoai (Stony Brook University)	2468
BodyMAP - Jointly Predicting Body Mesh and 3D Applied Pressure Map for People in Bed	2480
3D Facial Expressions through Analysis-by-Neural-Synthesis	2490
SelfPose3d: Self-Supervised Multi-Person Multi-View 3d Pose Estimation	2502
DiffusionPoser: Real-time Human Motion Reconstruction From Arbitrary Sparse Sensors Using Autoregressive Diffusion	2513
Learning Diffusion Texture Priors for Image Restoration Tian Ye (The Hong Kong University of Science and Technology (Guangzhou)), Sixiang Chen (The Hong Kong University of Science and Technology (Guangzhou)), Wenhao Chai (University of Washington), Zhaohu Xing (The Hong Kong University of Science and Technology (Guangzhou)), Jing Qin (Hong Kong Polytechnic University), Ge Lin (The Hong Kong University of Science and Technology (Guangzhou), The Hong Kong University of Science and Technology), and Lei Zhu (The Hong Kong University of Science and Technology)	2524

Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World Video Super-Resolution. 25 Shangchen Zhou (Nanyang Technological University), Peiqing Yang (Nanyang Technological University), Jianyi Wang (Nanyang Technological University), Yihang Luo (Nanyang Technological University), and Chen Change Loy (Nanyang Technological University)	535
Enhancing Video Super-Resolution via Implicit Resampling-based Alignment	546
Boosting Neural Representations for Videos with a Conditional Decoder	556
Restoration by Generation with Constrained Priors	567
Fantastic Animals and Where to Find Them: Segment Any Marine Animal with Dual SAM	578
Estimating Extreme 3D Image Rotations using Cascaded Attention	588
Learned Scanpaths Aid Blind Panoramic Video Quality Assessment	599
Automatic Controllable Colorization via Imagination	509
Reconstruction-free Cascaded Adaptive Compressive Sensing	520
A Semi-supervised Nighttime Dehazing Baseline with Spatial-Frequency Aware and Realistic Brightness Constraint	631

AdaBM: On-the-Fly Adaptive Bit Mapping for Image Super-Resolution	2641
Beyond Image Super-Resolution for Image Recognition with Task-Driven Perceptual Loss Jaeha Kim (Seoul National University), Junghun Oh (Seoul National University), and Kyoung Mu Lee (Seoul National University)	2651
Boosting Image Quality Assessment through Efficient Transformer Adaptation with Local Feature Enhancement	2662
Blur-aware Spatio-temporal Sparse Transformer for Video Deblurring	267 3
XFeat: Accelerated Features for Lightweight Image Matching	2682
RecDiffusion: Rectangling for Image Stitching with Diffusion Models Tianhao Zhou (University of Electronic Science and Technology of China), Haipeng Li (University of Electronic Science and Technology of China), Ziyi Wang (University of Electronic Science and Technology of China), Ao Luo (Southwest Jiaotong University, Megvii Technology), Chen-Lin Zhang (4Paradigm Inc), Jiajun Li (4Paradigm Inc), Bing Zeng (University of Electronic Science and Technology of China), and Shuaicheng Liu (University of Electronic Science and Technology of China)	2692
Unsupervised Salient Instance Detection	2702
FINER: Flexible Spectral-bias Tuning in Implicit NEural Representation by Variable-periodic Activation Functions Zhen Liu (Nanjing University, China), Hao Zhu (Nanjing University, China), Qi Zhang (Tencent Company, China), Jingde Fu (Nanjing University, China), Weibing Deng (Nanjing University, China), Zhan Ma (Nanjing University, China), Yanwen Guo (Nanjing University, China), and Xun Cao (Nanjing University, China)	271 3
Robust Image Denoising through Adversarial Frequency Mixup	2723

Efficient Multi-scale Network with Learnable Discrete Wavelet Transform for Blind Motion Deblurring	3
Efficient Scene Recovery Using Luminous Flux Prior	3
Perception-Oriented Video Frame Interpolation via Asymmetric Blending	3
Modular Blind Video Quality Assessment	3
Residual Denoising Diffusion Models	3
JDEC: JPEG Decoding via Enhanced Continuous Cosine Coefficients	1
On the Robustness of Language Guidance for Low-Level Vision Tasks: Findings from Depth Estimation	4
Blur2Blur: Blur Conversion for Unsupervised Image Deblurring on Unknown Domains	1

Exploring Efficient Asymmetric Blind-Spots for Self-Supervised Denoising in Real-World Scenarios	2814
Shiyan Chen (Peking University, China), Jiyuan Zhang (Peking University, China), Zhaofei Yu (Peking University, China), and Tiejun Huang (Peking University, China)	
Deep Equilibrium Diffusion Restoration with Parallel Sampling	2824
PTM-VQA: Efficient Video Quality Assessment Leveraging Diverse PreTrained Models from the Wild	. 2835
Kun Yuan (Kuaishou Technology, China), Hongbo Liu (Tsinghua University, China), Mading Li (Kuaishou Technology, China), Muyi Sun (School of AI, BUPT, China), Ming Sun (Kuaishou Technology, China), Jiachao Gong (Kuaishou Technology, China), Jinhua Hao (Kuaishou Technology, China), Chao Zhou (Kuaishou Technology, China), and Yansong Tang (Tsinghua University, China)	
Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing	2846
Yafei Zhang (Kunming University of Science and Technology), Shen Zhou (Kunming University of Science and Technology), and Huafeng Li (Kunming University of Science and Technology)	
Transcending the Limit of Local Window: Advanced Super-Resolution Transformer with Adaptive Token Dictionary	. 2856
Improving Image Restoration through Removing Degradations in Textual Representations Jingbo Lin (Harbin Institute of Technology, China), Zhilu Zhang (Harbin Institute of Technology, China), Yuxiang Wei (Harbin Institute of Technology, China), Dongwei Ren (Harbin Institute of Technology, China), Dongsheng Jiang (Huawei Cloud Computing Co., Ltd., China), Qi Tian (Huawei Cloud Computing Co., Ltd., China), and Wangmeng Zuo (Harbin Institute of Technology, China)	2866
Towards Real-World HDR Video Reconstruction: A Large-Scale Benchmark Dataset and A Two-Stage Alignment Network	. 2879
Spatio-Temporal Turbulence Mitigation: A Translational Perspective	2889

Boosting Image Restoration via Priors from Pre-trained Models	900
Misalignment-Robust Frequency Distribution Loss for Image Transformation)10
CoDe: An Explicit Content Decoupling Framework for Image Restoration	20
DSL-FIQA: Assessing Facial Image Quality via Dual-Set Degradation Learning and Landmark-Guided Transformer	931
CLIPtone: Unsupervised Learning for Text-based Image Tone Adjustment)42
Adapt or Perish: Adaptive Sparse Transformer with Attentive Feature Refinement for Image Restoration	952
CPGA: Coding Priors-Guided Aggregation Network for Compressed Video Quality Enhancement 2964 Qiang Zhu (University of Electronic Science and Technology of China), Jinhua Hao (Kuaishou Technology), Yukang Ding (Kuaishou Technology), Yu Liu (University of Electronic Science and Technology of China), Qiao Mo (University of Electronic Science and Technology of China), Ming Sun (Kuaishou Technology), Chao Zhou (Kuaishou Technology), and Shuyuan Zhu (University of Electronic Science and Technology of China)	
Learning to Control Camera Exposure via Reinforcement Learning) 75

Real-Time Exposure Correction via Collaborative Transformations and Adaptive Sampling	2984
Towards Progressive Multi-Frequency Representation for Image Warping Jun Xiao (The Hong Kong Polytechnic University, Hong Kong, China), Zihang Lyu (The Hong Kong Polytechnic University, Hong Kong, China), Cong Zhang (The Hong Kong Polytechnic University, Hong Kong, China), Yakun Ju (Nanyang Technological University, Singapore), Changjian Shui (Vector Institute, Canada), and Kin-Man Lam (The Hong Kong Polytechnic University, Hong Kong, China)	2995
HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved Diffusion Models	3005
ZERO-IG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement for Low-Light Images	3015
Masked and Shuffled Blind Spot Denoising for Real-World Images Hamadi Chihaoui (University of Bern, Switzerland) and Paolo Favaro (University of Bern, Switzerland)	3025
Continuous Optical Zooming: A Benchmark for Arbitrary-Scale Image Super-Resolution in Real World	3035
Laplacian-guided Entropy Model in Neural Codec with Blur-dissipated Synthesis	3045

SD2Event:Self-supervised Learning of Dynamic Detectors and Contextual Descriptors for Event Cameras	3055
Yuan Gao (University of Science and Technology of China, China), Yuqing Zhu (University of Science and Technology of China, China), Xinjun Li (University of Science and Technology of China, China), Yimin Du (University of Science and Technology of China, China), and Tianzhu Zhang (University of Science and Technology of China, China)	3000
LLaFS: When Large Language Models Meet Few-Shot Segmentation	3065
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence Junyi Zhang (Shanghai Jiao Tong University, China), Charles Herrmann (Google Research, USA), Junhwa Hur (Google Research, USA), Eric Chen (University of Illinois Urbana-Champaign, USA), Varun Jampani (Stability AI, USA), Deqing Sun (Google Research, USA), and Ming-Hsuan Yang (University of California at Merced, USA)	3076
One-Shot Open Affordance Learning with Foundation Models Gen Li (University of Edinburgh), Deqing Sun (Google Research), Laura Sevilla-Lara (University of Edinburgh), and Varun Jampani (Stability AI)	3086
CorrMatch: Label Propagation via Correlation Matching for Semi-Supervised Semantic Segmentation Boyuan Sun (Nankai University, China), Yuqi Yang (Nankai University, China), Le Zhang (University of Electronic Science and Technology, China), Ming-Ming Cheng (Nankai University, China), and Qibin Hou (Nankai University, China)	3097
Collaborating Foundation Models for Domain Generalized Semantic Segmentation	3108
FocSAM: Delving Deeply into Focused Objects in Segmenting Anything You Huang (Xiamen University, China), Zongyu Lan (Xiamen University, China), Liujuan Cao (Xiamen University, China), Xianming Lin (Xiamen University, China), Shengchuan Zhang (Xiamen University, China), Guannan Jiang (Contemporary Amperex Technology Co. Limited, China), and Rongrong Ji (Xiamen University, China)	3120
Finsler-Laplace-Beltrami Operators with Application to Shape Analysis	3131
Neural Implicit Representation for Building Digital Twins of Unknown Articulated Objects Yijia Weng (Stanford University, USA), Bowen Wen (NVIDIA, USA), Jonathan Tremblay (NVIDIA, USA), Valts Blukis (NVIDIA, USA), Dieter Fox (NVIDIA, USA), Leonidas Guibas (Stanford University, USA), and Stan Birchfield (NVIDIA, USA)	3141

Putting the Object Back into Video Object Segmentation
BA-SAM: Scalable Bias-Mode Attention Mask for Segment Anything Model
Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part Representations317. Daan de Geus (Eindhoven University of Technology, The Netherlands) and Gijs Dubbelman (Eindhoven University of Technology, The Netherlands)
Open-World Semantic Segmentation Including Class Similarity
Hierarchical Histogram Threshold Segmentation – Auto-terminating High-detail Oversegmentation
AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning 320 Duojun Huang (Sun Yat-sen University, China), Xinyu Xiong (Sun Yat-sen University, China), Jie Ma (Sun Yat-sen University, China), Jichang Li (Sun Yat-sen University, China), Zequn Jie (Meituan, China), Lin Ma (Meituan, China), and Guanbin Li (Sun Yat-sen University, China)
SANeRF-HQ: Segment Anything for NeRF in High Quality
UniVS: Unified and Universal Video Segmentation with Prompts as Queries
RankED: Addressing Imbalance and Uncertainty in Edge Detection Using Ranking-based Losses 323 Bedrettin Cetinkaya (Middle East Technical University, Turkey), Sinan Kalkan (Middle East Technical University, Turkey), and Emre Akbas (Middle East Technical University, Turkey)

Event-assisted Low-Light Video Object Segmentation Hebei Li (University of Science and Technology of China), Jin Wang (University of Science and Technology of China), Jiahui Yuan (University of Science and Technology of China), Yue Li (University of Science and Technology of China), Wenming Weng (University of Science and Technology of China), Yansong Peng (University of Science and Technology of China), Yueyi Zhang (University of Science and Technology of China), Zhiwei Xiong (University of Science and Technology of China), and Xiaoyan Sun (University of Science and Technology of China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center)	3250
Density-Guided Semi-Supervised 3D Semantic Segmentation with Dual-Space Hardness Sar 3260	mpling
Jianan Li (University of Chinese Academy of Sciences, China) and Qiulei Dong (University of Chinese Academy of Sciences, China)	
Exploring Regional Clues in CLIP for Zero-Shot Semantic Segmentation	3270
Category-Level Multi-Part Multi-Joint 3D Shape Assembly Yichen Li (MIT CSAIL), Kaichun Mo (NVIDIA), Yueqi Duan (Tsinghua University), He Wang (Peking University), Jiequan Zhang (Stanford University), and Lin Shao (National University of Singapore)	3281
SAI3D: Segment Any Instance in 3D Scenes	3292
Towards the Uncharted: Density-Descending Feature Perturbation for Semi-supervised Semantic Segmentation	3303
Xiaoyang Wang (Xi'an Jiaotong Liverpool University, China), Huihui Bai (Beijing Jiaotong University, China), Limin Yu (Xi'an Jiaotong Liverpool University, China), Yao Zhao (Beijing Jiaotong University, China), and Jimin Xiao (Xi'an Jiaotong Liverpool University, China)	5555
Hybrid Functional Maps for Crease-Aware Non-Isometric Shape Matching Lennart Bastian (Technical University of Munich, Germany), Yizheng Xie (Technical University of Munich, Germany), Nassir Navab (Technical University of Munich, Germany), and Zorah Lähner (University of Siegen, Germany; University of Bonn, Germany; Lamarr Institute, Germany)	3313
Hunting Attributes: Context Prototype-Aware Learning for Weakly Supervised Semantic Segmentation	3324
Self-Calibrating Vicinal Risk Minimisation for Model Calibration	3335

ECLIPSE: Efficient Continual Learning in Panoptic Segmentation with Visual Prompt Tuning 3346 Beomyoung Kim (NAVER Cloud; KAIST), Joonsang Yu (NAVER Cloud), and Sung Ju Hwang (KAIST)
Clustering Propagation for Universal Medical Image Segmentation
Addressing Background Context Bias in Few-Shot Segmentation through Iterative Modulation 3370 Lanyun Zhu (Singapore University of Technology and Design, Singapore), Tianrun Chen (Zhejiang University, China), Jianxiong Yin (NVIDIA AI Tech Centre, Singapore), Simon See (NVIDIA AI Tech Centre, Singapore), and Jun Liu (Singapore University of Technology and Design, Singapore)
Cross-Domain Few-Shot Segmentation via Iterative Support-Query Correspondence Mining 3380 Jiahao Nie (Nanyang Technological University, Singapore), Yun Xing (Nanyang Technological University, Singapore), Gongjie Zhang (Black Sesame Technologies, Singapore), Pei Yan (Huazhong University of Science and Technology, China; Nanyang Technological University, Singapore), Aoran Xiao (Nanyang Technological University, Singapore), Yap-Peng Tan (Nanyang Technological University, Singapore), Alex C. Kot (Nanyang Technological University, Singapore) and Shijian Lu (Nanyang Technological University, Singapore)
RankMatch: Exploring the Better Consistency Regularization for Semi-supervised Semantic Segmentation
QDFormer: Towards Robust Audiovisual Segmentation in Complex Environments with Quantization-based Semantic Decomposition
Frequency-Adaptive Dilated Convolution for Semantic Segmentation 3414 Linwei Chen (Beijing Institute of Technology), Lin Gu (The University of Tokyo), Dezhi Zheng (Beijing Institute of Technology), and Ying Fu (Beijing Institute of Technology)
SED: A Simple Encoder-Decoder for Open-Vocabulary Semantic Segmentation
PSDPM: Prototype-based Secondary Discriminative Pixels Mining for Weakly Supervised Semantic Segmentation

Coupled Laplacian Eigenmaps for Locally-Aware 3D Rigid Point Cloud Matching	3447
Universal Segmentation at Arbitrary Granularity with Language Instruction Yong Liu (Tsinghua Shenzhen International Graduate School, Tsinghua University), Cairong Zhang (ByteDance Inc.), Yitong Wang (ByteDance Inc.), Jiahao Wang (The University of Hong Kong), Yujiu Yang (Tsinghua Shenzhen International Graduate School, Tsinghua University), and Yansong Tang (Tsinghua Shenzhen International Graduate School, Tsinghua University)	3459
PartDistill: 3D Shape Part Segmentation by Vision-Language Model Distillation	3470
HIT: Estimating Internal Human Implicit Tissues from the Body Surface Marilyn Keller (Max Planck Institute for Intelligent Systems, Tuebingen, Germany), Vaibhav Arora (Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, France), Abdelmouttaleb Dakri (Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, France), Shivam Chandhok (Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, France), Jürgen Machann (IDM, Helmholtz Center Munich at the University of T ubingen), Andreas Fritsche (IDM, Helmholtz Center Munich at the University of T ubingen), Michael J. Black (Max Planck Institute for Intelligent Systems, Tuebingen, Germany), and Sergi Pujades (Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, France)	3480
Open-Vocabulary Segmentation with Semantic-Assisted Calibration Yong Liu (Shenzhen Key Laboratory of Ubiquitous Data Enabling, Shenzhen International Graduate School), Sule Bai (Shenzhen Key Laboratory of Ubiquitous Data Enabling, Shenzhen International Graduate School), Guanbin Li (Sun Yat-sen University), Yitong Wang (ByteDance Inc.), and Yansong Tang (Shenzhen Key Laboratory of Ubiquitous Data Enabling, Shenzhen International Graduate School)	3491
GraCo: Granularity-Controllable Interactive Segmentation	3501
Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding	3511

EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised Semantic Segmentation Chanyoung Kim (Yonsei University, Republic of Korea), Woojung Han (Yonsei University, Republic of Korea), Dayun Ju (Yonsei University, Republic of Korea), and Seong Jae Hwang (Yonsei University, Republic of Korea)	3523
DuPL: Dual Student with Trustworthy Progressive Learning for Robust Weakly Supervised Semantic Segmentation Yuanchen Wu (Shanghai University, China), Xichen Ye (Shanghai University, China), Kequan Yang (Shanghai University, China), Jide Li (Shanghai University, China), and Xiaoqiang Li (Shanghai University, China)	3534
Vanishing-Point-Guided Video Semantic Segmentation of Driving Scenes Diandian Guo (ETH Zürich, Switzerland), Deng-Ping Fan (Nankai University, China), Tongyu Lu (ETH Zürich, Switzerland), Christos Sakaridis (ETH Zürich, Switzerland), and Luc Van Gool (ETH Zürich, Switzerland)	3544
Diffuse, Attend, and Segment: Unsupervised Zero-Shot Segmentation using Stable Diffusion Junjiao Tian (Georgia Institute of Technology, USA), Lavisha Aggarwal (Google), Andrea Colaco (Google), Zsolt Kira (Georgia Institute of Technology, USA), and Mar Gonzalez-Franco (Google)	3554
ODIN: A Single Model for 2D and 3D Segmentation Ayush Jain (Carnegie Mellon University, USA), Pushkal Katara (Carnegie Mellon University, USA), Nikolaos Gkanatsios (Carnegie Mellon University, USA), Adam W. Harley (Stanford University, USA), Gabriel Sarch (Carnegie Mellon University, USA), Kriti Aggarwal (Microsoft, USA), Vishrav Chaudhary (Microsoft, USA), and Katerina Fragkiadaki (Carnegie Mellon University, USA)	. 3564
Infer from What You Have Seen Before: Temporally-dependent Classifier for Semi-supervised Video Segmentation	. 3575
Semantic-aware SAM for Point-Prompted Instance Segmentation Zhaoyang Wei (University of Chinese Academy of Sciences, China), Pengfei Chen (University of Chinese Academy of Sciences, China), Xuehui Yu (University of Chinese Academy of Sciences, China), Guorong Li (University of Chinese Academy of Sciences, China), Jianbin Jiao (University of Chinese Academy of Sciences, China), and Zhenjun Han (University of Chinese Academy of Sciences, China)	3585
Class Tokens Infusion for Weakly Supervised Semantic Segmentation	, 3595
Separate and Conquer: Decoupling Co-occurrence via Decomposition and Representation for Weakly Supervised Semantic Segmentation	. 3606

Style Blind Domain Generalized Semantic Segmentation via Covariance Alignment and Semantic Consistence Contrastive Learning
AllSpark: Reborn Labeled Features from Unlabeled in Transformer for Semi-Supervised Semantic Segmentation
Unsupervised Semantic Segmentation Through Depth-Guided Feature Correlation and Sampling 3637 Leon Sick (Ulm University, Germany), Dominik Engel (Ulm University, Germany), Pedro Hermosilla (TU Vienna, Austria), and Timo Ropinski (Ulm University, Germany)
PoNQ: a Neural QEM-based Mesh Representation 3647 Nissim Maruani (Inria, Université Côte d'Azur), Maks Ovsjanikov (LIX, Ecole polytechnique, IP Paris), Pierre Alliez (Inria, Université Côte d'Azur), and Mathieu Desbrun (Inria Saclay, Ecole polytechnique)
Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation
CosalPure: Learning Concept from Group Images for Robust Co-Saliency Detection
ContextSeg: Sketch Semantic Segmentation by Querying the Context with Attention
Training-Free Open-Vocabulary Segmentation with Offline Diffusion-Augmented Prototype Generation

ASAM: Boosting Segment Anything Model with Adversarial Tuning	3699
In-Context Matting He Guo (Huazhong University of Science and Technology), Zixuan Ye (Huazhong University and Science and Technology), Zhiguo Cao (Huazhong University and Science and Technology), and Hao Lu (Huazhong University and Science and Technology)	3711
Weakly Supervised Point Cloud Semantic Segmentation via Artificial Oracle	3721
Contextrast: Contextual Contrastive Learning for Semantic Segmentation	3732
Parameter Efficient Fine-tuning via Cross Block Orchestration for Segment Anything Model . Zelin Peng (Shanghai Jiao Tong University), Zhengqin Xu (Shanghai Jiao Tong University), Zhilin Zeng (Shanghai Jiao Tong University), Lingxi Xie (Huawei Inc.), Qi Tian (Huawei Inc.), and Wei Shen (Shanghai Jiao Tong University)	3743
CADTalk: An Algorithm and Benchmark for Semantic Commenting of CAD Programs Haocheng Yuan (The University of Edinburgh, United Kindom), Jing Xu (The University of Edinburgh, United Kindom), Hao Pan (Microsoft Research Asia, China), Adrien Bousseau (Inria, Universite Cote d'Azur; Delft University of Technology; France), Niloy J. Mitra (University College London; Adobe Research; United Kindom), and Changjian Li (The University of Edinburgh)	3753
Point2CAD: Reverse Engineering CAD Models from 3D Point Clouds	3763
Rethinking Interactive Image Segmentation with Low Latency, High Quality, and Diverse Prompts	3773
General Object Foundation Model for Images and Videos at Scale	3783

Frozen CLIP: A Strong Backbone for Weakly Supervised Semantic Segmentation	3796
Guided Slot Attention for Unsupervised Video Object Segmentation 3 Minhyeok Lee (Yonsei University), Suhwan Cho (Yonsei University), Dogyoon Lee (Yonsei University), Chaewon Park (Yonsei University), Jungho Lee (Yonsei University), and Sangyoun Lee (Yonsei University)	3807
Unlocking the Potential of Pre-trained Vision Transformers for Few-Shot Semantic Segmentation through Relationship Descriptors	3817
Grounding Everything: Emerging Localization Properties in Vision-Language Transformers 3 Walid Bousselham (University of Bonn, Germany; Goethe University Frankfurt, Germany), Felix Petersen (Stanford University, USA), Vittorio Ferrari (Synthesia.io, England), and Hilde Kuehne (University of Bonn, Germany; Goethe University Frankfurt, Germany; MIT-IBM Watson AI Lab, USA)	3828
No Time to Train: Empowering Non-Parametric Networks for Few-shot 3D Scene Segmentation . 3 Xiangyang Zhu (City University of Hong Kong, Hong Kong, China), Renrui Zhang (Shanghai AI Lab, China), Bowei He (City University of Hong Kong, Hong Kong, China), Ziyu Guo (Shanghai AI Lab, China), Jiaming Liu (Peking University, China), Han Xiao (Shanghai AI Lab, China), Chaoyou Fu (Tencent Youtu Lab, China), Hao Dong (Peking University, China), and Peng Gao (Shanghai AI Lab, China)	3838
Continual Segmentation with Disentangled Objectness Learning and Class Recognition	3848
GSVA: Generalized Segmentation via Multimodal Large Language Models 3 Zhuofan Xia (Tsinghua University, China), Dongchen Han (Tsinghua University, China), Yizeng Han (Tsinghua University, China), Xuran Pan (Tsinghua University, China), Shiji Song (Tsinghua University, China), and Gao Huang (Tsinghua University, China)	3858
MaGGIe: Masked Guided Gradual Human Instance Matting	3870

EFormer: Enhanced Transformer towards Semantic-Contour Features of Foreground for Portraits Matting
Segment Any Event Streams via Weighted Adaptation of Pivotal Tokens
PolarMatte: Fully Computational Ground-Truth-Quality Alpha Matte Extraction for Images and Video using Polarized Screen Matting
Segment Every Out-of-Distribution Object
Multi-view Aggregation Network for Dichotomous Image Segmentation 392. Qian Yu (Dalian University of Technology, China), Xiaoqi Zhao (Dalian University of Technology, China), Youwei Pang (Dalian University of Technology, China), Lihe Zhang (Dalian University of Technology, China), and Huchuan Lu (Dalian University of Technology, China)
pix2gestalt: Amodal Segmentation by Synthesizing Wholes
Rethinking Prior Information Generation with CLIP for Few-Shot Segmentation 394 Jin Wang (China University of PetroleumEast China), Bingfeng Zhang (China University of PetroleumEast China), Jian Pang (China University of PetroleumEast China), Honglong Chen (China University of PetroleumEast China), and Weifeng Liu (China University of PetroleumEast China)
Image-to-Image Matching via Foundation Models: A New Perspective for Open-Vocabulary Semantic Segmentation

Domain Separation Graph Neural Networks for Saliency Object Ranking Zijian Wu (Nanjing University of Science and Technology, China), Jun Lu (Nanjing University of Science and Technology, China), Jing Han (Nanjing University of Science and Technology, China), Lianfa Bai (Nanjing University of Science and Technology, China), Yi Zhang (Nanjing University of Science and Technology, China), Zhuang Zhao (Nanjing University of Science and Technology, China), and Siyang Song (University of Leicester, UK)	3964
DIOD: Self-Distillation Meets Object Discovery	3975
DiverGen: Improving Instance Segmentation by Learning Wider Data Distribution with More Diverse Generative Data	3986
Rethinking Few-shot 3D Point Cloud Semantic Segmentation	3996
Training Vision Transformers for Semi-Supervised Semantic Segmentation Xinting Hu (Max Planck Institute for Informatics, Germany), Li Jiang (Max Planck Institute for Informatics, Germany), and Bernt Schiele (Max Planck Institute for Informatics, Germany)	. 4007
Open3DIS: Open-Vocabulary 3D Instance Segmentation with 2D Mask Guidance	. 4018
Emergent Open-Vocabulary Semantic Segmentation from Off-the-shelf Vision-Language Models Jiayun Luo (Nanyang Technological University, Singapore), Siddhesh Khandelwal (University of British Columbia, Vector Institute for AI, Canada), Leonid Sigal (University of British Columbia, Vector Institute for AI, Canada), and Boyang Li (Nanyang Technological University, Singapore)	s 4029
Memory-Scalable and Simplified Functional Map Learning	4041
MFP: Making Full Use of Probability Maps for Interactive Image Segmentation	4051

Spherical Mask: Coarse-to-Fine 3D Point Cloud Instance Segmentation with Spherical Representation	
Hanyang Chi (China University of Petroleum (East China)), Jian Pang (China University of Petroleum (East China)), Bingfeng Zhang (China University of Petroleum (East China)), and Weifeng Liu (China University of Petroleum (East China))	U
RobustSAM: Segment Anything Robustly on Degraded Images	31
LAKE-RED: Camouflaged Images Generation by Latent Background Knowledge Retrieval-Augmented Diffusion	
Learn to Rectify the Bias of CLIP for Unsupervised Semantic Segmentation)2
CAT-Seg: Cost Aggregation for Open-Vocabulary Semantic Segmentation	.3
Prompt-Driven Referring Image Segmentation with Instance Contrasting	4

Kandinsky Conformal Prediction: Efficient Calibration of Image Segmentation Algorithms 4 Joren Brunekreef (Netherlands Cancer Institute), Eric Marcus (Netherlands Cancer Institute), Ray Sheombarsing (Netherlands Cancer Institute), Jan-Jakob Sonke (Netherlands Cancer Institute), and Jonas Teuwen (Netherlands Cancer Institute)	1135
OVFoodSeg: Elevating Open-Vocabulary Food Image Segmentation via Image-Informed Textual Representation	1144
Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features	1154
Deciphering 'What' and 'Where' Visual Pathways from Spectral Clustering of Layer-Distributed Neural Representations	1165
Open Vocabulary Semantic Scene Sketch Understanding	1176
USE: Universal Segment Embeddings for Open-Vocabulary Image Segmentation Xiaoqi Wang (The Ohio State University, USA), Wenbin He (Bosch Research North America & Bosch Center for Artificial Intelligence (BCAI), USA), Xiwei Xuan (University of California Davis, USA), Clint Sebastian (Bosch Center for Artificial Intelligence (BCAI), Germany), Jorge Piazentin Ono (Bosch Research North America & Bosch Center for Artificial Intelligence (BCAI), USA), Xin Li (Bosch Research North America & Bosch Center for Artificial Intelligence (BCAI), USA), Sima Behpour (Bosch Research North America & Bosch Center for Artificial Intelligence (BCAI), USA), Thang Doan (Bosch Research North America & Bosch Center for Artificial Intelligence (BCAI), USA), Liang Gou (Bosch Research North America & Bosch Center for Artificial Intelligence (BCAI), USA), Han-Wei Shen (The Ohio State University, USA), and Liu Ren (Bosch Research North America & Bosch Center for Artificial Intelligence (BCAI), USA)	1187
Diff-Plugin: Revitalizing Details for Diffusion-based Low-level Tasks	1197
XCube: Large-Scale 3D Generative Modeling using Sparse Voxel Hierarchies	1209

SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes Yi-Hua Huang (The University of Hong Kong), Yang-Tian Sun (The University of Hong Kong), Ziyi Yang (Zhejiang University), Xiaoyang Lyu (The University of Hong Kong), Yan-Pei Cao (VAST), and Xiaojuan Qi (The University of Hong Kong)	. 4220
StyLitGAN: Image-Based Relighting via Latent Control	. 4231
Image Sculpting: Precise Object Editing with 3D Geometry Control	4241
Paint3D: Paint Anything 3D with Lighting-Less Texture Diffusion Models Xianfang Zeng (Tencent PCG, China), Xin Chen (Tencent PCG, China), Zhongqi Qi (Tencent PCG, China), Wen Liu (Tencent PCG, China), Zibo Zhao (ShanghaiTech University, China), Zhibin Wang (Tencent PCG, China), Bin Fu (Tencent PCG, China), Yong Liu (Zhejiang University, China), and Gang Yu (Tencent PCG, China)	4252
Holo-Relighting: Controllable Volumetric Portrait Relighting from a Single Image	4263
Neural Fields as Distributions: Signal Processing Beyond Euclidean Space Daniel Rebain (University of British Columbia, Canada), Soroosh Yazdani (Google Research, USA), Kwang Moo Yi (University of British Columbia, Canada), and Andrea Tagliasacchi (Google DeepMind, USA; Simon Fraser University, Canada; University of Toronto, Canada)	. 4274
TexOct: Generating Textures of 3D Models with Octree-based Diffusion Jialun Liu (Baidu Inc., China), Chenming Wu (Baidu Inc., China), Xinqi Liu (Baidu Inc., China), Xing Liu (Baidu Inc., China), Jinbo Wu (Baidu Inc., China), Haotian Peng (Baidu Inc., China), Chen Zhao (Baidu Inc., China), Haocheng Feng (Baidu Inc., China), Jingtuo Liu (Baidu Inc., China), and Errui Ding (Baidu Inc., China)	. 4284
Differentiable Micro-Mesh Construction	4294

TextureDreamer: Image-Guided Texture Synthesis Through Geometry-Aware Diffusion	4304
As-Plausible-As-Possible: Plausibility-Aware Mesh Deformation Using 2D Diffusion Priors Seungwoo Yoo (KAIST), Kunho Kim (KAIST), Vladimir G. Kim (Adobe Research), and Minhyuk Sung (KAIST)	4315
Breathing Life Into Sketches Using Text-to-Video Priors Rinon Gal (Tel Aviv University, NVIDIA), Yael Vinker (Tel Aviv University), Yuval Alaluf (Tel Aviv University), Amit Bermano (Tel Aviv University), Daniel Cohen-Or (Tel Aviv University), Ariel Shamir (Reichman University), and Gal Chechik (NVIDIA)	4325
Real-Time Neural BRDF with Spherically Distributed Primitives	4337
Paint-it: Text-to-Texture Synthesis via Deep Convolutional Texture Map Optimization and Physically-Based Rendering	4347
Neural Super-Resolution for Real-time Rendering with Radiance Demodulation Jia Li (Shandong University, China), Ziling Chen (Shandong University, China), Xiaolong Wu (Shandong University, China), Lu Wang (Shandong University, China), Beibei Wang (Nanjing University, China), and Lei Zhang (The Hong Kong Polytechnic University, China)	4357
DiffAvatar: Simulation-Ready Garment Optimization with Differentiable Simulation	4368
Material Palette: Extraction of Materials from a Single Image	4379
PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics Tianyi Xie (University of California, Los Angeles, USA), Zeshun Zong (University of California, Los Angeles, USA), Yuxing Qiu (University of California, Los Angeles, USA), Xuan Li (University of California, Los Angeles, USA), Yutao Feng (Zhejiang University, China), Yin Yang (University of Utah, USA), and Chenfanfu Jiang (University of California, Los Angeles, USA)	4389

Differentiable Point-based Inverse Rendering	4399
Towards a Perceptual Evaluation Framework for Lighting Estimation Justine Giroux (Université Laval, Canada), Mohammad Reza Karimi Dastjerdi (Université Laval, Canada), Yannick Hold-Geoffroy (Adobe Research, USA), Javier Vazquez-Corral (Universitat Autònoma de Barcelona, Spain), and Jean-François Lalonde (Université Laval, Canada)	4410
Vector Graphics Generation via Mutually Impulsed Dual-domain Diffusion Zhongyin Zhao (Shanghai Jiao Tong University, China), Ye Chen (Shanghai Jiao Tong University, China), Zhangli Hu (Shanghai Jiao Tong University, China), Xuanhong Chen (Shanghai Jiao Tong University, China & USC-SJTU Institute of Cultural and Creative Industry), and Bingbing Ni (Shanghai Jiao Tong University, China & USC-SJTU Institute of Cultural and Creative Industry)	4420
MatFuse: Controllable Material Generation with Diffusion Models Giuseppe Vecchio (University of Catania, Italy), Renato Sortino (University of Catania, Italy), Simone Palazzo (University of Catania, Italy), and Concetto Spampinato (University of Catania, Italy)	. 4429
TexTile: A Differentiable Metric for Texture Tileability	. 4439
PIE-NeRF: Physics-based Interactive Elastodynamics with NeRF Yutao Feng (Zhejiang University, China; University of Utah, USA), Yintong Shang (University of Utah, USA), Xuan Li (University of California, Los Angeles, USA), Tianjia Shao (Zhejiang University, China), Chenfanfu Jiang (University of California, Los Angeles, USA), and Yin Yang (University of Utah, USA)	4450
HashPoint: Accelerated Point Searching and Sampling for Neural Rendering Jiahao Ma (Australian National University, Australia), Miaomiao Liu (Australian National University, Australia), David Ahmedt-Aristizabal (CSIRO Data61, Australia), and Chuong Nguyen (CSIRO Data61, Australia)	4462
3D Paintbrush: Local Stylization of 3D Shapes with Cascaded Score Distillation Dale Decatur (University of Chicago), Itai Lang (University of Chicago), Kfir Aberman (Snap Research), and Rana Hanocka (University of Chicago)	. 4473
DUDF: Differentiable Unsigned Distance Fields with Hyperbolic Scaling	4484
Diffusion 3D Features (Diff3F): Decorating Untextured Shapes with Distilled Semantic Features Niladri Shekhar Dutt (University College London; Ready Player Me), Sanjeev Muralikrishnan (University College London), and Niloy J. Mitra (University College London; Adobe Research)	4494

LeGO: Leveraging a Surface Deformation Network for Animatable Stylized Face Generation with One Example)5
Soyeon Yoon (Korea Advanced Institute of Science and Technology, Korea), Kwan Yun (Korea Advanced Institute of Science and Technology, Korea), Kwanggyoon Seo (Korea Advanced Institute of Science and Technology, Korea), Sihun Cha (Korea Advanced Institute of Science and Technology, Korea), Jung Eun Yoo (Korea Advanced Institute of Science and Technology, Korea), and Junyong Noh (Korea Advanced Institute of Science and Technology, Korea)	
Dr. Bokeh: DiffeRentiable Occlusion-aware Bokeh Rendering	.5
DiffInDScene: Diffusion-based High-Quality 3D Indoor Scene Generation	:6
LightOctree: Lightweight 3D Spatially-Coherent Indoor Lighting Estimation	6
SVGDreamer: Text Guided SVG Generation with Diffusion Model	:6
Control4D: Efficient 4D Portrait Editing with Text	6
HumanNorm: Learning Normal Diffusion Model for High-quality and Realistic 3D Human Generation	8
Video2Game: Real-time, Interactive, Realistic and Browser-Compatible Environment from a Single Video	'8

NIVeL: Neural Implicit Vector Layers for Text-to-Vector Generation	589
ESR-NeRF: Emissive Source Reconstruction Using LDR Multi-view Images	598
DreamPropeller: Supercharge Text-to-3D Generation with Parallel Sampling	610
GenesisTex: Adapting Image Denoising Diffusion to Texture Space	620
Mosaic-SDF for 3D Generative Models	630
NeRF Analogies: Example-Based Visual Attribute Transfer for NeRFs	640
Hyper-MD: Mesh Denoising with Customized Parameters Aware of Noise Intensity and Geometric Characteristics	
QUADify: Extracting Meshes with Pixel-level Details and Materials from Images	661
SfmCAD: Unsupervised CAD Reconstruction by Learning Sketch-based Feature Modeling Operations	671
Self-Supervised Dual Contouring	681

SVDTree: Semantic Voxel Diffusion for Single Image Tree Reconstruction	4692
Text-Conditioned Generative Model of 3D Strand-based Human Hairstyles	4703
CAD-SIGNet: CAD Language Inference from Point Clouds using Layer-wise Sketch Instance Guided Attention Mohammad Sadil Khan (SnT, University of Luxembourg), Elona Dupont (SnT, University of Luxembourg), Sk Aziz Ali (German Research Center for Artificial Intelligence), Kseniya Cherenkova (Artec3D - SnT, University of Luxembourg), Anis Kacem (SnT, University of Luxembourg), and Djamila Aouada (SnT, University of Luxembourg)	4713
Functional Diffusion Biao Zhang (KAUST, Saudi Arabia) and Peter Wonka (KAUST, Saudi Arabia) Orals 2A Image & Video Synthesis	4723
FreeU: Free Lunch in Diffusion U-Net	4733
Ranni: Taming Text-to-Image Diffusion for Accurate Instruction Following	4744
Instruct-Imagen: Image Generation with Multi-modal Instruction	4754
Attention Calibration for Disentangled Text-to-Image Personalization	4764
Style Aligned Image Generation via Shared Attention	4775

Orals 2B Deep Learning Architectures and Techniques

Neural Redshift: Random Networks are not Random Functions Damien Teney (Idiap Research Institute, Switzerland), Armand Mihai Nicolicioiu (ETH Zurich, Switzerland), Valentin Hartmann (EPFL, Switzerland), and Ehsan Abbasnejad (University of Adelaide, Australia)	4700
Neural Lineage Runpeng Yu (National University of Singapore) and Xinchao Wang (National University of Singapore)	4797
Learning Structure-from-Motion with Graph Attention Networks	4808
Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks	4818
In Search of a Data Transformation That Accelerates Neural Field Training	4830
Jaeho Lee (POSTECH, Republic of Korea) Orals 2C 3D from Multiview and Sensors	
Jaeho Lee (POSTECH, Republic of Korea)	4840
Jaeho Lee (POSTECH, Republic of Korea) Orals 2C 3D from Multiview and Sensors Point Transformer V3: Simpler, Faster, Stronger Xiaoyang Wu (The Univeristy of Hong Kong, Hong Kong), Li Jiang (The Chinese University of Hong Kong, Shenzhen, China), Peng-Shuai Wang (Peking University, China), Zhijian Liu (Massachusetts Institute of Technology, USA), Xihui Liu (The Univeristy of Hong Kong, Hong Kong), Yu Qiao (Shanghai AI Laboratory, China), Wanli Ouyang (Shanghai AI Laboratory, China), Tong He (Shanghai AI Laboratory, China), and	

Tri-Perspective View Decomposition for Geometry-Aware Depth Completion Zhiqiang Yan (Nanjing University of Science and Technology, China), Yuankai Lin (Huazhong University of Science and Technology), Kun Wang (Nanjing University of Science and Technology), Yupeng Zheng (Chinese Academy of Sciences), Yufei Wang (Northwestern Polytechnical University), Zhenyu Zhang (Nanjing University of Science and Technology), Jun Li (Nanjing University of Science and Technology), and Jian Yang (Nanjing University of Science and Technology)	4874
Steerers: A Framework for Rotation Equivariant Keypoint Descriptors Georg Bökman (Chalmers University of Technology), Johan Edstedt (Linköping University), Michael Felsberg (Linköping University), and Fredrik Kahl (Chalmers University of Technology)	4885
Poster Session 2	
VP3D: Unleashing 2D Visual Prompt for Text-to-3D Generation	4896
Entangled View-Epipolar Information Aggregation for Generalizable Neural Radiance Fields Zhiyuan Min (Zhejiang University), Yawei Luo (Zhejiang University), Wei Yang (Huazhong University of Science and Technology), Yuesong Wang (Huazhong University of Science and Technology), and Yi Yang (Zhejiang University)	4906
GroupContrast: Semantic-aware Self-supervised Representation Learning for 3D Understanding. Chengyao Wang (The Chinese University of Hong Kong, China), Li Jiang (The Chinese University of Hong Kong (Shenzhen), China), Xiaoyang Wu (University of Hong Kong, China), Zhuotao Tian (Harbin Institute of Technology (Shenzhen), China), Bohao Peng (The Chinese University of Hong Kong, China), Hengshuang Zhao (University of Hong Kong, China), and Jiaya Jia (The Chinese University of Hong Kong, China)	4917
iToF-flow-based High Frame Rate Depth Imaging	4929
Generalizable Novel-View Synthesis using a Stereo Camera Haechan Lee (POSTECH, South Korea), Wonjoon Jin (POSTECH, South Korea), Seung-Hwan Baek (POSTECH, South Korea), and Sunghyun Cho (POSTECH, South Korea)	4939
EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-view Diffusion Priors	4949

Leveraging Camera Triplets for Efficient and Accurate Structure-from-Motion
LAENeRF: Local Appearance Editing for Neural Radiance Fields
SuperPrimitive: Scene Reconstruction at a Primitive Level
Revisiting Sampson Approximations for Geometric Estimation Problems
Interactive3D: Create What You Want by Interactive 3D Generation
Multiplane Prior Guided Few-Shot Aerial Scene Rendering
3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting
DaReNeRF: Direction-aware Representation for Dynamic Scenes
ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models

LTM: Lightweight Textured Mesh Extraction and Refinement of Large Unbounded Scenes for Efficient Storage and Real-time Rendering	5053
Jaehoon Choi (University of Maryland), Rajvi Shah (Meta Reality Labs, USA), Qinbo Li (Meta Reality Labs, USA), Yipeng Wang (Meta Reality Labs, USA), Ayush Saraf (Meta Reality Labs, USA), Changil Kim (Meta Reality Labs, USA), Jia-Bin Huang (University of Maryland), Dinesh Manocha (University of Maryland), Suhib Alsisan (Meta Reality Labs, USA), and Johannes Kopf (Meta Reality Labs, USA)	
Minimal Perspective Autocalibration	5064
X-3D: Explicit 3D Structure Modeling for Point Cloud Recognition	5074
2S-UDF: A Novel Two-stage UDF Learning Method for Robust Non-watertight Model Reconstruction from Multi-view Images Junkai Deng (Institute of Software, Chinese Academy of Sciences, China), Fei Hou (Institute of Software, Chinese Academy of Sciences, China), Xuhui Chen (Institute of Software, Chinese Academy of Sciences, China), Wencheng Wang (Institute of Software, Chinese Academy of Sciences, China), and Ying He (Nanyang Technological University, Singapore)	5084
UFORecon: Generalizable Sparse-View Surface Reconstruction from Arbitrary and Unfavorable Sets	5094
GenN2N: Generative NeRF2NeRF Translation	5105
Text-to-3D Generation with Bidirectional Diffusion using both 2D and 3D priors	5115
Noisy One-point Homographies are Surprisingly Good	5125

Adaptive Multi-Modal Cross-Entropy Loss for Stereo Matching	5135
LiDAR4D: Dynamic Neural Fields for Novel Space-time View LiDAR Synthesis	5145
NC-SDF: Enhancing Indoor Scene Reconstruction Using Neural SDFs with View-Dependent In Compensation	
VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction Jiaqi Lin (Tsinghua University), Zhihao Li (Huawei Noah's Ark Lab), Xiao Tang (Huawei Noah's Ark Lab), Jianzhuang Liu (Shenzhen Institute of Advanced Technology), Shiyong Liu (Huawei Noah's Ark Lab), Jiayue Liu (Tsinghua University), Yangdi Lu (Huawei Noah's Ark Lab), Xiaofei Wu (Huawei Noah's Ark Lab), Songcen Xu (Huawei Noah's Ark Lab), Youliang Yan (Huawei Noah's Ark Lab), and Wenming Yang (Tsinghua University)	5166
Language-driven Object Fusion into Neural Radiance Fields with Pose-Conditioned Dataset Updates Ka Chun Shum (Hong Kong University of Science and Technology), Jaeyeon Kim (Hong Kong University of Science and Technology), Binh-Son Hua (Trinity College Dublin; VinAI), Duc Thanh Nguyen (Deakin University), and Sai-Kit Yeung (Hong Kong University of Science and Technology)	5176
SPU-PMD: Self-Supervised Point Cloud Upsampling via Progressive Mesh Deformation Yanzhe Liu (Dalian Maritime University, China), Rong Chen (Dalian Maritime University, China), Yushi Li (Xi'an Jiaotong-Liverpool University, China), Yixi Li (Dalian Maritime University, China), and Xuehou Tan (Tokai University, Japan)	5188
Intrinsic Image Diffusion for Indoor Single-view Material Estimation	5198
Learning Dynamic Tetrahedra for High-Quality Talking Head Synthesis Zicheng Zhang (University of Chinese Academy of Sciences), Ruobing Zheng (Ant Group), Bonan Li (University of Chinese Academy of Sciences), Congying Han (University of Chinese Academy of Sciences), Tianqi Li (Ant Group), Meng Wang (Ant Group), Tiande Guo (University of Chinese Academy of Sciences), Jingdong Chen (Ant Group), Ziwen Liu (University of Chinese Academy of Sciences), and Ming Yang (Ant Group)	5209
Robust Self-calibration of Focal Lengths from the Fundamental Matrix	5220

RNb-NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction	. 5230
Neural 3D Strokes: Creating Stylized 3D Scenes with Vectorized 3D Strokes Hao-Bin Duan (State Key Laboratory of Virtual Reality Technology and Systems, SCSE, Beihang University), Miao Wang (State Key Laboratory of Virtual Reality Technology and Systems, SCSE, Beihang University; Zhongguanchun Laboratory), Yan-Xun Li (State Key Laboratory of Virtual Reality Technology and Systems, SCSE, Beihang University), and Yong-Liang Yang (University of Bath)	. 5240
Unsupervised Template-assisted Point Cloud Shape Correspondence Network	. 5250
Efficient Detection of Long Consistent Cycles and its Application to Distributed Synchronization	. 5260
AirPlanes: Accurate Plane Estimation via 3D-Consistent Embeddings	. 5270
Accurate Training Data for Occupancy Map Prediction in Automated Driving Using Evidence	50 04
Theory Jonas Kälble (Bosch Center for Artificial Intelligence, Germany), Sascha Wirges (Bosch Center for Artificial Intelligence, Germany), Maxim Tatarchenko (Bosch Center for Artificial Intelligence, Germany), and Eddy Ilg (Saarland University, Germany)	5281
Continuous Pose for Monocular Cameras in Neural Implicit Representation Qi Ma (Computer Vision Lab, ETH Zurich, Switzerland, INSAIT, Sofia University, Bulgaria), Danda Pani Paudel (INSAIT, Sofia University Bulgaria), Ajad Chhatkuli (Computer Vision Lab, ETH Zurich, Switzerland), and Luc Van Gool (Computer Vision Lab, ETH Zurich, Switzerland, INSAIT, Sofia University Bulgaria)	. 5291
Towards 3D Vision with Low-Cost Single-Photon Cameras Fangzhou Mu (University of Wisconsin - Madison), Carter Sifferman (University of Wisconsin - Madison), Sacha Jungerman (University of Wisconsin - Madison), Yiquan Li (University of Wisconsin - Madison), Mark Han (University of Wisconsin - Madison), Michael Gleicher (University of Wisconsin - Madison), Mohit Gupta (University of Wisconsin - Madison), and Yin Li (University of Wisconsin - Madison)	. 5302

Inlier Confidence Calibration for Point Cloud Registration	5312
GaussianShader: 3D Gaussian Splatting with Shading Functions for Reflective Surfaces	5322
Language Embedded 3D Gaussians for Open-Vocabulary Scene Understanding Jin-Chuan Shi (State Key Laboratory of Virtual Reality Technology and Systems, SCSE, Beihang University), Miao Wang (State Key Laboratory of Virtual Reality Technology and Systems, SCSE, Beihang University; Zhongguancun Laboratory), Hao-Bin Duan (State Key Laboratory of Virtual Reality Technology and Systems, SCSE, Beihang University), and Shao-Hua Guan (State Key Laboratory of Virtual Reality Technology and Systems, SCSE, Beihang University)	5333
MVIP-NeRF: Multi-view 3D Inpainting on NeRF Scenes via Diffusion Prior Honghua Chen (Nanyang Technological University, Singapore), Chen Change Loy (Nanyang Technological University, Singapore), and Xingang Pan (Nanyang Technological University, Singapore)	5344
SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering	5354
DreamControl: Control-Based Text-to-3D Generation with 3D Self-Prior Tianyu Huang (Harbin Institute of Technology, China; City University of Hong Kong, Hong Kong S.A.R.), Yihan Zeng (Huawei Noah's Ark Lab, China), Zhilu Zhang (Harbin Institute of Technology, China), Wan Xu (Harbin Institute of Technology, China), Hang Xu (Huawei Noah's Ark Lab, China), Songcen Xu (Huawei Noah's Ark Lab, China), Rynson W.H. Lau (City University of Hong Kong, Hong Kong S.A.R.), and Wangmeng Zuo (Harbin Institute of Technology, China)	. 5364
VAREN: Very Accurate and Realistic Equine Network Silvia Zuffi (IMATI-CNR, Milan, Italy), Ylva Mellbin (Swedish University of Agricultural Sciences, Sweden), Ci Li (KTH Royal Institute of Technology, Sweden), Markus Hoeschle (Max Planck Institute for Intelligent Systems, Tübingen, Germany), Hedvig Kjellström (KTH Royal Institute of Technology, Sweden), Senya Polikovsky (Max Planck Institute for Intelligent Systems, Tübingen, Germany), Elin Hernlund (Swedish University of Agricultural Sciences, Sweden), and Michael J. Black (Max Planck Institute for Intelligent Systems, Tübingen, Germany)	5374

REACTO: Reconstructing Articulated Objects from a Single Video
DITTO: Dual and Integrated Latent Topologies for Implicit 3D Reconstruction
ICON: Incremental CONfidence for Joint Pose and Radiance Field Optimization
Local-consistent Transformation Learning for Rotation-invariant Point Cloud Analysis
PaReNeRF: Toward Fast Large-scale Dynamic NeRF with Patch-based Reference
Fitting Flats to Flats5439 Gabriel Dogadov (TU Berlin), Ugo Finnendahl (TU Berlin), and Marc Alexa (TU Berlin)
ANIM: Accurate Neural Implicit Model for Human Reconstruction from a single RGB-D Image 5448 Marco Pesavento (University of Surrey, UK), Yuanlu Xu (Meta Reality Labs, USA), Nikolaos Sarafianos (Meta Reality Labs, USA), Robert Maier (Meta Reality Labs, Switzerland), Ziyan Wang (Meta Reality Labs, USA), Chun-Han Yao (UC Merced, USA), Marco Volino (University of Surrey, UK), Edmond Boyer (Meta Reality Labs, USA), Adrian Hilton (University of Surrey, UK), and Tony Tung (Meta Reality Labs, USA)
Neural Markov Random Field for Stereo Matching
Improving Physics-Augmented Continuum Neural Radiance Field-Based Geometry-Agnostic System Identification with Lagrangian Particle Optimization
DiffusionAvatars: Deferred Diffusion for High-fidelity 3D Head Avatars

ViT-CoMer: Vision Transformer with Convolutional Multi-scale Feature Interaction for Dense Predictions	5493
Chunlong Xia (Baidu, China), Xinliang Wang (Baidu, China), Feng Lv (Baidu, China), Xin Hao (Baidu, China), and Yifeng Shi (Baidu, China)	
Pose-Transformed Equivariant Network for 3D Point Trajectory Prediction	5503
UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition Xiaohan Ding (Tencent AI Lab), Yiyuan Zhang (The Chinese University of Hong Kong), Yixiao Ge (Tencent AI Lab), Sijie Zhao (Tencent AI Lab), Lin Song (Tencent AI Lab), Xiangyu Yue (The Chinese University of Hong Kong), and Ying Shan (Tencent AI Lab)	5513
KPConvX: Modernizing Kernel Point Convolution with Kernel Attention	5525
Time-, Memory- and Parameter-Efficient Visual Adaptation	5536
Affine Equivariant Networks Based on Differential Invariants	5546
PeLK: Parameter-efficient Large Kernel ConvNets with Peripheral Convolution	5557
Making Vision Transformers Truly Shift-Equivariant	5568
Once for Both: Single Stage of Importance and Sparsity Search for Vision Transformer Compression Hancheng Ye (Fudan University; Shanghai Artificial Intelligence Laboratory), Chong Yu (Fudan University), Peng Ye (Fudan University), Renqiu Xia (Shanghai Artificial Intelligence Laboratory; Shanghai Jiao Tong University), Yansong Tang (Tsinghua University), Jiwen Lu (Tsinghua University), Tao Chen (Fudan University), and Bo Zhang (Shanghai Artificial Intelligence Laboratory)	5578

Data-Free Quantization via Pseudo-label Filtering	. 5589
FedHCA2: Towards Hetero-Client Federated Multi-Task Learning Yuxiang Lu (Shanghai Jiao Tong University, China), Suizhi Huang (Shanghai Jiao Tong University, China), Yuwen Yang (Shanghai Jiao Tong University, China), Shalayiding Sirejiding (Shanghai Jiao Tong University, China), Yue Ding (Shanghai Jiao Tong University, China), and Hongtao Lu (Shanghai Jiao Tong University, China)	5599
SpikingResformer: Bridging ResNet and Vision Transformer in Spiking Neural Networks	5610
TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis	
Friendly Sharpness-Aware Minimization Tao Li (Shanghai Jiao Tong University, China), Pan Zhou (Singapore Management University, Singapore), Zhengbao He (Shanghai Jiao Tong University, China), Xinwen Cheng (Shanghai Jiao Tong University, China), and Xiaolin Huang (Shanghai Jiao Tong University, China)	5631
RMT: Retentive Networks Meet Vision Transformers Qihang Fan (Institute of Automation, Chinese Academy of Sciences, China), Huaibo Huang (Institute of Automation, Chinese Academy of Sciences, China), Mingrui Chen (Institute of Automation, Chinese Academy of Sciences, China), Hongmin Liu (University of Science and Technology Beijing, China), and Ran He (Institute of Automation, Chinese Academy of Sciences, China)	5641
Efficient Deformable ConvNets: Rethinking Dynamic and Sparse Operator for Vision Applications Yuwen Xiong (University of Toronto; Shanghai AI Lboratory), Zhiqi Li (Nanjing University; Shanghai AI Laboratory), Yuntao Chen (CAIR, HKISI, CAS), Feng Wang (Tsinghua University), Xizhou Zhu (Tsinghua University), Jiapeng Luo (Sensetime Research), Wenhai Wang (The Chinese University of Hong Kong; Shanghai AI Laboratory), Tong Lu (Nanjing University), Hongsheng Li (The Chinese University of Hong Kong), Yu Qiao (Shanghai AI Laboratory), Lewei Lu (Sensetime Research), Jie Zhou (Tsinghua University), and Jifeng Dai (Tsinghua University; Shanghai AI Laboratory)	5652
Boosting Order-Preserving and Transferability for Neural Architecture Search: a Joint Architecture Refined Search and Fine-tuning Approach Beichen Zhang (Shanghai Jiao Tong University), Xiaoxing Wang (Shanghai Jiao Tong University), Xiaohan Qin (Shanghai Jiao Tong University), and Junchi Yan (Shanghai Jiao Tong University)	. 5662

InceptionNeXt: When Inception Meets ConvNeXt	5672
BiPer: Binary Neural Networks using a Periodic Function	5684
Rewrite the Stars Xu Ma (Northeastern University), Xiyang Dai (Microsoft), Yue Bai (Northeastern University), Yizhou Wang (Northeastern University), and Yun Fu (Northeastern University)	5694
A&B BNN: Add&Bit-Operation-Only Hardware-Friendly Binary Neural Network	5704
Neural Clustering based Visual Representation Learning	5714
Building Optimal Neural Architectures using Interpretable Knowledge	5726
Towards More Accurate Diffusion Model Acceleration with A Timestep Tuner	5736
UniPTS: A Unified Framework for Proficient Post-Training Sparsity Jingjing Xie (Xiamen University, China), Yuxin Zhang (Xiamen University, China), Mingbao Lin (Tencent Youtu Lab, China), Liujuan Cao (Xiamen University, China), and Rongrong Ji (Xiamen University, China)	5746
SHViT: Single-Head Vision Transformer with Memory Efficient Macro Design	5756

Denoising Point Clouds in Latent Space via Graph Convolution and Invertible Neural Network57 Aihua Mao (South China University of Technology), Biao Yan (South China University of Technology), Zijing Ma (South China University of Technology), and Ying He (Nanyang Technological University)	'68
JointSQ: Joint Sparsification-Quantization for Distributed Learning	'78
YolOOD: Utilizing Object Detection Concepts for Multi-Label Out-of-Distribution Detection 57 Alon Zolfi (Ben-Gurion University of the Negev, Israel), Guy Amit (Ben-Gurion University of the Negev, Israel), Amit Baras (Ben-Gurion University of the Negev, Israel), Satoru Koda (Fujitsu Limited, Japan), Ikuya Morikawa (Fujitsu Limited, Japan), Yuval Elovici (Ben-Gurion University of the Negev, Israel), and Asaf Shabtai (Ben-Gurion University of the Negev, Israel)	'88
RepAn: Enhanced Annealing through Re-parameterization	'98
D^4: Dataset Distillation via Disentangled Diffusion Model	309
State Space Models for Event Cameras	319
Your Image is My Video: Reshaping the Receptive Field via Image-To-Video Differentiable AutoAugmentation and Fusion	329
Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection	340

MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling	5851
Xuzhe Zhang (Columbia University, USA), Yuhao Wu (Duke University, USA), Elsa Angelini (Télécom ParisTech, France), Ang Li (University of Maryland, College Park, USA), Jia Guo (Columbia University, USA), Jerod M. Rasmussen (University of California, Irvine, USA), Thomas G. O'Connor (University of Rochester, USA), Pathik D. Wadhwa (University of California, Irvine, USA), Andrea Parolin Jackowski (Østfold University College, Norway), Hai Li (Duke University, USA), Jonathan Posner (Duke University, USA), Andrew F. Laine (Columbia University, USA), and Yun Wang (Emory University, USA)	
FedUV: Uniformity and Variance for Heterogeneous Federated Learning	5863
Pick-or-Mix: Dynamic Channel Sampling for ConvNets	5873
Sheared Backpropagation for Fine-tuning Foundation Models Zhiyuan Yu (University of Science and Technology of China, China), Li Shen (JD Explore Academy, China), Liang Ding (JD Explore Academy, China), Xinmei Tian (University of Science and Technology of China, China), Yixin Chen (Washington University in St. Louis, USA), and Dacheng Tao (Nanyang Technological University, Singapore)	5883
AZ-NAS: Assembling Zero-Cost Proxies for Network Architecture Search Junghyup Lee (Yonsei University, Republic of Korea) and Bumsub Ham (Yonsei University, Republic of Korea; Korea Institute of Science and Technology (KIST), Republic of Korea)	5893
MRFP: Learning Generalizable Semantic Segmentation from Sim-2-Real with Multi-Resolution Feature Perturbation Sumanth Udupa (Indian Institute of Science), Prajwal Gurunath (Indian Institute of Science), Aniruddh Sikdar (Indian Institute of Science), and Suresh Sundaram (Indian Institute of Science)	5904
Training-Free Pretrained Model Merging	5915
Training Generative Image Super-Resolution Models by Wavelet-Domain Losses Enables Better Control of Artifacts Cansu Korkmaz (Koc University, Turkey), A. Murat Tekalp (Koc University, Turkey), and Zafer Dogan (Koc University, Turkey)	5926

IReNe: Instant Recoloring of Neural Radiance Fields	37
AdaShift: Learning Discriminative Self-Gated Neural Feature Activation With an Adaptive Shift Factor	47
Kernel Adaptive Convolution for Scene Text Detection via Distance Map Prediction	57
Towards Accurate and Robust Architectures via Neural Architecture Search	67
PDF: A Probability-Driven Framework for Open World 3D Point Cloud Semantic Segmentation 59! Jinfeng Xu (Huazhong University of Science and Technology, China), Siyuan Yang (Huazhong University of Science and Technology, China), Xianzhi Li (Huazhong University of Science and Technology, China), Yuan Tang (Huazhong University of Science and Technology, China), Yixue Hao (Huazhong University of Science and Technology, China), Long Hu (Huazhong University of Science and Technology, China), and Min Chen (Huazhong University of Science and Technology, China)	77
Permutation Equivariance of Transformers and Its Applications	87
MedBN: Robust Test-Time Adaptation against Malicious Test Samples	97
Small Scale Data-Free Knowledge Distillation	08

Identifying Important Group of Pixels using Interactions Kosuke Sumiyasu (Chiba University, Japan), Kazuhiko Kawamoto (Chiba University, Japan), and Hiroshi Kera (Chiba University, Japan)	6017
Efficiently Assemble Normalization Layers and Regularization for Federated Domain Generalization	6027
OrthCaps: An Orthogonal CapsNet with Sparse Attention Routing and Pruning	6037
Mean-Shift Feature Transformer Takumi Kobayashi (National Institute of Advanced Industrial Science and Technology, Japan)	6047
You Only Need Less Attention at Each Stage in Vision Transformers	6057
HEAL-SWIN: A Vision Transformer On The Sphere Oscar Carlsson (Chalmers University of Technology and University of Gothenburg, Sweden), Jan E. Gerken (Chalmers University of Technology and University of Gothenburg, Sweden), Hampus Linander (Chalmers University of Technology and University of Gothenburg, Sweden), Heiner Spieß (Technical University Berlin, Germany), Fredrik Ohlsson (Umeå University, Sweden), Christoffer Petersson (Zenseact and Chalmers University of Technology and University of Gothenburg, Sweden), and Daniel Persson (Chalmers University of Technology and University of Gothenburg, Sweden)	6067
NC-TTT: A Noise Constrastive Approach for Test-Time Training	6078
Unlocking the Potential of Prompt-Tuning in Bridging Generalized and Personalized Federated Learning	6087

MR-VNet: Media Restoration using Volterra Networks
Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities
GreedyViG: Dynamic Axial Graph Construction for Efficient Vision GNNs
FlowerFormer: Empowering Neural Architecture Encoding using a Flow-aware Graph Transformer 6128 Dongyeong Hwang (Kim Jaechul Graduate School of AI, KAIST, Seoul, Republic of Korea), Hyunju Kim (Kim Jaechul Graduate School of AI, KAIST, Seoul, Republic of Korea), Sunwoo Kim (Kim Jaechul Graduate School of AI, KAIST, Seoul, Republic of Korea), and Kijung Shin (Kim Jaechul Graduate School of AI, KAIST, Seoul, Republic of Korea)
Mixed-Precision Quantization for Federated Learning on Resource-Constrained Heterogeneous Devices
Wired Perspectives: Multi-View Wire Art Embraces Generative AI
DemoFusion: Democratising High-Resolution Image Generation With No \$\$\$
DiffPerformer: Iterative Learning of Consistent Latent Guidance for Diffusion-based Human Video Generation
InteractDiffusion: Interaction Control in Text-to-Image Diffusion Models

Intelligent Grimm - Open-ended Visual Storytelling via Latent Diffusion Models	6190
ControlRoom3D: Room Generation using Semantic Proxy Rooms Jonas Schult (RWTH Aachen University, Germany), Sam Tsai (Meta GenAI, USA), Lukas Höllein (Technical University of Munich, Germany), Bichen Wu (Meta GenAI, USA), Jialiang Wang (Meta GenAI, USA), Chih-Yao Ma (Meta GenAI, USA), Kunpeng Li (Meta GenAI, USA), Xiaofang Wang (Meta GenAI, USA), Felix Wimbauer (Technical University of Munich, Germany), Zijian He (Meta GenAI, USA), Peizhao Zhang (Meta GenAI, USA), Bastian Leibe (RWTH Aachen University, Germany), Peter Vajda (Meta GenAI, USA), and Ji Hou (Meta GenAI, USA)	6201
Cache Me if You Can: Accelerating Diffusion Models through Block Caching	6211
Real-time 3D-aware Portrait Video Relighting Ziqi Cai (Institute of Computing Technology, Chinese Academy of Sciences, China; Beijing Jiaotong University, China), Kaiwen Jiang (University of California San Diego, USA), Shu-Yu Chen (Institute of Computing Technology, Chinese Academy of Sciences, China), Yu-Kun Lai (Cardiff University, UK), Hongbo Fu (City University of Hong Kong, China; The Hong Kong University of Science and Technology, China), Boxin Shi (Peking University, China), and Lin Gao (Institute of Computing Technology, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China)	6221
InstanceDiffusion: Instance-level Control for Image Generation Xudong Wang (UC Berkeley, USA), Trevor Darrell (UC Berkeley, USA), Sai Saketh Rambhatla (Meta AI, USA), Rohit Girdhar (Meta AI, USA), and Ishan Misra (Meta AI, USA)	6232
Make-It-Vivid: Dressing Your Animatable Biped Cartoon Characters from Text Junshu Tang (Shanghai Jiao Tong University), Yanhong Zeng (Shanghai AI Lab), Ke Fan (Shanghai Jiao Tong University), Xuheng Wang (Tsinghua University), Bo Dai (Shanghai AI Lab), Kai Chen (Shanghai AI Lab), and Lizhuang Ma (Shanghai Jiao Tong University)	6243

ZONE: Zero-Shot Instruction-Guided Local Editing	6254
Don't Drop Your Samples! Coherence-Aware Training Benefits Conditional Diffusion	. 6264
Generating Illustrated Instructions Sachit Menon (Meta), Ishan Misra (Meta), and Rohit Girdhar (Meta)	6274
SpikeNeRF: Learning Neural Radiance Fields from Continuous Spike Stream Lin Zhu (Beijing Institute of Technology), Kangmin Jia (Beijing Institute of Technology), Yifan Zhao (Beihang University), Yunshan Qi (Beihang University), Lizhi Wang (Beijing Institute of Technology), and Hua Huang (Beijing Normal University)	. 6285
Dancing with Still Images: Video Distillation via Static-Dynamic Disentanglement	. 6296
UniGS: Unified Representation for Image Generation and Segmentation	6305
Adversarial Text to Continuous Image Generation Kilichbek Haydarov (King Abdullah University of Science and Technology), Aashiq Muhamed (King Abdullah University of Science and Technology), Xiaoqian Shen (King Abdullah University of Science and Technology), Jovana Lazarevic (King Abdullah University of Science and Technology), Ivan Skorokhodov (King Abdullah University of Science and Technology), Chamuditha Jayanga Galappaththige (King Abdullah University of Science and Technology), and Mohamed Elhoseiny (King Abdullah University of Science and Technology)	6316
Self-correcting LLM-controlled Diffusion Models Tsung-Han Wu (University of California, Berkeley), Long Lian (University of California, Berkeley), Joseph E. Gonzalez (University of California, Berkeley), Boyi Li (University of California, Berkeley), and Trevor Darrell (University of California, Berkeley)	. 6327

TiNO-Edit: Timestep and Noise Optimization for Robust Diffusion-Based Image Editing	6337
Taming Stable Diffusion for Text to 360 Panorama Image Generation Cheng Zhang (Monash University, Australia; Building 4.0 CRC, Australia), Qianyi Wu (Monash University, Australia), Camilo Cruz Gambardella (Monash University, Australia; Building 4.0 CRC, Australia), Xiaoshui Huang (Shanghai AI Laboratory, China), Dinh Phung (Monash University, Australia), Wanli Ouyang (Shanghai AI Laboratory, China), and Jianfei Cai (Monash University, Australia)	6347
EmoGen: Emotional Image Content Generation with Text-to-Image Diffusion Models	6358
Carve3D: Improving Multi-view Reconstruction Consistency for Diffusion Models with RL Finetuning	6369
Move Anything with Layered Scene Diffusion	6380
DiffAgent: Fast and Accurate Text-to-Image API Selection with Large Language Model	6390
CapHuman: Capture Your Moments in Parallel Universes	6400
IQ-VFI: Implicit Quadratic Motion Estimation for Video Frame Interpolation Mengshun Hu (Wuhan University), Kui Jiang (Harbin Institute of Technology), Zhihang Zhong (Shanghai Artificial Intelligence Laboratory), Zheng Wang (Wuhan University), and Yinqiang Zheng (The University of Tokyo)	6410
Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis Yanzuo Lu (Sun Yat-sen University), Manlin Zhang (Sun Yat-sen University), Andy J Ma (Sun Yat-sen University), Xiaohua Xie (Sun Yat-sen University), and Jianhuang Lai (Sun Yat-sen University)	6420

MACE: Mass Concept Erasure in Diffusion Models Shilin Lu (Nanyang Technological University, Singapore), Zilan Wang (Nanyang Technological University, Singapore), Leyang Li (Nanyang Technological University, Singapore), Yanzhu Liu (Agency for Science, Technology and Research, Singapore), and Adams Wai-Kin Kong (Nanyang Technological University, Singapore)	5430
GenTron: Diffusion Transformers for Image and Video Generation	5441
Relightful Harmonization: Lighting-aware Portrait Background Replacement	5452
InstructVideo: Instructing Video Diffusion Models with Human Feedback	5463
SportsSloMo: A New Benchmark and Baselines for Human-centric Video Frame Interpolation <i>Galifornia, San Diego) and Huaizu Jiang</i> (Northeastern University)	6475
TeTriRF: Temporal Tri-Plane Radiance Fields for Efficient Free-Viewpoint Video	6487
SmartMask: Context Aware High-Fidelity Mask Generation for Fine-grained Object Insertion and Layout Control	6497
RAVE: Randomized Noise Shuffling for Fast and Consistent Video Editing with Diffusion	6507

ucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching	17
(yperDreamBooth: HyperNetworks for Fast Personalization of Text-to-Image Models	27
PreamVideo: Composing Your Dream Videos with Customized Subject and Motion	37
urMo: Surface-based 4D Motion Modeling for Dynamic Human Rendering	50
GenHowTo: Learning to Generate Actions and State Transformations from Instructional Videos 656 Tomáš Souček (Czech Technical University), Dima Damen (University of Bristol), Michael Wray (University of Bristol), Ivan Laptev (Mohamed bin Zayed University of Artificial Intelligence), and Josef Sivic (Czech Technical University)	51
Recipe for Scaling up Text-to-Video Generation with Text-free Videos Xiang Wang (Huazhong University of Science and Technology, China), Shiwei Zhang (Alibaba Group, China), Hangjie Yuan (Zhejiang University, China), Zhiwu Qing (Huazhong University of Science and Technology, China), Biao Gong (Alibaba Group, China), Yingya Zhang (Alibaba Group, China), Yujun Shen (Ant Group, China), Changxin Gao (Huazhong University of Science and Technology, China), and Nong Sang (Huazhong University of Science and Technology, China)	72
VaveFace: Authentic Face Restoration with Efficient Frequency Recovery	33
nyDoor: Zero-shot Object-level Image Customization	€

ElasticDiffusion: Training-free Arbitrary Size Image Generation through Global-Local Content Separation	6603
One-step Diffusion with Distribution Matching Distillation	6613
Check, Locate, Rectify: A Training-Free Layout Calibration System for Text-to-Image Generation	6624
Biao Gong (Alibaba Group), Siteng Huang (Zhejiang University), Yutong Feng (Alibaba Group), Shiwei Zhang (Alibaba Group), Yuyuan Li (Zhejiang University), and Yu Liu (Alibaba Group)	
Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation Zhiwu Qing (Huazhong University of Science and Technology), Shiwei Zhang (Alibaba Group), Jiayu Wang (Alibaba Group), Xiang Wang (Huazhong University of Science and Technology), Yujie Wei (Fudan University), Yingya Zhang (Alibaba Group), Changxin Gao (Huazhong University of Science and Technology), and Nong Sang (Huazhong University of Science and Technology)	6635
HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting	6646
WonderJourney: Going from Anywhere to Everywhere	6658
Balancing Act: Distribution-Guided Debiasing in Diffusion Models Rishubh Parihar (Indian Institute of Science, Bangalore), Abhijnya Bhat (Indian Institute of Science, Bangalore), Abhipsa Basu (Indian Institute of Science, Bangalore), Saswat Mallick (Indian Institute of Science, Bangalore), Jogendra Nath Kundu (Meta Reality Labs), and R. Venkatesh Babu (Indian Institute of Science, Bangalore)	6668
SIGNeRF: Scene Integrated Generation for Neural Radiance Fields	6679

VideoBooth: Diffusion-based Video Generation with Image Prompts Yuming Jiang (S-Lab, Nanyang Technological University, Singapore), Tianxing Wu (S-Lab, Nanyang Technological University, Singapore), Shuai Yang (Wangxuan Institute of Computer Technology, Peking University, China), Chenyang Si (S-Lab, Nanyang Technological University, Singapore), Dahua Lin (Shanghai AI Laboratory, China), Yu Qiao (Shanghai AI Laboratory, China), Chen Change Loy (S-Lab, Nanyang Technological University, Singapore), and Ziwei Liu (S-Lab, Nanyang Technological University, Singapore)	. 6689
Total Selfie: Generating Full-Body Selfies Bowei Chen (University of Washington, USA), Brian Curless (University of Washington, USA), Ira Kemelmacher-Shlizerman (University of Washington, USA), and Steven M. Seitz (University of Washington, USA)	6701
CCEdit: Creative and Controllable Video Editing via Diffusion Models Ruoyu Feng (University of Science and Technology of China, China), Wenming Weng (University of Science and Technology of China, China), Yanhui Wang (University of Science and Technology of China, China), Yuhui Yuan (Microsoft Research Asia, China), Jianmin Bao (Microsoft Research Asia, China), Chong Luo (Microsoft Research Asia, China), Zhibo Chen (University of Science and Technology of China, China), and Baining Guo (Microsoft Research Asia, China)	. 6712
Cinematic Behavior Transfer via NeRF-based Differentiable Filming	. 6723
Improving Subject-Driven Image Synthesis with Subject-Agnostic Guidance	. 6733
Drag Your Noise: Interactive Point-based Editing via Diffusion Semantic Propagation	. 6743
Learning Continuous 3D Words for Text-to-Image Generation	6753
CHAIN: Enhancing Generalization in Data-Efficient GANs via lipsCHitz continuity constrAIned Normalization	. 6763

ViVid-1-to-3: Novel View Synthesis with Video Diffusion Models
JeDi: Joint-Image Diffusion Models for Finetuning-Free Personalized Text-to-Image Generation
GaussianDreamer: Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion Models
Prompting Hard or Hardly Prompting: Prompt Inversion for Text-to-Image Diffusion Models 6808 Shweta Mahajan (University of British Columbia, Canada; Vector Institute for AI, Canada), Tanzila Rahman (University of British Columbia, Canada; Vector Institute for AI, Canada), Kwang Moo Yi (University of British Columbia, Canada), and Leonid Sigal (University of British Columbia, Canada; Vector Institute for AI, Canada)
MIGC: Multi-Instance Generation Controller for Text-to-Image Synthesis
Towards Text-guided 3D Scene Composition
BerfScene: Bev-conditioned Equivariant Radiance Fields for Infinite 3D Scene Generation
Face2Diffusion for Fast and Editable Face Personalization

FreeDrag: Feature Dragging for Reliable Point-based Image Editing	360
OmniLocalRF: Omnidirectional Local Radiance Fields from Dynamic Videos	371
DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data	381
Generate Like Experts: Multi-Stage Font Generation by Incorporating Font Transfer Process into Diffusion Models	392
Panacea: Panoramic and Controllable Video Generation for Autonomous Driving	902
360DVD: Controllable Panorama Video Generation with 360-Degree Video Diffusion Model 69 Qian Wang (Peking University), Weiqi Li (Peking University), Chong Mou (Peking University), Xinhua Cheng (Peking University), and Jian Zhang (Peking University))13
CLiC: Concept Learning in Context)24
Z*: Zero-shot Style Transfer via Attention Reweighting	934

Tackling the Singularities at the Endpoints of Time Intervals in Diffusion Models	6945
CosmicMan: A Text-to-Image Foundation Model for Humans	6955
Customize your NeRF: Adaptive Source Driven 3D Scene Editing via Local-Global Iterative Training	. 6966
PICTURE: PhotorealistIC virtual Try-on from UnconstRained dEsigns	6976
Focus on Your Instruction: Fine-grained and Multi-instruction Image Editing by Attention Modulation	6986
Make-Your-Anchor: A Diffusion-based 2D Avatar Generation Framework Ziyao Huang (Chinese Academy of Sciences), Fan Tang (Chinese Academy of Sciences), Yong Zhang (Tencent AI Lab), Xiaodong Cun (Tencent AI Lab), Juan Cao (Chinese Academy of Sciences), Jintao Li (Chinese Academy of Sciences), and Tong-Yee Lee (National Cheng-Kung University)	6997
Revisiting Non-Autoregressive Transformers for Efficient Image Synthesis Zanlin Ni (Tsinghua University, China), Yulin Wang (Tsinghua University, China), Renping Zhou (Tsinghua University, China), Jiayi Guo (Tsinghua University, China), Jinyi Hu (Tsinghua University, China), Zhiyuan Liu (Tsinghua University, China), Shiji Song (Tsinghua University, China), Yuan Yao (National University of Singapore, Singapore), and Gao Huang (Tsinghua University, China)	7007

Texture-Preserving Diffusion Models for High-Fidelity Virtual Try-On	7017
PromptCoT: Align Prompt Distribution via Adapted Chain-of-Thought Junyi Yao (Peking University), Yijiang Liu (Nanjing University), Zhen Dong (University of California, Berkeley), Mingfei Guo (Stanford), Helan Hu (Peking University), Kurt Keutzer (University of California, Berkeley), Li Du (Nanjing University), Daquan Zhou (Bytedance Inc. San Jose), and Shanghang Zhang (Peking University)	7027
Snap Video: Scaled Spatiotemporal Transformers for Text-to-Video Synthesis	. 7038
L-MAGIC: Language Model Assisted Generation of Images with Coherence Zhipeng Cai (Intel Labs), Matthias Mueller (Intel Labs), Reiner Birkl (Intel Labs), Diana Wofk (Intel Labs), Shao-Yen Tseng (Intel Labs), Junda Cheng (Intel Labs), Gabriela Ben-Melech Stan (Intel Labs), Vasudev Lai (Intel Labs), and Michael Paulitsch (Intel Labs)	, 7049
Text-Driven Image Editing via Learnable Regions	7059
On Exact Inversion of DPM-Solvers	7069
ConsistNet: Enforcing 3D Consistency for Multi-view Images Diffusion Jiayu Yang (Australian National University, Australia), Ziang Cheng (Australian National University, Australia), Yunfei Duan (Tencent, Australia), Pan Ji (Tencent, China), and Hongdong Li (Australian National University, Australia)	7079
LAMP: Learn A Motion Pattern for Few-Shot Video Generation Ruiqi Wu (VCIP, CS, Nankai University; MEGVII Technology), Liangyu Chen (MEGVII Technology), Tong Yang (MEGVII Technology), Chunle Guo (NKIARI, Shenzhen Futian; VCIP, CS, Nankai University), Chongyi Li (NKIARI, Shenzhen Futian; VCIP, CS, Nankai University), and Xiangyu Zhang (MEGVII Technology)	7089
Task-Customized Mixture of Adapters for General Image Fusion	7099

Beyond Textual Constraints: Learning Novel Diffusion Conditions with Fewer Examples	109
Portrait4D: Learning One-Shot 4D Head Avatar Synthesis using Synthetic Data	119
Animating General Image with Large Visual Motion Model	131
Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion	141
Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion Latent Aligners 71 Yazhou Xing (Hong Kong University of Science and Technology), Yingqing He (HKUST), Zeyue Tian (HKUST), Xintao Wang (Tencent), and Qifeng Chen (HKUST)	151
AVID: Any-Length Video Inpainting with Diffusion Model	162
Generative Powers of Ten	173
DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models	183
Condition-Aware Neural Network for Controlled Image Generation	194

It's All About Your Sketch: Democratising Sketch Control in Diffusion Models	204
FaceChain-SuDe: Building Derived Class to Inherit Category Attributes for One-shot Subject-Driven Generation	215
In-N-Out: Faithful 3D GAN Inversion with Volumetric Decomposition for Face Editing	225
Video Prediction by Modeling Videos as Continuous Multi-Dimensional Processes	236
DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception	246
Structure-Guided Adversarial Training of Diffusion Models	256
Learning Adaptive Spatial Coherent Correlations for Speech-Preserving Facial Expression Manipulation	267
On the Content Bias in Fréchet Video Distance	277

Residual Learning in Diffusion Models Junyu Zhang (Central South University), Daochang Liu (The University of Sydney), Eunbyung Park (Sungkyunkwan University), Shichao Zhang (Guangxi Normal University), and Chang Xu (The University of Sydney)	. 7289
A Unified Approach for Text- and Image-guided 4D Scene Generation	.7300
VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models	. 7310
Neural Implicit Morphing of Face Images	.7321
One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion Schedule Flaws and Enhancing Low-Frequency Controls	. 7331
Video Interpolation with Diffusion Models Siddhant Jain (Google Research, USA), Daniel Watson (Google Deepmind, Canada), Eric Tabellion (Google Research, USA), Aleksander Hołynski (Google Research, USA), Ben Poole (Google Deepmind, USA), and Janne Kontkanen (Google Research, USA)	.7341
DiffSHEG: A Diffusion-Based Approach for Real-Time Speech-driven Holistic 3D Expression and Gesture Generation	.7352
TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models	. 7362

mproving Training Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architecture	372
Huijie Zhang (University of Michigan, USA), Yifu Lu (University of Michigan, USA), Ismail Alkhouri (Michigan State University, USA; University of Michigan, USA), Saiprasad Ravishankar (Michigan State University, USA), Dogyoon Song (University of Michigan, USA), and Qing Qu (University of Michigan, USA)	
Scaling Laws of Synthetic Images for Model Training for Now	382
BIVDiff: A Training-Free Framework for General-Purpose Video Synthesis via Bridging Image and Video Diffusion Models	393
MaskINT: Video Editing via Interpolative Non-autoregressive Masked Transformers	103
Pose Adapted Shape Learning for Large-Pose Face Reenactment	113
PRDP: Proximal Reward Difference Prediction for Large-Scale Reward Finetuning of Diffusion Models	123
Discriminative Probing and Tuning for Text-to-Image Generation	134
Fowards Automated Movie Trailer Generation	145

	7455
Qingguo Liu (Nanjing University of Aeronautics And Astronautics, China), Chenyi Zhuang (Nanjing University of Aeronautics And Astronautics, China), Pan Gao (Nanjing University of Aeronautics And	
Astronautics, China), and Jie Qin (Nanjing University of Aeronautics And Astronautics, China)	
FreeControl: Training-Free Spatial Control of Any Text-to-Image Diffusion Model with Any Condition	7465
Sicheng Mo (University of California, Los Angeles), Fangzhou Mu (University of Wisconsin-Madison), Kuan Heng Lin (University of California, Los Angeles), Yanli Liu (Innopeak Technology, Inc), Bochen Guan (Innopeak Technology, Inc), Yin Li (University of Wisconsin-Madison), and Bolei Zhou (University of California, Los	
Angeles) RealCustom: Narrowing Real Text Word for Real-Time Open-Domain Text-to-Image Customization	on
7476 Mengqi Huang (University of Science and Technology of China, China), Zhendong Mao (University of Science and Technology of China, China), Mingcong Liu (ByteDance Inc., China), Qian He (ByteDance Inc., China), and Yongdong Zhang (University of Science and Technology of China, China)	
VidToMe: Video Token Merging for Zero-Shot Video Editing	7486
Layout-Agnostic Scene Text Image Synthesis with Diffusion Models Qilong Zhangli (Rutgers University, USA), Jindong Jiang (Rutgers University, USA), Di Liu (Rutgers University, USA), Licheng Yu (Meta AI, USA), Xiaoliang Dai (Meta AI, USA), Ankit Ramchandani (Meta AI, USA), Guan Pang (Meta AI, USA), Dimitris N. Metaxas (Rutgers University, USA), and Praveen Krishnan (Meta AI, USA)	7496
3D Multi-frame Fusion for Video Stabilization Zhan Peng (Huazhong University of Science and Technology, China), Xinyi Ye (Huazhong University of Science and Technology, China), Weiyue Zhao (Huazhong University of Science and Technology, China), Tianqi Liu (Huazhong University of Science and Technology, China), Huiqiang Sun (Huazhong University of Science and Technology, China), Baopu Li (Huazhong University of Science and Technology, China), and Zhiguo Cao (Huazhong University of Science and Technology, China)	7507
DyBluRF: Dynamic Neural Radiance Fields from Blurry Monocular Video Huiqiang Sun (Huazhong University of Science and Technology, China), Xingyi Li (Huazhong University of Science and Technology, China), Liao Shen (Huazhong University of Science and Technology, China), Xinyi Ye (Huazhong University of Science and Technology, China), Ke Xian (Huazhong University of Science and Technology, China), and Zhiguo Cao (Huazhong University of Science and Technology, China)	7517

A Video is Worth 256 Bases: Spatial-Temporal Expectation-Maximization Inversion for Zero-Shot Video Editing
Maomao Li (The University of Hong Kong, China), Yu Li (International Digital Economy Academy (IDEA), China), Tianyu Yang (International Digital Economy Academy (IDEA), China), Yunfei Liu (International Digital Economy Academy (IDEA), China), Dongxu Yue (Peking University, China), Zhihui Lin (Tsinghua University, China), and Dong Xu (The University of Hong Kong, China)
StrokeFaceNeRF: Stroke-based Facial Appearance Editing in Neural Radiance Field
Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models
One-dimensional Adapter to Rule Them All: Concepts, Diffusion Models and Erasing Applications
Hierarchical Patch Diffusion Models for High-Resolution Video Generation
Taming the Tail in Class-Conditional GANs: Knowledge Sharing via Unconditional Training at Lower Resolutions
Don't Look into the Dark: Latent Codes for Pluralistic Image Inpainting
Content-Style Decoupling for Unsupervised Makeup Transfer without Generating Pseudo Ground Truth

Generative Rendering: Controllable 4D-Guided Video Generation with 2D Diffusion Models 7 Shengqu Cai (Stanford University), Duygu Ceylan (Adobe Research), Matheus Gadelha (Adobe Research), Chun-Hao Paul Huang (Adobe Research), Tuanfeng Yang Wang (Adobe Research), and Gordon Wetzstein (Stanford University)	'611
VideoSwap: Customized Video Subject Swapping with Interactive Semantic Point Correspondence	7621
Rethinking the Objectives of Vector-Quantized Tokenizers for Image Synthesis	'631
Dysen-VDM: Empowering Dynamics-aware Text-to-Video Diffusion with LLMs	7641
Geometry-aware Reconstruction and Fusion-refined Rendering for Generalizable Neural Radiance Fields	7654
DynVideo-E: Harnessing Dynamic NeRF for Large-Scale Motion- and View-Change Human-Centri Video Editing	ic 7664
High-fidelity Person-centric Subject-to-Image Synthesis	7675

Relation Rectification in Diffusion Model
Diffusion Handles Enabling 3D Edits for Diffusion Models by Lifting Activations to 3D
LeftRefill: Filling Right Canvas based on Left Reference through Generalized Text-to-Image Diffusion Model
FSRT: Facial Scene Representation Transformer for Face Reenactment from Factorized Appearance, Head-pose, and Facial Expression Features
Tailored Visions: Enhancing Text-to-Image Generation with Personalized Prompt Rewriting772 Zijie Chen (Westlake University), Lichao Zhang (Westlake University), Fangsheng Weng (Scietrain), Lili Pan (University of Electronic Science and Technology of China), and Zhenzhong Lan (Westlake University)
MMA-Diffusion: MultiModal Attack on Diffusion Models
PIA: Your Personalized Image Animator via Plug-and-Play Modules in Text-to-Image Models 774 Yiming Zhang (Shanghai Artificial Intelligence Laboratory, Dalian University of Technology), Zhening Xing (Shanghai Artificial Intelligence Laboratory), Yanhong Zeng (Shanghai Artificial Intelligence Laboratory), Youqing Fang (Shanghai Artificial Intelligence Laboratory), and Kai Chen (Shanghai Artificial Intelligence Laboratory)
Codebook Transfer with Part-of-Speech for Vector-Quantized Image Modeling

Generating Non-Stationary Textures using Self-Rectification	'767
Fast ODE-based Sampling for Diffusion Models in Around 5 Steps	'777
Deformable One-shot Face Stylization via DINO Semantic Guidance	'787
Learning Disentangled Identifiers for Action-Customized Text-to-Image Generation	'797
SwiftBrush: One-Step Text-to-Image Diffusion Model with Variational Score Distillation	'807
Towards Understanding Cross and Self-Attention in Stable Diffusion for Text-Guided Image Editing	7817
SimDA: Simple Diffusion Adapter for Efficient Video Generation	'827
Unlocking Pre-trained Image Backbones for Semantic Image Synthesis	'840
Shadow-Enlightened Image Outpainting	'850
Exploiting Diffusion Prior for Generalizable Dense Prediction	'861
StyleCineGAN: Landscape Cinemagraph Generation using a Pre-trained StyleGAN	'872

MotionEditor: Editing Video Motion via Content-Aware Diffusion Shuyuan Tu (Fudan University, China), Qi Dai (Microsoft Research Asia, China), Zhi-Qi Cheng (Carnegie Mellon University, America), Han Hu (Microsoft Research Asia, China), Xintong Han (Huya Inc, China), Zuxuan Wu (Fudan University, China), and Yu-Gang Jiang (Fudan University, China)	7882
DanceCamera3D: 3D Camera Movement Synthesis with Music and Dance Zixuan Wang (Tsinghua University, China), Jia Jia (Tsinghua University, China), Shikun Sun (Tsinghua University, China), Haozhe Wu (Tsinghua University, China), Rong Han (Tsinghua University, China), Zhenyu Li (Tsinghua University, China), Di Tang (ByteDance Hangzhou, China), Jiaqing Zhou (ByteDance Hangzhou, China), and Jiebo Luo (University of Rochester, USA)	7892
Diversity-aware Channel Pruning for StyleGAN Compression	7902
DiffMorpher: Unleashing the Capability of Diffusion Models for Image Morphing	7912
StegoGAN: Leveraging Steganography for Non-Bijective Image-to-Image Translation Sidi Wu (ETH Zurich), Yizi Chen (ETH Zurich), Samuel Mermet (Univ Gustave Eiffel), Lorenz Hurni (ETH Zurich), Konrad Schindler (ETH Zurich), Nicolas Gonthier (Univ Gustave Eiffel; IGN), and Loic Landrieu (Univ Gustave Eiffel)	7922
Grounded Text-to-Image Synthesis with Attention Refocusing	7932
VecFusion: Vector Font Generation with Diffusion	794 3
Single Mesh Diffusion Models with Field Latents for Texture Generation	7953
Orthogonal Adaptation for Modular Customization of Diffusion Models	7964

Low-Latency Neural Stereo Streaming	7974
TextCraftor: Your Text Encoder Can be Image Quality Controller Yanyu Li (Northeastern University, USA), Xian Liu (Snap Inc., USA), Anil Kag (Snap Inc., USA), Ju Hu (Snap Inc., USA), Yerlan Idelbayev (Snap Inc., USA), Dhritiman Sagar (Snap Inc., USA), Yanzhi Wang (Northeastern University, USA), Sergey Tulyakov (Snap Inc., USA), and Jian Ren (Snap Inc., USA)	7985
4D-fy: Text-to-4D Generation Using Hybrid Score Distillation Sampling Sherwin Bahmani (University of Toronto, Canada; Vector Institute, Canada), Ivan Skorokhodov (KAUST, Saudi Arabia; Snap Inc., UAE), Victor Rong (University of Toronto, Canada; Vector Institute, Canada), Gordon Wetzstein (Stanford University, USA), Leonidas Guibas (Stanford University, USA), Peter Wonka (KAUST, Saudi Arabia), Sergey Tulyakov (Snap Inc., USA), Jeong Joon Park (University of Michigan, USA), Andrea Tagliasacchi (University of Toronto, Canada; SFU, Canada; Google, Canada), and David B. Lindell (University of Toronto, Canada; Vector Institute, Canada)	7996
Image Neural Field Diffusion Models	8007
Learning Multi-Dimensional Human Preference for Text-to-Image Generation	8018
Dynamic Policy-Driven Adaptive Multi-Instance Learning for Whole Slide Image Classification	8028
Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting	8038
IMPRINT: Generative Object Compositing by Learning Identity-Preserving Representation Yizhi Song (Purdue University, USA), Zhifei Zhang (Adobe, USA), Zhe Lin (Adobe, USA), Scott Cohen (Adobe, USA), Brian Price (Adobe, USA), Jianming Zhang (Adobe, USA), Soo Ye Kim (Adobe, USA), He Zhang (Adobe, USA), Wei Xiong (Adobe, USA), and Daniel Aliaga (Purdue University, USA)	8048

Puff-Net: Efficient Style Transfer with Pure Content and Style Feature Fusion Network	8059
SSR-Encoder: Encoding Selective Subject Representation for Subject-Driven Generation	8069
PEEKABOO: Interactive Video Generation via Masked-Diffusion Yash Jain (Microsoft), Anshul Nasery (University of Washington), Vibhav Vineet (Microsoft), and Harkirat Behl (Microsoft)	8079
CoDeF: Content Deformation Fields for Temporally Consistent Video Processing	8089
DreamMatcher: Appearance Matching Self-Attention for Semantically-Consistent Text-to-Image Personalization	8100
DreamComposer: Controllable 3D Object Generation via Multi-View Conditions Yunhan Yang (The University of Hong Kong), Yukun Huang (The University of Hong Kong), Xiaoyang Wu (The University of Hong Kong), Yuan-Chen Guo (VAST, Tsinghua University), Song-Hai Zhang (Tsinghua University), Hengshuang Zhao (The University of Hong Kong), Tong He (Shanghai Artificial Intelligence Lab), and Xihui Liu (The University of Hong Kong)	8111
Shadow Generation for Composite Image Using Diffusion Model Qingyang Liu (Shanghai Jiao Tong University, China), Junqi You (Shanghai Jiao Tong University, China), Jianting Wang (Shanghai Jiao Tong University, China), Xinhao Tao (Shanghai Jiao Tong University, China), Bo Zhang (Shanghai Jiao Tong University, China), and Li Niu (Shanghai Jiao Tong University, China)	8121
Adversarial Score Distillation: When score distillation meets GAN	8131

Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer Yuang Ai (Institute of Automation, Chinese Academy of Sciences, China), Xiaoqiang Zhou (University of Science and Technology of China, China), Huaibo Huang (Institute of Automation, Chinese Academy of Sciences, China), Lei Zhang (The Hong Kong Polytechnic University, China), and Ran He (Institute of Automation, Chinese Academy of Sciences, China)	8142
Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation Li Hu (Alibaba Group)	8153
Person in Place: Generating Associative Skeleton-Guidance Maps for Human-Object Interaction Image Editing ChangHee Yang (Sogang University, AI Lab, CTO Division, LG Electronics), ChanHee Kang (Sogang University), Kyeongbo Kong (Pusan National University), Hanni Oh (Sogang University), and Suk-Ju Kang (Sogang University)	8164
StableVITON: Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-On Jeongho Kim (KAIST, South Korea), Guojung Gu (KAIST, South Korea), Minho Park (KAIST, South Korea), Sunghyun Park (KAIST, South Korea), and Jaegul Choo (KAIST, South Korea)	8176
Personalized Residuals for Concept-Driven Text-to-Image Generation	8186
UFOGen: You Forward Once Large Scale Text-to-Image Generation via Diffusion GANs	8196
FlowVid: Taming Imperfect Optical Flows for Consistent Video-to-Video Synthesis	8207
Readout Guidance: Learning Control from Diffusion Features	8217
Diffusion Model Alignment Using Direct Preference Optimization	8228

Diffusion Models Without Attention Jing Nathan Yan (Cornell University), Jiatao Gu (Apple), and Alexander M. Rush (Cornell University)	. 8239
CommonCanvas: Open Diffusion Models Trained on Creative-Commons Images Aaron Gokaslan (Cornell), A. Feder Cooper (Cornell University; GenLaw), Jasmine Collins (Mosaic Research Databricks), Landan Seguin (Mosaic Research Databricks), Austin Jacobson (Mosaic Research Databricks), Mihir Patel (Mosaic Research Databricks), Jonathan Frankle (Mosaic Research Databricks), Cory Stephenson (Mosaic Research Databricks), and Volodymyr Kuleshov (Cornell)	8250
Fairy: Fast Parallelized Instruction-Guided Video-to-Video Synthesis Bichen Wu (Meta), Ching-Yao Chuang (Meta), Xiaoyan Wang (Meta), Yichen Jia (Meta), Kapil Krishnakumar (Meta), Tong Xiao (Meta), Feng Liang (Meta), Licheng Yu (Meta), and Peter Vajda (Meta)	. 8261
Edit One for All: Interactive Batch Image Editing	8271
Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration	. 8281
Accelerating Diffusion Sampling with Optimized Time Steps Shuchen Xue (Academy of Mathematics and Systems Science, Chinese Academy of Sciences), Zhaoqiang Liu (University of Electronic Science and Technology of China), Fei Chen (Huawei Noah's Ark Lab), Shifeng Zhang (Huawei Noah's Ark Lab), Tianyang Hu (Huawei Noah's Ark Lab), Enze Xie (Huawei Noah's Ark Lab), and Zhenguo Li (Huawei Noah's Ark Lab)	8292
One-Shot Structure-Aware Stylized Image Synthesis	8302
Selectively Informative Description can Reduce Undesired Embedding Entanglements in Text-to-Image Personalization	. 8312
Observation-Guided Diffusion Probabilistic Models Junoh Kang (Seoul National University, Republic of Korea), Jinyoung Choi (Seoul National University, Republic of Korea), Sungik Choi (LG AI Research, Republic of Korea), and Bohyung Han (Seoul National University, Republic of Korea)	8323
Scaling Up Video Summarization Pretraining with Large Language Models Dawit Mureja Argaw (KAIST), Seunghyun Yoon (Adobe Research), Fabian Caba Heilbron (Adobe Research), Hanieh Deilamsalehy (Adobe Research), Trung Bui (Adobe Research), Zhaowen Wang (Adobe Research), Franck Dernoncourt (Adobe Research), and Joon Son Chung (KAIST)	8332

DREAM: Diffusion Rectification and Estimation-Adaptive Models Jinxin Zhou (Ohio State University, USA), Tianyu Ding (Microsoft Corporation, USA), Tianyi Chen (Microsoft Corporation, USA), Jiachen Jiang (Ohio State University, USA), Ilya Zharkov (Microsoft Corporation, USA), Zhihui Zhu (Ohio State University, USA), and Luming Liang (Microsoft Corporation, USA)	8342
Clockwork Diffusion: Efficient Generation With Model-Step Distillation	8352
SmartEdit: Exploring Complex Instruction-based Image Editing with Multimodal Large Language Models Yuzhou Huang (The Chinese University of Hong Kong, Shenzhen (CUHK-SZ); ARC Lab, Tencent PCG), Liangbin Xie (ARC Lab, Tencent PCG; University of Macau; Shenzhen Institute of Advanced Technology), Xintao Wang (ARC Lab, Tencent PCG; Tencent AI Lab), Ziyang Yuan (ARC Lab, Tencent PCG; Tsinghua University), Xiaodong Cun (Tencent AI Lab), Yixiao Ge (ARC Lab, Tencent PCG; Tencent AI Lab), Jiantao Zhou (University of Macau), Chao Dong (Shenzhen Institute of Advanced Technology; Shanghai Artificial Intelligence Laboratory), Rui Huang (The Chinese University of Hong Kong, Shenzhen (CUHK-SZ)), Ruimao Zhang (The Chinese University of Hong Kong, Shenzhen (CUHK-SZ)), and Ying Shan (ARC Lab, Tencent PCG; Tencent AI Lab)	8362
CAT-DM: Controllable Accelerated Virtual Try-on with Diffusion Model	8372
Exact Fusion via Feature Distribution Matching for Few-shot Image Generation Yingbo Zhou (East China Normal University, China), Yutong Ye (East China Normal University, China), Pengyu Zhang (East China Normal University, China), Xian Wei (East China Normal University, China), and Mingsong Chen (East China Normal University, China)	8383
Cross Initialization for Face Personalization of Text-to-Image Models Lianyu Pang (Sun Yat-sen University, China), Jian Yin (Sun Yat-sen University, China), Haoran Xie (Lingnan University, Hong Kong), Qiping Wang (East China Normal University, China), Qing Li (The Hong Kong Polytechnic University, Hong Kong), and Xudong Mao (Sun Yat-sen University, China)	8393
EasyDrag: Efficient Point-based Manipulation on Diffusion Models Xingzhong Hou (State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences; School of Computer Science and Technology, University of Chinese Academy of Sciences), Boxiao Liu (SenseTime Research), Yi Zhang (SenseTime Research), Jihao Liu (SenseTime Research; CUHK MMLab), Yu Liu (SenseTime Research), and Haihang You (State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences)	8404

MicroCinema: A Divide-and-Conquer Approach for Text-to-Video Generation	14
Towards Memorization-Free Diffusion Models	25
SD-DiT: Unleashing the Power of Self-supervised Discrimination in Diffusion Transformer 843 Rui Zhu (The Chinese University of HongKong, Shenzhen), Yingwei Pan (HiDream.ai Inc.), Yehao Li (HiDream.ai Inc.), Ting Yao (HiDream.ai Inc.), Zhenglong Sun (The Chinese University of HongKong, Shenzhen), Tao Mei (HiDream.ai Inc.), and Chang Wen Chen (The Hong Kong Polytechnic University)	35
Towards Effective Usage of Human-Centric Priors in Diffusion Models for Text-based Human Image Generation	46
Text2QR: Harmonizing Aesthetic Customization and Scanning Robustness for Text-Guided QR Code Generation	56
Space-Time Diffusion Features for Zero-Shot Text-Driven Motion Transfer	66
Video Frame Interpolation via Direct Synthesis with the Event-based Reference	77
DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image Editing	88

EMOPortraits: Emotion-enhanced Multimodal One-shot Head Avatars Nikita Drobyshev (Imperial College London), Antoni Bigata Casademunt (Imperial College London), Konstantinos Vougioukas (Imperial College London), Zoe Landgraf (Imperial College London), Stavros Petridis (Imperial College London), and Maja Pantic (Imperial College London)	8498
Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis Zhan Li (OPPO US Research Center, USA; Portland State University, USA), Zhang Chen (OPPO US Research Center, USA), Zhong Li (OPPO US Research Center, USA), and Yi Xu (OPPO US Research Center, USA)	8508
HOIDiffusion: Generating Realistic 3D Hand-Object Interaction Data Mengqi Zhang (University of California San Diego, USA), Yang Fu (University of California San Diego, USA), Zheng Ding (University of California San Diego, USA), Sifei Liu (NVIDIA, USA), Zhuowen Tu (University of California San Diego, USA), and Xiaolong Wang (University of California San Diego, USA)	8521
Learned Representation-Guided Diffusion Models for Large-Image Generation	8532
InstantBooth: Personalized Text-to-Image Generation without Test-Time Finetuning	8543
TokenCompose: Text-to-Image Diffusion with Token-level Supervision Zirui Wang (Princeton University), Zhizhou Sha (Tsinghua University), Zheng Ding (University of California, San Diego), Yilin Wang (Tsinghua University), and Zhuowen Tu (University of California, San Diego)	8553
Geometry Transfer for Stylizing Radiance Fields	8565
Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models . 8576 Huan Ling (NVIDIA, Canada; Vector Institute, Canada; University of Toronto, Canada), Seung Wook Kim (NVIDIA, Canada; Vector Institute, Canada; University of Toronto, Canada), Antonio Torralba (MIT, USA), Sanja Fidler (NVIDIA, Canada; Vector Institute, Canada; University of Toronto, Canada), and Karsten Kreis (NVIDIA, Canada)	
DreamSalon: A Staged Diffusion Framework for Preserving Identity-Context in Editable Face Generation Haonan Lin (Xi'an Jiaotong University)	8589
Video-P2P: Video Editing with Cross-attention Control	8599

PAIR Diffusion: A Comprehensive Multimodal Object-Level Image Editor Vidit Goel (Picsart AI Research, USA; SHI Labs @ Georgia Tech & UIUC, USA), Elia Peruzzo (University of Trento, Italy), Yifan Jiang (University of Texas Austin, USA), Dejia Xu (University of Texas Austin, USA), Xingqian Xu (Picsart AI Research, USA; SHI Labs @ Georgia Tech & UIUC, USA), Nicu Sebe (University of Trento, Italy), Trevor Darrell (University of California Berkeley, USA), Zhangyang Wang (Picsart AI Research, USA; University of Texas Austin, USA), and Humphrey Shi (Picsart AI Research, USA; SHI Labs @ Georgia Tech & UIUC, USA)	8609
ArtAdapter: Text-to-Image Style Transfer using Multi-Level Style Encoder and Explicit Adaptation	8619
DemoCaricature: Democratising Caricature Generation with a Rough Sketch Dar-Yen Chen (University of Surrey, United Kingdom), Ayan Kumar Bhunia (University of Surrey, United Kingdom), Subhadeep Koley (University of Surrey, United Kingdom), Aneeshan Sain (University of Surrey, United Kingdom), Pinaki Nath Chowdhury (University of Surrey, United Kingdom), and Yi-Zhe Song (University of Surrey, United Kingdom)	8629
PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding	8640
Predicated Diffusion: Predicate Logic-Based Attention Guidance for Text-to-Image Diffusion Models Kota Sueyoshi (Osaka University) and Takashi Matsubara (Osaka University)	8651
SNED: Superposition Network Architecture Search for Efficient Video Diffusion Model	8661
TRIP: Temporal Residual Learning with Image Noise Prior for Image-to-Video Diffusion Models Zhongwei Zhang (University of Science and Technology of China, Hefei, China), Fuchen Long (HiDream.ai Inc.), Yingwei Pan (HiDream.ai Inc.), Zhaofan Qiu (HiDream.ai Inc.), Ting Yao (HiDream.ai Inc.), Yang Cao (University of Science and Technology of China, Hefei, China), and Tao Mei (HiDream.ai Inc.)	8671
Prompt-Free Diffusion: Taking "Text" out of Text-to-Image Diffusion Models Xingqian Xu (University of Illinois at Urbana-Champaign; Picsart AI Research), Jiayi Guo (Tsinghua University), Zhangyang Wang (UT Austin; Picsart AI Research), Gao Huang (Tsinghua University), Irfan Essa (Georgia Tech), and Humphrey Shi (Georgia Tech; Picsart AI Research)	8682

DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations	8693
FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation	8703
Correcting Diffusion Generation through Resampling	8713
AnyScene: Customized Image Synthesis with Composited Foreground	8724
Grid Diffusion Models for Text-to-Video Generation Taegyeong Lee (Ulsan National Institute of Science and Technology), Soyeong Kwon (Ulsan National Institute of Science and Technology), and Taehwan Kim (Ulsan National Institute of Science and Technology)	8734
Direct2.5: Diverse Text-to-3D Generation via Multi-view 2.5D Diffusion Yuanxun Lu (Nanjing University), Jingyang Zhang (Apple), Shiwei Li (Apple), Tian Fang (Apple), David McKinnon (Apple), Yanghai Tsin (Apple), Long Quan (The Hong Kong University of Science and Technology), Xun Cao (Nanjing University), and Yao Yao (Nanjing University)	8744
Anomaly Score: Evaluating Generative Models and Individual Generated Images based on Complexity and Vulnerability	8754
Zero-Painter: Training-Free Layout Control for Text-to-Image Synthesis Marianna Ohanyan (Picsart AI Research (PAIR)), Hayk Manukyan (Picsart AI Research (PAIR)), Zhangyang Wang (Picsart AI Research (PAIR), UT Austin), Shant Navasardyan (Picsart AI Research (PAIR)), and Humphrey Shi (Picsart AI Research (PAIR), Georgia Tech)	8764
X-Adapter: Adding Universal Compatibility of Plugins for Upgraded Diffusion Model	8775

Neural Point Cloud Diffusion for Disentangled 3D Shape and Appearance Generation	8785
Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer	8795
Vlogger: Make Your Dream A Vlog Shaobin Zhuang (Shanghai Jiao Tong University), Kunchang Li (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Xinyuan Chen (Shanghai AI Laboratory), Yaohui Wang (Shanghai AI Laboratory), Ziwei Liu (S-Lab, Nanyang Technological University), Yu Qiao (Shanghai AI Laboratory), and Yali Wang (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences)	8806
Faces that Speak: Jointly Synthesising Talking Face and Speech from Text Youngjoon Jang (KAIST, Republic of Korea), Ji-Hoon Kim (KAIST, Republic of Korea), Junseok Ahn (KAIST, Republic of Korea), Doyeop Kwak (KAIST, Republic of Korea), Hong-Sun Yang (42dot, Republic of Korea), Yoon-Cheol Ju (42dot, Republic of Korea), Il-Hwan Kim (42dot, Republic of Korea), Byeong-Yeol Kim (42dot, Republic of Korea), and Joon Son Chung (KAIST, Republic of Korea)	8818
Prompt Augmentation for Self-supervised Text-guided Image Manipulation	8829
DragDiffusion: Harnessing Diffusion Models for Interactive Point-based Image Editing	8839
Make Pixels Dance: High-Dynamic Video Generation Yan Zeng (ByteDance Research, China), Guoqiang Wei (ByteDance Research, China), Jiani Zheng (ByteDance Research), Jiaxin Zou (ByteDance Research), Yang Wei (ByteDance Research), Yuchen Zhang (ByteDance Research), and Hang Li (ByteDance Research)	8850
LEDITS++: Limitless Image Editing using Text-to-Image Models Manuel Brack (TU Darmstadt; DFKI), Felix Friedrich (TU Darmstadt; hessian.AI), Katharia Kornmeier (TU Darmstadt), Linoy Tsaban (Huggingface), Patrick Schramowski (TU Darmstadt; DFKI; hessian.AI), Kristian Kersting (TU Darmstadt; DFKI; hessian.AI), and Apolinario Passos (Huggingface)	8861

Emu Edit: Precise Image Editing via Recognition and Generation Tasks
Concept Weaver: Enabling Multi-Concept Fusion in Text-to-Image Models
ACT-Diffusion: Efficient Adversarial Consistency Training for One-step Diffusion Models
3D Geometry-Aware Deformable Gaussian Splatting for Dynamic View Synthesis
Boosting Diffusion Models with Moving Average Sampling in Frequency Domain
NoiseCollage: A Layout-Aware Text-to-Image Diffusion Model Based on Noise Cropping and Merging
NeRF On-the-go: Exploiting Uncertainty for Distractor-free NeRFs in the Wild
Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model

GeneAvatar: Generic Expression-Aware Volumetric Head Avatar Editing from a Single Image Chong Bao (Zhejiang University), Yinda Zhang (Google), Yuan Li (Zhejiang University), Xiyu Zhang (Zhejiang University), Bangbang Yang (ByteDance), Hujun Bao (Zhejiang University), Marc Pollefeys (ETH Zurich), Guofeng Zhang (Zhejiang University), and Zhaopeng Cui (Zhejiang University)	.8952
MaskPLAN: Masked Generative Layout Planning from Partial Input	8964
WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models Changhoon Kim (Arizona State University), Kyle Min (Intel Labs), Maitreya Patel (Arizona State University), Sheng Cheng (Arizona State University), and Yezhou Yang (Arizona State University)	8974
Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection	8984
SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing Zeyinzi Jiang (Alibaba Group, China), Chaojie Mao (Alibaba Group, China), Yulin Pan (Alibaba Group, China), Zhen Han (Alibaba Group, China), and Jingfeng Zhang (Alibaba Group, China)	8995
CONFORM: Contrast is All You Need for High-Fidelity Text-to-Image Diffusion Models	9005
TI2V-Zero: Zero-Shot Image Conditioning for Text-to-Video Diffusion Models Haomiao Ni (The Pennsylvania State University, USA), Bernhard Egger (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany), Suhas Lohit (Mitsubishi Electric Research Laboratories, USA), Anoop Cherian (Mitsubishi Electric Research Laboratories, USA), Ye Wang (Mitsubishi Electric Research Laboratories, USA), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories, USA), Sharon X. Huang (The Pennsylvania State University, USA), and Tim K. Marks (Mitsubishi Electric Research Laboratories, USA)	9015
HIVE: Harnessing Human Feedback for Instructional Visual Editing	9026

Taming Mode Collapse in Score Distillation for Text-to-3D Generation	9037
CoDi: Conditional Diffusion Distillation for Higher-Fidelity and Faster Image Generation	9048
Universal Robustness via Median Randomized Smoothing for Real-World Super-Resolution Zakariya Chaouai (Paris-Saclay University, France) and Mohamed Tamaazousti (Paris-Saclay University, France)	9059
ECLIPSE: A Resource-Efficient Text-to-Image Prior for Image Generations Maitreya Patel (Arizona State University, USA), Changhoon Kim (Arizona State University, USA), Sheng Cheng (Arizona State University, USA), Chitta Baral (Arizona State University, USA), and Yezhou Yang (Arizona State University, USA)	9069
CAMEL: CAusal Motion Enhancement Tailored for Lifting Text-driven Video Editing	9079
FreeCustom: Tuning-Free Customized Image Generation for Multi-Concept Composition	9089
Amodal Completion via Progressive Mixed Context Diffusion	9099
Named Entity Driven Zero-Shot Image Manipulation	9110
Learning Degradation-unaware Representation with Prior-based Latent Transformations for Blind Face Restoration	9120

AEROBLADE: Training-Free Detection of Latent Diffusion Images Using Autoencoder Reconstruction Error	9130
Jonas Ricker (Ruhr University Bochum, Germany), Denis Lukovnikov (Ruhr University Bochum, Germany), and Asja Fischer (Ruhr University Bochum, Germany)	9100
VRetouchEr: Learning Cross-frame Feature Interdependence with Imperfection Flow for Face Retouching in Videos	9141
Wen Xue (South China University of Technology), Le Jiang (South China University of Technology), Lianxin Xie (South China University of Technology), Si Wu (South China University of Technology), Yong Xu (South China University of Technology), and Hau San Wong (City University of Hong Kong)	
Generative Unlearning for Any Identity	9151
Doubly Abductive Counterfactual Inference for Text-based Image Editing	9162
Text-conditional Attribute Alignment across Latent Spaces for 3D Controllable Face Image Synthesis	9172
Customization Assistant for Text-to-Image Generation	9182
Contrastive Denoising Score for Text-guided Latent Diffusion Image Editing	9192
Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder	9202
VMC: Video Motion Customization using Temporal Attention Adaption for Text-to-Video Diffusion Models Hyeonho Jeong (Korea Advanced Institute of Science and Technology, Republic of Korea), Geon Yeong Park (Korea Advanced Institute of Science and Technology, Republic of Korea), and Jong Chul Ye (Korea Advanced Institute of Science and Technology, Republic of Korea)	9212

Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation Mohammad Amin Shabani (Simon Fraser University), Zhaowen Wang (Adobe Research), Difan Liu (Adobe Research), Nanxuan Zhao (Adobe Research), Jimei Yang (Adobe Research), and Yasutaka Furukawa (Simon Fraser University)	9222
Learning Spatial Adaptation and Temporal Coherence in Diffusion Models for Video Super-Resolution	. 9232
of China), Jiebo Luo (University of Rochester), and Tao Mei (HiDream.ai Inc.)	
Open-Vocabulary Attention Maps with Token Optimization for Semantic Segmentation in Diffusion Models	9242
Pablo Marcos-Manchón (University of Barcelona, Spain), Roberto Alcover-Couso (Autonomous University of Madrid, Spain), Juan C. SanMiguel (Autonomous University of Madrid, Spain), and José M. Martínez (Autonomous University of Madrid, Spain)	
Combining Frame and GOP Embeddings for Neural Video Representation Jens Eirik Saethre (DisneyResearch Studios, Switzerland; ETH Zürich, Switzerland), Roberto Azevedo (DisneyResearch Studios, Switzerland), and Christopher Schroers (DisneyResearch Studios, Switzerland)	. 9253
PLACE: Adaptive Layout-Semantic Fusion for Semantic Image Synthesis	9264
Your Student is Better Than Expected: Adaptive Teacher-Student Collaboration for Text-Conditional Diffusion Models	9275
Mitigating Motion Blur in Neural Radiance Fields with Events and Frames	. 9286
Unmixing Before Fusion: A Generalized Paradigm for Multi-Source-based Hyperspectral Image Synthesis	. 9297
Yang Yu (Wuhan University), Erting Pan (Wuhan University), Xinya Wang (Wuhan University), Yuheng Wu (Wuhan University), Xiaoguang Mei (Wuhan University), and Jiayi Ma (Wuhan University)	
Rethinking FID: Towards a Better Evaluation Metric for Image Generation Sadeep Jayasumana (Google Research), Srikumar Ramalingam (Google Research), Andreas Veit (Google Research), Daniel Glasner (Google Research), Ayan Chakrabarti (Google Research), and Sanjiv Kumar (Google Research)	. 9307
MarkovGen: Structured Prediction for Efficient Text-to-Image Generation	. 9316

DisCo: Disentangled Control for Realistic Human Dance Generation	326
The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN Inversion and High Quality Image Editing	337
C3: High-Performance and Low-Complexity Neural Compression from a Single Image or Video . 93	347
LightIt: Illumination Modeling and Control for Diffusion Models	359
Rethinking the Spatial Inconsistency in Classifier-Free Diffusion Guidance	370
InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization	380
On the Diversity and Realism of Distilled Dataset: An Efficient Dataset Distillation Paradigm	390
On the Scalability of Diffusion-based Text-to-Image Generation	400
Distilling ODE Solvers of Diffusion Models into Smaller Steps	410

ZeroNVS: Zero-Shot 360-Degree View Synthesis from a Single Image
Fixed Point Diffusion Models
Gaussian Shell Maps for Efficient 3D Human Generation
Inversion-Free Image Editing with Language-Guided Diffusion Models
TIGER: Time-Varying Denoising Model for 3D Point Cloud Generation with Diffusion Process 9462 Zhiyuan Ren (Michigan State University), Minchul Kim (Michigan State University), Feng Liu (Michigan State University), and Xiaoming Liu (Michigan State University)
Beyond First-Order Tweedie: Solving Inverse Problems using Latent Diffusion
U-VAP: User-specified Visual Appearance Personalization via Decoupled Self Augmentation 9482. You Wu (Institute of Computing Technology, CAS, China), Kean Liu (Institute of Computing Technology, CAS, China), Xiaoyue Mi (Institute of Computing Technology, CAS, China), Fan Tang (Institute of Computing Technology, CAS, China), Juan Cao (Institute of Computing Technology, CAS, China), and Jintao Li (Institute of Computing Technology, CAS, China)
Orals 3A 3D from Single View
Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation

EscherNet: A Generative Model for Scalable View Synthesis Xin Kong (Dyson Robotics Lab, Imperial College London), Shikun Liu (Dyson Robotics Lab, Imperial College London), Xiaoyang Lyu (The University of Hong Kong), Marwan Taher (Dyson Robotics Lab, Imperial College London), Xiaojuan Qi (The University of Hong Kong), and Andrew J. Davison (Dyson Robotics Lab, Imperial College London)	. 9503
WALT3D: Generating Realistic Training Data from Time-Lapse Imagery for Reconstructing Dynamic Objects Under Occlusion Khiem Vuong (Carnegie Mellon University, USA), N Dinesh Reddy (Amazon, USA), Robert Tamburo (Carnegie Mellon University, USA), and Srinivasa G. Narasimhan (Carnegie Mellon University, USA)	. 9514
Diffusion-FOF: Single-View Clothed Human Reconstruction via Diffusion-Based Fourier	
Occupancy Field	. 9525
Rethinking Inductive Biases for Surface Normal Estimation Gwangbin Bae (Dyson Robotics Lab, Imperial College London) and Andrew J. Davison (Dyson Robotics Lab, Imperial College London)	. 9535
Orals 3B Vision, Language, and Reasoning	
Comparing the Decision-Making Mechanisms by Transformers and CNNs via Explanation Methors 9546	ods
Mingqi Jiang (Oregon State University, USA), Saeed Khorram (Oregon State University, USA), and Li Fuxin (Oregon State University, USA)	
MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI Xiang Yue (IN.AI Research, USA), Yuansheng Ni (University of Waterloo, Canada), Kai Zhang (The Ohio State University, USA), Tianyu Zheng (Independent Researcher), Ruoqi Liu (The Ohio State University, USA), Ge Zhang (University of Waterloo, Canada), Samuel Stevens (The Ohio State University, USA), Dongfu Jiang (University of Waterloo, Canada), Weiming Ren (University of Waterloo, Canada), Yuxuan Sun (Independent Researcher), Cong Wei (University of Waterloo, Canada), Botao Yu (The Ohio State University, USA), Ruibin Yuan (Carnegie Mellon University, USA), Renliang Sun (University of Waterloo, Canada), Ming Yin (Princeton University, USA), Boyuan Zheng (The Ohio State University, USA), Zhenzhu Yang (Independent Researcher), Yibo Liu (University of Victoria, Canada), Wenhao Huang (Independent Researcher), Huan Sun (The Ohio State University, USA), Yu Su (The Ohio State University, USA), and Wenhu Chen (University of Waterloo, Canada)	
Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs Shengbang Tong (New York University), Zhuang Liu (FAIR, Meta), Yuexiang Zhai (University of California, Berkeley), Yi Ma (University of California, Berkeley), Yann LeCun (New York University), and Saining Xie (New York University)	. 9568

LISA: Reasoning Segmentation via Large Language Model Xin Lai (The Chinese University of Hong Kong, China), Zhuotao Tian (Harbin Institute of Technology (Shenzhen), China), Yukang Chen (The Chinese University of Hong Kong, China), Yanwei Li (The Chinese University of Hong Kong, China), Yuhui Yuan (Microsoft Research Asia, China), Shu Liu (SmartMore, China), and Jiaya Jia (The Chinese University of Hong Kong, China)	9579
Visual Program Distillation: Distilling Tools and Programmatic Reasoning into Vision-Language Models Yushi Hu (University of Washington), Otilia Stretcu (Google Research), Chun-Ta Lu (Google Research), Krishnamurthy Viswanathan (Google Research), Kenji Hata (Google Research), Enming Luo (Google Research), Ranjay Krishna (University of Washington), and Ariel Fuxman (Google Research)	. 9590
Orals 3C Medical and Physics-based Vision	
EventPS: Real-Time Photometric Stereo Using an Event Camera Bohan Yu (Peking University, China), Jieji Ren (Shanghai Jiao Tong University, China), Jin Han (The University of Tokyo, Japan), Feishi Wang (Peking University, China), Jinxiu Liang (Peking University, China), and Boxin Shi (Peking University, China)	9602
EvDiG: Event-guided Direct and Global Components Separation Xinyu Zhou (Peking University, China), Peiqi Duan (Peking University, China), Boyu Li (Peking University, China), Chu Zhou (Peking University, China), Chao Xu (Peking University, China), and Boxin Shi (Peking University, China)	.9612
MemSAM: Taming Segment Anything Model for Echocardiography Video Segmentation	. 9622
Transcriptomics-guided Slide Representation Learning in Computational Pathology Guillaume Jaume (Harvard Medical School, USA), Lukas Oldenburg (Mass General Brigham, USA), Anurag Vaidya (Harvard Medical School, USA), Richard J. Chen (Harvard Medical School, USA), Drew F.K. Williamson (Mass General Brigham, USA), Thomas Peeters (Mass General Brigham, USA), Andrew H. Song (Harvard Medical School, USA), and Faisal Mahmood (Harvard Medical School, USA)	9632
Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration Mingyuan Meng (The University of Sydney, Australia), Dagan Feng (The University of Sydney, Australia), Lei Bi (Shanghai Jiao Tong University, China), and Jinman Kim (The University of Sydney, Australia)	. 9645

Poster Session 3

G3DR: Generative 3D Reconstruction in ImageNet	,
CityDreamer: Compositional Generative Model of Unbounded 3D Cities	,
6D-Diff: A Keypoint Diffusion Framework for 6D Object Pose Estimation	,
Generative Proxemics: A Prior for 3D Social Interaction from Images	,
MVD-Fusion: Single-view 3D via Depth-consistent Multi-view Generation	;
WorDepth: Variational Language Prior for Monocular Depth Estimation	;
Free3D: Consistent Novel View Synthesis without 3D Representation)
PostureHMR: Posture Transformation for 3D Human Mesh Recovery Yu-Pei Song (Southwest Jiaotong University, China; Engineering Research Center of Sustainable Urban Intelligent Transportation, China), Xiao Wu (Southwest Jiaotong University, China; Engineering Research Center of Sustainable Urban Intelligent Transportation, China), Zhaoquan Yuan (Southwest Jiaotong University, China; Engineering Research Center of Sustainable Urban Intelligent Transportation, China), Jian-Jun Qiao (Southwest Jiaotong University, China; Engineering Research Center of Sustainable Urban Intelligent Transportation, China), and Qiang Peng (Southwest Jiaotong University, China; Engineering Research Center of Sustainable Urban Intelligent Transportation, China)	
3DFIRES: Few Image 3D REconstruction for Scenes with Hidden Surfaces	

Learning the 3D Fauna of the Web
Bilateral Propagation Network for Depth Completion
Efficient Privacy-Preserving Visual Localization Using 3D Ray Clouds
EpiDiff: Enhancing Multi-View Synthesis via Localized Epipolar-Constrained Diffusion
Doodle Your 3D: From Abstract Freehand Sketches to Precise 3D Shapes
LowRankOcc: Tensor Decomposition and Low-Rank Recovery for Vision-based 3D Semantic Occupancy Prediction
CNC-Net: Self-Supervised Learning for CNC Machining Operations
Reconstructing Hands in 3D with Transformers

Boosting Self-Supervision for Single-View Scene Completion via Knowledge Distillation	5 7
Know Your Neighbors: Improving Single-View Reconstruction via Spatial Vision-Language Reasoning	18
Depth Prompting for Sensor-Agnostic Depth Estimation	i9
ViewFusion: Towards Multi-View Consistency via Interpolated Denoising	'0
Slice3D: Multi-Slice, Occlusion-Revealing, Single View 3D Reconstruction	31
Consistent3D: Towards Consistent High-Fidelity Text-to-3D Generation with Deterministic Sampling Prior)2
GigaPose: Fast and Robust Novel Object Pose Estimation via One Correspondence	13
RichDreamer: A Generalizable Normal-Depth Diffusion Model for Detail Richness in Text-to-3D	.4

Elite360D: Towards Efficient 360 Depth Estimation via Semantic- and Distance-Aware Bi-Projection Fusion	9926
Hao Ai (Hong Kong University of Science and Technology (Guangzhou Campus), China) and Lin Wang (Hong Kong University of Science and Technology (Guangzhou Campus), China and Hong Kong University of Science and Technology, Hongkong)	
SIFU: Side-view Conditioned Implicit Function for Real-world Usable Clothed Human Reconstruction	9936
Diffusion Time-step Curriculum for One Image to 3D Generation Xuanyu Yi (Nanyang Technological University, Singapore), Zike Wu (Nanyang Technological University, Singapore), Qingshan Xu (Nanyang Technological University, Singapore), Pan Zhou (Singapore Management University, Singapore), Joo-Hwee Lim (Institute for Infocomm Research, Singapore), and Hanwang Zhang (Nanyang Technological University, Singapore)	9948
SecondPose: SE(3)-Consistent Dual-Stream Feature Fusion for Category-Level Pose Estimation Yamei Chen (Technical University of Munich, Germany), Yan Di (Technical University of Munich, Germany), Guangyao Zhai (Technical University of Munich, Germany & Munich Center for Machine Learning, Germany), Fabian Manhardt (Google, Germany), Chenyangguang Zhang (Tsinghua University, China), Ruida Zhang (Tsinghua University, China), Federico Tombari (Technical University of Munich, Germany & Google, Switzerland), Nassir Navab (Technical University of Munich, Germany), and Benjamin Busam (Technical University of Munich, Germany & Munich Center for Machine Learning, Germany & 3dwe.ai, Germany)	9959
Wonder3D: Single Image to 3D using Cross-Domain Diffusion Xiaoxiao Long (The University of Hong Kong), Yuan-Chen Guo (Tsinghua University), Cheng Lin (The University of Hong Kong), Yuan Liu (The University of Hong Kong), Zhiyang Dou (The University of Hong Kong), Lingjie Liu (University of Pennsylvania), Yuexin Ma (Shanghai Tech University), Song-Hai Zhang (Tsinghua University), Marc Habermann (MPI Informatik), Christian Theobalt (MPI Informatik), and Wenping Wang (Texas A&M University)	9970
En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D Synthetic Data	, 9981
MOHO: Learning Single-view Hand-held Object Reconstruction with Multi-view Occlusion-Awa Supervision	

Template Free Reconstruction of Human-object Interaction with Procedural Interaction	
Generation	10003
Xianghui Xie (University of Tübingen; Max Planck Institute for	
Informatics), Bharat Lal Bhatnagar (Meta), Jan Eric Lenssen (Max	
Planck Institute for Informatics), and Gerard Pons-Moll (University of	
Tübingen; Max Planck Institute for Informatics)	
PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depters	th
Estimation	10016
Zhenyu Li (King Abdullah University of Science and Technology	
(KAUST)), Shariq Farooq Bhat (King Abdullah University of Science and	
Technology (KAUST)), and Peter Wonka (King Abdullah University of	
Science and Technology (KAUST))	
SPAD: Spatially Aware Multi-View Diffusers	10026
Yash Kant (University of Toronto), Aliaksandr Siarohin (Snap	
Research), Ziyi Wu (University of Toronto), Michael Vasilkovsky (Snap	
Research), Guocheng Qian (Snap Research), Jian Ren (Snap Research),	
Riza Alp Guler (Snap Research), Bernard Ghanem (KAUST), Sergey	
Tulyakov (Snap Research), and Igor Gilitschenski (University of	
Toronto)	
GenFlow: Generalizable Recurrent Flow for 6D Pose Refinement of Novel Objects	10039
Sungphill Moon (NAVER LABS, South Korea), Hyeontae Son (NAVER LABS,	10037
South Korea), Dongcheol Hur (NAVER LABS, South Korea), and Sangwook	
Kim (NAVER LABS, South Korea)	
PointInfinity: Resolution-Invariant Point Diffusion Models	10050
Zixuan Huang (FAIR at Meta, USA), Justin Johnson (FAIR at Meta, USA),	
Shoubhik Debnath (FAIR at Meta, USA), James M. Rehg (University of	
Illinois at Urbana-Champaign, USA), and Chao-Yuan Wu (FAIR at Meta,	
USA)	
ZeroShape: Regression-based Zero-shot Shape Reconstruction	10061
Zixuan Huang (University of Illinois at Urbana-Champaign, USA), Stefan	
Stojanov (Georgia Institute of Technology, USA), Anh Thai (Georgia	
Institute of Technology, USA), Varun Jampani (Stability AI, USA), and	
James M. Rehg (University of Illinois at Urbana-Champaign, USA)	
One-2-3-45++: Fast Single Image to 3D Objects with Consistent Multi-View Generation and 3D	
Diffusion	10072
Minghua Liu (UC San Diego, USA), Ruoxi Shi (UC San Diego, USA),	10072
Linghao Chen (UC San Diego, USA), Zhuoyang Zhang (Tsinghua University,	
China), Chao Xu (UCLA, USA), Xinyue Wei (UC San Diego, USA), Hansheng	
Chen (Stanford University), Chong Zeng (Zhejiang University, China),	
Jiayuan Gu (UC San Diego, USA), and Hao Su (UC San Diego, USA)	
· · ·	
ConTex-Human: Free-View Rendering of Human from a Single Image with Texture-Consistent	10004
Synthesis	10084
Xiangjun Gao (The Hong Kong University of Science and Technology),	
Xiaoyu Li (Tencent AI Lab), Chaopeng Zhang (Tencent AI Lab), Qi Zhang	
(Tencent AI Lab), Yanpei Cao (Tencent AI Lab), Ying Shan (Tencent AI	
Lab), and Long Quan (The Hong Kong University of Science and	
Technology)	

MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images	0095
UniDepth: Universal Monocular Metric Depth Estimation)106
G-NeRF: Geometry-enhanced Novel View Synthesis from Single-View Images)117
3DToonify: Creating Your High-Fidelity 3D Stylized Avatar Easily from 2D Portrait Images 10 Yifang Men (Alibaba Group), Hanxi Liu (Peking University), Yuan Yao (Alibaba Group), Miaomiao Cui (Alibaba Group), Xuansong Xie (Alibaba Group), and Zhouhui Lian (Peking University))127
Adaptive Fusion of Single-View and Multi-View Depth for Autonomous Driving)138
HiPose: Hierarchical Binary Surface Encoding and Correspondence Pruning for RGB-D 6DoF	
Object Pose Estimation	0148
HandBooster: Boosting 3D Hand-Mesh Reconstruction by Conditional Synthesis and Sampling of Hand-Object Interactions)159

3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation	0170
NViST: In the Wild New View Synthesis from a Single Image with Transformers	0181
CAD: Photorealistic 3D Generation via Adversarial Distillation	0194
Splatter Image: Ultra-Fast Single-View 3D Reconstruction 10 Stanislaw Szymanowicz (University of Oxford, United Kingdom), Chrisitian Rupprecht (University of Oxford, United Kingdom), and Andrea Vedaldi (University of Oxford, United Kingdom)	0208
Joint Reconstruction of 3D Human and Object via Contact-Based Refinement Transformer 10 Hyeongjin Nam (Seoul National University), Daniel Sungho Jung (Seoul National University), Gyeongsik Moon (Codec Avatars Lab, Meta), and Kyoung Mu Lee (Seoul National University)	0218
Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior	0228
Object Pose Estimation via the Aggregation of Diffusion Features	0238
MonoCD: Monocular 3D Object Detection with Complementary Depths 10 Longfei Yan (Huazhong University of Science and Technology, China), Pei Yan (Huazhong University of Science and Technology, China), Shengzhou Xiong (Huazhong University of Science and Technology, China), Xuanyu Xiang (Huazhong University of Science and Technology, China), and Yihua Tan (Huazhong University of Science and Technology, China)	0248

MultiDiff: Consistent Novel View Synthesis from a Single Image	10258
SeaBird: Segmentation in Bird's View with Dice Loss Improves Monocular 3D Detection of Large Objects Abhinav Kumar (Michigan State University, USA), Yuliang Guo (Bosch Research North America, USA), Xinyu Huang (Bosch Research North America, USA), Liu Ren (Bosch Research North America, USA), and Xiaoming Liu (Michigan State University, USA)	10269
Learning Occupancy for Monocular 3D Object Detection	10281
NeRFDeformer: NeRF Transformation from a Single View via 3D Scene Flows Zhenggang Tang (University of Illinois Urbana-Champaign, USA), Zhongzheng Ren (University of Illinois Urbana-Champaign, USA), Xiaoming Zhao (University of Illinois Urbana-Champaign, USA), Bowen Wen (NVIDIA, USA), Jonathan Tremblay (NVIDIA, USA), Stan Birchfield (NVIDIA, USA), and Alexander Schwing (University of Illinois Urbana-Champaign, USA)	10293
R-Cyclic Diffuser: Reductive and Cyclic Latent Diffusion for 3D Clothed Human Digitalization	10304
Unleashing Network Potentials for Semantic Scene Completion Fengyun Wang (Nanjing University of Science and Technology), Qianru Sun (Singapore Management University), Dong Zhang (The Hong Kong University of Science and Technology), and Jinhui Tang (Nanjing University of Science and Technology)	10314
Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D Reconstruction with Transformers	10324
VOODOO 3D: Volumetric Portrait Disentanglement For One-Shot 3D Head Reenactment	10336

Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis	49
Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation	59
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data	71
SAOR: Single-View Articulated Object Reconstruction	32
HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed Distance Fields 1039 Haozhe Qi (EPFL), Chen Zhao (EPFL), Mathieu Salzmann (EPFL), and Alexander Mathis (EPFL)	92
Diffusion-driven GAN Inversion for Multi-Modal Face Image Generation)3
Novel View Synthesis with View-Dependent Effects from a Single Image	13
Weakly-Supervised Emotion Transition Learning for Diverse 3D Co-speech Gesture Generation 10424 Xingqun Qi (The Hong Kong University of Science and Technology), Jiahao Pan (The Hong Kong University of Science and Technology), Peng Li (Hong Kong University of Science and Technology), Ruibin Yuan (Hong Kong University of Science and Technology), Xiaowei Chi (Hong Kong University of Science and Technology), Mengfei Li (Hong Kong University of Science and Technology), Wenhan Luo (Hong Kong University of Science and Technology), Wei Xue (Hong Kong University of Science and Technology), Shanghang Zhang (Peking University), Qifeng Liu (Hong Kong University of Science and Technology), and Yike Guo (Hong Kong University of Science and Technology)	•••

g2Reg: Differentiable 2D Segmentation to 1D Regression Rendering for 360 Room Layout econstruction	0435
Cheng Sun (NVIDIA), Wei-En Tai (National Tsing Hua University, Taiwan), Yu-Lin Shih (National Tsing Hua University, Taiwan), Kuan-Wei Chen (National Tsing Hua University, Taiwan), Yong-Jing Syu (National Tsing Hua University, Taiwan), Kent Selwyn The (National Tsing Hua University, Taiwan), Yu-Chiang Frank Wang (National Taiwan University, Taiwan), and Hwann-Tzong Chen (National Tsing Hua University, Taiwan)	
ining Supervision for Dynamic Regions in Self-Supervised Monocular Depth Estimation 10 Hoang Chuong Nguyen (Australian National University), Tianyu Wang (Australian National University), Jose M. Alvarez (NVIDIA), and Miaomiao Liu (Australian National University))446
iffPortrait3D: Controllable Diffusion for Zero-Shot Portrait View Synthesis)456
D-LFM: Lifting Foundation Model)466
RC-Net: 6-DoF Pose Estimation with MultiScale Residual Correlation)476
iffusionGAN3D: Boosting Text-guided 3D Generation and Domain Adaptation by Combining 3E ANs and Diffusion Priors	
S: Reconstructing Clothed 3D Human from Single Image via Vertex Shift)498
Teakly Supervised Monocular 3D Detection with a Single-View Image)508

From-Ground-To-Objects: Coarse-to-Fine Self-supervised Monocular Depth Estimation of Dynamic Objects with Ground Contact Prior	.10519
Gated Fields: Learning Scene Reconstruction from Gated Videos	.10530
SCINeRF: Neural Radiance Fields from a Snapshot Compressive Image	. 10542
Instance-aware Contrastive Learning for Occluded Human Mesh Reconstruction	10553
IBD-SLAM: Learning Image-Based Depth Fusion for Generalizable SLAM	. 10563
HarmonyView: Harmonizing Consistency and Diversity in One-Image-to-3D	10574
UV-IDM: Identity-Conditioned Latent Diffusion Model for Face UV-Texture Generation	. 10585
AttriHuman-3D: Editable 3D Human Avatar Generation with Attribute Decomposition and Indexing	10596

Mind The Edge: Refining Depth Edges in Sparsely-Supervised Monocular Depth Estimation 10606 Lior Talker (Samsung Israel Research Center), Aviad Cohen (Samsung Israel Research Center), Erez Yosef (Tel Aviv University), Alexandra Dana (Samsung Israel Research Center), and Michael Dinerstein (Samsung Israel Research Center)
3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features
Bayesian Diffusion Models for 3D Shape Reconstruction
LaneCPP: Continuous 3D Lane Detection using Physical Priors
Enhancing 3D Fidelity of Text-to-3D using Cross-View Correspondences
MonoDiff: Monocular 3D Object Detection and Pose Estimation with Diffusion Models
HiLo: Detailed and Robust 3D Clothed Human Reconstruction with High-and Low-Frequency Information of Parametric Models
MPOD123: One Image to 3D Content Generation Using Mask-enhanced Progressive Outline-to-Detail Optimization

GeoReF: Geometric Alignment Across Shape Variation for Category-level Object Pose Refinement	10693
Technology, China; the University of Hong Kong, China), Yinghan Sun (Southern University of Science and Technology, China), Hua Chen (Southern University of Science and Technology, China), Ales Leonardis (University of Birmingham, UK), Wei Zhang (Southern University of Science and Technology, China), and Hyung Jin Chang (University of Birmingham, UK)	
Unsupervised 3D Structure Inference from Category-Specific Image Collections	10704
Neural Parametric Gaussians for Monocular Non-Rigid Object Reconstruction	10715
BiTT: Bi-directional Texture Reconstruction of Interacting Two Hands from a Single Image 1 Minje Kim (Korea Advanced Institute of Science and Technology) and Tae-Kyun Kim (Korea Advanced Institute of Science and Technology)	10726
DeCoTR: Enhancing Depth Completion with 2D and 3D Attentions	10736
MonoNPHM: Dynamic Head Reconstruction from Monocular Videos	10747
FakeInversion: Learning to Detect Images from Unseen Text-to-Image Models by Inverting Stable Diffusion	10759
Forgery-aware Adaptive Transformer for Generalizable Synthetic Image Detection	10770
Towards Modern Image Manipulation Localization: A Large-Scale Dataset and Novel Methods . 1 Chenfan Qu (South China University of Technology), Yiwu Zhong (University of Wisconsin), Chongyu Liu (South China University of Technology), Guitao Xu (South China University of Technology), Dezhi Peng (South China University of Technology), Fengjun Guo (INTSIG), and Lianwen Jin (South China University of Technology)	10781

ManiFPT: Defining and Analyzing Fingerprints of Generative Models	⁷ 91
ProMark: Proactive Diffusion Watermarking for Causal Attribution	302
CGI-DM: Digital Copyright Authentication for Diffusion Models via Contrasting Gradient Inversion	212
Inversion Xiaoyu Wu (Shanghai Jiao Tong University), Yang Hua (Queen's University Belfast), Chumeng Liang (University of Southern California), Jiaru Zhang (Shanghai Jiao Tong University), Hao Wang (Louisiana State University), Tao Song (Shanghai Jiao Tong University), and Haibing Guan (Shanghai Jiao Tong University)	,12
SCoFT: Self-Contrastive Fine-Tuning for Equitable Image Generation	322
Would Deep Generative Models Amplify Bias in Future Models?	333
Training Diffusion Models Towards Diverse Image Generation with Reinforcement Learning 108- Zichen Miao (Purdue University), Jiang Wang (Microsoft Corporation), Ze Wang (Purdue University), Zhengyuan Yang (Microsoft Corporation), Lijuan Wang (Microsoft Corporation), Qiang Qiu (Purdue University), and Zicheng Liu (Advanced Micro Devices, Inc.)	344
Consistency and Uncertainty: Identifying Unreliable Responses From Black-Box Vision-Language Models for Selective Visual Question Answering	354
Visual Objectification in Films: Towards a New AI Task for Video Interpretation	364

ToonerGAN: Reinforcing GANs for Obfuscating Automated Facial Indexing	10875
MCPNet: An Interpretable Classifier via Multi-Level Concept Prototypes	10885
Visual Concept Connectome (VCC): Open World Concept Discovery and their Interlayer Connections in Deep Models	10895
Discover and Mitigate Multiple Biased Subgroups in Image Classifiers	10906
CORES: Convolutional Response-based Score for Out-of-distribution Detection Keke Tang (Guangzhou University), Chao Hou (Guangzhou University), Weilong Peng (Guangzhou University), Runnan Chen (University of Hong Kong), Peican Zhu (Northwestern Polytechnical University), Wenping Wang (Texas A&M University), and Zhihong Tian (Guangzhou University)	10916
Token Transformation Matters: Towards Faithful Post-hoc Explanation for Vision Transformer Junyi Wu (Illinois Institute of Technology, USA), Bin Duan (Illinois Institute of Technology, USA), Weitai Kang (Illinois Institute of Technology, USA), Hao Tang (Carnegie Mellon University, USA), and Yan Yan (Illinois Institute of Technology, USA)	10926
On the Faithfulness of Vision Transformer Explanations	10936
Understanding Video Transformers via Universal Concept Discovery	10946
Explaining the Implicit Neural Canvas: Connecting Pixels to Neurons by Tracing their Contributions Namitha Padmanabhan (University of Maryland, College Park, USA), Matthew Gwilliam (University of Maryland, College Park, USA), Pulkit Kumar (University of Maryland, College Park, USA), Shishira R Maiya (University of Maryland, College Park, USA), Max Ehrlich (University of Maryland, College Park, USA), and Abhinav Shrivastava (University of Maryland, College Park, USA)	10957

WWW: A Unified Framework for Explaining What, Where and Why of Neural Networks by Interpretation of Neuron Concepts
HDQMF: Holographic Feature Decomposition Using Quantum Algorithms
SLICE: Stabilized LIME for Consistent Explanations for Image Classification
What Sketch Explainability Really Means for Downstream Tasks?
Structured Gradient-based Interpretations via Norm-Regularized Adversarial Training
Learning Triangular Distribution in Visual World
Incremental Residual Concept Bottleneck Models
Uncertainty Visualization via Low-Dimensional Posterior Projections
Epistemic Uncertainty Quantification For Pre-Trained Neural Networks
Interpretable Measures of Conceptual Similarity by Complexity-Constrained Descriptive Auto-Encoding

CAPE: CAM as a Probabilistic Ensemble for Enhanced DNN Interpretation Townim Faisal Chowdhury (Australian Institute for Machine Learning, University of Adelaide), Kewen Liao (Australian Catholic University), Vu Minh Hieu Phan (Australian Institute for Machine Learning, University of Adelaide), Minh-Son To (Flinders University), Yutong Xie (Australian Institute for Machine Learning, University of Adelaide), Kevin Hung (SA Pathology, Central Adelaide Local Health Network), David Ross (SA Pathology, Central Adelaide Local Health Network), Anton van den Hengel (Australian Institute for Machine Learning, University of Adelaide), Johan W. Verjans (Australian Institute for Machine Learning, University of Adelaide), and Zhibin Liao (Australian Institute for Machine Learning, University of Adelaide)	11072
Discovering and Mitigating Visual Biases through Keyword Explanation	11082
DiG-IN: Diffusion Guidance for Investigating Networks - Uncovering Classifier Differences, Neuron Visualisations, and Visual Counterfactual Explanations	11093
Cross-Dimension Affinity Distillation for 3D EM Neuron Segmentation Xiaoyu Liu (MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China), Miaomiao Cai (MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China), Yinda Chen (MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China), Yueyi Zhang (MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China), Te Shi (Institute of Artificial Intelligence, Hefei Comprehensive National Science Center), Ruobing Zhang (Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences), Xuejin Chen (MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China), and Zhiwei Xiong (MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China)	11104
Continual Self-supervised Learning: Towards Universal Multi-modal Medical Data Representation Learning	11114

A Unified Framework for Microscopy Defocus Deblur with Multi-Pyramid Transformer and	
Contrastive Learning	5
CARZero: Cross-Attention Alignment for Radiology Zero-Shot Classification	7
Towards Generalizable Tumor Synthesis	7
Tyche: Stochastic In-Context Learning for Medical Image Segmentation	9
Structure-Aware Sparse-View X-ray 3D Reconstruction	4
Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation	4
Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation	4

C^2RV: Cross-Regional and Cross-View Learning for Sparse-View CBCT Reconstruction	11205
Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration	. 11215
SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology	11226
Bootstrapping Chest CT Image Understanding by Distilling Knowledge from X-ray Expert Models	11238
ViLa-MIL: Dual-scale Vision-Language Multiple Instance Learning for Whole Slide Image Classification	. 11248
Virtual Immunohistochemistry Staining for Histological Images Assisted by Weakly-supervised Learning	. 11259

Representing Part-Whole Hierarchies in Foundation Models by Learning Localizability, Composability, and Decomposability from Anatomy via Self Supervision
XFibrosis: Explicit Vessel-Fiber Modeling for Fibrosis Staging from Liver Pathology Images 11282 Chong Yin (Hong Kong Baptist University, Hong Kong), Siqi Liu (Shenzhen Research Institute of Big Data, Chinese University of Hong Kong, Shenzhen), Fei Lyu (Hong Kong Baptist University, Hong Kong), Jiahao Lu (University of Copenhagen, Denmark), Sune Darkner (University of Copenhagen, Denmark), Vincent Wai-Sun Wong (Chinese University of Hong Kong, Hong Kong), and Pong C. Yuen (Hong Kong Baptist University, Hong Kong)
Prompting Vision Foundation Models for Pathology Image Analysis
One-Prompt to Segment All Medical Images
Learning Large-Factor EM Image Super-Resolution with Generative Priors
Dynamic Graph Representation with Knowledge-aware Attention for Histopathology Whole Slide Image Analysis
MindBridge: A Cross-Subject Brain Decoding Framework
Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology

Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical	
O .	11353
JungEun Kim (Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Hangyul Yoon (Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Geondo Park (Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Kyungsu Kim (Massachusetts General Hospital and Harvard Medical School, USA), and Eunho Yang (Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea)	
Rethinking Diffusion Model for Multi-Contrast MRI Super-Resolution Guangyuan Li (Zhejiang University, China), Chen Rao (Zhejiang University, China), Juncheng Mo (Zhejiang University, China), Zhanjie Zhang (Zhejiang University, China), Wei Xing (Zhejiang University, China), and Lei Zhao (Zhejiang University, China)	11365
Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images Chaoqin Huang (Shanghai Jiao Tong University; National University of Singapore; Shanghai Artificial Intelligence Laboratory), Aofan Jiang (Shanghai Jiao Tong University; Shanghai Artificial Intelligence Laboratory), Jinghao Feng (Shanghai Jiao Tong University; Shanghai Artificial Intelligence Laboratory), Ya Zhang (Shanghai Jiao Tong University; Shanghai Artificial Intelligence Laboratory), Xinchao Wang (National University of Singapore), and Yanfeng Wang (Shanghai Jiao Tong University; Shanghai Artificial Intelligence Laboratory)	11375
ZePT: Zero-Shot Pan-Tumor Segmentation via Query-Disentangling and Self-Prompting	11386
Generalizable Whole Slide Image Classification with Fine-Grained Visual-Semantic	
Interaction Hao Li (Xiamen University, China), Ying Chen (Xiamen University, China), Yifei Chen (Huawei, China), Rongshan Yu (Xiamen University, China), Wenxian Yang (Aginome Scientific, China), Liansheng Wang (Xiamen University, China), Bowen Ding (Shanghai Jiao Tong University School of Medicine, China), and Yuchen Han (Shanghai Jiao Tong University School of Medicine, China)	11398
Incremental Nuclei Segmentation from Histopathological Images via Future-class Awareness and Compatibility-inspired Distillation	11408
PH-Net: Semi-Supervised Breast Lesion Segmentation via Patch-wise Hardness	11418

ToNNO: Tomographic Reconstruction of a Neural Network's Output for Weakly Supervised Segmentation of 3D Medical Images	28
Think Twice Before Selection: Federated Evidential Active Learning for Medical Image Analysis with Domain Shifts	39
CPLIP: Zero-Shot Learning for Histopathology with Comprehensive Vision-Language Alignment 11450 Sajid Javed (Khalifa University of Science and Technology, UAE), Arif Mahmood (Information Technology University of the Punjab, Pakistan), Iyyakutti Iyappan Ganapathi (Khalifa University of Science and Technology, UAE), Fayaz Ali Dharejo (Khalifa University of Science and Technology, UAE), Naoufel Werghi (Khalifa University of Science and Technology, UAE), and Mohammed Bennamoun (The University of Western Australia, Australia)	•••
MicroDiffusion: Implicit Representation-Guided Diffusion for 3D Reconstruction from Limited 2D Microscopy Projections	50
Diversified and Personalized Multi-rater Medical Image Segmentation	70
Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention	30
Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Pre-training Framework	€

MedM2G: Unifying Medical Multi-Modal Generation via Cross-Guided Diffusion with Visual	1502
Invariant	1302
H-ViT: A Hierarchical Vision Transformer for Deformable Image Registration	1513
Seeing Unseen: Discover Novel Biomedical Concepts via Geometry-Constrained Probabilistic Modeling	1524
Fully Convolutional Slice-to-Volume Reconstruction for Single-Stack MRI	1535
IIRP-Net: Iterative Inference Residual Pyramid Network for Enhanced Image Registration 1 Tai Ma (East China Normal University), Suwei Zhang (East China Normal University), Jiafeng Li (East China Normal University), and Ying Wen (East China Normal University)	1546
ChAda-ViT : Channel Adaptive Attention for Joint Representation Learning of Heterogeneous Microscopy Images	1556
Morphological Prototyping for Unsupervised Slide Representation Learning in Computational Pathology	1566

Modeling Dense Multimodal Interactions Between Biological Pathways and Histology for Survival Prediction	i79
Accurate Spatial Gene Expression Prediction by Integrating Multi-Resolution Features	91
Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Multi-Scale Aggregation and Anthropic Prior Knowledge	01
Low-Rank Knowledge Decomposition for Medical Foundation Models Yuhang Zhou (Shanghai Jiao Tong University, China; Shanghai Artificial Intelligence Laboratory, China), Haolin Li (Fudan University, China; Shanghai Artificial Intelligence Laboratory, China), Siyuan Du (Fudan University, China; Shanghai Artificial Intelligence Laboratory, China), Jiangchao Yao (Shanghai Jiao Tong University, China; Shanghai Artificial Intelligence Laboratory, China), Ya Zhang (Shanghai Jiao Tong University, China; Shanghai Artificial Intelligence Laboratory, China), and Yanfeng Wang (Shanghai Jiao Tong University, China; Shanghai Artificial Intelligence Laboratory, China)	511
M3-UDA: A New Benchmark for Unsupervised Domain Adaptive Fetal Cardiac Structure Detection 11621 Bin Pu (The Hong Kong University of Science and Technology), Liwen Wang (Anhui University), Jiewen Yang (The Hong Kong University of Science and Technology), Guannan He (Sichuan Provincial Maternity and Child Health Care Hospital), Xingbo Dong (Anhui University), Shengli Li (Shenzhen Maternity and Child Healthcare Hospital), Ying Tan (Shenzhen Maternity and Child Healthcare Hospital), Ming Chen (Harbin Red Cross Central Hospital), Zhe Jin (Anhui University), Kenli Li (Hunan University), and Xiaomeng Li (The Hong Kong University of Science and Technology)	1
CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data	531

Constructing and Exploring Intermediate Domains in Mixed Domain Semi-supervised Medical	
Image Segmentation	642
Qinghe Ma (Nanjing University, China), Jian Zhang (Nanjing University,	
China), Lei Qi (Southeast University, China), Qian Yu (Shandong	
Women's University, China), Yinghuan Shi (Nanjing University, China),	
and Yang Gao (Nanjing University, China)	
Pair Aug: What Can Augmented Image-Text Pairs Do for Radiology?	652
Yutong Xie (The University of Adelaide, Australia), Qi Chen (The	
University of Adelaide, Australia), Sinuo Wang (The University of	
Adelaide, Australia), Minh-Son To (South Australia Medical Imaging,	
Australia), Iris Lee (South Australia Medical Imaging, Australia), Ee	
Win Khoo (South Australia Medical Imaging, Australia), Kerolos Hendy (South Australia Medical Imaging, Australia), Daniel Koh (South	
Australia Medical Imaging, Australia), Yong Xia (Northwestern	
Polytechnical University, China), and Qi Wu (The University of	
Adelaide, Australia)	
Intraoperative 2D/3D Image Registration via Differentiable X-ray Rendering	662
Vivek Gopalakrishnan (Massachusetts Institute of Technology, USA),	
Neel Dey (Massachusetts Institute of Technology, USA), and Polina	
Golland (Massachusetts Institute of Technology, USA)	
Mudslide: A Universal Nuclear Instance Segmentation Method	673
Jun Wang (Peking University, China)	
Rotation-Agnostic Image Representation Learning for Digital Pathology	683
Saghir Alfasly (KIMIA Lab, Mayo Clinic, Rochester, MN, USA), Abubakr	000
Shafique (KIMIA Lab, Mayo Clinic, Rochester, MN, USA), Peyman Nejat	
(KIMIA Lab, Mayo Clinic, Rochester, MN, USA), Jibran Khan (KIMIA Lab,	
Mayo Clinic, Rochester, MN, USA), Areej Alsaafin (KIMIA Lab, Mayo	
Clinic, Rochester, MN, USA), Ghazal Alabtah (KIMIA Lab, Mayo Clinic,	
Rochester, MN, USA), and H.R. Tizhoosh (KIMIA Lab, Mayo Clinic,	
Rochester, MN, USA)	
Tumor Micro-environment Interactions Guided Graph Learning for Survival Analysis of Human Cancers from Whole-slide Pathological Images	601
Wei Shao (Nanjing University of Aeronautics and Astronautics, China;	024
Key Laboratory of Brain-Machine Intelligence Technology, China; MIIT	
Key Laboratory of Pattern Analysis and Machine Intelligence, China),	
Yang Yang Shi (Nanjing University of Aeronautics and Astronautics,	
China; Key Laboratory of Brain-Machine Intelligence Technology, China;	
MIIT Key Laboratory of Pattern Analysis and Machine Intelligence,	
China), Daoqiang Zhang (Nanjing University of Aeronautics and	
Astronautics, China; Key Laboratory of Brain-Machine Intelligence	
Technology, China; MIIT Key Laboratory of Pattern Analysis and Machine	
Intelligence, China), JunJie Zhou (Nanjing University of Aeronautics	
and Astronautics, China; Key Laboratory of Brain-Machine Intelligence	
Technology, China; MIIT Key Laboratory of Pattern Analysis and Machine	
Intelligence, China), and Peng Wan (Nanjing University of Aeronautics	
and Astronautics, China; Key Laboratory of Brain-Machine Intelligence	
Technology, China; MIIT Key Laboratory of Pattern Analysis and Machine	
Intelligence, China)	

MLIP: Enhancing Medical Visual Representation with Divergence Encoder and Knowledge-guided Contrastive Learning
Zhe Li (Huazhong University of Science and Technology), Laurence T. Yang (Huazhong University of Science and Technology; Zhengzhou University), Bocheng Ren (Huazhong University of Science and Technology), Xin Nie (Huazhong University of Science and Technology), Zhangyang Gao (Westlake University), Cheng Tan (Westlake University), and Stan Z. Li (Westlake University)
FocusMAE: Gallbladder Cancer Detection from Ultrasound Videos with Focused Masked Autoencoders
Bi-level Learning of Task-Specific Decoders for Joint Registration and One-Shot Medical Image Segmentation
PrPSeg: Universal Proposition Learning for Panoramic Renal Pathology Segmentation
Versatile Medical Image Segmentation Learned from Multi-Source Datasets via Model Self-Disambiguation
Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology

MCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image	
egmentation	769
Jeural Underwater Scene Representation	780
Iearing Anything Anywhere	790
MINer: Versatile Multi-view Inverse Rendering with Near- and Far-field Light Sources	800
PiLiGenRT: A Photometric Stereo Dataset with Quantified Roughness and Translucency	810
JeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images	821
Differentiable Display Photometric Stereo	831
ayesian Differentiable Physics for Cloth Digitalization	841
Itlantis: Enabling Underwater Depth Estimation with Stable Diffusion	852

Sparse Views, Near Light: A Practical Paradigm for Uncalibrated Point-light Photometric Stereo	1862
Mohammed Brahimi (Technical University of Munich, Munich Center for Machine Learning), Bjoern Haefner (Technical University of Munich, Munich Center for Machine Learning, NVIDIA), Zhenzhang Ye (Technical University of Munich, Munich Center for Machine Learning), Bastian Goldluecke (University of Konstanz), and Daniel Cremers (Technical	
University of Munich, Munich Center for Machine Learning)	
Diffusion Reflectance Map: Single-Image Stochastic Inverse Rendering of Illumination and Reflectance	1873
Japan) Deep Single Image Camera Calibration by Heatmap Regression to Recover Fisheye Images Under Manhattan World Assumption	
University, Japan) Physics-guided Shape-from-Template: Monocular Video Perception through Neural Surrogate	
	.1895
Spin-UP: Spin Light for Natural Light Uncalibrated Photometric Stereo	1905
Discontinuity-preserving Normal Integration with Auxiliary Edges	1915
A Theory of Joint Light and Heat Transport for Lambertian Scenes	1924
IDGuard: Robust, General, Identity-centric POI Proactive Defense Against Face Editing Abuse	1934
Ungeneralizable Examples	1944
Distilled Datamodel with Reverse Gradient Matching	1954

EditGuard: Versatile Image Watermarking for Tamper Localization and Copyright Protection Xuanyu Zhang (Peking University), Runyi Li (Peking University), Jiwen Yu (Peking University), Youmin Xu (Peking University), Weiqi Li (Peking University), and Jian Zhang (Peking University)	11964
SocialCounterfactuals: Probing and Mitigating Intersectional Social Biases in Vision-Language Models with Counterfactual Examples	11975
FedAS: Bridging Inconsistency in Personalized Federated Learning	.11986
FairRAG: Fair Human Generation via Fair Retrieval Augmentation	11996
Self-Discovering Interpretable Diffusion Latent Directions for Responsible Text-to-Image	12006
Generation	12006
ExMap: Leveraging Explainability Heatmaps for Unsupervised Group Robustness to Spurious Correlations	12017
Data Valuation and Detections in Federated Learning	12027
Utility-Fairness Trade-Offs and How to Find Them	12037
SimAC: A Simple Anti-Customization Method for Protecting Face Privacy against Text-to-Image Synthesis of Diffusion Models	12047
GLOW: Global Layout Aware Attacks on Object Detection	12057

FADES: Fair Disentanglement with Sensitive Relevance	5 7
Fair Federated Learning under Domain Skew with Local Consistency and Domain Diversity 1207 Yuhang Chen (Wuhan University, China), Wenke Huang (Wuhan University, China), and Mang Ye (Wuhan University, China)	77
WateRF: Robust Watermarks in Radiance Fields for Protection of Copyrights	37
FLHetBench: Benchmarking Device and State Heterogeneity in Federated Learning	98
An Upload-Efficient Scheme for Transferring Knowledge From a Server-Side Pre-trained Generator to Clients in Heterogeneous Federated Learning)9
Privacy-Preserving Optics for Enhancing Protection in Face De-Identification	20
A Stealthy Wrongdoer: Feature-Oriented Reconstruction Attack against Split Learning	30
RCL: Reliable Continual Learning for Unified Failure Detection	40

Global and Local Prompts Cooperation via Optimal Transport for Federated Learning	.2151
Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models 1 Zijin Yang (University of Science and Technology of China, China), Kai Zeng (University of Science and Technology of China, China), Kejiang Chen (University of Science and Technology of China, China), Han Fang (National University of Singapore, Singapore), Weiming Zhang (University of Science and Technology of China, China), and Nenghai Yu (University of Science and Technology of China, China)	2162
Explaining CLIP's Performance Disparities on Data from Blind/Low Vision Users	.2172
Model Inversion Robustness: Can Transfer Learning Help?	2183
Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty from Pre-trained Models	.2194
Validating Privacy-Preserving Face Recognition under a Minimum Assumption	.2205
Re-thinking Data Availability Attacks Against Deep Neural Networks	.2215

OpenBias: Open-set Bias Detection in Text-to-Image Generative Models	12225
In-distribution Public Data Synthesis with Diffusion Models for Differentially Private Image Classification Jinseong Park (Seoul National University, Republic of Korea), Yujin Choi (Seoul National University, Republic of Korea), and Jaewook Lee (Seoul National University, Republic of Korea)	12236
Leak and Learn: An Attacker's Cookbook to Train Using Leaked Data from Federated Learning Joshua C. Zhao (Purdue University), Ahaan Dabholkar (Purdue University), Atul Sharma (Purdue University), and Saurabh Bagchi (Purdue University)	12247
Countering Personalized Text-to-Image Generation with Influence Watermarks	12257
Fair-VPT: Fair Visual Prompt Tuning for Image Classification	. 12268
Relaxed Contrastive Learning for Federated Learning	12279
FairCLIP: Harnessing Fairness in Vision-Language Learning Yan Luo (Harvard University, USA), Min Shi (Harvard University, USA), Muhammad Osama Khan (New York University, USA), Muhammad Muneeb Afzal (New York University, USA), Hao Huang (New York University, USA), Shuaihang Yuan (New York University), Yu Tian (Harvard University, USA), Luo Song (Harvard University, USA), Ava Kouhana (Harvard University, USA), Tobias Elze (Harvard University, USA), Yi Fang (New York University, USA), and Mengyu Wang (Harvard University, USA)	12289
Steganographic Passport: An Owner and User Verifiable Credential for Deep Model IP Protection Without Retraining	12302
Adaptive Hyper-graph Aggregation for Modality-Agnostic Federated Learning	12312
Navigate Beyond Shortcuts: Debiased Learning Through the Lens of Neural Collapse	. 12322

Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair Jeonghoon Park (Korea Advanced Institute of Science and Technology (KAIST), South Korea), Chaeyeon Chung (Korea Advanced Institute of Science and Technology (KAIST), South Korea), and Jaegul Choo (Korea Advanced Institute of Science and Technology (KAIST), South Korea)	12332
Device-Wise Federated Network Pruning	12342
All Rivers Run to the Sea: Private Learning with Asymmetric Flows Yue Niu (University of Southern California), Ramy E. Ali (Samsung), Saurav Prakash (University of Illinois Urbana-Champaign), and Salman Avestimehr (University of Southern California)	12353
VA3: Virtually Assured Amplification Attack on Probabilistic Copyright Protection for Text-to-Image Generative Models Xiang Li (National University of Singapore, Singapore), Qianli Shen (National University of Singapore, Singapore), and Kenji Kawaguchi (National University of Singapore, Singapore)	12363
CPR: Retrieval Augmented Generation for Copyright Protection	12374
Communication-Efficient Federated Learning with Accelerated Client Gradient	12385
Self-supervised Debiasing Using Low Rank Regularization Geon Yeong Park (KAIST, South Korea), Chanyong Jung (KAIST, South Korea), Sangmin Lee (KAIST, South Korea), Jong Chul Ye (KAIST, South Korea), and Sang Wan Lee (KAIST, South Korea)	12395
Facial Identity Anonymization via Intrinsic and Extrinsic Attention Distraction	12406
Collaborative Learning of Anomalies with Privacy (CLAP) for Unsupervised Video Anomaly Detection: A New Baseline Anas Al-lahham (Mohamed bin Zayed University of Artificial Intelligence), Muhammad Zaigham Zaheer (Mohamed bin Zayed University of Artificial Intelligence), Nurbek Tastan (Mohamed bin Zayed University of Artificial Intelligence), and Karthik Nandakumar (Mohamed bin Zayed University of Artificial Intelligence)	12416

Label-Efficient Group Robustness via Out-of-Distribution Concept Curation	2426
Long-Tailed Anomaly Detection with Learnable Class Names	2435
Robust Emotion Recognition in Context Debiasing	2447
Correlation-Decoupled Knowledge Distillation for Multimodal Sentiment Analysis with Incomplete Modalities	2458
An Edit Friendly DDPM Noise Space: Inversion and Manipulations 12 Inbar Huberman-Spiegelglas (Technion – Israel Institute of Technology, Israel), Vladimir Kulikov (Technion – Israel Institute of Technology, Israel), and Tomer Michaeli (Technion – Israel Institute of Technology, Israel)	2469
SleepVST: Sleep Staging from Near-Infrared Video Signals using Pre-Trained Transformers 12 Jonathan F. Carter (University of Oxford), João Jorge (Oxehealth Ltd., Oxford), Oliver Gibson (Oxehealth Ltd., Oxford), and Lionel Tarassenko (University of Oxford)	2479
AM-RADIO: Agglomerative Vision Foundation Model Reduce All Domains Into One	2490
Towards Language-Driven Video Inpainting via Multimodal Large Language Models	2501
FedSOL: Stabilized Orthogonal Learning with Proximal Restrictions in Federated Learning 12 Gihun Lee (KAIST), Minchan Jeong (KAIST), Sangmook Kim (UBC), Jaehoon Oh (Samsung Advanced Institute of Technology), and Se-Young Yun (KAIST)	2512

UnionFormer: Unified-Learning Transformer with Multi-View Representation for Image Manipulation Detection and Localization	12523
Academy of Sciences, China) Motion Blur Decomposition with Cross-shutter Guidance	12534
SNIDA: Unlocking Few-Shot Object Detection with Non-linear Semantic Decoupling Augmentation Yanjie Wang (National Key Laboratory of Multispectral Information Intelligent Processing Technology, Huazhong University of Science and Technology, China), Xu Zou (National Key Laboratory of Multispectral Information Intelligent Processing Technology, Huazhong University of Science and Technology, China), Luxin Yan (National Key Laboratory of Multispectral Information Intelligent Processing Technology, Huazhong University of Science and Technology, China), Sheng Zhong (National Key Laboratory of Multispectral Information Intelligent Processing Technology, Huazhong University of Science and Technology, China), and Jiahuan Zhou (Wangxuan Institute of Computer Technology, Peking University, China)	12544
Rapid 3D Model Generation with Intuitive 3D Input Tianrun Chen (Zhejiang University, China; KOKONI3D, Moxin (Huzhou) Technology Co., China), Chaotao Ding (Huzhou University, China), Shangzhan Zhang (Zhejiang University, China), Chunan Yu (Huzhou University, China), Ying Zang (Huzhou University, China), Zejian Li (Zhejiang University, China), Sida Peng (Zhejiang University, China), and Lingyun Sun (Zhejiang University, China)	12554
SketchINR: A First Look into Sketches as Implicit Neural Representations Hmrishav Bandyopadhyay (University of Surrey), Ayan Kumar Bhunia (University of Surrey), Pinaki Nath Chowdhury (University of Surrey), Aneeshan Sain (University of Surrey), Tao Xiang (University of Surrey, iFlyTek-Surrey Joint Research Centre on Artificial Intelligence), Timothy Hospedales (University of Edinburgh), and Yi-Zhe Song (University of Surrey, iFlyTek-Surrey Joint Research Centre on Artificial Intelligence)	12565
ERMVP: Communication-Efficient and Collaboration-Robust Multi-Vehicle Perception in Challenging Environments	12575
DiaLoc: An Iterative Approach to Embodied Dialog Localization	12585

WildlifeMapper: Aerial Image Analysis for Multi-Species Detection and Identification	12594
Harnessing Meta-Learning for Improving Full-Frame Video Stabilization	12605
De-confounded Data-free Knowledge Distillation for Handling Distribution Shifts	12615
Day-Night Cross-domain Vehicle Re-identification	12626
Brush2Prompt: Contextual Prompt Generator for Object Inpainting	12636
Cloud-Device Collaborative Learning for Multimodal Large Language Models	12646
Making Visual Sense of Oracle Bones for You and Me	12656
Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation	12666

Fields	12677
Dongqing Wang (EPFL, Switzerland), Tong Zhang (EPFL, Switzerland), Alaa Abboud (EPFL, Switzerland), and Sabine Süsstrunk (EPFL, Switzerland)	120//
Language Models as Black-Box Optimizers for Vision-Language Models Shihong Liu (Carnegie Mellon University), Samuel Yu (Carnegie Mellon University), Zhiqiu Lin (Carnegie Mellon University), Deepak Pathak (Carnegie Mellon University), and Deva Ramanan (Carnegie Mellon University)	12687
Mind Marginal Non-Crack Regions: Clustering-Inspired Representation Learning for Crack Segmentation	12698
InstructDiffusion: A Generalist Modeling Interface for Vision Tasks Zigang Geng (University of Science and Technology of China, China), Binxin Yang (University of Science and Technology of China, China), Tiankai Hang (Southeast University, China), Chen Li (Xi'an Jiaotong University, China), Shuyang Gu (Microsoft Research, China), Ting Zhang (Beijing Normal University, China), Jianmin Bao (Microsoft Research, China), Zheng Zhang (Microsoft Research, China), Houqiang Li (University of Science and Technology of China, China), Han Hu (Microsoft Research, China), Dong Chen (Microsoft Research, China), and Baining Guo (Microsoft Research, China)	12709
Desigen: A Pipeline for Controllable Design Template Generation	12721
Physical Backdoor: Towards Temperature-based Backdoor Attacks in the Physical World Wen Yin (Huazhong University of Science and Technology, China), Jian Lou (Zhejiang University, China), Pan Zhou (Huazhong University of Science and Technology, China), Yulai Xie (Huazhong University of Science and Technology, China), Dan Feng (Huazhong University of Science and Technology, China), Yuhua Sun (Huazhong University of Science and Technology, China), Tailai Zhang (Huazhong University of Science and Technology, China), and Lichao Sun (Lehigh University, USA)	12733
Behind the Veil: Enhanced Indoor 3D Scene Reconstruction with Occluded Surfaces Completic Su Sun (Purdue University, USA), Cheng Zhao (Bosch Research North America, USA), Yuliang Guo (Bosch Research North America, USA), Ruoyu Wang (Bosch Research North America, USA), Xinyu Huang (Bosch Research North America, USA), Yingjie Victor Chen (Purdue University, USA), and Liu Ren (Bosch Research North America, USA)	n 12744

EarthLoc: Astronaut Photography Localization by Indexing Earth from Space	12754
DiffForensics: Leveraging Diffusion Prior to Image Forgery Detection and Localization	12765
MuseChat: A Conversational Music Recommendation System for Videos Zhikang Dong (Stony Brook University, USA), Xiulong Liu (University of Washington, USA), Bin Chen (Bytedance.com, USA), Pawel Polak (Stony Brook University, USA), and Peng Zhang (Bytedance.com, USA)	1277 5
The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement	12786
Blind Image Quality Assessment Based on Geometric Order Learning	12799
CrowdDiff: Multi-hypothesis Crowd Density Estimation using Diffusion Models	12809
Towards Efficient Replay in Federated Incremental Learning Yichen Li (Huazhong University of Science and Technology), Qunwei Li (Ant Group), Haozhao Wang (Huazhong University of Science and Technology), Ruixuan Li (Huazhong University of Science and Technology), Wenliang Zhong (Ant Group), and Guannan Zhang (Ant Group)	12820
MART: Masked Affective RepresenTation Learning via Masked Temporal Distribution	
Distillation	12830
PolarRec: Improving Radio Interferometric Data Reconstruction Using Polar Coordinates	12841

DePT: Decoupled Prompt Tuning	924
Grounded Question-Answering in Long Egocentric Videos	934
HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data)44
ViTamin: Designing Scalable Vision Models in the Vision-Language Era)54
The Manga Whisperer: Automatically Generating Transcriptions for Comics	167
Learning to Localize Objects Improves Spatial Reasoning in Visual-LLMs	177
The Neglected Tails in Vision-Language Models Shubham Parashar (Texas A&M University, USA), Zhiqiu Lin (Carnegie Mellon University, USA), Tian Liu (Texas A&M University, USA), Xiangjue Dong (Texas A&M University, USA), Yanan Li (Zhejiang Lab), Deva Ramanan (Carnegie Mellon University, USA), James Caverlee (Texas A&M University, USA), and Shu Kong (Texas A&M University and University of Macau)	988
Unveiling Parts Beyond Objects: Towards Finer-Granularity Referring Expression Segmentation	98

GLaMM: Pixel Grounding Large Multimodal Model Hanoona Rasheed (Mohamed bin Zayed University of Artificial Intelligence, UAE), Muhammad Maaz (Mohamed bin Zayed University of Artificial Intelligence, UAE), Sahal Shaji (Mohamed bin Zayed University of Artificial Intelligence, UAE), Abdelrahman Shaker (Mohamed bin Zayed University of Artificial Intelligence, UAE), Salman Khan (Mohamed bin Zayed University of Artificial Intelligence, UAE; Australian National University, Australia), Hisham Cholakkal (Mohamed bin Zayed University of Artificial Intelligence, UAE), Rao M. Anwer (Mohamed bin Zayed University of Artificial Intelligence, UAE; Aalto University, Finland), Eric Xing (Mohamed bin Zayed University of Artificial Intelligence, UAE; Carnegie Mellon University, USA), Ming-Hsuan Yang (University of California - Merced, USA; Google Research, USA), and Fahad S. Khan (Mohamed bin Zayed University of Artificial Intelligence, UAE; Linköping University, Sweden)	009
Alpha-CLIP: A CLIP Model Focusing on Wherever You Want	019
Pixel-Aligned Language Model	030
mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with Modality Collaboration 13040 Qinghao Ye (Alibaba Group, China), Haiyang Xu (Alibaba Group, China), Jiabo Ye (Alibaba Group, China), Ming Yan (Alibaba Group, China), Anwen Hu (Alibaba Group, China), Haowei Liu (Alibaba Group, China), Qi Qian (Alibaba Group, China), Ji Zhang (Alibaba Group, China), and Fei Huang (Alibaba Group, China)	••••
SNIFFER: Multimodal Large Language Model for Explainable Out-of-Context Misinformation Detection	052
Towards CLIP-driven Language-free 3D Visual Grounding via 2D-3D Relational Enhancement and Consistency	
SC-Tune: Unleashing Self-Consistent Referential Comprehension in Large Vision Language Models	073

V: Guided Visual Search as a Core Mechanism in Multimodal LLMs	13084
Improved Visual Grounding through Self-Consistent Explanations Ruozhen He (Rice University), Paola Cascante-Bonilla (Rice University), Ziyan Yang (Rice University), Alexander C. Berg (University of California, Irvine), and Vicente Ordonez (Rice University)	13095
Distilling Vision-Language Models on Millions of Videos Yue Zhao (University of Texas, Austin), Long Zhao (Google Research), Xingyi Zhou (Google Research), Jialin Wu (Google Research), Chun-Te Chu (Google Research), Hui Miao (Google Research), Florian Schroff (Google Research), Hartwig Adam (Google Research), Ting Liu (Google Research), Boqing Gong (Google Research), Philipp Krahenbuhl (University of Texas, Austin), and Liangzhe Yuan (Google Research)	. 13106
Separating the "Chirp" from the "Chat": Self-supervised Visual Grounding of Sound and Language	13117
Referring Image Editing: Object-level Image Editing via Referring Expressions	. 13128
Vision-and-Language Navigation via Causal Learning	. 13139
VISTA-LLAMA: Reducing Hallucination in Video Language Models via Equal Distance to Visua Tokens Fan Ma (Zhejiang University), Xiaojie Jin (Bytedance Inc.), Heng Wang (Bytedance Inc.), Yuchen Xian (Zhejiang University), Jiashi Feng (Bytedance Inc.), and Yi Yang (Zhejiang University)	
Ranking Distillation for Open-Ended Video Question Answering with Insufficient Labels	13161
CLIP as RNN: Segment Countless Visual Concepts without Training Endeavor Shuyang Sun (University of Oxford), Runjia Li (University of Oxford), Philip Torr (University of Oxford), Xiuye Gu (Google Research), and Siyang Li (Google Research)	13171
Quilt-LLaVA: Visual Instruction Tuning by Extracting Localized Narratives from Open-Source Histopathology Videos	13183

Aligning and Prompting Everything All at Once for Universal Visual Perception	13193
Can I Trust Your Answer? Visually Grounded Video Question Answering	13204
Prompt Highlighter: Interactive Control for Multi-Modal LLMs Yuechen Zhang (The Chinese University of Hong Kong, Hong Kong), Shengju Qian (The Chinese University of Hong Kong, Hong Kong), Bohao Peng (The Chinese University of Hong Kong, Hong Kong), Shu Liu (SmartMore, China), and Jiaya Jia (The Chinese University of Hong Kong, Hong Kong; SmartMore, China)	13215
Language-only Training of Zero-shot Composed Image Retrieval	13225
MoReVQA: Exploring Modular Reasoning Models for Video Question Answering	13235
Let's Think Outside the Box: Exploring Leap-of-Thought in Large Language Models with Creative Humor Generation	13246
CLOVA: A Closed-LOop Visual Assistant with Tool Usage and Update Zhi Gao (Peking University and Beijing Institute for General Artificial Intelligence, China), Yuntao Du (Beijing Institute for General Artificial Intelligence, China), Xintong Zhang (Beijing Jiaotong University and Beijing Institute for General Artificial Intelligence, China), Xiaojian Ma (Beijing Institute for General Artificial Intelligence, China), Wenjuan Han (Beijing Jiaotong University, China), Song-Chun Zhu (Peking University, Beijing Institute for General Artificial Intelligence, and Tsinghua University, China), and Qing Li (Beijing Institute for General Artificial Intelligence, China)	13258
Naturally Supervised 3D Visual Grounding with Language-Regularized Concept Learners Chun Feng (Stanford University, USA), Joy Hsu (Stanford University, USA), Weiyu Liu (Stanford University, USA), and Jiajun Wu (Stanford University, USA)	13269

Synthesize, Diagnose, and Optimize: Towards Fine-Grained Vision-Language Understanding 132! Wujian Peng (Fudan University, China), Sicheng Xie (Fudan University, China), Zuyao You (Fudan University, China), Shiyi Lan (NVIDIA, USA), and Zuxuan Wu (Fudan University, China)	.79
AssistGUI: Task-Oriented PC Graphical User Interface Automation	89
SEED-Bench: Benchmarking Multimodal Large Language Models	99
Unknown Prompt, the only Lacuna: Unveiling CLIP's Potential for Open Domain Generalization 13309 Mainak Singha (Aisin Corporation, Japan), Ankit Jha (IIT Bombay, India), Shirsha Bose (TU Munich, Germany), Ashwin Nair (IISER Thiruvananthapuram, India), Moloud Abdar (Deakin University, Australia), and Biplab Banerjee (IIT Bombay, India)	
Panda-70M: Captioning 70M Videos with Multiple Cross-Modality Teachers	20
Decoupling Static and Hierarchical Motion Perception for Referring Video Segmentation 1333 Shuting He (Nanyang Technological University, Singapore) and Henghui Ding (Fudan University, China)	32
Causal-CoG: A Causal-Effect Look at Context Generation for Boosting Multi-modal Language Models	42
Posterior Distillation Sampling	52

Towards More Unified In-context Visual Understanding
Mask4Align: Aligned Entity Prompting with Color Masks for Multi-Entity Localization Problems
SOK-Bench: A Situated Video Reasoning Benchmark with Aligned Open-World Knowledge 1338 Andong Wang (The University of Hong Kong), Bo Wu (MIT-IBM Watson AI Lab), Sunli Chen (Institute for Interdisciplinary Information Sciences, Tsinghua University), Zhenfang Chen (MIT-IBM Watson AI lab), Haotian Guan (The University of Hong Kong), Wei-Ning Lee (The University of Hong Kong), Li Erran Li (AWS AI), and Chuang Gan (UMass Amherst & MIT-IBM Watson AI Lab)
Align and Aggregate: Compositional Reasoning with Video Alignment and Answer Aggregation for Video Question-Answering
Segment and Caption Anything
OPERA: Alleviating Hallucination in Multi-Modal Large Language Models via Over-Trust Penalty and Retrospection-Allocation
Learning by Correction: Efficient Tuning Task for Zero-Shot Generative Vision-Language Reasoning

Revisiting Counterfactual Problems in Referring Expression Comprehension	3438
ScanFormer: Referring Expression Comprehension by Iteratively Scanning	3449
See, Say, and Segment: Teaching LMMs to Overcome False Premises	3459
SignGraph: A Sign Sequence is Worth Graphs of Nodes	3470
Enhancing Vision-Language Pre-training with Rich Supervisions	3480
De-Diffusion Makes Text a Strong Cross-Modal Interface	3492
MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding 13504 Bo He (University of Maryland, College Park), Hengduo Li (Meta), Young Kyun Jang (Meta), Menglin Jia (Meta), Xuefei Cao (Meta), Ashish Shah (Meta), Abhinav Shrivastava (University of Maryland, College Park), and Ser-Nam Lim (University of Central Florida)	
Incorporating Geo-Diverse Knowledge into Prompting for Increased Geographical Robustness in Object Recognition	3515
Retrieval-Augmented Egocentric Video Captioning	3525

Towards Better Vision-Inspired Vision-Language Models	13537
PIN: Positional Insert Unlocks Object Localisation Abilities in VLMs Michael Dorkenwald (University of Amsterdam, Netherlands), Nimrod Barazani (University of Amsterdam, Netherlands), Cees G. M. Snoek (University of Amsterdam, Netherlands), and Yuki M. Asano (University of Amsterdam, Netherlands)	13548
Polos: Multimodal Metric Learning from Human Feedback for Image Captioning	13559
Siamese Learning with Joint Alignment and Regression for Weakly-Supervised Video Paragraph Grounding	
Koala: Key Frame-Conditioned Long Video-LLM Reuben Tan (Boston University), Ximeng Sun (Boston University), Ping Hu (University of Electronic Science and Technology of China), Jui-hsien Wang (Adobe Research), Hanieh Deilamsalehy (Adobe Research), Bryan A. Plummer (Boston University), Bryan Russell (Adobe Research), and Kate Saenko (Boston University)	13581
Generating Enhanced Negatives for Training Language-Based Object Detectors	13592
Non-autoregressive Sequence-to-Sequence Vision-Language Models	13603
Synthesize Step-by-Step: Tools, Templates and LLMs as Data Generators for Reasoning-Based Chart VQA	13613
Towards Learning a Generalist Model for Embodied Navigation Duo Zheng (The Chinese University of Hong Kong, China), Shijia Huang (The Chinese University of Hong Kong, China), Lin Zhao (Centre for Perceptual and Interactive Intelligence, China), Yiwu Zhong (The Chinese University of Hong Kong, China), and Liwei Wang (The Chinese University of Hong Kong, China)	13624
"Previously on" From Recaps to Story Summarization Aditya Kumar Singh (International Institute of Information Technology, Hyderabad), Dhruv Srivastava (International Institute of Information Technology, Hyderabad), and Makarand Tapaswi (International Institute of Information Technology, Hyderabad)	13635

MM-Narrator: Narrating Long-form Videos with Multimodal In-Context Learning	13647
BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning	13658
Holistic Autonomous Driving Understanding by Bird's-Eye-View Injected Multi-Modal Large Models	13668
Situational Awareness Matters in 3D Vision Language Reasoning	13678
SRTube: Video-Language Pre-Training with Action-Centric Video Tube Features and Semantic Role Labeling Ju-Hee Lee (Ewha Womans University, South Korea) and Je-Won Kang (Ewha Womans University, South Korea)	
Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding	
Curriculum Point Prompting for Weakly-Supervised Referring Image Segmentation	13711
Tune-An-Ellipse: CLIP Has Potential to Find What You Want Jinheng Xie (Show Lab, National University of Singapore), Songhe Deng (Shenzhen University), Bing Li (AI Initiative, King Abdullah University of Science and Technology), Haozhe Liu (AI Initiative, King Abdullah University of Science and Technology), Yawen Huang (Jarvis Research Center, Tencent YouTu Lab), Yefeng Zheng (Jarvis Research Center, Tencent YouTu Lab), Jurgen Schmidhuber (AI Initiative, King Abdullah University of Science and Technology), Bernard Ghanem (AI Initiative, King Abdullah University of Science and Technology), Linlin Shen (Shenzhen University), and Mike Zheng Shou (Show Lab, National University of Singapore)	13723

EVCap: Retrieval-Augmented Image Captioning with External Visual-Name Memory for Open-World Comprehension	13733
Plug-and-Play Diffusion Distillation	13743
Lookahead Exploration with Neural Radiance Representation for Continuous Vision-Language Navigation	13753
Low-Rank Approximation for Sparse Attention in Multi-Modal LLMs Lin Song (Tencent AILab), Yukang Chen (CUHK), Shuai Yang (HKUST (GZ)), Xiaohan Ding (Tencent AILab), Yixiao Ge (Tencent AILab), Ying-Cong Chen (HKUST (GZ)), and Ying Shan (Tencent AILab)	13763
Contrasting Intra-Modal and Ranking Cross-Modal Hard Negatives to Enhance Visio-Linguistic Compositional Understanding	
Iterated Learning Improves Compositionality in Large Vision-Language Models	13785
RegionGPT: Towards Region Understanding Vision Language Model	13796

Tianyu Yu (Tsinghua University), Yuan Yao (National University of Singapore), Haogo Zhang (Tsinghua University), Taiwen He (Tsinghua University), Jiyifyan Jian (Tsinghua University), Zhiyuan Liu (Tsinghua University), Jiyifyan Jian (Tsinghua University), Jiyifyan Jian (Tsinghua University), Jiyifyan Liu (Tsinghua University), Jiyifyan Liu (Tsinghua University), Hai-Tao Zheng (Shenzhen International Graduate School, Tsinghua University), and Tat-Seng Chua (National University of Singapore) Honeybee: Locality-enhanced Projector for Multimodal LLM	$RLHF-V: Towards\ Trustworthy\ MLLMs\ via\ Behavior\ Alignment\ from\ Fine-grained\ Correctional$	
Singapore), Haoye Zhang (Tsinghua University), Taiwen He (Tsinghua University), Pigng Han (Tsinghua University), Ganqu Cui (Tsinghua University), Jinyi Hu (Tsinghua University), Jinyi Hu (Tsinghua University), Jinyi Hu (Tsinghua University), Hai-Tao Zheng (Shenzhen International Graduate School, Tsinghua University), Pagneheng Laboratory, Shenzhen, China), Maosong Sun (Tsinghua University), and Tat-Seng Chua (National University of Singapore) Honeybee: Locality-enhanced Projector for Multimodal LLM		13807
University), Yifeng Han (Tsinghua University), Ganqu Cui (Tsinghua University), Jinyi Hu Tsinghua University, Pengcheng Laboratory, Shenzhen, China), Maosong Sun (Tsinghua University), and Tat-Seng Chua (National University of Singapore) Honeybee: Locality-enhanced Projector for Multimodal LLM		
University), Jinyi Hu (Tsinghua University), Zhiyuan Liu (Tsinghua University), Hai-Tao Zheng (Shenzhen International Graduate School, Tsinghua University) engcheng Laboratory, Shenzhen, China), Maosong Sun (Tsinghua University), and Tat-Seng Chua (National University of Singapore) Honeybee: Locality-enhanced Projector for Multimodal LLM		
University), Hai-Tao Zheng (Shenzhen International Graduate School, Tsinghua University, Pengcheng Laboratory, Shenzhen, China), Maosong Sun (Tsinghua University), and Tat-Seng Chua (National University of Singapore) Honeybee: Locality-enhanced Projector for Multimodal LLM	t i e e e e e e e e e e e e e e e e e e	
Tsinghua University; Pengcheng Laboratory, Shenzhen, China), Maosong Sum (Tsinghua University), and Tat-Seng Chua (National University of Singapore) Honeybee: Locality-enhanced Projector for Multimodal LLM Junbum Cha (Kakao Brain, South Korea), Wooyoung Kang (Kakao Brain, South Korea), Jonghoam Mun (Kakao Brain, South Korea), and Byungseok Roh (Kakao Brain, South Korea) E-GPS: Explainable Geometry Problem Solving via Top-Down Solver and Bottom-Up Generator 13828 Wenjun Wu (Xi'an Jiaotong University, China), Lingling Zhang (Xi'an Jiaotong University, China), Jun Liu (Xi'an Jiaotong University, China), Xi Tang (Xi'an Jiaotong University, China), Yaxian Wang (Xi'an Jiaotong University, China), Shaowei Wang (Xi'an Jiaotong University, China), and Qianying Wang (Lenovo Research, China) Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs Shiyu Xuan (Peking University, China), Qingpei Guo (Ant Group), Ming Yang (Ant Group), and Shiliang Zhang (Peking University, China) Any-Shift Prompting for Generalization over Distributions 13849 Zehao Xiao (University of Amsterdam, Netherlands), Jiayi Shen (University of Amsterdam, Netherlands), Mohammad Mahdi Derakhshani (University of Amsterdam, Netherlands), Shengcai Liao (Core42, UAE), and Cees G. M. Snoek (University of Amsterdam, Netherlands) Question Aware Vision Transformer for Multimodal Reasoning 13861 Roy Ganz (Technion, Israel), Yair Kittenplon (Amazon AWS, Israel), Aviad Aberdam (Amazon AWS, Israel), Elad Ben Avraham (Amazon AWS, Israel), oren Nuriel (Amazon AWS, Israel), Shai Mazor (Amazon AWS, Israel), and Ron Litman (Amazon AWS, Israel) Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding 13872 Sicong Leng (Nanyang Technological University), Hang Zhang (DAMO Academy, Alibaba Group), Siijan Lu (Nanyang Technological University), Chunyan Miao (Nanyang Technological University), and Lidong Bing (DAMO Academy, Alibaba Group) Text-Image Alignment for Diffusion-Based Perception 13883 Mar		
Sun (Tsinghua University), and Tat-Seng Chua (National University of Singapore) Honeybee: Locality-enhanced Projector for Multimodal LLM	v v	
Honeybee: Locality-enhanced Projector for Multimodal LLM		
Honeybee: Locality-enhanced Projector for Multimodal LLM		
Junbum Cha (Kakao Brain, South Korea), Wooyoung Kang (Kakao Brain, South Korea), Jonghtoan Mun (Kakao Brain, South Korea), and Byungseok Roh (Kakao Brain, South Korea) E-GPS: Explainable Geometry Problem Solving via Top-Down Solver and Bottom-Up Generator	Singapore)	
Junbum Cha (Kakao Brain, South Korea), Wooyoung Kang (Kakao Brain, South Korea), Jonghtoan Mun (Kakao Brain, South Korea), and Byungseok Roh (Kakao Brain, South Korea) E-GPS: Explainable Geometry Problem Solving via Top-Down Solver and Bottom-Up Generator	Honeybee: Locality-enhanced Projector for Multimodal LLM	13817
Roh (Kakao Brain, South Korea) E-GPS: Explainable Geometry Problem Solving via Top-Down Solver and Bottom-Up Generator		
Roh (Kakao Brain, South Korea) E-GPS: Explainable Geometry Problem Solving via Top-Down Solver and Bottom-Up Generator		
Wenjun Wu (Xi'an Jiaotong University, China), Lingling Zhang (Xi'an Jiaotong University, China), Jun Liu (Xi'an Jiaotong University, China), Xi Tang (Xi'an Jiaotong University, China), Xi Tang (Xi'an Jiaotong University, China), Jiaotong University, China), and Qianying Wang (Lenovo Research, China) Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs 13838 Shiyu Xuan (Peking University, China), Qingpei Guo (Ant Group), Ming Yang (Ant Group), and Shiliang Zhang (Peking University, China) Any-Shift Prompting for Generalization over Distributions 13849 Zehao Xiao (University of Amsterdam, Netherlands), Jiayi Shen (University of Amsterdam, Netherlands), Mohammad Mahdi Derakhshani (University of Amsterdam, Netherlands), Shengcai Liao (Core42, UAE), and Cees G. M. Snoek (University of Amsterdam, Netherlands) Question Aware Vision Transformer for Multimodal Reasoning 13861 Roy Ganz (Technion, Israel), Yair Kittenplon (Amazon AWS, Israel), Aviad Aberdam (Amazon AWS, Israel), Elad Ben Avraham (Amazon AWS, Israel), and Rom Litman (Amazon AWS, Israel) (Shai Mazor (Amazon AWS, Israel)), and Rom Litman (Amazon AWS, Israel) Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding 13872 Sicong Leng (Nanyang Technological University), Hang Zhang (DAMO Academy, Alibaba Group), Guanzheng Chen (DAMO Academy, Alibaba Group), Guanzheng Chen (DAMO Academy, Alibaba Group), Xin Li (DAMO Academy, Alibaba Group), Shijian Lu (Nanyang Technological University), and Lidong Bing (DAMO Academy, Alibaba Group) Text-Image Alignment for Diffusion-Based Perception 13883 Merkar Kondapaneni (California Institute of Technology, USA), Markus Marks (California Institute of Technology, USA), Markus		
Wenjun Wu (Xi'an Jiaotong University, China), Lingling Zhang (Xi'an Jiaotong University, China), Jun Liu (Xi'an Jiaotong University, China), Xi Tang (Xi'an Jiaotong University, China), Xi Tang (Xi'an Jiaotong University, China), Jiaotong University, China), and Qianying Wang (Lenovo Research, China) Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs 13838 Shiyu Xuan (Peking University, China), Qingpei Guo (Ant Group), Ming Yang (Ant Group), and Shiliang Zhang (Peking University, China) Any-Shift Prompting for Generalization over Distributions 13849 Zehao Xiao (University of Amsterdam, Netherlands), Jiayi Shen (University of Amsterdam, Netherlands), Mohammad Mahdi Derakhshani (University of Amsterdam, Netherlands), Shengcai Liao (Core42, UAE), and Cees G. M. Snoek (University of Amsterdam, Netherlands) Question Aware Vision Transformer for Multimodal Reasoning 13861 Roy Ganz (Technion, Israel), Yair Kittenplon (Amazon AWS, Israel), Aviad Aberdam (Amazon AWS, Israel), Elad Ben Avraham (Amazon AWS, Israel), and Rom Litman (Amazon AWS, Israel) (Shai Mazor (Amazon AWS, Israel)), and Rom Litman (Amazon AWS, Israel) Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding 13872 Sicong Leng (Nanyang Technological University), Hang Zhang (DAMO Academy, Alibaba Group), Guanzheng Chen (DAMO Academy, Alibaba Group), Guanzheng Chen (DAMO Academy, Alibaba Group), Xin Li (DAMO Academy, Alibaba Group), Shijian Lu (Nanyang Technological University), and Lidong Bing (DAMO Academy, Alibaba Group) Text-Image Alignment for Diffusion-Based Perception 13883 Merkar Kondapaneni (California Institute of Technology, USA), Markus Marks (California Institute of Technology, USA), Markus	F-CPS: Explainable Geometry Problem Solving via Top-Down Solver and Bottom-Up Generator	
Wenjun Wu (Xi'an Jiaotong University, China), Jun Liu (Xi'an Jiaotong University, China), Jun Liu (Xi'an Jiaotong University, China), Xi Tang (Xi'an Jiaotong University, China), Yaxian Wang (Xi'an Jiaotong University, China), Shaowei Wang (Xi'an Jiaotong University, China), and Qianying Wang (Lenovo Research, China) Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs		
Jiaotong University, China), Jun Liu (Xi'an Jiaotong University, China), Xi Tang (Xi'an Jiaotong University, China), Yaxian Wang (Xi'an Jiaotong University, China), Shaowei Wang (Xi'an Jiaotong University, China), and Qianying Wang (Lenovo Research, China) Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs Shiyu Xuan (Peking University, China), Qingpei Guo (Ant Group), Ming Yang (Ant Group), and Shiliang Zhang (Peking University, China) Any-Shift Prompting for Generalization over Distributions Zehao Xiao (University of Amsterdam, Netherlands), Jiayi Shen (University of Amsterdam, Netherlands), Mohammad Mahdi Derakhshani (University of Amsterdam, Netherlands), Shengcai Liao (Core42, UAE), and Cees G. M. Snoek (University of Amsterdam, Netherlands) Question Aware Vision Transformer for Multimodal Reasoning Roy Ganz (Technion, Israel), Yair Kittenplon (Amazon AWS, Israel), Aviad Aberdam (Amazon AWS, Israel), Shai Mazor (Amazon AWS, Israel), Oren Nuriel (Amazon AWS, Israel), Shai Mazor (Amazon AWS, Israel), and Ron Litman (Amazon AWS, Israel) Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding Sicong Leng (Nanyang Technological University), Hang Zhang (DAMO Academy, Alibaba Group), Guanzheng Chen (DAMO Academy, Alibaba Group), Xin Li (DAMO Academy, Alibaba Group), Shijian Lu (Nanyang Technological University), Chunyan Miao (Nanyang Technological University), and Lidong Bing (DAMO Academy, Alibaba Group) Text-Image Alignment for Diffusion-Based Perception 13883 Neehar Kondapaneni (California Institute of Technology, USA), Markus Marks (California Institute of Technology, USA), Markus		
China), Xi Tang (Xi'an Jiaotong University, China), Yaxian Wang (Xi'an Jiaotong University, China), Shaowei Wang (Xi'an Jiaotong University, China), Shaowei Wang (Xi'an Jiaotong University, China), and Qianying Wang (Lenovo Research, China) Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs		
Jiaotong University, China), Shaowei Wang (Xi'an Jiaotong University, China), and Qianying Wang (Lenovo Research, China) Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs		
China), and Qianying Wang (Lenovo Research, China) Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs Shiyu Xuan (Peking University, China), Qingpei Guo (Ant Group), Ming Yang (Ant Group), and Shiliang Zhang (Peking University, China) Any-Shift Prompting for Generalization over Distributions Zehao Xiao (University of Amsterdam, Netherlands), Jiayi Shen (University of Amsterdam, Netherlands), Mohammad Mahdi Derakhshani (University of Amsterdam, Netherlands), Shengcai Liao (Core42, UAE), and Cees G. M. Snoek (University of Amsterdam, Netherlands) Question Aware Vision Transformer for Multimodal Reasoning Roy Ganz (Technion, Israel), Yair Kittenplon (Amazon AWS, Israel), Aviad Aberdam (Amazon AWS, Israel), Elad Ben Avraham (Amazon AWS, Israel), Oren Nuriel (Amazon AWS, Israel), Shai Mazor (Amazon AWS, Israel), and Ron Litman (Amazon AWS, Israel) Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding Sicong Leng (Nanyang Technological University), Hang Zhang (DAMO Academy, Alibaba Group), Guanzheng Chen (DAMO Academy, Alibaba Group), Xin Li (DAMO Academy, Alibaba Group), Shijian Lu (Nanyang Technological University), Chunyan Miao (Nanyang Technological University), and Lidong Bing (DAMO Academy, Alibaba Group) Text-Image Alignment for Diffusion-Based Perception Neehar Kondapaneni (California Institute of Technology, USA), Markus Marks (California Institute of Technology, USA), Manuel Knott (ETH		
Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs Shiyu Xuan (Peking University, China), Qingpei Guo (Ant Group), Ming Yang (Ant Group), and Shiliang Zhang (Peking University, China) Any-Shift Prompting for Generalization over Distributions Zehao Xiao (University of Amsterdam, Netherlands), Jiayi Shen (University of Amsterdam, Netherlands), Mohammad Mahdi Derakhshani (University of Amsterdam, Netherlands), Shengcai Liao (Core42, UAE), and Cees G. M. Snoek (University of Amsterdam, Netherlands) Question Aware Vision Transformer for Multimodal Reasoning Roy Ganz (Technion, Israel), Yair Kittenplon (Amazon AWS, Israel), Aviad Aberdam (Amazon AWS, Israel), Elad Ben Avraham (Amazon AWS, Israel), Oren Nuriel (Amazon AWS, Israel), Shai Mazor (Amazon AWS, Israel), and Ron Litman (Amazon AWS, Israel) Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding Sicong Leng (Nanyang Technological University), Hang Zhang (DAMO Academy, Alibaba Group), Guanzheng Chen (DAMO Academy, Alibaba Group), Xin Li (DAMO Academy, Alibaba Group), Shijian Lu (Nanyang Technological University), Chunyan Miao (Nanyang Technological University), and Lidong Bing (DAMO Academy, Alibaba Group) Text-Image Alignment for Diffusion-Based Perception 13883 Neehar Kondapaneni (California Institute of Technology, USA), Markus Marks (California Institute of Technology, USA), Manuel Knott (ETH		
Shiyu Xuan (Peking University, China), Qingpei Guo (Ant Group), Ming Yang (Ant Group), and Shiliang Zhang (Peking University, China) Any-Shift Prompting for Generalization over Distributions		13838
Yang (Ant Group), and Shiliang Zhang (Peking University, China) Any-Shift Prompting for Generalization over Distributions		13030
Any-Shift Prompting for Generalization over Distributions	, ,	
Zehao Xiao (University of Amsterdam, Netherlands), Jiayi Shen (University of Amsterdam, Netherlands), Mohammad Mahdi Derakhshani (University of Amsterdam, Netherlands), Shengcai Liao (Core42, UAE), and Cees G. M. Snoek (University of Amsterdam, Netherlands) Question Aware Vision Transformer for Multimodal Reasoning		
(University of Amsterdam, Netherlands), Mohammad Mahdi Derakhshani (University of Amsterdam, Netherlands), Shengcai Liao (Core42, UAE), and Cees G. M. Snoek (University of Amsterdam, Netherlands) Question Aware Vision Transformer for Multimodal Reasoning	,	13849
(University of Amsterdam, Netherlands), Shengcai Liao (Core42, UAE), and Cees G. M. Snoek (University of Amsterdam, Netherlands) Question Aware Vision Transformer for Multimodal Reasoning		
and Cees G. M. Snoek (University of Amsterdam, Netherlands) Question Aware Vision Transformer for Multimodal Reasoning		
Question Aware Vision Transformer for Multimodal Reasoning		
Roy Ganz (Technion, Israel), Yair Kittenplon (Amazon AWS, Israel), Aviad Aberdam (Amazon AWS, Israel), Elad Ben Avraham (Amazon AWS, Israel), Oren Nuriel (Amazon AWS, Israel), Shai Mazor (Amazon AWS, Israel), and Ron Litman (Amazon AWS, Israel) Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding	and Cees G. M. Snoek (University of Amsterdam, Netherlands)	
Aviad Aberdam (Amazon AWS, Israel), Elad Ben Avraham (Amazon AWS, Israel), Oren Nuriel (Amazon AWS, Israel), Shai Mazor (Amazon AWS, Israel), and Ron Litman (Amazon AWS, Israel) Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding	Question Aware Vision Transformer for Multimodal Reasoning	13861
Israel), Oren Nuriel (Amazon AWS, Israel), Shai Mazor (Amazon AWS, Israel), and Ron Litman (Amazon AWS, Israel) Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding	· ·	
Israel), and Ron Litman (Amazon AWS, Israel) Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding		
Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding		
Contrastive Decoding	Israel), and Ron Litman (Amazon AWS, Israel)	
Contrastive Decoding	Mitigating Object Hallucinations in Large Vision-Language Models through Visual	
Sicong Leng (Nanyang Technological University), Hang Zhang (DAMO Academy, Alibaba Group), Guanzheng Chen (DAMO Academy, Alibaba Group), Xin Li (DAMO Academy, Alibaba Group), Shijian Lu (Nanyang Technological University), Chunyan Miao (Nanyang Technological University), and Lidong Bing (DAMO Academy, Alibaba Group) Text-Image Alignment for Diffusion-Based Perception 13883 Neehar Kondapaneni (California Institute of Technology, USA), Markus Marks (California Institute of Technology, USA), Manuel Knott (ETH		13872
Xin Li (DAMO Academy, Alibaba Group), Shijian Lu (Nanyang Technological University), Chunyan Miao (Nanyang Technological University), and Lidong Bing (DAMO Academy, Alibaba Group) Text-Image Alignment for Diffusion-Based Perception		
Technological University), Chunyan Miao (Nanyang Technological University), and Lidong Bing (DAMO Academy, Alibaba Group) Text-Image Alignment for Diffusion-Based Perception	Academy, Alibaba Group), Guanzheng Chen (DAMO Academy, Alibaba Group),	
University), and Lidong Bing (DAMO Academy, Alibaba Group) Text-Image Alignment for Diffusion-Based Perception	Xin Li (DAMO Academy, Alibaba Group), Shijian Lu (Nanyang	
Text-Image Alignment for Diffusion-Based Perception	Technological University), Chunyan Miao (Nanyang Technological	
Neehar Kondapaneni (California Institute of Technology, USA), Markus Marks (California Institute of Technology, USA), Manuel Knott (ETH	University), and Lidong Bing (DAMO Academy, Alibaba Group)	
Neehar Kondapaneni (California Institute of Technology, USA), Markus Marks (California Institute of Technology, USA), Manuel Knott (ETH	Text-Image Alignment for Diffusion-Based Perception	13883
Marks (California Institute of Technology, USA), Manuel Knott (ETH	1	
, ev	, , , , , , , , , , , , , , , , , , , ,	
	Zurich, Swiss Data Science Center, Empa, Switzerland), Rogerio	
Guimaraes (California Institute of Technology, USA), and Pietro Perona	, e	
(California Institute of Technology, USA)		

Do You Remember? Dense Video Captioning with Cross-Modal Memory Retrieval	13894
FairDeDup: Detecting and Mitigating Vision-Language Fairness Disparities in Semantic Dataset Deduplication	13905
G^3-LQ: Marrying Hyperbolic Alignment with Explicit Semantic-Geometric Modeling for 3D Visual Grounding	13917
VideoCon: Robust Video-Language Alignment via Contrast Captions Hritik Bansal (University of California Los Angeles), Yonatan Bitton (Google Research), Idan Szpektor (Google Research), Kai-Wei Chang (University of California Los Angeles), and Aditya Grover (University of California Los Angeles)	13927
Taming Self-Training for Open-Vocabulary Object Detection Shiyu Zhao (Rutgers University, USA), Samuel Schulter (NEC Laboratories America, USA), Long Zhao (Google Research, USA), Zhixing Zhang (Rutgers University, USA), Vijay Kumar B G (NEC Laboratories America, USA), Yumin Suh (NEC Laboratories America, USA), Manmohan Chandraker (UC San Diego, USA), and Dimitris N. Metaxas (Rutgers University, USA)	13938
SyncMask: Synchronized Attentional Masking for Fashion-centric Vision-Language Pretraining. Chull Hwan Song (Dealicious Inc.), Taebaek Hwang (Dealicious Inc.), Jooyoung Yoon (Dealicious Inc.), Shunghyun Choi (Dealicious Inc.), and Yeong Hyeon Gu (Sejong University)	13948
Generative Region-Language Pretraining for Open-Ended Object Detection	13958
CoG-DQA: Chain-of-Guiding Learning with Large Language Models for Diagram Question Answering	13969

Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception Junwen He (Dalian University of Technology, China), Yifan Wang (Dalian University of Technology, China), Lijun Wang (Dalian University of Technology, China), Huchuan Lu (Dalian University of Technology, China), Jun-Yan He (DAMO Academy, Alibaba Group, China), Jin-Peng Lan (DAMO Academy, Alibaba Group, China), Bin Luo (DAMO Academy, Alibaba Group, China), and Xuansong Xie (DAMO Academy, Alibaba Group, China)	. 13980
Generate Subgoal Images before Act: Unlocking the Chain-of-Thought Reasoning in Diffusion Model for Robot Manipulation with Multimodal Prompts	13991
LoSh: Long-Short Text Joint Prediction Network for Referring Video Object Segmentation	. 14001
MICap: A Unified Model for Identity-Aware Movie Descriptions Haran Raajesh (International Institute of Information Technology, Hyderabad), Naveen Reddy Desanur (International Institute of Information Technology, Hyderabad), Zeeshan Khan (Inria Paris and Département d'informatique de l'ENS, CNRS, PSL Research University), and Makarand Tapaswi (International Institute of Information Technology, Hyderabad)	14011
CapsFusion: Rethinking Image-Text Data at Scale	. 14022
Visual Fact Checker: Enabling High-Fidelity Detailed Caption Generation	14033
VidLA: Video-Language Alignment at Scale Mamshad Nayeem Rizve (Amazon, USA), Fan Fei (Amazon, USA), Jayakrishnan Unnikrishnan (Amazon, USA), Son Tran (Amazon, USA), Benjamin Z. Yao (Amazon, USA), Belinda Zeng (Amazon, USA), Mubarak Shah (Amazon, USA; University of Central Florida, USA), and Trishul Chilimbi (Amazon, USA)	14043
Viewpoint-Aware Visual Grounding in 3D Scenes	14056
Multi-Modal Proxy Learning Towards Personalized Visual Multiple Clustering	14066

Jack of All Tasks, Master of Many: Designing General-Purpose Coarse-to-Fine Vision-Language Model	14076
LLaMA-Excitor: General Instruction Tuning via Indirect Feature Interaction	14089
MeaCap: Memory-Augmented Zero-shot Image Captioning	4100
The STVchrono Dataset: Towards Continuous Change Recognition in Time	4111
InstaGen: Enhancing Object Detection by Training on Synthetic Dataset	l 4121
MiKASA: Multi-Key-Anchor & Scene-Aware Transformer for 3D Visual Grounding	l 4131
Investigating Compositional Challenges in Vision-Language Models for Visual Grounding 1 Yunan Zeng (Center for Research on Intelligent Perception and Computing (CRIPAC), Institute of Automation, Chinese Academy of Sciences (CASIA), Meituan), Yan Huang (Center for Research on Intelligent Perception and Computing (CRIPAC), Institute of Automation, Chinese Academy of Sciences (CASIA)), Jinjin Zhang (Meituan), Zequn Jie (Meituan), Zhenhua Chai (Meituan), and Liang Wang (Center for Research on Intelligent Perception and Computing (CRIPAC), Institute of Automation, Chinese Academy of Sciences (CASIA))	l 414 1
Masked AutoDecoder is Effective Multi-Task Vision Generalist	l 41 52

Efficient Test-Time Adaptation of Vision-Language Models	. 14162
FFF: Fixing Flawed Foundations in Contrastive Pre-Training Results in Very Strong Vision-Language Models Adrian Bulat (Samsung AI Cambridge), Yassine Ouali (Samsung AI Cambridge), and Georgios Tzimiropoulos (Samsung AI Cambridge; Queen Mary University of London)	. 14172
Open3DSG: Open-Vocabulary 3D Scene Graphs from Point Clouds with Queryable Objects and Open-Set Relationships	
Instance-level Expert Knowledge and Aggregate Discriminative Attention for Radiology Report Generation	. 14194
Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts Jialin Wu (Google Research), Xia Hu (Google Research), Yaqing Wang (Google Deepmind), Bo Pang (Google Research), and Radu Soricut (Google Research)	. 14205
Building Vision-Language Models on Solid Foundations with Masked Distillation	. 14216
GROUNDHOG: Grounding Large Language Models to Holistic Segmentation	. 14227
DRESS: Instructing Large Vision-Language Models to Align and Interact with Humans via Natural Language Feedback	. 14239
LASO: Language-guided Affordance Segmentation on 3D Object Yicong Li (National University of Singapore), Na Zhao (Singapore University of Technology and Design), Junbin Xiao (National University of Singapore), Chun Feng (University of Science and Technology of China), Xiang Wang (University of Science and Technology of China), and Tat-seng Chua (National University of Singapore)	. 14251

Omni-Q: Omni-Directional Scene Understanding for Unsupervised Visual Grounding	14261
VTimeLLM: Empower LLM to Grasp Video Moments Bin Huang (Tsinghua University, China), Xin Wang (Tsinghua University, China), Hong Chen (Tsinghua University, China), Zihan Song (Tsinghua University, China), and Wenwu Zhu (Tsinghua University, China)	14271
CogAgent: A Visual Language Model for GUI Agents	14281
EgoThink: Evaluating First-Person Perspective Thinking Capability of Vision-Language Models Sijie Cheng (Tsinghua University, China), Zhicheng Guo (Tsinghua University, China), Jingwen Wu (University of Toronto, Canada), Kechen Fang (Tsinghua University, China), Peng Li (Tsinghua University, China), Huaping Liu (Tsinghua University, China), and Yang Liu (Tsinghua University, China)	14291
Multi-Modal Hallucination Control by Visual Information Grounding	14303
TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understandi 14313 Shuhuai Ren (Peking University, China), Linli Yao (Peking University, China), Shicheng Li (Peking University, China), Xu Sun (Peking University, China), and Lu Hou (Huawei, China)	ng
AHIVE: Anatomy-aware Hierarchical Vision Encoding for Interactive Radiology Report Retrieval Sixing Yan (Hong Kong Baptist University, Hong Kong SAR, China), William K. Cheung (Hong Kong Baptist University, Hong Kong SAR, China), Ivor W. Tsang (Agency for Science, Technology and Research, Singapore), Keith Chiu (Queen Elizabeth and Kwong Wah Hospitals, Hong Kong SAR, China), Terence M. Tong (Tuen Mun Hospital, Hong Kong SAR, China), Ka Chun Cheung (NVIDIA AI Technology Center, NVIDIA Corporation), and Simon See (NVIDIA AI Technology Center, NVIDIA Corporation)	14324
Do Vision and Language Encoders Represent the World Similarly? Mayug Maniparambil (ML Labs, Dublin City University), Raiymbek Akshulakov (University of California, Berkeley), Yasser Abdelaziz Dahou Djilali (Technological Innovation Institute), Mohamed El Amine Seddik (Technological Innovation Institute), Sanath Narayan (Technological Innovation Institute), Karttikeya Mangalam (University of California, Berkeley), and Noel E. O'Connor (ML Labs, Dublin City University; Technological Innovation Institute)	14334

Self-Training Large Language Models for Improved Visual Program Synthesis With Visual Reinforcement	344
Zaid Khan (Northeastern University), Vijay Kumar BG (NEC Laboratories America), Samuel Schulter (NEC Laboratories America), Yun Fu (Northeastern University), and Manmohan Chandraker (NEC Laboratories America, UC San Diego)	
Composing Object Relations and Attributes for Image-Text Matching	354
Zero-shot Referring Expression Comprehension via Structural Similarity Between Images and Captions	364
HallusionBench: An Advanced Diagnostic Suite for Entangled Language Hallucination and Visual Illusion in Large Vision-Language Models	375
A Simple Recipe for Contrastively Pre-training Video-First Encoders Beyond 16 Frames	386
Generative Multimodal Models are In-Context Learners	398
A Vision Check-up for Language Models	410

Compositional Chain-of-Thought Prompting for Large Multimodal Models	<u>2</u> 0
On Scaling Up a Multilingual Vision and Language Model	32
Dual-View Visual Contextualization for Web Navigation	. 5
SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities	i5
Beyond Seen Primitive Concepts and Attribute-Object Compositional Learning	i6
Orals 4A Autonomous Navigation and Egocentric Vision	
SAFDNet: A Simple and Effective Network for Fully Sparse 3D Object Detection	7

UnO: Unsupervised Occupancy Fields for Perception and Forecasting	14487
EgoGen: An Egocentric Synthetic Data Generator	14497
Learning to Segment Referred Objects from Narrated Egocentric Videos	14510
Producing and Leveraging Online Map Uncertainty in Trajectory Prediction	14521
Orals 4B 3D Vision	
SceneFun3D: Fine-Grained Functionality and Affordance Understanding in 3D Scenes Alexandros Delitzas (ETH Zurich, Switzerland), Ayca Takmaz (ETH Zurich, Switzerland), Federico Tombari (Google, Switzerland; TUM, Germany), Robert Sumner (ETH Zurich, Switzerland), Marc Pollefeys (ETH Zurich, Switzerland; Microsoft, Switzerland), and Francis Engelmann (ETH Zurich, Switzerland; Google, Switzerland)	14531
SpiderMatch: 3D Shape Matching with Global Optimality and Geometric Consistency Paul Roetzer (University of Bonn) and Florian Bernard (University of Bonn)	14543
PaSCo: Urban 3D Panoptic Scene Completion with Uncertainty Awareness	14554
PlatoNeRF: 3D Reconstruction in Plato's Cave via Single-View Two-Bounce Lidar	14565
Xiang (Meta), Siddharth Somasundaram (Massachusetts Institute of Technology), Yuchen Fan (Meta), Christian Richardt (Meta), Ramesh Raskar (Massachusetts Institute of Technology), and Rakesh Ranjan (Meta)	
Technology), Yuchen Fan (Meta), Christian Richardt (Meta), Ramesh Raskar (Massachusetts Institute of Technology), and Rakesh Ranjan	14575

Orals 4C Action and Motion

Modeling Multimodal Social Interactions: New Challenges and Baselines with Densely Aligned Representations	14585
An N-Point Linear Solver for Line and Motion Estimation with Event Cameras	14596
RoHM: Robust Human Motion Reconstruction via Diffusion Siwei Zhang (ETH Zurich, Switzerland), Bharat Lal Bhatnagar (Meta Reality Labs Research, Switzerland), Yuanlu Xu (Meta Reality Labs Research, USA), Alexander Winkler (Meta Reality Labs Research, USA), Petr Kadlecek (Meta Reality Labs Research, Switzerland), Siyu Tang (ETH Zurich, Switzerland), and Federica Bogo (Meta Reality Labs Research, Switzerland)	14606
Temporally Consistent Unbalanced Optimal Transport for Unsupervised Action Segmentation . Ming Xu (The Australian National University) and Stephen Gould (The Australian National University)	14618
FineParser: A Fine-grained Spatio-temporal Action Parser for Human-centric Action Quality Assessment Jinglin Xu (University of Science and Technology Beijing, China), Sibo Yin (Peking University, China), Guohao Zhao (Peking University, China), Zishuo Wang (Peking University, China), and Yuxin Peng (Peking University, China)	14628
Poster Session 4	
Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations Kewei Wang (Huazhong University of Science and Technology, China), Yizheng Wu (Huazhong University of Science and Technology, China), Jun Cen (Nanyang Technological University, Singapore), Zhiyu Pan (Huazhong University of Science and Technology, China), Xingyi Li (Huazhong University of Science and Technology, China), Zhe Wang (Sensetime Group Limited, China), Zhiguo Cao (Huazhong University of Science and Technology, China), and Guosheng Lin (Nanyang Technological University, Singapore)	14638
Multi-Space Alignments Towards Universal LiDAR Segmentation	14648

Generalized Predictive Model for Autonomous Driving	14662
Visual Point Cloud Forecasting enables Scalable Autonomous Driving	14673
SeMoLi: What Moves Together Belongs Together Jenny Seidenschwarz (Technical University of Munich), Aljosa Osep (NVIDIA), Francesco Ferroni (NVIDIA), Simon Lucey (University of Adelaide), and Laura Leal-Taixe (NVIDIA)	14685
AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving Mingfu Liang (Northwestern University, USA), Jong-Chyi Su (NEC Laboratories America, USA), Samuel Schulter (NEC Laboratories America, USA), Sparsh Garg (NEC Laboratories America, USA), Shiyu Zhao (Rutgers University, USA), Ying Wu (Northwestern University, USA), and Manmohan Chandraker (NEC Laboratories America, USA; UC San Diego, USA)	14695
Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for Point Cloud Analysis	14707
BEVSpread: Spread Voxel Pooling for Bird's-Eye-View Representation in Vision-based Roadside 3D Object Detection	14718
DualAD: Disentangling the Dynamic and Static World for End-to-End Driving Simon Doll (Mercedes-Benz AG, Germany; University of Tübingen, Germany), Niklas Hanselmann (Mercedes-Benz AG, Germany; University of Tübingen, Germany), Lukas Schneider (Mercedes-Benz AG, Germany), Richard Schulz (Mercedes-Benz AG, Germany), Marius Cordts (Mercedes-Benz AG, Germany), Markus Enzweiler (Esslingen University of Applied Sciences, Germany), and Hendrik P. A. Lensch (University of Tübingen, Germany)	14728

Towards Realistic Scene Generation with LiDAR Diffusion Models	4738
Driving into the Future: Multiview Visual Forecasting and Planning with World Model for Autonomous Driving	4749
VLP: Vision Language Planning for Autonomous Driving	4760
Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion	4770
UniMix: Towards Domain Adaptive and Generalizable LiDAR Semantic Segmentation in Adverse Weather	
Not All Voxels Are Equal: Hardness-Aware Semantic Scene Completion with Self-Distillation 14 Song Wang (Zhejiang University), Jiawei Yu (Zhejiang University), Wentong Li (Zhejiang University), Wenyu Liu (Zhejiang University), Xiaolu Liu (Zhejiang University), Junbo Chen (Udeer.ai), and Jianke Zhu (Zhejiang University)	1792
OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising	4802
MGMap: Mask-Guided Learning for Online Vectorized HD Map Construction	4812

Density-Adaptive Model Based on Motif Matrix for Multi-Agent Trajectory Prediction	. 14822
StreamingFlow: Streaming Occupancy Forecasting with Asynchronous Multi-modal Data Streaming Neural Ordinary Differential Equation Yining Shi (Tsinghua University), Kun Jiang (Tsinghua University), Ke Wang (KargoBot, Inc), Jiusi Li (Tsinghua University), Yunlong Wang (Tsinghua University), Mengmeng Yang (Tsinghua University), and Diange Yang (Tsinghua University)	
View From Above: Orthogonal-View aware Cross-view Localization	. 14843
Improving Distant 3D Object Detection Using 2D Box Supervision Zetong Yang (Shanghai AI Lab), Zhiding Yu (Nvidia), Chris Choy (Nvidia), Renhao Wang (UC Berkeley), Anima Anandkumar (Caltech), and Jose M. Alvarez (Nvidia)	. 14853
Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?	. 14864
CaDeT: a Causal Disentanglement Approach for Robust Trajectory Prediction in Autonomous	4.405.4
Driving	. 14874
Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory Prediction in Autonomous Driving	. 14885
NeuRAD: Neural Rendering for Autonomous Driving	. 14895

IS-Fusion: Instance-Scene Collaborative Fusion for Multimodal 3D Object Detection	14905
LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels	. 14916
RCBEVDet: Radar-camera Fusion in Bird's Eye View for 3D Object Detection Zhiwei Lin (Peking University, China), Zhe Liu (University of Electronic Science and Technology of China, China), Zhongyu Xia (Peking University, China), Xinhao Wang (Peking University, China), Yongtao Wang (Peking University, China), Shengxiang Qi (Chongqing Changan Automobile Co., Ltd., China), Yang Dong (Chongqing Changan Automobile Co., Ltd., China), Nan Dong (Chongqing Changan Automobile Co., Ltd., China), Le Zhang (University of Electronic Science and Technology of China, China), and Ce Zhu (University of Electronic Science and Technology of China, China)	. 14928
PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection	14938
Driving Everywhere with Large Language Model Policy Adaptation Boyi Li (NVIDIA), Yue Wang (University of Southern California / NVIDIA), Jiageng Mao (University of Southern California), Boris Ivanovic (NVIDIA), Sushant Veer (NVIDIA), Karen Leung (NVIDIA / University of Washington), and Marco Pavone (NVIDIA / Stanford University)	. 14948
Text2Loc: 3D Point Cloud Localization from Natural Language	14958
Commonsense Prototype for Outdoor Unsupervised 3D Object Detection Hai Wu (Fujian Key Laboratory of Sensing and Computing for Smart Cities, Xiamen University), Shijia Zhao (Fujian Key Laboratory of Sensing and Computing for Smart Cities, Xiamen University), Xun Huang (Fujian Key Laboratory of Sensing and Computing for Smart Cities, Xiamen University), Chenglu Wen (Fujian Key Laboratory of Sensing and Computing for Smart Cities, Xiamen University), Xin Li (Section of Visual Computing and Interactive Media, Texas A&M University), and Cheng Wang (Fujian Key Laboratory of Sensing and Computing for Smart Cities, Xiamen University)	. 14968

A-Teacher: Asymmetric Network for 3D Semi-Supervised Object Detection Hanshi Wang (State Key Laboratory of Multimodal Artifcial Intelligence Systems (MAIS), CASIA; School of Artifcial Intelligence, University of Chinese Academy of Sciences), Zhipeng Zhang (KargoBot), Jin Gao (State Key Laboratory of Multimodal Artifcial Intelligence Systems (MAIS), CASIA; School of Artifcial Intelligence, University of Chinese Academy of Sciences), and Weiming Hu (State Key Laboratory of Multimodal Artifcial Intelligence Systems (MAIS), CASIA; School of Artifcial Intelligence, University of Chinese Academy of Sciences; School of Information Science and Technology, ShanghaiTech University)	14978
MoST: Multi-Modality Scene Tokenization for Motion Prediction Norman Mu (Waymo LLC), Jingwei Ji (Waymo LLC), Zhenpei Yang (Waymo LLC), Nate Harada (Waymo LLC), Haotian Tang (Waymo LLC), Kan Chen (Waymo LLC), Charles R. Qi (Waymo LLC), Runzhou Ge (Waymo LLC), Kratarth Goel (Waymo LLC), Zoey Yang (Waymo LLC), Scott Ettinger (Waymo LLC), Rami Al-Rfou (Waymo LLC), Dragomir Anguelov (Waymo LLC), and Yin Zhou (Waymo LLC)	14988
Feedback-Guided Autonomous Driving Jimuyang Zhang (Boston University), Zanming Huang (Boston University), Arijit Ray (Boston University), and Eshed Ohn-Bar (Boston University)	15000
Bootstrapping Autonomous Driving Radars with Self-Supervised Learning	15012
SIRA: Scalable Inter-frame Relation and Association for Radar Perception	15024
SparseOcc: Rethinking Sparse Latent Representation for Vision-Based Semantic Occupancy Prediction Pin Tang (Shanghai Jiao Tong University, China), Zhongdao Wang (Huawei, China), Guoqing Wang (Shanghai Jiao Tong University, China), Jilai Zheng (Shanghai Jiao Tong University, China), Xiangxuan Ren (Shanghai Jiao Tong University, China), Bailan Feng (Huawei, China), and Chao Ma (Shanghai Jiao Tong University, China)	15035
DiffLoc: Diffusion Model for Outdoor LiDAR Localization	15045
Weak-to-Strong 3D Object Detection with X-Ray Distillation Alexander Gambashidze (Artificial Intelligence Research Institute, Russia), Aleksandr Dadukin (National Research University Higher School of Economics, Russia), Maxim Golyadkin (Artificial Intelligence Research Institute, Russia), Maria Razzhivina (National Research University Higher School of Economics, Russia), and Ilya Makarov (ISP RAS, Russia)	15055

T4P: Test-Time Training of Trajectory Prediction via Masked Autoencoder and Actor-specific Token Memory	15065
Editable Scene Simulation for Autonomous Driving via Collaborative LLM-Agents Yuxi Wei (Shanghai Jiao Tong University, China), Zi Wang (Carnegie Mellon University, USA), Yifan Lu (Shanghai Jiao Tong University, China), Chenxin Xu (Shanghai Jiao Tong University, China), Changxing Liu (Shanghai Jiao Tong University, China), Hao Zhao (Tsinghua University, China), Siheng Chen (Shanghai Jiao Tong University, China; Shanghai AI Laboratory, China), and Yanfeng Wang (Shanghai Jiao Tong University, China; Shanghai AI Laboratory, China)	15077
Uncertainty-Guided Never-Ending Learning to Drive	15088
On the Road to Portability: Compressing End-to-End Motion Planner for Autonomous Driving . Kaituo Feng (Beijing Institute of Technology, China), Changsheng Li (Beijing Institute of Technology, China), Dongchun Ren (ALLRIDE.AI, China), Ye Yuan (Beijing Institute of Technology, China), and Guoren Wang (Beijing Institute of Technology, China)	15099
Difflow3D: Toward Robust Uncertainty-Aware Scene Flow Estimation with Iterative Diffusion-Based Refinement Jiuming Liu (Shanghai Jiao Tong University, China), Guangming Wang (University of Cambridge, United Kingdom), Weicai Ye (Zhejiang University, China), Chaokang Jiang (PhiGent Robotics, China), Jinru Han (Shanghai Jiao Tong University, China), Zhe Liu (Shanghai Jiao Tong University, China), Guofeng Zhang (Zhejiang University, China), Dalong Du (PhiGent Robotics, China), and Hesheng Wang (Shanghai Jiao Tong University, China)	15109
LMDrive: Closed-Loop End-to-End Driving with Large Language Models Hao Shao (The Chinese University of Hong Kong, Hong Kong; Sensetime Research, China), Yuxuan Hu (CPII under InnoHK, Hong Kong), Letian Wang (University of Toronto, Canada), Guanglu Song (Sensetime Research, China), Steven L. Waslander (University of Toronto, Canada), Yu Liu (SenseTime Research, China; Shanghai Artificial Intelligence Laboratory, China), and Hongsheng Li (The Chinese University of Hong Kong, Hong Kong; CPII under InnoHK, Hong Kong; Shanghai Artificial Intelligence Laboratory, China)	15120
SOAC: Spatio-Temporal Overlap-Aware Multi-Sensor Calibration using Neural Radiance Fields 15131 Quentin Herau (Huawei Technologies, France), Nathan Piasco (Huawei Technologies, France), Moussab Bennehar (Huawei Technologies, France), Luis Roldao (Huawei Technologies, France), Dzmitry Tsishkou (Huawei Technologies, France), Cyrille Migniot (Université de Bourgogne, France), Pascal Vasseur (Université de Picardie Jules Verne), and Cédric Demonceaux (Université de Bourgogne)	

LaMPilot: An Open Benchmark Dataset for Autonomous Driving with Language Model Programs . 15141 Yunsheng Ma (Purdue University, USA), Can Cui (Purdue University, USA), Xu Cao (University of Illinois Urbana-Champaign, USA), Wenqian Ye (University of Virginia, USA), Peiran Liu (Purdue University, USA), Juanwu Lu (Purdue University, USA), Amr Abdelraouf (Toyota Motor North America, USA), Rohit Gupta (Toyota Motor North America, USA), Kyungtae Han (Toyota Motor North America, USA), Aniket Bera (Purdue University, USA), James M. Rehg (University of Illinois Urbana-Champaign, USA), and Ziran Wang (Purdue University, USA)	••••
GLiDR: Topologically Regularized Graph Generative Network for Sparse LiDAR Point Clouds . 152 Prashant Kumar (Indian Institute of Technology, Delhi, India), Kshitij Madhav Bhat (Indian Institute of Technology, Indore, India), Vedang Bhupesh Shenvi Nadkarni (Birla Institute of Technology and Science, Pilani, India), and Prem Kalra (Indian Institute of Technology, Delhi, India)	152
Towards Robust 3D Object Detection with LiDAR and 4D Radar Fusion in Various Weather Conditions	162
3DSFLabelling: Boosting 3D Scene Flow Estimation by Pseudo Auto-labelling	173
ADA-Track: End-to-End Multi-Camera 3D Multi-Object Tracking with Alternating Detection and Association	184
PointBeV: A Sparse Approach for BeV Predictions	195
Light the Night: A Multi-Condition Diffusion Framework for Unpaired Low-Light Enhancement in Autonomous Driving	205

CLIP-BEVFormer: Enhancing Multi-View Image-Based BEV Detector with Ground Truth Flow . Chenbin Pan (Syracuse University), Burhaneddin Yaman (Bosch Research North America & Bosch Center for Artificial Intelligence (BCAI)), Senem Velipasalar (Syracuse University), and Liu Ren (Bosch Research North America & Bosch Center for Artificial Intelligence (BCAI))	15216
Adapting to Length Shift: FlexiLength Network for Trajectory Prediction	15226
UniPAD: A Universal Pre-training Paradigm for Autonomous Driving Honghui Yang (Zhejiang University, China), Sha Zhang (University of Science and Technology of China, China), Di Huang (The University of Sydney, Australia), Xiaoyang Wu (HongKong University, China), Haoyi Zhu (University of Science and Technology of China, China), Tong He (Shanghai Artificial Intelligence Laboratory, China), Shixiang Tang (Shanghai Artificial Intelligence Laboratory, China), Hengshuang Zhao (HongKong University, China), Qibo Qiu (Zhejiang Lab, China), Binbin Lin (Zhejiang University, China), Xiaofei He (Zhejiang University, China), and Wanli Ouyang (Shanghai Artificial Intelligence Laboratory)	15238
Higher-order Relational Reasoning for Pedestrian Trajectory Prediction	15251
HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention Xiaolong Tang (Institute of Computing Technology, Chinese Academy of Sciences, China), Meina Kan (Institute of Computing Technology, Chinese Academy of Sciences, China), Shiguang Shan (Institute of Computing Technology, Chinese Academy of Sciences, China), Zhilong Ji (Tomorrow Advancing Life, China), Jinfeng Bai (Tomorrow Advancing Life, China), and Xilin Chen (Institute of Computing Technology, Chinese Academy of Sciences, China)	15261
LiSA: LiDAR Localization with Semantic Awareness Bochun Yang (Xiamen University, China), Zijun Li (Xiamen University, China), Wen Li (Xiamen University, China), Zhipeng Cai (Intel, USA), Chenglu Wen (Xiamen University, China), Yu Zang (Xiamen University, China), Matthias Muller (Intel, USA), and Cheng Wang (Xiamen University, China)	15271
SmartRefine: A Scenario-Adaptive Refinement Framework for Efficient Motion Prediction	15281

	15291
Zhanwei Zhang (Zhejiang University, China), Minghao Chen (Hangzhou Dianzi University, China), Shuai Xiao (Alibaba Group, China), Liang Peng (Fabu Inc., China), Hengjia Li (Zhejiang University, China), Binbin Lin (Zhejiang University, China), Ping Li (Hangzhou Dianzi University), Wenxiao Wang (Zhejiang University, China), Boxi Wu (Zhejiang University, China), and Deng Cai (Zhejiang University)	
Multi-agent Collaborative Perception via Motion-aware Robust Communication Network Shixin Hong (Shenzhen International Graduate School, Tsinghua University), Yu Liu (Tsinghua University), Zhi Li (Shenzhen International Graduate School, Tsinghua University), Shaohui Li (Shenzhen International Graduate School, Tsinghua University), and You He (Tsinghua University)	15301
TASeg: Temporal Aggregation Network for LiDAR Semantic Segmentation Xiaopei Wu (State Key Lab of CAD&CG, Zhejiang University, China), Yuenan Hou (Shanghai AI Laboratory, China), Xiaoshui Huang (Shanghai AI Laboratory, China), Binbin Lin (School of Software Technology, Zhejiang University, China), Tong He (Shanghai AI Laboratory, China), Xinge Zhu (The Chinese University of Hong Kong, China), Yuexin Ma (ShanghaiTech University, China), Boxi Wu (School of Software Technology, Zhejiang University, China), Haifeng Liu (State Key Lab of CAD&CG, Zhejiang University, China), Deng Cai (State Key Lab of CAD&CG, Zhejiang University, China), and Wanli Ouyang (Shanghai AI Laboratory, China)	15311
HINTED: Hard Instance Enhanced Detector with Mixed-Density Feature Fusion for Sparsely-Supervised 3D Object Detection Qiming Xia (Xiamen University, China), Wei Ye (Xiamen University, China), Hai Wu (Xiamen University, China), Shijia Zhao (Xiamen University, China), Leyuan Xing (Xiamen University, China), Xun Huang (Xiamen University, China), Jinhao Deng (Xiamen University, China), Xin Li (Texas A&M University, USA), Chenglu Wen (Xiamen University, China), and Cheng Wang (Xiamen University, China)	15321
CaKDP: Category-aware Knowledge Distillation and Pruning Framework for Lightweight 3D Object Detection	15331
Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous and Instruction-guided Driving	15342

TULIP: Transformer for Upsampling of LiDAR Point Clouds	.5354
Bézier Everywhere All at Once: Learning Drivable Lanes as Bézier Graphs 1 Hugh Blayney (dRISK.ai, United Kingdom), Hanlin Tian (Imperial College London, United Kingdom), Hamish Scott (dRISK.ai, United Kingdom), Nils Goldbeck (dRISK.ai, United Kingdom), Chess Stetson (dRISK.ai, United Kingdom), and Panagiotis Angeloudis (Imperial College London, United Kingdom)	.5365
Flow-Guided Online Stereo Rectification for Wide Baseline Stereo	.5375
LASIL: Learner-Aware Supervised Imitation Learning For Long-term Microscopic Traffic	-2 06
Simulation	15386
HIMap: HybrId Representation Learning for End-to-end Vectorized HD Map Construction1 Yi Zhou (Samsung R&D Institute China-Beijing (SRC-B)), Hui Zhang (Samsung R&D Institute China-Beijing (SRC-B)), Jiaqian Yu (Samsung R&D Institute China-Beijing (SRC-B)), Yifan Yang (Samsung R&D Institute China-Beijing (SRC-B)), Sangil Jung (Samsung Advanced Institute of Technology (SAIT), South Korea), Seung-In Park (Samsung Advanced Institute of Technology (SAIT), South Korea), and ByungIn Yoo (Samsung Advanced Institute of Technology (SAIT), South Korea)	5396
RadSimReal: Bridging the Gap Between Synthetic and Real Data in Radar Object Detection With Simulation	15407
3D LiDAR Mapping in Dynamic Environments using a 4D Implicit Neural Representation 1 Xingguang Zhong (University of Bonn, Germany), Yue Pan (University of Bonn, Germany), Cyrill Stachniss (University of Bonn, Germany), and Jens Behley (University of Bonn, Germany)	.5417
Quantifying Uncertainty in Motion Prediction with Variational Bayesian Mixture	.5428
Continual Learning for Motion Prediction Model via Meta-Representation Learning and Optimal Memory Buffer Retention Strategy	.5438

PARA-Drive: Parallelized Architecture for Real-time Autonomous Driving	5449
ChatScene: Knowledge-Enabled Safety-Critical Scenario Generation for Autonomous Vehicles 1. Jiawei Zhang (University of Illinois Urbana-Champaign), Chejian Xu (University of Illinois Urbana-Champaign), and Bo Li (University of Illinois Urbana-Champaign & University of Chicago)	5459
CRKD: Enhanced Camera-Radar Object Detection with Cross-modality Knowledge Distillation . 1 Lingjun Zhao (University of Michigan, USA), Jingyu Song (University of Michigan, USA), and Katherine A. Skinner (University of Michigan, USA)	5470
Communication-Efficient Collaborative Perception via Information Filling with Codebook 1 Yue Hu (Shanghai Jiao Tong University, China), Juntong Peng (Shanghai Jiao Tong University), Sifei Liu (Shanghai Jiao Tong University), Junhao Ge (Shanghai Jiao Tong University), Si Liu (Beihang University), and Siheng Chen (Shanghai Jiao Tong University)	5481
RadarDistill: Boosting Radar-based Object Detection Performance via Knowledge Distillation from LiDAR Features	5491
ICP-Flow: LiDAR Scene Flow Estimation with ICP Yancong Lin (Delft University of Technology) and Holger Caesar (Delft University of Technology)	5501
Improving Bird's Eye View Semantic Segmentation by Task Decomposition	5512
DriveWorld: 4D Pre-trained Scene Understanding via World Models for Autonomous Driving 1 Chen Min (Peking University), Dawei Zhao (Unmanned Systems Technology Research Center, Defense Innovation Institute), Liang Xiao (Unmanned Systems Technology Research Center, Defense Innovation Institute), Jian Zhao (China Telecom Institute of AI & Northwestern Polytechnical University), Xinli Xu (Hong Kong University of Science and Technology (Guangzhou)), Zheng Zhu (GigaAI), Lei Jin (Beijing University of Posts and Telecommunications), Jianshu Li (Ant Group), Yulan Guo (Sun Yat-sen University), Junliang Xing (Tsinghua University), Liping Jing (Beijing Jiaotong University), Yiming Nie (Unmanned Systems Technology Research Center, Defense Innovation Institute), and Bin Dai (Unmanned Systems Technology Research Center, Defense Innovation Institute)	5522

HRVDA: High-Resolution Visual Document Assistant	15534
Enhancing Visual Document Understanding with Contrastive Learning in Large Visual-Language Models	
RoDLA: Benchmarking the Robustness of Document Layout Analysis Models	l5556
Multi-modal In-Context Learning Makes an Ego-evolving Scene Text Recognizer	15567
CMA: A Chromaticity Map Adapter for Robust Detection of Screen-Recapture Document Images 15577 Changsheng Chen (Shenzhen University, China), Liangwei Lin (Shenzhen University, China), Yongqi Chen (Shenzhen University), Bin Li (Shenzhen University), Jishen Zeng (Alibaba Group), and Jiwu Huang (Shenzhen MSU-BIT University)	
ODM: A Text-Image Further Alignment Pre-training Approach for Scene Text Detection and	15587
GRAM: Global Reasoning for Multi-Page VQA Tsachi Blau (Technion Institute of Technology), Sharon Fogel (AWS AI Labs), Roi Ronen (Technion Institute of Technology), Alona Golts (AWS AI Labs), Roy Ganz (Technion Institute of Technology), Elad Ben Avraham (AWS AI Labs), Aviad Aberdam (AWS AI Labs), Shahar Tsiper (AWS AI Labs), and Ron Litman (AWS AI Labs)	15598
Bridging the Gap Between End-to-End and Two-Step Text Spotting	15608

An Empirical Study of Scaling Law for Scene Text Recognition	15619
LayoutLLM: Layout Instruction Tuning with Large Language Models for Document Understanding 15630 Chuwei Luo (Alibaba Group), Yufan Shen (Zhejiang University), Zhaoqing Zhu (Alibaba Group), Qi Zheng (Alibaba Group), Zhi Yu (Zhejiang University), and Cong Yao (Alibaba Group)	ing
OmniParser: A Unified Framework for Text Spotting, Key Information Extraction and Table Recognition Jianqiang Wan (Alibaba Group), Sibo Song (Alibaba Group), Wenwen Yu (Huazhong University of Science and Technology), Yuliang Liu (Huazhong University of Science and Technology), Wenqing Cheng (Huazhong University of Science and Technology), Fei Huang (Alibaba Group), Xiang Bai (Huazhong University of Science and Technology), Cong Yao (Alibaba Group), and Zhibo Yang (Alibaba Group)	15641
DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks	15654
LayoutFormer: Hierarchical Text Detection Towards Scene Text Understanding Min Liang (University of Science and Technology Beijing, China), Jia-Wei Ma (University of Science and Technology Beijing, China), Xiaobin Zhu (University of Science and Technology Beijing, China), Jingyan Qin (University of Science and Technology Beijing, China), and Xu-Cheng Yin (University of Science and Technology Beijing, China)	15665
Generating Handwritten Mathematical Expressions From Symbol Graphs: An End-to-End Pipelin 15675 Yu Chen (Beijing Waiyan Online Digital Technology), Fei Gao (Xidian University, China), Yanguang Zhang (Hangzhou Dianzi University), Maoying Qiao (University of Technology, Sydney (UTS), Australia), and Nannan Wang (Xidian University, China)	ne
OpenESS: Event-based Semantic Scene Understanding with Open Vocabularies	15686
PELA: Learning Parameter-Efficient Models with Low-Rank Approximation Yangyang Guo (National University of Singapore, Singapore), Guangzhi Wang (National University of Singapore, Singapore), and Mohan Kankanhalli (National University of Singapore)	15699

MADTP: Multimodal Alignment-Guided Dynamic Token Pruning for Accelerating Vision-Language	guage
Transformer Jianjian Cao (Fudan University, China), Peng Ye (Fudan University, China), Shengze Li (Fudan University, China), Chong Yu (Fudan University, China), Yansong Tang (Tsinghua University), Jiwen Lu (Tsinghua University), and Tao Chen (Fudan University)	. 15710
VkD: Improving Knowledge Distillation using Orthogonal Projections	. 15720
Logit Standardization in Knowledge Distillation	. 15731
Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers Sanghyeok Lee (Korea University, South Korea), Joonmyung Choi (Korea University, South Korea), and Hyunwoo J. Kim (Korea University, South Korea)	15741
ParameterNet: Parameters Are All You Need for Large-scale Visual Pretraining of Mobile Networks	15751
DeepCache: Accelerating Diffusion Models for Free	15762
ALGM: Adaptive Local-then-Global Token Merging for Efficient Semantic Segmentation with Plain Vision Transformers	15773
A General and Efficient Training for Transformer via Token Expansion Wenxuan Huang (East China Normal University, China), Yunhang Shen (Tencent Youtu Lab, China), Jiao Xie (Xiamen University, China), Baochang Zhang (Beihang University, China), Gaoqi He (East China Normal University, China), Ke Li (Tencent Youtu Lab, China), Xing Sun (Tencent Youtu Lab, China), and Shaohui Lin (East China Normal University, China)	. 15783

Efficient Dataset Distillation via Minimax Diffusion	.5793
PEM: Prototype-based Efficient MaskFormer for Image Segmentation 1 Niccolò Cavagnero (Politecnico di Torino, Italy), Gabriele Rosi (Politecnico di Torino, Italy), Claudia Cuttano (Politecnico di Torino, Italy), Francesca Pistilli (Politecnico di Torino, Italy), Marco Ciccone (Politecnico di Torino, Italy), Giuseppe Averta (Politecnico di Torino, Italy), and Fabio Cermelli (Focoos AI, Italy)	.5804
Transferable and Principled Efficiency for Open-Vocabulary Segmentation	.5814
Dense Vision Transformer Compression with Few Samples	.5825
Dr2Net: Dynamic Reversible Dual-Residual Networks for Memory-Efficient Finetuning	.5835
MaxQ: Multi-Axis Query for N:M Sparsity Network	.5845
Retraining-Free Model Quantization via One-Shot Weight-Coupling Learning	.5855
LORS: Low-rank Residual Structure for Parameter-Efficient Network Stacking	.5866

Parameterization	15877
Ye Chen (Shanghai Jiao Tong University, China), Bingbing Ni (Shanghai Jiao Tong University, China; USC-SJTU Institute of Cultural and Creative Industry, China), Jinfan Liu (Shanghai Jiao Tong University, China), Xiaoyang Huang (Shanghai Jiao Tong University, China), and Xuanhong Chen (Shanghai Jiao Tong University, China; USC-SJTU Institute of Cultural and Creative Industry, China)	
Learning Vision from Models Rivals Learning Vision from Data	15887
Efficient Multitask Dense Predictor via Binarization	15899
RepViT: Revisiting Mobile CNN From ViT Perspective	15909
Enhancing Post-training Quantization Calibration through Contrastive Learning	15921
FreeKD: Knowledge Distillation via Semantic Frequency Prompt Yuan Zhang (Peking University), Tao Huang (The University of Sydney), Jiaming Liu (Peking University), Tao Jiang (Zhejiang University), Kuan Cheng (Peking University), and Shanghang Zhang (Peking University)	15931
PTQ4SAM: Post-Training Quantization for Segment Anything Chengtao Lv (Beihang University, China), Hong Chen (Beihang University, China), Jinyang Guo (Beihang University, China), Yifu Ding (Beihang University, China), and Xianglong Liu (Beihang University, China; Zhongguancun Laboratory, China; Hefei Comprehensive National Science Center, China)	15941
CLIP-KD: An Empirical Study of CLIP Model Distillation	15952

MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training	5963
Scaled Decoupled Distillation	597 5
Self-Distilled Masked Auto-Encoders are Efficient Video Anomaly Detectors	5984
PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks	5996
C2KD: Bridging the Modality Gap for Cross-Modal Knowledge Distillation	5006
KD-DETR: Knowledge Distillation for Detection Transformer with Consistent Distillation Points Sampling	6016
Towards Accurate Post-training Quantization for Diffusion Models	6026
CURSOR: Scalable Mixed-Order Hypergraph Matching with CUR Decomposition	6036
Frozen Feature Augmentation for Few-Shot Image Classification	5046

Jointly Training and Pruning CNNs via Learnable Agent Guidance and Alignment	16058
Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention Graph in Pre-Trained Transformers	16070
Attention-Driven Training-Free Efficiency Enhancement of Diffusion Models Hongjie Wang (Princeton University, USA), Difan Liu (Adobe Research, USA), Yan Kang (Adobe Research, USA), Yijun Li (Adobe Research, USA), Zhe Lin (Adobe Research, USA), Niraj K. Jha (Princeton University, USA), and Yuchen Liu (Adobe Research, USA)	16080
BilevelPruning: Unified Dynamic and Static Channel Pruning for Convolutional Neural Networks	16090
Low-Rank Rescaled Vision Transformer Fine-Tuning: A Residual Design Approach Wei Dong (University of Electronic Science and Technology of China), Xing Zhang (Xi'an University of Architecture and Technology), Bihui Chen (Xi'an University of Architecture and Technology), Dawei Yan (Xi'an University of Architecture and Technology), Zhijun Lin (Northwestern Polytechnical University), Qingsen Yan (Northwestern Polytechnical University), Peng Wang (University of Electronic Science and Technology of China), and Yang Yang (University of Electronic Science and Technology of China)	16101
EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything	16111
FlashEval: Towards Fast and Accurate Evaluation of Text-to-image Diffusion Generative Models Lin Zhao (Infinigence-AI), Tianchen Zhao (Tsinghua University), Zinan Lin (Microsoft Research), Xuefei Ning (Tsinghua University), Guohao Dai (Shanghai Jiao Tong University), Huazhong Yang (Tsinghua University), and Yu Wang (Tsinghua University)	16122
Instance-Aware Group Quantization for Vision Transformers Jaehyeon Moon (Yonsei University, South Korea; Articron, South Korea), Dohyung Kim (Yonsei University, South Korea), Junyong Cheon (Yonsei University, South Korea), and Bumsub Ham (Yonsei University, South Korea)	16132

Finding Lottery Tickets in Vision Models via Data-driven Spectral Foresight Pruning	2
Joint-Task Regularization for Partially Labeled Multi-Task Learning	2
Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch	3
Reg-PTQ: Regression-specialized Post-training Quantization for Fully Quantized Object Detector	4
MULTIFLOW: Shifting Towards Task-Agnostic Vision-Language Pruning	5
MTLoRA: Low-Rank Adaptation Approach for Efficient Multi-Task Learning	6
Resource-Efficient Transformer Pruning for Finetuning of Large Models	6
Promptable Behaviors: Personalizing Multi-Objective Rewards from Human Preferences	6

Holodeck: Language Guided Generation of 3D Embodied AI Environments Yue Yang (University of Pennsylvania), Fan-Yun Sun (Stanford University), Luca Weihs (Allen Institute for Artificial Intelligence), Eli VanderBilt (Allen Institute for Artificial Intelligence), Alvaro Herrasti (Allen Institute for Artificial Intelligence), Winson Han (Allen Institute for Artificial Intelligence), Jiajun Wu (Stanford University), Nick Haber (Stanford University), Ranjay Krishna (University of Washington), Lingjie Liu (University of Pennsylvania), Chris Callison-Burch (University of Pennsylvania), Mark Yatskar (University of Pennsylvania), Aniruddha Kembhavi (Allen Institute for Artificial Intelligence), and Christopher Clark (Allen Institute for Artificial Intelligence)	6227
SPOC: Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation	
in the Real World	6238
Kiana Ehsani (Allen Institute for AI, USA), Tanmay Gupta (Allen	
Institute for AI, USA), Rose Hendrix (Allen Institute for AI, USA),	
Jordi Salvador (Allen Institute for AI, USA), Luca Weihs (Allen	
Institute for AI, USA), Kuo-Hao Zeng (Allen Institute for AI, USA),	
Kunal Pratap Singh (EPFL, Switzerland), Yejin Kim (Allen Institute for	
AI, USA), Winson Han (Allen Institute for AI, USA), Alvaro Herrasti	
(Allen Institute for AI, USA), Ranjay Krishna (Allen Institute for AI,	
University of Washington, USA), Dustin Schwenk (Allen Institute for AI, USA), Eli VanderBilt (Allen Institute for AI, USA), and Aniruddha	
Kembhavi (Allen Institute for AI, USA)	
RILA: Reflective and Imaginative Language Agent for Zero-Shot Semantic Audio-Visual	
	6251
PhyScene: Physically Interactable 3D Scene Synthesis for Embodied AI	6262
Yandan Yang (National Key Laboratory of General Artificial	
Intelligence, China), Baoxiong Jia (National Key Laboratory of General	
Artificial Intelligence, China), Peiyuan Zhi (National Key Laboratory	
of General Artificial Intelligence, China), and Siyuan Huang (National	
Key Laboratory of General Artificial Intelligence, China)	
Seeing the Unseen: Visual Common Sense for Semantic Placement	6273
Ram Ramrakhya (Georgia Institute of Technology), Aniruddha Kembhavi (Allen Institute of AI), Dhruv Batra (Georgia Institute of	
Technology), Zsolt Kira (Georgia Institute of Technology), Kuo-Hao	
Zeng (Allen Institute of AI), and Luca Weihs (Allen Institute of AI)	
LEMON: Learning 3D Human-Object Interaction Relation from 2D Images	6284
Yuhang Yang (University of Science and Technology of China), Wei Zhai	O I
(University of Science and Technology of China), Hongchen Luo	
(University of Science and Technology of China), Yang Cao (University	
of Science and Technology of China), and Zheng-Jun Zha (University of	
Science and Technology of China)	

OVER-NAV: Elevating Iterative Vision-and-Language Navigation with Open-Vocabulary Detection and StructurEd Representation	96
MP5: A Multi-modal Open-ended Embodied System in Minecraft via Active Perception	07
Volumetric Environment Representation for Vision-Language Navigation	17
Instance-aware Exploration-Verification-Exploitation for Instance ImageGoal Navigation	29
UniGarmentManip: A Unified Framework for Category-Level Garment Manipulation via Dense Visual Correspondence	40
Evidential Active Recognition: Intelligent and Prudent Open-World Embodied Perception 1638 Lei Fan (Northwestern University, USA), Mingfu Liang (Northwestern University, USA), Yunxuan Li (Northwestern University, USA), Gang Hua (Wormpex AI Research, USA), and Ying Wu (Northwestern University, USA)	51
GenH2R: Learning Generalizable Human-to-Robot Handover via Scalable Simulation, Demonstration, and Imitation	62
GOAT-Bench: A Benchmark for Multi-Modal Lifelong Navigation	73

Habitat Synthetic Scenes Dataset (HSSD-200): An Analysis of 3D Scene Scale and Realism Tradeoffs for ObjectGoal Navigation	384
Active Open-Vocabulary Recognition: Let Intelligent Moving Mitigate CLIP Limitations	394
Rapid Motor Adaptation for Robotic Manipulator Arms	104
Imagine Before Go: Self-Supervised Generative Map for Object Goal Navigation	114
Auto MC-Reward: Automated Dense Reward Design with Large Language Models for Minecraft 16426	••••
Hao Li (Chinese University of Hong Kong, Hong Kong), Xue Yang (Shanghai AI Laboratory, China), Zhaokai Wang (Shanghai AI Laboratory, China), Xizhou Zhu (Tsinghua University, China), Jie Zhou (Tsinghua University, China), Yu Qiao (Shanghai AI Laboratory, China), Xiaogang Wang (Chinese University of Hong Kong, Hong Kong), Hongsheng Li (Chinese University of Hong Kong, Hong Kong), Lewei Lu (Sensetime Research, China), and Jifeng Dai (Tsinghua University, China)	
GenNBV: Generalizable Next-Best-View Policy for Active 3D Reconstruction	136
An Interactive Navigation Method with Effect-oriented Affordance	146

A Category Agnostic Model for Visual Rearrangment	.6457
SkillDiffuser: Interpretable Hierarchical Planning via Skill Abstractions in Diffusion-Based Task Execution	.6467
Fusing Personal and Environmental Cues for Identification and Segmentation of First-Person Camera Wearers in Third-Person Views	16477
OpenEQA: Embodied Question Answering in the Era of Foundation Models Arjun Majumdar (Georgia Institute of Technology), Anurag Ajay (Massachusetts Institute of Technology), Xiaohan Zhang (State University of New York at Binghamton), Pranav Putta (Georgia Institute of Technology), Sriram Yenamandra (Georgia Institute of Technology), Mikael Henaff (Meta), Sneha Silwal (Meta), Paul Mcvay (Meta), Oleksandr Maksymets (Meta), Sergio Arnaud (Meta), Karmesh Yadav (Meta), Qiyang Li (University of California, Berkeley), Ben Newman (Carnegie Mellon University), Mohit Sharma (Carnegie Mellon University), Vincent Berges (Meta), Shiqi Zhang (State University of New York at Binghamton), Pulkit Agrawal (Massachusetts Institute of Technology), Yonatan Bisk (Meta), Dhruv Batra (Meta), Mrinal Kalakrishnan (Meta), Franziska Meier (Meta), Chris Paxton (Meta), Alexander Sax (Meta), and Aravind Rajeswaran (Meta)	.6488
Model Adaptation for Time Constrained Embodied Control	.6499
You'll Never Walk Alone: A Sketch and Text Duet for Fine-Grained Image Retrieval	.6509

CrossKD: Cross-Head Knowledge Distillation for Object Detection	6520
ProTeCt: Prompt Tuning for Taxonomic Open Set Classification	6531
CAT: Exploiting Inter-Class Dynamics for Domain Adaptive Object Detection	6541
Text Is MASS: Modeling as Stochastic Embedding for Text-Video Retrieval	6551
UniMODE: Unified Monocular 3D Object Detection	6561
OVMR: Open-Vocabulary Recognition with Multi-Modal References	6571
From Isolated Islands to Pangea: Unifying Semantic Space for Human Action Understanding 16 Yong-Lu Li (Shanghai Jiao Tong University, China), Xiaoqian Wu (Shanghai Jiao Tong University, China), Xinpeng Liu (Shanghai Jiao Tong University, China), Zehao Wang (Shanghai Jiao Tong University, China), Yiming Dou (Shanghai Jiao Tong University, China), Yikun Ji (Shanghai Jiao Tong University, China), Junyi Zhang (Shanghai Jiao Tong University, China), Yixing Li (Shanghai Jiao Tong University, China), Xudong Lu (Shanghai Jiao Tong University, China), Jingru Tan (Shanghai Jiao Tong University, China), and Cewu Lu (Shanghai Jiao Tong University, China)	6582
Language-conditioned Detection Transformer	6593
Distribution-aware Knowledge Prototyping for Non-exemplar Lifelong Person Re-identification	6604

Learning Continual Compatible Representation for Re-indexing Free Lifelong Person Re-identification	4
Zhenyu Cui (Peking University), Jiahuan Zhou (Peking University), Xun Wang (ByteDance Inc), Manyu Zhu (ByteDance Inc), and Yuxin Peng (Peking University)	
Active Object Detection with Knowledge Aggregation and Distillation from Large Models 1662 Dejie Yang (Peking University, China) and Yang Liu (Peking University, China)	.4
SHiNe: Semantic Hierarchy Nexus for Open-vocabulary Object Detection	4
Object Recognition as Next Token Prediction	.5
Exploring the Potential of Large Foundation Models for Open-Vocabulary HOI Detection 1665 Ting Lei (Peking University, China), Shaofeng Yin (Peking University, China), and Yang Liu (Peking University, China)	7
Gradient Reweighting: Towards Imbalanced Class-Incremental Learning	8
Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object	70
Detection	8
Multi-View Attentive Contextualization for Multi-View 3D Object Detection	8
RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection	9
Generalized Large-Scale Data Condensation via Various Backbone and Statistical Matching 1670 Shitong Shao (Mohamed bin Zayed University of AI, UAE), Zeyuan Yin (Mohamed bin Zayed University of AI, UAE), Muxin Zhou (Mohamed bin Zayed University of AI, UAE), Xindong Zhang (OPPO Research, Guang dong, China), and Zhiqiang Shen (Mohamed bin Zayed University of AI, UAE)	9

Unleashing Unlabeled Data: A Paradigm for Cross-View Geo-Localization	
PointOBB: Learning Oriented Object Detection via Single Point Supervision	
Scene-adaptive and Region-aware Multi-modal Prompt for Open Vocabulary Object Detection 16741 Xiaowei Zhao (Beihang University, China), Xianglong Liu (Beihang University, China), Duorui Wang (Beihang University, China), Yajun Gao (Beihang University, China), and Zhide Liu (Beihang University, China)	
Revisiting the Domain Shift and Sample Uncertainty in Multi-source Active Domain Transfer 16751 Wenqiao Zhang (Zhejiang University), Zheqi Lv (Zhejiang University), Hao Zhou (Harbin Institute of Technology), Jia-Wei Liu (National University of Singapore), Juncheng Li (Zhejiang University), Mengze Li (Zhejiang University), Yunfei Li (Ant Group), Dongping Zhang (China Jiliang University), Yueting Zhuang (Zhejiang University), and Siliang Tang (Zhejiang University)	
Hyperbolic Learning with Synthetic Captions for Open-World Detection	
CricaVPR: Cross-image Correlation-aware Representation Learning for Visual Place Recognition	
Point2RBox: Combine Knowledge from Synthetic Visual Patterns for End-to-end Oriented Object Detection with Single Point Supervision	
Scene Adaptive Sparse Transformer for Event-based Object Detection	

Visual Delta Generator with Large Multi-modal Models for Semi-supervised Composed Image Retrieval	16805
Young Kyun Jang (Meta AI), Donghyun Kim (Korea University), Zihang Meng (Meta AI), Dat Huynh (Meta AI), and Ser-Nam Lim (University of Central Florida)	
Preserving Fairness Generalization in Deepfake Detection	16815
Text-to-Image Diffusion Models are Great Sketch-Photo Matchmakers Subhadeep Koley (University of Surrey, United Kingdom; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence), Ayan Kumar Bhunia (University of Surrey, United Kingdom), Aneeshan Sain (University of Surrey, United Kingdom), Pinaki Nath Chowdhury (University of Surrey, United Kingdom), Tao Xiang (University of Surrey, United Kingdom; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence), and Yi-Zhe Song (University of Surrey, United Kingdom; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence)	16826
Structured Model Probing: Empowering Efficient Transfer Learning by Structured Regularization	16838
PromptAD: Learning Prompts with only Normal Samples for Few-Shot Anomaly Detection Xiaofan Li (East China Normal University), Zhizhong Zhang (East China Normal University), Xin Tan (East China Normal University; Chongqing Institute of East China Normal University), Chengwei Chen (The Navy Military Medical University), Yanyun Qu (Xiamen University), Yuan Xie (East China Normal University; Chongqing Institute of East China Normal University), and Lizhuang Ma (East China Normal University)	16848
How to Handle Sketch-Abstraction in Sketch-Based Image Retrieval? Subhadeep Koley (University of Surrey, United Kingdom; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence), Ayan Kumar Bhunia (University of Surrey, United Kingdom), Aneeshan Sain (University of Surrey, United Kingdom), Pinaki Nath Chowdhury (University of Surrey, United Kingdom), Tao Xiang (University of Surrey, United Kingdom; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence), and Yi-Zhe Song (University of Surrey, United Kingdom; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence)	16859
Shallow-Deep Collaborative Learning for Unsupervised Visible-Infrared Person Re-Identification Bin Yang (Wuhan University, China), Jun Chen (Wuhan University, China), and Mang Ye (Wuhan University, China)	16870

Solving the Catastrophic Forgetting Problem in Generalized Category Discovery	80
Active Generalized Category Discovery	90
YOLO-World: Real-Time Open-Vocabulary Object Detection	01
Theoretically Achieving Continuous Representation of Oriented Bounding Boxes	12
Decoupled Pseudo-labeling for Semi-Supervised Monocular 3D Object Detection	23
LEOD: Label-Efficient Object Detection for Event Cameras	33
Lane2Seq: Towards Unified Lane Detection via Sequence Generation	44
Open-World Human-Object Interaction Detection via Multi-modal Prompts	54
DETRs Beat YOLOs on Real-time Object Detection	65

Exploring Region-Word Alignment in Built-in Detector for Open-Vocabulary Object Detection 16975 Heng Zhang (JD.com, China), Qiuyu Zhao (JD.com, China), Linyu Zheng (JD.com, China), Hao Zeng (JD.com, China), Zhiwei Ge (JD.com, China), Tianhao Li (JD.com, China), and Sulong Xu (JD.com, China)
Referring Expression Counting
ActiveDC: Distribution Calibration for Active Finetuning
LaRE^2: Latent Reconstruction Error Based Method for Diffusion-Generated Image Detection 17006 Yunpeng Luo (Tencent YouTu Lab), Junlong Du (Tencent YouTu Lab), Ke Yan (Tencent YouTu Lab), and Shouhong Ding (Tencent YouTu Lab)
Fine-grained Prototypical Voting with Heterogeneous Mixup for Semi-supervised 2D-3D Cross-modal Retrieval
MS-DETR: Efficient DETR Training with Mixed Supervision
Context-based and Diversity-driven Specificity in Compositional Zero-Shot Learning
Pixel-level Semantic Correspondence through Layout-aware Representation Learning and Multi-scale Matching Integration
Exploiting Inter-sample and Inter-feature Relations in Dataset Distillation

Point, Segment and Count: A Generalized Framework for Object Counting	⁷ 067
Dual Pose-invariant Embeddings: Learning Category and Object-specific Discriminative Representations for Recognition and Retrieval	7077
Riemannian Multinomial Logistics Regression for SPD Neural Networks	⁷ 086
Learning for Transductive Threshold Calibration in Open-World Recognition	⁷ 097
Region-Based Representations Revisited	⁷ 107
Magic Tokens: Select Diverse Tokens for Multi-modal Object Re-Identification	⁷ 117
Harnessing the Power of MLLMs for Transferable Text-to-Image Person ReID	⁷ 127

Holistic Features are almost Sufficient for Text-to-Video Retrieval	138
Enhancing the Power of OOD Detection via Sample-Aware Model Selection	148
PanoOcc: Unified Occupancy Representation for Camera-based 3D Panoptic Segmentation 173 Yuqi Wang (Institute of Automation, Chinese Academy of Sciences, China), Yuntao Chen (Centre for Artificial Intelligence and Robotics (HKISI_CAS), China), Xingyu Liao (Independent Researcher), Lue Fan (Institute of Automation, Chinese Academy of Sciences, China), and Zhaoxiang Zhang (Institute of Automation, Chinese Academy of Sciences, China)	158
VSCode: General Visual Salient and Camouflaged Object Detection with 2D Prompt Learning 1772 Ziyang Luo (Northwestern Polytechnical University), Nian Liu (Mohamed bin Zayed University of Artificial Intelligence), Wangbo Zhao (National University of Singapore), Xuguang Yang (Northwestern Polytechnical University), Dingwen Zhang (Northwestern Polytechnical University), Deng-Ping Fan (Nankai International Advanced Research Institute (SHENZHEN FUTIAN) & CS, Nankai University), Fahad Khan (Mohamed bin Zayed University of Artificial Intelligence; CVL, Linköping University), and Junwei Han (Northwestern Polytechnical University)	169
D3still: Decoupled Differential Distillation for Asymmetric Image Retrieval Yi Xie (South China University of Technology), Yihong Lin (South China University of Technology), Wenjie Cai (Independent Researcher), Xuemiao Xu (South China University of Technology, State Key Laboratory of Subtropical Building Science, Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information, Ministry of Education Key Laboratory of Big Data and Intelligent Robot), Huaidong Zhang (South China University of Technology), Yong Du (Ocean University) of China), and Shengfeng He (Singapore Management University)	181
SFOD: Spiking Fusion Object Detector	191
Depth-Aware Concealed Crop Detection in Dense Agricultural Scenes 172 Liqiong Wang (China Three Gorges University, China), Jinyu Yang (Southern University of Science and Technology, China; University of Birmingham, U.K.), Yanfu Zhang (College of William and Mary, USA), Fangyi Wang (China Three Gorges University, China), and Feng Zheng (Southern University of Science and Technology, China)	201

Extreme Point Supervised Instance Segmentation	. 17212
Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model Zhicai Wang (University of Science and Technology of China), Longhui Wei (Huawei Inc.), Tan Wang (Nanyang Technological University), Heyu Chen (University of Science and Technology of China), Yanbin Hao (University of Science and Technology of China), Xiang Wang (University of Science and Technology of China), Xiangnan He (University of Science and Technology of China), and Qi Tian (Huawei Inc.)	. 17223
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping	. 17234
Effective Video Mirror Detection with Inconsistent Motion Cues Alex Warren (Swansea University, United Kingdom), Ke Xu (City University of Hong Kong, Hong Kong S.A.R China), Jiaying Lin (City University of Hong Kong, Hong Kong S.A.R China), Gary K.L. Tam (Swansea University, United Kingdom), and Rynson W.H. Lau (City University of Hong Kong, Hong Kong S.A.R China)	. 17244
Multi-Attribute Interactions Matter for 3D Visual Grounding Can Xu (Nanjing University of Science and Technology), Yuehui Han (Nanjing University of Science and Technology), Rui Xu (Nanjing University of Science and Technology), Le Hui (Northwestern Polytechnical University), Jin Xie (Nanjing University of Science and Technology), and Jian Yang (Nanjing University of Science and Technology)	. 17253
Looking 3D: Anomaly Detection with 2D-3D Alignment	. 17263
Characteristics Matching Based Hash Codes Generation for Efficient Fine-grained Image Retrieval	. 17273
EASE-DETR: Easing the Competition among Object Queries	.17282
ProS: Prompting-to-simulate Generalized knowledge for Universal Cross-Domain Retrieval Kaipeng Fang (University of Electronic Science and Technology of China), Jingkuan Song (University of Electronic Science and Technology of China), Lianli Gao (University of Electronic Science and Technology of China), Pengpeng Zeng (University of Electronic Science and Technology of China), Zhi-Qi Cheng (Carnegie Mellon University), Xiyao Li (Kuaishou Technology), and Heng Tao Shen (Tongji University)	. 17292

Exploring Orthogonality in Open World Object Detection	17302
A Generative Approach for Wikipedia-Scale Visual Entity Recognition Mathilde Caron (Google Research, France), Ahmet Iscen (Google Research, France), Alireza Fathi (Google Research), and Cordelia Schmid (Google Research)	17313
Unleashing Channel Potential: Space-Frequency Selection Convolution for SAR Object Detection Ke Li (Xidian University, China), Di Wang (Xidian University, China), Zhangyuan Hu (Xidian University, China), Wenxuan Zhu (Xidian University, China), Shaofeng Li (Xidian University, China), and Quan Wang (Xidian University, China)	17323
Hyperspherical Classification with Dynamic Label-to-Prototype Assignment	17333
A Pedestrian is Worth One Prompt: Towards Language Guidance Person Re-Identification Zexian Yang (Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Dayan Wu (Chinese Academy of Sciences, China), Chenming Wu (Baidu Inc, China), Zheng Lin (Chinese Academy of Sciences, China), Jingzi Gu (Chinese Academy of Sciences, China), and Weiping Wang (Chinese Academy of Sciences, China)	17343
VSRD: Instance-Aware Volumetric Silhouette Rendering for Weakly Supervised 3D Object Detection Zihua Liu (Tokyo Institute of Technology, Japan), Hiroki Sakuma (T2 Inc., Japan), and Masatoshi Okutomi (Tokyo Institute of Technology, Japan)	17354
Improving Visual Recognition with Hyperbolical Visual Hierarchy Mapping	17364
On Train-Test Class Overlap and Detection for Image Retrieval	17375

Multi-Scale Video Anomaly Detection by Multi-Grained Spatio-Temporal Representation	
Learning	385
Jingyu Wang (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications), Qi Qi (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications), Haifeng Sun (State Key Laboratory of Networking and Switching Technology, Beijing University	
of Posts and Telecommunications), Zirui Zhuang (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications), Pengfei Ren (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and	
Telecommunications), Ruilong Ma (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications), and Jianxin Liao (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications)	
LAA-Net: Localized Artifact Attention Network for Quality-Agnostic and Generalizable Deepfake Detection	395
Rethinking Boundary Discontinuity Problem for Oriented Object Detection	406
Hybrid Proposal Refiner: Revisiting DETR Series from the Faster R-CNN Perspective	416
Retrieval-Augmented Open-Vocabulary Object Detection	427
LiDAR-based Person Re-identification	437

EventDance: Unsupervised Source-free Cross-modal Adaptation for Event-based Object Recognition	17448
All in One Framework for Multimodal Re-identification in the Wild	17459
Logarithmic Lenses: Exploring Log RGB Data for Image Classification Bruce A. Maxwell (Northeastern University), Sumegha Singhania (Northeastern University), Avnish Patel (Northeastern University), Rahul Kumar (Northeastern University), Heather Fryling (Northeastern University), Sihan Li (Northeastern University), Haonan Sun (Northeastern University), Ping He (Northeastern University), and Zewen Li (Northeastern University)	17470
ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection	17480
Infrared Small Target Detection with Scale and Location Sensitivity	17490
SURE: SUrvey REcipes for building reliable and robust deep networks Yuting Li (Intellindust, China; China Three Gorges University, China), Yingyi Chen (KU Leuven, Belgium), Xuanlong Yu (Paris-Saclay University, France; ENSTA - Institut Polytechnique de Paris, France), Dexiong Chen (Max Planck Institute of Biochemistry, Germany), and Xi Shen (Intellindust, China)	17500
Hyperbolic Anomaly Detection Huimin Li (Beihang University, China), Zhentao Chen (Beihang University, China), Yunhao Xu (Beihang University, China), and Junlin Hu (Beihang University, China)	17511
Instruct-ReID: A Multi-purpose Person Re-identification Task with Instructions Weizhen He (Zhejiang University, China), Yiheng Deng (Zhejiang University, China), Shixiang Tang (The University of Sydney, Australia), Qihao Chen (Liaoning Technical University, China), Qingsong Xie (Shanghai Jiao Tong University, China), Yizhou Wang (Shanghai AI Laboratory, China), Lei Bai (Shanghai AI Laboratory, China), Feng Zhu (SenseTime Research, China), Rui Zhao (SenseTime Research, China), Wanli Ouyang (Shanghai AI Laboratory, China), Donglian Qi (Zhejiang University, China), and Yunfeng Yan (Zhejiang University)	17521

CA-Jaccard: Camera-aware Jaccard Distance for Person Re-identification	. 17532
Improved Zero-Shot Classification by Adapting VLMs with Text Descriptions	17542
Modeling Collaborator: Enabling Subjective Vision Classification With Minimal Human Effort via LLM Tool-Use	17553
Neural Exposure Fusion for High-Dynamic Range Object Detection Emmanuel Onzon (Torc Robotics, Germany), Maximilian Bömer (Torc Robotics, Germany), Fahim Mannan (Torc Robotics, Canada), and Felix Heide (Princeton University, USA)	17564
Salience DETR: Enhancing Detection Transformer with Hierarchical Salience Filtering Refinement Xiuquan Hou (Xi'an Jiaotong University, China), Meiqin Liu (Xi'an Jiaotong University, China), Senlin Zhang (Zhejiang University, China), Ping Wei (Xi'an Jiaotong University, China), and Badong Chen (Xi'an Jiaotong University, China)	. 17574
Learning Transferable Negative Prompts for Out-of-Distribution Detection	. 17584
TransLoc4D: Transformer-based 4D Radar Place Recognition	17595
Prompt-Driven Dynamic Object-Centric Learning for Single Domain Generalization	. 17606
Anomaly Heterogeneity Learning for Open-set Supervised Anomaly Detection	. 17616

Contrastive Learning for DeepFake Classification and Localization via Multi-Label Ranking 1762 Cheng-Yao Hong (Institute of Information Science, Academia Sinica, Taiwan), Yen-Chi Hsu (Institute of Information Science, Academia Sinica, Taiwan), and Tyng-Luh Liu (Institute of Information Science, Academia Sinica, Taiwan)	<u>!</u> 7
Adaptive Softassign via Hadamard-Equipped Sinkhorn	38
An Asymmetric Augmented Self-Supervised Learning Method for Unsupervised Fine-Grained Image Hashing	18
Optimal Transport Aggregation for Visual Place Recognition	58
Atom-Level Optical Chemical Structure Recognition with Limited Supervision	59
Novel Class Discovery for Ultra-Fine-Grained Visual Categorization	'9
Attribute-Guided Pedestrian Retrieval: Bridging Person Re-ID with Internal Attribute Variability	39

Robust Noisy Correspondence Learning with Equivariant Similarity Consistency	0
Bootstrapping SparseFormers from Vision Foundation Models	.0
Not All Classes Stand on Same Embeddings: Calibrating a Semantic Distance with Metric Tensor	<u>'</u> 2
Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment	12
On the Estimation of Image-matching Uncertainty in Visual Place Recognition	:3
Supervised Anomaly Detection for Complex Industrial Images	4
Fourier-basis Functions to Bridge Augmentation Gap: Rethinking Frequency Augmentation in Image Classification	53
TransNeXt: Robust Foveal Visual Perception for Vision Transformers	'3
Plug and Play Active Learning for Object Detection	4
BoQ: A Place is Worth a Bag of Learnable Queries	4

From Coarse to Fine-Grained Open-Set Recognition
Exploring Pose-Aware Human-Object Interaction via Hybrid Learning
Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts
Learning to Navigate Efficiently and Precisely in Real Environments
Task-Conditioned Adaptation of Visual Features in Multi-Task Policy Learning
FastMAC: Stochastic Spectral Sampling of Correspondence Graph
FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
CAGE: Controllable Articulation GEneration
SingularTrajectory: Universal Trajectory Predictor Using Diffusion Model

Language-driven Grasp Detection	02
MemoNav: Working Memory Model for Visual Navigation)13
NOPE: Novel Object Pose Estimation from a Single Image	123
Dexterous Grasp Transformer	133
Versatile Navigation Under Partial Observability via Value-guided Diffusion Policy)43
CyberDemo: Augmenting Simulated Human Demonstration for Real-World Dexterous Manipulatio 17952 Jun Wang (University of California San Diego, USA), Yuzhe Qin (University of California San Diego, USA), Kaiming Kuang (University of California San Diego, USA), Yigit Korkmaz (University of Southern California, USA), Akhilan Gurumoorthy (University of California San Diego, USA), Hao Su (University of California San Diego, USA), and Xiaolong Wang (University of California San Diego, USA)	n.
SchurVINS: Schur Complement-Based Lightweight Visual Inertial Navigation System	}64
READ: Retrieval-Enhanced Asymmetric Diffusion for Motion Planning)74
Retrieval-Augmented Embodied Agents	985

Collaborative Semantic Occupancy Prediction with Hybrid Feature Fusion in Connected Automated Vehicles	96
Rui Song (Fraunhofer IVI; Technical University of Munich), Chenwei Liang (Fraunhofer IVI), Hu Cao (Technical University of Munich), Zhiran Yan (Technische Hochschule Ingolstadt), Walter Zimmer (Technical University of Munich), Markus Gross (Fraunhofer IVI), Andreas Festag (Fraunhofer IVI; Technische Hochschule Ingolstadt), and Alois Knoll (Technical University of Munich)	
Diffusion-EDFs: Bi-equivariant Denoising Generative Modeling on SE(3) for Visual Robotic Manipulation	
Adaptive VIO: Deep Visual-Inertial Odometry with Online Continual Learning	19
F3Loc: Fusion and Filtering for Floorplan Localization	29
Gaussian Splatting SLAM	39
SUGAR: Pre-training 3D Visual Representations for Robotics	49
ManipLLM: Embodied Multimodal Large Language Model for Object-Centric Robotic Manipulation 18061 Xiaoqi Li (Peking University, China), Mingxu Zhang (Beijing University of Posts and Telecommunications), Yiran Geng (Peking University, China), Haoran Geng (Peking University, China), Yuxing Long (Peking University, China), Yan Shen (Peking University, China), Renrui Zhang (The Chinese University of Hong Kong), Jiaming Liu (Peking University, China), and Hao Dong (Peking University, China)	1
Open-Vocabulary Object 6D Pose Estimation	71

Hierarchical Diffusion Policy for Kinematics-Aware Multi-Task Robotic Manipulation
Smart Help: Strategic Opponent Modeling for Proactive and Adaptive Robot Assistance in Households
Generalizing 6-DoF Grasp Detection via Domain Prior Knowledge
A Simple and Effective Point-based Network for Event Camera 6-DOFs Pose Relocalization 18112 Hongwei Ren (The Hong Kong University of Science and Technology (Guangzhou)), Jiadong Zhu (The Hong Kong University of Science and Technology (Guangzhou)), Yue Zhou (The Hong Kong University of Science and Technology (Guangzhou)), Haotian Fu (The Hong Kong University of Science and Technology (Guangzhou)), Yulong Huang (The Hong Kong University of Science and Technology (Guangzhou)), and Bojun Cheng (The Hong Kong University of Science and Technology (Guangzhou))
Neural Visibility Field for Uncertainty-Driven Active Mapping
SPIN: Simultaneous Perception, Interaction and Navigation
PredToken: Predicting Unknown Tokens and Beyond with Coarse-to-Fine Iterative Decoding 18143 Xuesong Nie (Zhejiang University, China), Haoyuan Jin (Zhejiang University, China), Yunfeng Yan (Zhejiang University, China), Xi Chen (The University of Hong Kong, China), Zhihang Zhu (Zhejiang University, China), and Donglian Qi (Zhejiang University, China)
TIM: A Time Interval Machine for Audio-Visual Action Recognition

AutoAD III: The Prequel – Back to the Pixels	3164
FACT: Frame-Action Cross-Attention Temporal Modeling for Efficient Action Segmentation 18 Zijia Lu (Northeastern University, USA) and Ehsan Elhamifar (Northeastern University, USA)	8175
Progress-Aware Online Action Segmentation for Egocentric Procedural Task Videos	8186
Video ReCap: Recursive Captioning of Hour-Long Videos	8198
OmniViD: A Generative Framework for Universal Video Understanding	8209
MovieChat: From Dense Token to Sparse Memory for Long Video Understanding	8221
Learning Group Activity Features Through Person Attribute Prediction	8233
Streaming Dense Video Captioning	8243
Efficient and Effective Weakly-Supervised Action Segmentation via Action-Transition-Aware Boundary Alignment	8253
Benchmarking the Robustness of Temporal Action Detection Models Against Temporal Corruptions	8263

A Backpack Full of Skills: Egocentric Video Understanding with Diverse Task Perspectives Simone Alberto Peirone (Politecnico di Torino, Italy), Francesca Pistilli (Politecnico di Torino, Italy), Antonio Alliegro (Politecnico di Torino and Istituto Italiano di Tecnologia, Italy), and Giuseppe Averta (Politecnico di Torino, Italy)	18275
Summarize the Past to Predict the Future: Natural Language Descriptions of Context Boost Multimodal Object Interaction Anticipation	18286
Open-Vocabulary Video Anomaly Detection Peng Wu (Northwestern Polytechnical University), Xuerong Zhou (Northwestern Polytechnical University), Guansong Pang (Singapore Management University), Yujia Sun (Xidian University), Jing Liu (Xidian University), Peng Wang (Northwestern Polytechnical University), and Yanning Zhang (Northwestern Polytechnical University)	18297
Task-Driven Exploration: Decoupling and Inter-Task Feedback for Joint Moment Retrieval and Highlight Detection Jin Yang (Xi'an Jiaotong University, China), Ping Wei (Xi'an Jiaotong University, China), Huan Li (Xi'an Jiaotong University, China), and Ziyang Ren (Xi'an Jiaotong University, China)	18308
Prompt-Enhanced Multiple Instance Learning for Weakly Supervised Video Anomaly Detectio 18319 Junxi Chen (University of Chinese Academy of Sciences), Liang Li (Institute of computing technology, CAS), Li Su (University of Chinese Academy of Sciences), Zheng-jun Zha (University of Science and Technology of China), and Qingming Huang (University of Chinese Academy of Sciences)	n
Context-Guided Spatio-Temporal Video Grounding Xin Gu (University of Chinese Academy of Sciences, China), Heng Fan (University of North Texas, USA), Yan Huang (University of North Texas, USA), Tiejian Luo (University of Chinese Academy of Sciences, China), and Libo Zhang (Chinese Academy of Sciences, China)	. 18330
Just Add π ! Pose Induced Video Transformers for Understanding Activities of Daily Living Dominick Reilly (University of North Carolina at Charlotte) and Srijan Das (University of North Carolina at Charlotte)	18340
Action Detection via an Image Diffusion Process Lin Geng Foo (Singapore University of Technology and Design (SUTD), Singapore), Tianjiao Li (Singapore University of Technology and Design (SUTD), Singapore), Hossein Rahmani (Lancaster University, United Kingdom), and Jun Liu (Singapore University of Technology and Design (SUTD), Singapore)	. 18351

LLMs are Good Sign Language Translators Jia Gong (Singapore University of Technology and Design (SUTD), Singapore), Lin Geng Foo (Singapore University of Technology and Design (SUTD), Singapore), Yixuan He (Singapore University of Technology and Design (SUTD), Singapore), Hossein Rahmani (Lancaster University, United Kingdom), and Jun Liu (Singapore University of Technology and Design (SUTD), Singapore)	18362
End-to-End Spatio-Temporal Action Localisation with Video Transformers Alexey A. Gritsenko (Google), Xuehan Xiong (Google), Josip Djolonga (Google), Mostafa Dehghani (Google), Chen Sun (Google), Mario Lucic (Google), Cordelia Schmid (Google), and Anurag Arnab (Google)	.18373
HIG: Hierarchical Interlacement Graph Approach to Scene Graph Generation in Video Understanding	18384
LLMs are Good Action Recognizers Haoxuan Qu (Singapore University of Technology and Design, Singapore), Yujun Cai (Nanyang Technological University, Singapore), and Jun Liu (Singapore University of Technology and Design, Singapore)	18395
VideoLLM-online: Online Video Large Language Model for Streaming Video	18407
What, When, and Where? Self-Supervised Spatio-Temporal Grounding in Untrimmed Multi-Act Videos from Narrated Instructions	
Narrative Action Evaluation with Prompt-Guided Multimodal Interaction Shiyi Zhang (Tsinghua University, China), Sule Bai (Tsinghua University, China), Guangyi Chen (Carnegie Mellon University, USA), Lei Chen (Tsinghua University, China), Jiwen Lu (Tsinghua University, China), Junle Wang (Tencent), and Yansong Tang (Tsinghua University, China)	18430

Realigning Confidence with Temporal Saliency Information for Point-Level Weakly-Supervised Temporal Action Localization	140
Action-slot: Visual Action-centric Representations for Multi-label Atomic Activity Recognition in Traffic Scenes	4 51
LoCoNet: Long-Short Context Network for Active Speaker Detection	162
Neighbor Relations Matter in Video Scene Detection	1 73
PREGO: Online Mistake Detection in PRocedural EGOcentric Videos	183
Learning Object State Changes in Videos: An Open-World Perspective	493
Enhanced Motion-Text Alignment for Image-to-Video Transfer Learning	504
Asymmetric Masked Distillation for Pre-Training Small Foundation Models	516

Harnessing Large Language Models for Training-free Video Anomaly Detection	18527
SportsHHI: A Dataset for Human-Human Interaction Detection in Sports Videos	18537
VicTR: Video-conditioned Text Representations for Activity Recognition	18547
Dual DETRs for Multi-Label Temporal Action Detection	18559
Adapting Short-Term Transformers for Action Detection in Untrimmed Videos	18570
Can't Make an Omelette Without Breaking Some Eggs: Plausible Action Anticipation Using Large Video-Language Models	18580
End-to-End Temporal Action Detection with 1B Parameters Across 1000 Frames	8591
RMem: Restricted Memory Banks Improve Video Object Segmentation	18602
Low-power, Continuous Remote Behavioral Localization with Event Cameras	18612
Action Scene Graphs for Long-Form Understanding of Egocentric Videos	18622

ExACT: Language-guided Conceptual Reasoning and Uncertainty Estimation for Event-based Action Recognition and More Jiazhou Zhou (The Hong Kong University of Science and Technology (Guangzhou), China), Xu Zheng (The Hong Kong University of Science and Technology (Guangzhou), China), Yuanhuiyi Lyu (The Hong Kong University of Science and Technology (Guangzhou), China), and Lin Wang (The Hong Kong University of Science and Technology (Guangzhou), China, The Hong Kong University of Science and Technology, China)	18633
Uncertainty-aware Action Decoupling Transformer for Action Anticipation	. 18644
Error Detection in Egocentric Procedural Task Videos	. 18655
Learning to Predict Activity Progress by Self-Supervised Video Alignment	18667
MaskCLR: Attention-Guided Contrastive Learning for Robust Action Representation Learning . <i>Mohamed Abdelfattah (EPFL), Mariam Hassan (EPFL), and Alexandre Alahi (EPFL)</i>	18678
Align Before Adapt: Leveraging Entity-to-Region Alignments for Generalizable Video Action Recognition	18688
DIBS: Enhancing Dense Video Captioning with Unlabeled Videos via Pseudo Boundary Enrichment and Online Refinement Hao Wu (University of Science and Technology of China; Shanghai Artificial Intelligence Laboratory), Huabin Liu (Shanghai Artificial Intelligence Laboratory; Shanghai Jiao Tong University), Yu Qiao (Shanghai Artificial Intelligence Laboratory), and Xiao Sun (Shanghai Artificial Intelligence Laboratory)	18699
Bridging the Gap: A Unified Video Comprehension Framework for Moment Retrieval and Highlight Detection Yicheng Xiao (Tsinghua University, China), Zhuoyan Luo (Tsinghua University, China), Yong Liu (Tsinghua University, China), Yue Ma (Tsinghua University, China), Hengwei Bian (Carnegie Mellon University, America), Yatai Ji (Tsinghua University, China), Yujiu Yang (Tsinghua University, China), and Xiu Li (Tsinghua University, China)	. 18709
Test-Time Zero-Shot Temporal Action Localization	18720

Selective, Interpretable and Motion Consistent Privacy Attribute Obfuscation for Action Recognition	8730
Filip Ilic (Graz University of Technology, Austria), He Zhao (York University, Canada), Thomas Pock (Graz University of Technology, Austria), and Richard P. Wildes (York University, Canada)	.0750
Step Differences in Instructional Video	.8740
Compositional Video Understanding with Spatiotemporal Structure-based Transformers	.8751
Part-aware Unified Representation of Language and Skeleton for Zero-shot Action Recognition	0761
Anqi Zhu (The University of Melbourne), Qiuhong Ke (Monash University), Mingming Gong (The University of Melbourne), and James Bailey (The University of Melbourne)	.0701
vid-TLDR: Training Free Token Merging for Light-weight Video Transformer	.8771
CPR-Coach: Recognizing Composite Error Actions based on Single-class Training	.8782
Uncovering What, Why and How: A Comprehensive Benchmark for Causation Understanding of Video Anomaly	

Detours for Navigating Instructional Videos	3804
Why Not Use Your Textbook? Knowledge-Enhanced Procedure Planning of Instructional Videos . 18816 Kumaranage Ravindu Yasas Nagasinghe (Mohamed bin Zayed University of Artificial Intelligence), Honglu Zhou (NEC Laboratories, USA), Malitha Gunawardhana (University of Auckland), Martin Renqiang Min (NEC Laboratories, USA), Daniel Harari (Weizmann Institute of Science), and Muhammad Haris Khan (Mohamed bin Zayed University of Artificial Intelligence)	
Multiscale Vision Transformers Meet Bipartite Matching for Efficient Single-stage Action Localization	8827
TE-TAD: Towards Full End-to-End Temporal Action Detection via Time-Aligned Coordinate Expression	8837
CSTA: CNN-based Spatiotemporal Attention for Video Summarization	3847
PeVL: Pose-Enhanced Vision-Language Model for Fine-Grained Human Action Recognition 18 Haosong Zhang (Nanyang Technological University, Singapore), Mei Chee Leong (Institute for Infocomm Research (I2R), A*STAR, Singapore), Liyuan Li (Institute for Infocomm Research (I2R), A*STAR, Singapore), and Weisi Lin (Nanyang Technological University, Singapore)	3857
MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection	8868
Language Model Guided Interpretable Video Action Reasoning	3878
OST: Refining Text Knowledge with Optimal Spatio-Temporal Descriptor for General Video Recognition	8888

Text Prompt with Normality Guidance for Weakly Supervised Video Anomaly Detection	18899
VideoGrounding-DINO: Towards Open-Vocabulary Spatio-Temporal Video Grounding	18909
Unsupervised Video Domain Adaptation with Masked Pre-Training and Collaborative Self-Training	18919
SnAG: Scalable and Accurate Video Grounding	18930
Learning Correlation Structures for Vision Transformers	18941
Weakly-Supervised Audio-Visual Video Parsing with Prototype-based Pseudo-Labeling	18952
Matching Anything by Segmenting Anything	18963
3D Feature Tracking via Event Camera	18974
Frequency Decoupling for Motion Magnification via Multi-Level Isomorphic Architecture 1 Fei Wang (Hefei University of Technology), Dan Guo (Hefei University of Technology; Hefei Comprehensive National Science Center), Kun Li (Hefei University of Technology), Zhun Zhong (Hefei University of Technology; University of Nottingham), and Meng Wang (Hefei University of Technology; Hefei Comprehensive National Science Center)	18984

Towards Generalizable Multi-Object Tracking	18995
SocialCircle: Learning the Angle-based Social Interaction Representation for Pedestrian Trajectory Prediction	19005
Self-Supervised Multi-Object Tracking with Path Consistency	19016
UnSAMFlow: Unsupervised Optical Flow Guided by Segment Anything Model Shuai Yuan (Meta Reality Labs), Lei Luo (Meta Reality Labs), Zhuo Hui (Meta Reality Labs), Can Pu (Meta Reality Labs), Xiaoyu Xiang (Meta Reality Labs), Rakesh Ranjan (Meta Reality Labs), and Denis Demandolx (Meta Reality Labs)	19027
RTracker: Recoverable Tracking via PN Tree Structured Memory	19038
ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe	19048
Endow SAM with Keen Eyes: Temporal-spatial Prompt Learning for Video Camouflaged Object Detection	19058
MemFlow: Optical Flow Estimation and Prediction with Memory Qiaole Dong (Fudan University, China) and Yanwei Fu (Fudan University, China)	19068
OneTracker: Unifying Visual Object Tracking with Foundation Models and Efficient Tuning I Lingyi Hong (Fudan University, China), Shilin Yan (Fudan University, China), Renrui Zhang (The Chinese University of Hong Kong), Wanyun Li (Fudan University, China), Xinyu Zhou (Fudan University, China), Pinxue Guo (Fudan University, China), Kaixun Jiang (Fudan University, China), Yiting Chen (Fudan University, China), Jinglun Li (Fudan University, China), Zhaoyu Chen (Fudan University, China), and Wenqiang Zhang (Fudan University, China)	19079

Learned Trajectory Embedding for Subspace Clustering	.9092
PNeRV: Enhancing Spatial Consistency via Pyramidal Neural Representation for Videos	.9103
DiffusionTrack: Point Set Diffusion Model for Visual Object Tracking	9113
Sparse Global Matching for Video Frame Interpolation with Large Motion	.9125
iKUN: Speak to Trackers without Retraining	9135
NetTrack: Tracking Highly Dynamic Objects with a Net	19145
Single-Model and Any-Modality for Video Object Tracking	9156
FlowDiffuser: Advancing Optical Flow Estimation with Diffusion Models	9167
Video Harmonization with Triplet Spatio-Temporal Variation Patterns	.9177

Dense Optical Tracking: Connecting the Dots	9187
Efficient Meshflow and Optical Flow Estimation from Event Cameras)198
Context-Aware Integration of Language and Visual References for Natural Language Tracking . 19 Yanyan Shao (Zhejiang University of Technology, China), Shuting He (Nanyang Technological University, Singapore), Qi Ye (Zhejiang University, China), Yuchao Feng (Zhejiang University of Technology, China), Wenhan Luo (The Hong Kong University of Science and Technology, China), and Jiming Chen (Zhejiang University, China; Zhejiang University of Technology, China)	9208
Depth-aware Test-Time Training for Zero-shot Video Object Segmentation	9218
Weakly Supervised Video Individual Counting	9228
Dual Prototype Attention for Unsupervised Video Object Segmentation 19 Suhwan Cho (Yonsei University), Minhyeok Lee (Yonsei University), Seunghoon Lee (Yonsei University), Dogyoon Lee (Yonsei University), Heeseung Choi (Korea Institute of Science and Technology (KIST)), Ig-Jae Kim (Korea Institute of Science and Technology (KIST)), and Sangyoun Lee (Yonsei University)	9238
Event Stream-based Visual Object Tracking: A High-Resolution Benchmark Dataset and A Novel Baseline	9248

HIPTrack: Visual Tracking with Historical Prompts	19258
FlowTrack: Revisiting Optical Flow for Long-Range Dense Tracking	19268
Implicit Motion Function	19278
DeconfuseTrack: Dealing with Confusion for Multi-Object Tracking	19290
Autoregressive Queries for Adaptive Tracking with Spatio-Temporal Transformers	19300
ExtDM: Distribution Extrapolation Diffusion Model for Video Prediction	19310
DiffMOT: A Real-time Diffusion-based Multiple Object Tracker with Non-linear Prediction 1 Weiyi Lv (Shanghai University, China), Yuhang Huang (National University of Defense Technology, China), Ning Zhang (PAII Inc., USA), Ruei-Sung Lin (PAII Inc., USA), Mei Han (PAII Inc., USA), and Dan Zeng (Shanghai University, China)	19321
GigaTraj: Predicting Long-term Trajectories of Hundreds of Pedestrians in Gigapixel Complex Scenes	19331
Delving into the Trajectory Long-tail Distribution for Muti-object Tracking	19341

OCAI: Improving Optical Flow Estimation by Occlusion and Consistency Aware Interpolation .. 19352

Jisoo Jeong (Qualcomm AI Research), Hong Cai (Qualcomm AI Research),

Risheek Garrepalli (Qualcomm AI Research), Jamie Menjay Lin (Qualcomm

AI Reseach), Munawar Hayat (Qualcomm AI Research), and Fatih Porikli

(Qualcomm AI Research)

Orals 5A Datasets and Evaluation

Deep Generative Model based Rate-Distortion for Image Downscaling Assessment	
360+x: A Panoptic Multi-modal Scene Understanding Dataset	
Hao Chen (University of Birmingham, UK), Yuqi Hou (University of	
Birmingham, UK), Chenyuan Qu (University of Birmingham, UK), Irene	
Testini (University of Birmingham, UK), Xiaohan Hong (University of	
Birmingham, UK), and Jianbo Jiao (University of Birmingham, UK)	

Ego-Exo4D: Understanding Skilled Human Activity from First- and Third-Person Perspectives . 19383 Kristen Grauman (FAIR, Meta; University of Texas at Austin, USA), Andrew Westbury (FAIR, Meta, USA), Lorenzo Torresani (FAIR, Meta, USA), Kris Kitani (FAIR, Meta and Carnegie Mellon University, USA), Jitendra Malik (FAIR, Meta; University of California, Berkeley, USA), Triantafyllos Afouras (FAIR, Meta, USA), Kumar Ashutosh (FAIR, Meta; University of Texas at Austin, USA), Vijay Baiyya (Meta, USA), Siddhant Bansal (University of Bristol, UK), Bikram Boote (University of Illinois, Urbana Champaign, USA), Eugene Byrne (FAIR, Meta; Carnegie Mellon University, USA), Zach Chavis (University of Minnesota, USA), Joya Chen (National University of Singapore, Singapore), Feng Cheng (FAIR, Meta, USA), Fu-Jen Chu (FAIR, Meta, USA), Sean Crane (Carnegie Mellon University, USA), Avijit Dasgupta (International Institute of Information Technology, Hyderabad, India), Jing Dong (Meta, USA), Maria Escobar (Universidad de los Andes, Colombia), Cristhian Forigua (Universidad de los Andes, Colombia), Abrham Gebreselasie (Carnegie Mellon University, Rwanda), Sanjay Haresh (Simon Fraser University, Canada), Jing Huang (FAIR, Meta, USA), Md Mohaiminul Islam (University of North Carolina, Chapel Hill, USA), Suyog Jain (FAIR, Meta, USA), Rawal Khirodkar (Carnegie Mellon University, USA), Devansh Kukreja (FAIR, Meta, USA), Kevin J Liang (FAIR, Meta, USA), Jia-Wei Liu (National University of Singapore, Singapore), Sagnik Majumder (FAIR, Meta; University of Texas at Austin, USA), Yongsen Mao (Simon Fraser University, Canada), Miguel Martin (FAIR, Meta, USA), Effrosyni Mavroudi (FAIR, Meta, USA), Tushar Nagarajan (FAIR, Meta, USA), Francesco Ragusa (University of Catania, Italy), Santhosh Kumar Ramakrishnan (University of Texas at Austin, USA), Luigi Seminara (University of Catania, Italy), Arjun Somayazulu (University of Texas at Austin, USA), Yale Song (FAIR, Meta, USA), Shan Su (University of Pennsylvania, USA), Zihui Xue (FAIR, Meta; University of Texas at Austin, USA), Edward Zhang (University of Pennsylvania, USA), Jinxu Zhang (University of Pennsylvania, USA), Angela Castillo (Universidad de los Andes, Colombia), Changan Chen (University of Texas at Austin, USA), Xinzhu Fu (National University of Singapore, Singapore), Ryosuke Furuta (University of Tokyo, Japan), Cristina Gonzalez (Universidad de los Andes, Colombia), Prince Gupta (Meta, USA), Jiabo Hu (Meta, USA), Yifei Huang (University of Tokyo, Japan), Yiming Huang (University of Pennsylvania, USA), Weslie Khoo (Indiana University, USA), Anush Kumar (University of Minnesota, USA), Robert Kuo (Meta, USA), Sach Lakhavani (Meta, USA), Miao Liu (Meta, USA), Mi Luo (University of Texas at Austin, USA), Zhengyi Luo (Carnegie Mellon University, USA), Brighid Meredith (Meta, USA), Austin Miller (Meta, USA), Oluwatumininu Oguntola (University of North Carolina, Chapel Hill, USA), Xiaqing Pan (Meta, USA), Penny Peng (Meta, USA), Shraman Pramanick (Johns Hopkins University, USA), Merey Ramazanova (KAUST, Saudi Arabia), Fiona Ryan (Georgia Tech, USA), Wei Shan (University of North Carolina, Chapel Hill, USA), Kiran Somasundaram (Meta, USA), Chenan Song (National University of Singapore, Singapore), Audrey Southerland (Georgia Tech, USA), Masatoshi Tateno (University of Tokyo, Japan), Huiyu Wang (FAIR, Meta, USA), Yuchen Wang (Indiana University, USA), Takuma Yagi (University of Tokyo, Japan), Mingfei Yan (Meta, USA), Xitong Yang (FAIR, Meta,

USA), Zecheng Yu (University of Tokyo, Japan), Shengxin Cindy Zha (Meta, USA), Chen Zhao (KAUST, Saudi Arabia), Ziwei Zhao (Indiana University, USA), Zhifan Zhu (University of Bristol, UK), Jeff Zhuo (University of North Carolina, Chapel Hill, USA), Pablo Arbelaez (Universidad de los Andes, Colombia), Gedas Bertasius (University of North Carolina, Chapel Hill, USA), Dima Damen (University of Bristol, UK), Jakob Engel (Meta, USA), Giovanni Maria Farinella (University of Catania, Italy), Antonino Furnari (University of Catania, Italy), Bernard Ghanem (KAUST, Saudi Arabia), Judy Hoffman (Georgia Tech, USA), C.V. Jawahar (International Institute of Information Technology, Hyderabad, India), Richard Newcombe (Meta, USA), Hyun Soo Park (University of Minnesota, USA), James M. Rehg (University of Illinois, Urbana Champaign, USA), Yoichi Sato (University of Tokyo, Japan), Manolis Savva (Simon Fraser University, Canada), Jianbo Shi (University of Pennsylvania, USA), Mike Zheng Shou (National University of Singapore, Singapore), and Michael Wray (University of Bristol, UK)
Rich Human Feedback for Text-to-Image Generation
Research), Gang Li (Google Research), Peizhao Li (Brandeis
University), Arseniy Klimovskiy (Google Research), Nicholas Carolan (Google Research), Jiao Sun (University of Southern California), Jordi
Pont-Tuset (Google Research), Sarah Young (Google Research), Feng Yang
(Google Research), Junjie Ke (Google Research), Krishnamurthy Dj Dvijotham (Google Research), Katherine M. Collins (University of
Cambridge), Yiwen Luo (Google Research), Yang Li (Google Research),
Kai J Kohlhoff (Google Research), Deepak Ramachandran (Google
Research), and Vidhya Navalpakkam (Google Research)
BioCLIP: A Vision Foundation Model for the Tree of Life
University), Matthew J Thompson (The Ohio State University), Elizabeth
G Campolongo (The Ohio State University), Chan Hee Song (The Ohio State University), David Edward Carlyn (The Ohio State University), Li
Dong (Microsoft Research), Wasila M Dahdul (University of California,
Irvine), Charles Stewart (Rensselaer Polytechnic Institute), Tanya
Berger-Wolf (The Ohio State University), Wei-Lun Chao (The Ohio State University), and Yu Su (The Ohio State University)
Orala ED 2D from Multiviary and Consorra
Orals 5B 3D from Multiview and Sensors
Grounding and Enhancing Grid-based Models for Neural Fields
Chinese University of Hong Kong, HKSAR), Wenlong Liao (Shanghai Jiao Tong University, China), and Junchi Yan (Shanghai Jiao Tong University, China)

NeRF-HuGS: Improved Neural Radiance Fields in Non-static Scenes Using Heuristics-Guided Segmentation
Jiahao Chen (Sun Yat-sen University, China), Yipeng Qin (Cardiff University, United Kingdom), Lingjie Liu (University of Pennsylvania, USA), Jiangbo Lu (SmartMore Corporation, China), and Guanbin Li (Sun Yat-sen University, China)
Mip-Splatting: Alias-free 3D Gaussian Splatting
pixelSplat: 3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction
Learning to Produce Semi-dense Correspondences for Visual Localization
Orals 5C Low-shot, Self-supervised, Semi-supervised Learning
Orals 5C Low-shot, Self-supervised, Semi-supervised Learning CroSel: Cross Selection of Confident Pseudo Labels for Partial-Label Learning
Orals 5C Low-shot, Self-supervised, Semi-supervised Learning CroSel: Cross Selection of Confident Pseudo Labels for Partial-Label Learning

Improving Semantic Correspondence with Viewpoint-Guided Spherical Maps	21
Poster Session 5	
TeMO: Towards Text-Driven 3D Stylization for Multi-Object Meshes	31
Event-based Structure-from-Orbit	41
Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training 195. Xiaoyang Wu (The Univeristy of Hong Kong, Hong Kong), Zhuotao Tian (The Chinese University of Hong Kong, Hong Kong), Xin Wen (The University of Hong Kong, Hong Kong), Bohao Peng (The Chinese University of Hong Kong, Hong Kong), Xihui Liu (The University of Hong Kong, Hong Kong), Kaicheng Yu (Westlake University, China), and Hengshuang Zhao (The University of Hong Kong, Hong Kong)	51
LidaRF: Delving into Lidar for Neural Radiance Field on Street Scenes	63
Instantaneous Perception of Moving Objects in 3D	73
Implicit Event-RGBD Neural SLAM	84
GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting	95

Learning Instance-Aware Correspondences for Robust Multi-Instance Point Cloud Registration in Cluttered Scenes	. 19605
Zhiyuan Yu (National University of Defense Technology), Zheng Qin (National University of Defense Technology), Lintao Zheng (National University of Defense Technology), and Kai Xu (National University of Defense Technology)	
MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers Yawar Siddiqui (Technical University of Munich, Germany), Antonio Alliegro (Politecnico di Torino, Italy), Alexey Artemov (Technical University of Munich, Germany), Tatiana Tommasi (Politecnico di Torino, Italy), Daniele Sirigatti (AUDI AG, Germany), Vladislav Rosov (AUDI AG, Germany), Angela Dai (Technical University of Munich, Germany), and Matthias Nießner (Technical University of Munich, Germany)	. 19615
Multi-Session SLAM with Differentiable Wide-Baseline Pose Optimization	19626
SHINOBI: Shape and Illumination using Neural Object Decomposition via BRDF Optimization In-the-wild	19636
HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces Haithem Turki (Carnegie Mellon University), Vasu Agrawal (Meta Reality Labs), Samuel Rota Bulò (Meta Reality Labs), Lorenzo Porzi (Meta Reality Labs), Peter Kontschieder (Meta Reality Labs), Deva Ramanan (Carnegie Mellon University), Michael Zollhöfer (Meta Reality Labs), and Christian Richardt (Meta Reality Labs)	19647
PLGSLAM: Progressive Neural Scene Represenation with Local to Global Bundle Adjustment Tianchen Deng (Shanghai Jiao Tong University), Guole Shen (Shanghai Jiao Tong University), Tong Qin (Shanghai Jiao Tong University), Jianyu Wang (Shanghai Jiao Tong University), Wentao Zhao (Shanghai Jiao Tong University), Jingchuan Wang (Shanghai Jiao Tong University), Danwei Wang (Nanyang Technological University), and Weidong Chen (Shanghai Jiao Tong University)	. 19657
Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling Xinhang Liu (HKUST, Hong Kong), Yu-Wing Tai (Dartmouth College, USA), Chi-Keung Tang (HKUST, Hong Kong), Pedro Miraldo (Mitsubishi Electric Research Laboratories (MERL), USA), Suhas Lohit (Mitsubishi Electric Research Laboratories (MERL), USA), and Moitreya Chatterjee (Mitsubishi Electric Research Laboratories (MERL), USA)	19667

GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis	9680
HyperSDFusion: Bridging Hierarchical Structures in Language and Geometry for Enhanced 3D Text2Shape Generation	9691
Selective-Stereo: Adaptive Frequency Information Selection for Stereo Matching	9701
Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling	
Global Latent Neural Rendering	9723
HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian Splatting	9734
LoS: Local Structure-Guided Stereo Matching	9746

EmbodiedScan: A Holistic Multi-Modal 3D Perception Suite Towards Embodied AI	19757
Masked Spatial Propagation Network for Sparsity-Adaptive Depth Refinement	19768
CausalPC: Improving the Robustness of Point Cloud Classification by Causal Effect Identification	19779
Yuanmin Huang (Fudan University), Mi Zhang (Fudan University), Daizong Ding (Fudan University), Erling Jiang (Fudan University), Zhaoxiang Wang (Fudan University), and Min Yang (Fudan University)	19//9
RoMa: Robust Dense Feature Matching	19790
MVHumanNet: A Large-scale Dataset of Multi-view Daily Dressing Human Captures Zhangyang Xiong (FNii, CUHKSZ; SSE, CUHKSZ), Chenghong Li (FNii, CUHKSZ; SSE, CUHKSZ), Kenkun Liu (The Chinese University of Hong Kong, Shenzhen), Hongjie Liao (The Chinese University of Hong Kong, Shenzhen), Jianqiao Hu (The Chinese University of Hong Kong, Shenzhen), Junyi Zhu (The Chinese University of Hong Kong, Shenzhen), Shuliang Ning (The Chinese University of Hong Kong, Shenzhen), Lingteng Qiu (The Chinese University of Hong Kong, Shenzhen), Chongjie Wang (The Chinese University of Hong Kong, Shenzhen), Shijie Wang (The Chinese University of Hong Kong, Shenzhen), Shijie Wang (The Chinese University of Hong Kong, Shenzhen), Shuguang Cui (SSE, CUHKSZ; FNii, CUHKSZ), and Xiaoguang Han (SSE, CUHKSZ; FNii, CUHKSZ)	19801
GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering Abdullah Hamdi (University of Oxford, United Kingdom), Luke Melas-Kyriazi (University of Oxford, United Kingdom), Jinjie Mai (KAUST, Saudi Arabia), Guocheng Qian (Snap Inc, USA), Ruoshi Liu (Columbia University, USA), Carl Vondrick (Columbia University, USA), Bernard Ghanem (KAUST, Saudi Arabia), and Andrea Vedaldi (University of Oxford, United Kingdom)	19812
RegionPLC: Regional Point-Language Contrastive Learning for Open-World 3D Scene Understanding	19823

NeLF-Pro: Neural Light Field Probes for Multi-Scale Novel View Synthesis	19833
LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry	19844
FAR: Flexible, Accurate and Robust 6DoF Relative Camera Pose Estimation	19854
OmniGlue: Generalizable Feature Matching with Foundation Model Guidance	19865
GART: Gaussian Articulated Template Models Jiahui Lei (University of Pennsylvania), Yufu Wang (University of Pennsylvania), Georgios Pavlakos (UC Berkeley), Lingjie Liu (University of Pennsylvania), and Kostas Daniilidis (University of Pennsylvania)	19876
CG-HOI: Contact-Guided 3D Human-Object Interaction Generation	19888
FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Obse 19902 Christian Diller (Technical University of Munich, Germany), Thomas Funkhouser (Google, USA), and Angela Dai (Technical University of Munich, Germany)	ervations
PI3D: Efficient Text-to-3D Generation with Pseudo-Image Diffusion Ying-Tian Liu (BNRist, Tsinghua University, China), Yuan-Chen Guo (BNRist, Tsinghua University; VAST, China), Guan Luo (BNRist, Tsinghua University, China), Heyi Sun (BNRist, Tsinghua University, China), Wei Yin (The University of Adelaide, Australia), and Song-Hai Zhang (Qinghai University; BNRist, Tsinghua University, China)	19915
Building a Strong Pre-Training Baseline for Universal 3D Large-Scale Perception	19925

COTR: Compact Occupancy TRansformer for Vision-based 3D Occupancy Prediction	19936
SelfOcc: Self-Supervised Vision-Based 3D Occupancy Prediction Yuanhui Huang (Tsinghua University, China), Wenzhao Zheng (Tsinghua University, China), Borui Zhang (Tsinghua University, China), Jie Zhou (Tsinghua University, China), and Jiwen Lu (Tsinghua University, China)	19946
UnScene3D: Unsupervised 3D Instance Segmentation for Indoor Scenes David Rozenberszki (Technical University of Munich, Germany), Or Litany (NVIDIA, USA, Technion, Israel), and Angela Dai (Technical University of Munich, Germany)	. 19957
NEAT: Distilling 3D Wireframes from Neural Attraction Fields Nan Xue (Ant Group), Bin Tan (Wuhan University; Ant Group), Yuxi Xiao (Zhejiang University; Ant Group), Liang Dong (Google), Gui-Song Xia (Wuhan University), Tianfu Wu (NC State University), and Yujun Shen (Ant Group)	. 19968
3DInAction: Understanding Human Actions in 3D Point Clouds	19978
Dynamic LiDAR Re-simulation using Compositional Neural Fields	19988
Inverse Rendering of Glossy Objects via the Neural Plenoptic Function and Radiance Fields Haoyuan Wang (City University of Hong Kong, Hong Kong), Wenbo Hu (Tecent, China), Lei Zhu (City University of Hong Kong, Hong Kong), and Rynson W.H. Lau (City University of Hong Kong, Hong Kong)	19999
PanoPose: Self-supervised Relative Pose Estimation for Panoramic Images Diantao Tu (Institute of Automation, Chinese Academy of Sciences, China), Hainan Cui (Institute of Automation, Chinese Academy of Sciences, China), Xianwei Zheng (The State Key Lab. LIESMARS, Wuhan University, China), and Shuhan Shen (Institute of Automation, Chinese Academy of Sciences, China)	20009
GeoAuxNet: Towards Universal 3D Representation Learning for Multi-sensor Point Clouds Shengjun Zhang (Tsinghua University), Xin Fei (Tsinghua University), and Yueqi Duan (Tsinghua University)	20019
4K4D: Real-Time 4D View Synthesis at 4K Resolution	. 20029

MuRF: Multi-Baseline Radiance Fields	1
Haofei Xu (ETH Zurich, University of Tübingen, Tübingen AI Center), Anpei Chen (ETH Zurich, University of Tübingen, Tübingen AI Center), Yuedong Chen (Monash University), Christos Sakaridis (ETH Zurich), Yulun Zhang (Shanghai Jiao Tong University), Marc Pollefeys (ETH Zurich, Microsoft), Andreas Geiger (University of Tübingen, Tübingen AI Center), and Fisher Yu (ETH Zurich)	
LangSplat: 3D Language Gaussian Splatting	1
Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields	1
Accelerating Neural Field Training via Soft Mining	1
CORE-MPI: Consistency Object Removal with Embedding MultiPlane Image	1
NECA: Neural Customizable Human Avatar	1
S-DyRF: Reference-Based Stylized Radiance Fields for Dynamic Scenes 20102 Xingyi Li (Huazhong University of Science and Technology, China; Nanyang Technological University, Singapore), Zhiguo Cao (Huazhong University of Science and Technology, China), Yizheng Wu (Huazhong University of Science and Technology, China; Nanyang Technological University, Singapore), Kewei Wang (Huazhong University of Science and Technology, China; Nanyang Technological University, Singapore), Ke Xian (Huazhong University of Science and Technology, China; Nanyang Technological University, Singapore), Zhe Wang (SenseTime Research, China), and Guosheng Lin (Nanyang Technological University, Singapore)	2
BEVNeXt: Reviving Dense BEV Frameworks for 3D Object Detection	.3

Bi-SSC: Geometric-Semantic Bidirectional Fusion for Camera-based 3D Semantic Scene	
Completion	20124
Yujie Xue (Hunan University, China), Ruihui Li (Hunan University,	
China), Fan Wu (Hunan University, China), Zhuo Tang (Hunan University,	
China), Kenli Li (Hunan University, China), and Mingxing Duan (Hunan	
University, China)	
Learning to Select Views for Efficient Multi-View Understanding	20135
Yunzhong Hou (Australian National University, Australia), Stephen	20100
Gould (Australian National University, Australia), and Liang Zheng	
(Australian National University, Australia)	
•	
Outdoor Scene Extrapolation with Hierarchical Generative Cellular Automata	20145
Dongsu Zhang (Seoul National University, South Korea), Francis	
Williams (NVIDIA, USA), Zan Gojcic (NVIDIA, Zurich), Karsten Kreis	
(NVIDIA, Canada), Sanja Fidler (University of Toronto, Canada), Young	
Min Kim (Seoul National University, South Korea), and Amlan Kar	
(University of Toronto, Canada)	
Spectrum AUC Difference (SAUCD): Human-aligned 3D Shape Evaluation	20155
Tianyu Luan (State University of New York at Buffalo), Zhong Li (OPPO	
US Research Center), Lele Chen (OPPO US Research Center), Xuan Gong	
(Harvard Medical School), Lichang Chen (University of Maryland,	
College Park), Yi Xu (OPPO US Research Center), and Junsong Yuan	
(State University of New York at Buffalo)	
Federated Online Adaptation for Deep Stereo	20165
Matteo Poggi (University of Bologna, Italy) and Fabio Tosi (University	20103
of Bologna, Italy)	
Instruct 4D-to-4D: Editing 4D Scenes as Pseudo-3D Scenes Using 2D Diffusion	20176
Linzhan Mou (Zhejiang University, China), Jun-Kun Chen (University of	
Illinois Urbana-Champaign, USA), and Yu-Xiong Wang (University of	
Illinois Urbana-Champaign, USA)	
Real-time Acquisition and Reconstruction of Dynamic Volumes with Neural Structured	
•	20186
Yixin Zeng (Zhejiang University, China), Zoubin Bi (Zhejiang	
University, China), Mingrui Yin (Zhejiang University, China), Xiang	
Feng (Zhejiang University), Kun Zhou (Zhejiang University, China), and	
Hongzhi Wu (Zhejiang University)	
	20106
Unifying Correspondence, Pose and NeRF for Generalized Pose-Free Novel View Synthesis	20196
Sunghwan Hong (Korea University), Jaewoo Jung (Korea University),	
Heeseong Shin (Korea University), Jiaolong Yang (Microsoft Research	
Asia), Seungryong Kim (Korea University), and Chong Luo (Microsoft	
Research Asia)	
GoMVS: Geometrically Consistent Cost Aggregation for Multi-View Stereo	20207
Jiang Wu (Northwestern Polytechnical University, China), Rui Li	
(Northwestern Polytechnical University, China, ETH Zürich,	
Switzerland), Haofei Xu (University of Tübingen, Tübingen AI Center,	
ETH Zürich), Wenxun Zhao (Northwestern Polytechnical University,	
China), Yu Zhu (Northwestern Polytechnical University, China), Jinqiu	
Sun (Northwestern Polytechnical University, China), and Yanning Zhang	
(Northwestern Polytechnical University, China)	

MESA: Matching Everything by Segmenting Anything Yesheng Zhang (Shanghai Jiao Tong University, China) and Xu Zhao (Shanghai Jiao Tong University, China)	217
OmniSDF: Scene Reconstruction using Omnidirectional Signed Distance Functions and Adaptive Binoctrees	227
MirageRoom: 3D Scene Segmentation with 2D Pre-trained Models by Mirage Projection	237
Robust Synthetic-to-Real Transfer for Stereo Matching	247
Symphonize 3D Semantic Scene Completion with Contextual Instance Queries	258
Differentiable Neural Surface Refinement for Modeling Transparent Objects	268
DeMatch: Deep Decomposition of Motion Field for Two-View Correspondence Learning 202 Shihua Zhang (Wuhan University), Zizhuo Li (Wuhan University), Yuan Gao (Wuhan University), and Jiayi Ma (Wuhan University)	278
Is Vanilla MLP in Neural Radiance Field Enough for Few-shot View Synthesis?	288
GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians	299

4D Gaussian Splatting for Real-Time Dynamic Scene Rendering	310
How Far Can We Compress Instant-NGP-Based NeRF? 2032 Yihang Chen (Shanghai Jiao Tong University), Qianyi Wu (Monash University), Mehrtash Harandi (Monash University), and Jianfei Cai (Monash University)	321
Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene Reconstruction	331
Learning with Unreliability: Fast Few-shot Voxel Radiance Fields with Relative Geometric Consistency	342
NTO3D: Neural Target Object 3D Reconstruction with Segment Anything	352
Loopy-SLAM: Dense Neural SLAM with Loop Closures	363
BSNet: Box-Supervised Simulation-assisted Mean Teacher for 3D Instance Segmentation	374
ExtraNeRF: Visibility-Aware View Extrapolation of Neural Radiance Fields with Diffusion Models	385

Alpha Invariance: On Inverse Scaling Between Distance and Volume Density in Neural Radiance Fields
(TTI-Chicago, USA)
SpatialTracker: Tracking Any 2D Pixels in 3D Space
GauHuman: Articulated Gaussian Splatting from Monocular Human Videos
 IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images
GOV-NeSF: Generalizable Open-Vocabulary Neural Semantic Fields
LASA: Instance Reconstruction from Real Scans using A Large-scale Aligned Shape Annotation Dataset
GenZI: Zero-Shot 3D Human-Scene Interaction Generation
MVCPS-NeuS: Multi-view Constrained Photometric Stereo for Neural Surface Reconstruction 2047 Hiroaki Santo (Osaka University, Japan), Fumio Okura (Osaka University, Japan), and Yasuyuki Matsushita (Osaka University, Japan)
DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses

Motion2VecSets: 4D Latent Vector Set Diffusion for Non-rigid Shape Reconstruction and Tracking	20496
Wei Cao (Technical University of Munich), Chang Luo (Technical University of Munich), Biao Zhang (King Abdullah University of Science and Technology), Matthias Nießner (Technical University of Munich), and Jiapeng Tang (Technical University of Munich)	20490
DiffuScene: Denoising Diffusion Models for Generative Indoor Scene Synthesis	20507
Test-Time Adaptation for Depth Completion	20519
Global and Hierarchical Geometry Consistency Priors for Few-shot NeRFs in Indoor Scenes 2 Xiaotian Sun (Xiamen University, China), Qingshan Xu (Nanyang Technological University, Singapore), Xinjie Yang (Xiamen University, China), Yu Zang (Xiamen University, China), and Cheng Wang (Xiamen University, China)	20530
KP-RED: Exploiting Semantic Keypoints for Joint 3D Shape Retrieval and Deformation	20540
Unsigned Orthogonal Distance Fields: An Accurate Neural Implicit Representation for Diverse 3D Shapes	20551
DiSR-NeRF: Diffusion-Guided View-Consistent Super-Resolution NeRF	20561
BANF: Band-Limited Neural Fields for Levels of Detail Reconstruction	20571
SuperNormal: Neural Surface Reconstruction via Multi-View Normal Integration	20581

ADFactory: An Effective Framework for Generalizing Optical Flow with NeRF Han Ling (Nanjing University of Science and Technology, China), Quansen Sun (Nanjing University of Science and Technology, China), Yinghui Sun (Southeast University, China), Xian Xu (Southeast University, China), and Xinfeng Li (Nanjing University of Science and Technology, China)	20591
Dr.Hair: Reconstructing Scalp-Connected Hair Strands without Pre-Training via Differentiable Rendering of Line Segments Yusuke Takimoto (Huawei Technologies Japan K.K., Japan), Hikari Takehara (Huawei Technologies Japan K.K., Japan), Hiroyuki Sato (Huawei Technologies Japan K.K., Japan), Zihao Zhu (Keio University, Japan), and Bo Zheng (Huawei Technologies Japan K.K., Japan)	20601
OmniSeg3D: Omniversal 3D Segmentation via Hierarchical Contrastive Learning	20612
Visual Programming for Zero-shot Open-Vocabulary 3D Visual Grounding	20623
GEARS: Local Geometry-aware Hand-object Interaction Synthesis Keyang Zhou (Max Planck Institute for Informatics; University of Tübingen), Bharat Lal Bhatnagar (Max Planck Institute for Informatics), Jan Eric Lenssen (Max Planck Institute for Informatics), and Gerard Pons-Moll (Max Planck Institute for Informatics; University of Tübingen)	20634
Edge-Aware 3D Instance Segmentation Network with Intelligent Semantic Prior Wonseok Roh (Korea University, Republic of Korea), Hwanhee Jung (Korea University, Republic of Korea), Giljoo Nam (Meta Reality Labs, USA), Jinseop Yeom (Korea University, Republic of Korea), Hyunje Park (Korea University, Republic of Korea), Sang Ho Yoon (KAIST, Republic of Korea), and Sangpil Kim (Korea University, Republic of Korea)	20644
Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering Tao Lu (Shanghai AI Lab), Mulin Yu (Shanghai AI Lab), Linning Xu (The Chinese University of Hong Kong), Yuanbo Xiangli (Cornell University), Limin Wang (Nanjing University; Shanghai AI Lab), Dahua Lin (Shanghai AI Lab, The Chinese University of Hong Kong), and Bo Dai (Shanghai AI Lab)	20654
Map-Relative Pose Regression for Visual Re-Localization Shuai Chen (Niantic; University of Oxford), Tommaso Cavallari (Niantic), Victor Adrian Prisacariu (Niantic; University of Oxford), and Eric Brachmann (Niantic)	20665
3DGStream: On-the-Fly Training of 3D Gaussians for Efficient Streaming of Photo-Realistic Free-Viewpoint Videos	20675

Revisiting Global Translation Estimation with Feature Tracks	20686
DUSt3R: Geometric 3D Vision Made Easy	20697
Robust Depth Enhancement via Polarization Prompt Fusion Tuning	20710
StraightPCF: Straight Point Cloud Filtering Dasith de Silva Edirimuni (Deakin University, Australia), Xuequan Lu (La Trobe University, Australia), Gang Li (Deakin University, Australia), Lei Wei (Deakin University, Australia), Antonio Robles-Kelly (Deakin University, Australia), and Hongdong Li (Australian National University, Australia)	20721
NeRFiller: Completing Scenes via Generative 3D Inpainting	20731
NeRF Director: Revisiting View Selection in Neural Volume Rendering Wenhui Xiao (Queensland University of Technology, Australia), Rodrigo Santa Cruz (Imaging and Computer Vision Group, CSIRO Data61, Australia), David Ahmedt-Aristizabal (Imaging and Computer Vision Group, CSIRO Data61, Australia), Olivier Salvado (Imaging and Computer Vision Group, CSIRO Data61, Australia), Clinton Fookes (Queensland University of Technology, Australia), and Leo Lebrat (Imaging and Computer Vision Group, CSIRO Data61, Australia)	20742
Learning Intra-view and Cross-view Geometric Knowledge for Stereo Matching Rui Gong (Nanyang Technological University), Weide Liu (Institute for Infocomm Research, A*STAR), Zaiwang Gu (Institute for Infocomm Research, A*STAR), Xulei Yang (Institute for Infocomm Research, A*STAR), and Jun Cheng (Institute for Infocomm Research, A*STAR)	20752
Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D Prior	20763
DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with Global-Local Depth Normalization Jiahe Li (Beihang University, China), Jiawei Zhang (Beihang University, China), Xiao Bai (Beihang University, China), Jin Zheng (Beihang University, China), Xin Ning (Institute of Semiconductors, Chinese Academy of Sciences, China), Jun Zhou (Griffith University, Australia), and Lin Gu (RIKEN AIP / The University of Tokyo, Japan)	20775

A Conditional Denoising Diffusion Probabilistic Model for Point Cloud Upsampling	786
COLMAP-Free 3D Gaussian Splatting	796
GSNeRF: Generalizable Semantic Neural Radiance Fields with Enhanced 3D Scene Understanding 20806 Zi-Ting Chou (Natioanl Taiwan University, Taiwan), Sheng-Yu Huang (Natioanl Taiwan University, Taiwan), I-Jieh Liu (Natioanl Taiwan University, Taiwan), and Yu-Chiang Frank Wang (Natioanl Taiwan University, Taiwan; NVIDIA, Taiwan)	
Extend Your Own Correspondences: Unsupervised Distant Point Cloud Registration by Progressive Distance Extension	816
Fully Geometric Panoramic Localization	827
Multiway Point Cloud Mosaicking with Diffusion and Global Optimization	838
Generative 3D Part Assembly via Part-Whole-Hierarchy Message Passing	350
Total-Decom: Decomposed 3D Scene Reconstruction with Minimal Interaction	360
Absolute Pose from One or Two Scaled and Oriented Features	370
DGC-GNN: Leveraging Geometry and Color Cues for Visual Descriptor-Free 2D-3D Matching 208 Shuzhe Wang (Aalto University, Finland), Juho Kannala (Aalto University, Finland), and Daniel Barath (ETH Zurich, Switzerland)	881

Entity-NeRF: Detecting and Removing Moving Entities in Urban Scenes Takashi Otonari (The University of Tokyo), Satoshi Ikehata (National Institute of Informatics), and Kiyoharu Aizawa (The University of Tokyo)	. 20892
GaussianEditor: Editing 3D Gaussians Delicately with Text Instructions Junjie Wang (Huawei Inc., China), Jiemin Fang (Huawei Inc., China), Xiaopeng Zhang (Huawei Inc., China), Lingxi Xie (Huawei Inc., China), and Qi Tian (Huawei Inc., China)	. 20902
The More You See in 2D, the More You Perceive in 3D Xinyang Han (UC Berkeley, USA), Zelin Gao (Zhejiang University, China), Angjoo Kanazawa (UC Berkeley, USA), Shubham Goel (Avataar, USA), and Yossi Gandelsman (UC Berkeley, USA)	. 20912
Multi-Scale 3D Gaussian Splatting for Anti-Aliased Rendering Zhiwen Yan (National University of Singapore), Weng Fei Low (National University of Singapore), Yu Chen (National University of Singapore), and Gim Hee Lee (National University of Singapore)	20923
Practical Measurements of Translucent Materials with Inter-Pixel Translucency Prior Zhenyu Chen (Nanjing University, China), Jie Guo (Nanjing University, China), Shuichang Lai (Nanjing University, China), Ruoyu Fu (Nanjing University, China), Mengxun Kong (Nanjing University, China), Chen Wang (Nanjing University, China), Hongyu Sun (OPPO, USA), Zhebin Zhang (OPPO, USA), Chen Li (OPPO, USA), and Yanwen Guo (Nanjing University, China)	.20932
OneFormer3D: One Transformer for Unified Point Cloud Segmentation Maxim Kolodiazhnyi (Samsung Research, Russia), Anna Vorontsova (Samsung Research, Russia), Anton Konushin (Samsung Research, Russia), and Danila Rukhovich (Samsung Research, Russia)	. 20943
General Point Model Pretraining with Autoencoding and Autoregressive	. 20954
MorpheuS: Neural Dynamic 360° Surface Reconstruction from Monocular RGB-D Video	.20965
Object Dynamics Modeling with Hierarchical Point Cloud-based Representations	. 20977
Neural Refinement for Absolute Pose Regression with Feature Synthesis	. 20987

Gaussian Shadow Casting for Neural Characters	97
PAPR in Motion: Seamless Point-level 3D Scene Interpolation	07
ShapeMatcher: Self-Supervised Joint Shape Canonicalization, Segmentation, Retrieval and Deformation)1 <i>7</i>
XScale-NVS: Cross-Scale Novel View Synthesis with Hash Featurized Manifold	129
Instance-Adaptive and Geometric-Aware Keypoint Learning for Category-Level 6D Object Pose Estimation)40
RepKPU: Point Cloud Upsampling with Kernel Point Representation and Deformation)50
ColorPCR: Color Point Cloud Registration with Multi-Stage Geometric-Color Fusion	61
ConsistDreamer: 3D-Consistent 2D Diffusion for High-Fidelity Scene Editing	71
SceneTex: High-Quality Texture Synthesis for Indoor Scenes via Diffusion Priors	181

Aerial Lifting: Neural Urban Semantic and Building Instance Lifting from Aerial Imagery	092
Improving Depth Completion via Depth Feature Upsampling	104
ZeroRF: Fast Sparse View 360° Reconstruction with Zero Pretraining	.114
Multi-Level Neural Scene Graphs for Dynamic Urban Environments	125
Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle	136
L4D-Track: Language-to-4D Modeling Towards 6-DoF Tracking and Shape Reconstruction in 3D Point Cloud Stream	.146
Neural Directional Encoding for Efficient and Accurate View-Dependent Appearance Modeling 21157 Liwen Wu (UC San Diego), Sai Bi (Adobe Research), Zexiang Xu (Adobe Research), Fujun Luan (Adobe Research), Kai Zhang (Adobe Research), Iliyan Georgiev (Adobe Research), Kalyan Sunkavalli (Adobe Research), and Ravi Ramamoorthi (UC San Diego)	
SNI-SLAM: Semantic Neural Implicit SLAM	167
Enhancing 3D Object Detection with 2D Detection-Guided Query Anchors	178

SpecNeRF: Gaussian Directional Encoding for Specular Reflections	. 21188
Correspondence-Free Non-Rigid Point Set Registration Using Unsupervised Clustering Analysis Mingyang Zhao (HKISI, CAS), Jingen Jiang (Shandong University), Lei Ma (Peking University), Shiqing Xin (Shandong University), Gaofeng Meng (CASIA, China), and Dong-Ming Yan (CASIA, China)	. 21199
GAFusion: Adaptive Fusing LiDAR and Camera with Multiple Guidance for 3D Object Detection 21209 Xiaotian Li (Nanjing University of Posts and Telecommunications), Baojie Fan (Nanjing University of Posts and Telecommunications), Jiandong Tian (Shenyang Institute of Automation Chinese Academy of Science), and Huijie Fan (Shenyang Institute of Automation Chinese Academy of Science)	n
3D Neural Edge Reconstruction Lei Li (ETH Zurich, Switzerland), Songyou Peng (ETH Zurich, Switzerland), Zehao Yu (University of Tübingen, Germany), Shaohui Liu (ETH Zurich, Switzerland), Rémi Pautrat (ETH Zurich, Switzerland), Xiaochuan Yin (Utopilot, China), and Marc Pollefeys (ETH Zurich, Switzerland)	. 21219
AlignMiF: Geometry-Aligned Multimodal Implicit Field for LiDAR-Camera Joint Synthesis Tang Tao (Shenzhen Campus of Sun Yat-sen University), Guangrun Wang (University of Oxford), Yixing Lao (University of Hong Kong), Peng Chen (Cainiao Group), Jie Liu (North China University of Technology), Liang Lin (Sun Yat-sen University), Kaicheng Yu (Westlake University), and Xiaodan Liang (Shenzhen Campus of Sun Yat-sen University)	. 21230
Polarization Wavefront Lidar: Learning Large Scene Reconstruction from Polarized Wavefronts Dominik Scheuble (Mercedes-Benz AG, TU Darmstadt), Chenyang Lei (Princeton University), Seung-Hwan Baek (POSTECH), Mario Bijelic (Torc Robotics, Princeton University), and Felix Heide (Torc Robotics, Princeton University)	21241
A Unified Diffusion Framework for Scene-aware Human Motion Estimation from Sparse Signal 21251 Jiangnan Tang (ShanghaiTech University), Jingya Wang (ShanghaiTech University), Kaiyang Ji (ShanghaiTech University), Lan Xu (ShanghaiTech University), Jingyi Yu (ShanghaiTech University), and Ye Shi (ShanghaiTech University)	s
FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models Shivangi Aneja (Technical University of Munich), Justus Thies (TU Darmstadt), Angela Dai (Technical University of Munich), and Matthias Nießner (Technical University of Munich)	. 21263

NeRFCodec: Neural Feature Compression Meets Neural Radiance Fields for Memory-Efficient Scene Representation	274
Open-Vocabulary 3D Semantic Segmentation with Foundation Models	284
GraphDreamer: Compositional 3D Scene Synthesis from Scene Graphs	295
OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation	305
Efficient Solution of Point-Line Absolute Pose	316
CN-RMA: Combined Network with Ray Marching Aggregation for 3D Indoor Object Detection from Multi-view Images	
HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting 213 Hongyu Zhou (Zhejiang University, China), Jiahao Shao (Zhejiang University, China), Lu Xu (Zhejiang University, China), Dongfeng Bai (Huawei Noah's Ark Lab, China), Weichao Qiu (Huawei Noah's Ark Lab, China), Bingbing Liu (Huawei Noah's Ark Lab, China), Yue Wang (Zhejiang University, China), Andreas Geiger (University of Tübingen, Germany), and Yiyi Liao (Zhejiang University, China)	336
Benchmarking Implicit Neural Representation and Geometric Rendering in Real-Time RGB-D SLAM	346

SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM Nikhil Keetha (Carnegie Mellon University, USA), Jay Karhade (Carnegie Mellon University, USA), Krishna Murthy Jatavallabhula (Massachusetts Institute of Technology, USA), Gengshan Yang (Carnegie Mellon University, USA), Sebastian Scherer (Carnegie Mellon University, USA), Deva Ramanan (Carnegie Mellon University, USA), and Jonathon Luiten (Carnegie Mellon University, USA)	21357
Lift3D: Zero-Shot Lifting of Any 2D Vision Model to 3D	21367
TutteNet: Injective 3D Deformations by Composition of 2D Mesh Deformations Bo Sun (University of Texas at Austin, USA), Thibault Groueix (Adobe Research, USA), Chen Song (University of Texas at Austin, USA), Qixing Huang (University of Texas at Austin, USA), and Noam Aigerman (University of Montreal, Canada)	21378
L0-Sampler: An L0 Model Guided Volume Sampling for NeRF	21390
Text-to-3D using Gaussian Splatting	21401
TAMM: TriAdapter Multi-Modal Learning for 3D Shape Understanding Zhihao Zhang (Xi'an Jiaotong University, China), Shengcao Cao (University of Illinois at Urbana-Champaign, USA), and Yu-Xiong Wang (University of Illinois at Urbana-Champaign, USA)	21413
FreGS: 3D Gaussian Splatting with Progressive Frequency Regularization Jiahui Zhang (Nanyang Technological University), Fangneng Zhan (Max Planck Institute for Informatics), Muyu Xu (Nanyang Technological University), Shijian Lu (Nanyang Technological University), and Eric Xing (Carnegie Mellon University)	21424
NeISF: Neural Incident Stokes Field for Geometry and Material Estimation Chenhao Li (Osaka University), Taishi Ono (Sony Europe B.V.), Takeshi Uemori (Sony Semiconductor Solutions Corporation), Hajime Mihara (Sony Semiconductor Solutions Corporation), Alexander Gatto (Sony Europe B.V.), Hajime Nagahara (Osaka University), and Yusuke Moriuchi (Sony Semiconductor Solutions Corporation)	21434
Non-Rigid Structure-from-Motion: Temporally-Smooth Procrustean Alignment and Spatially-Variant Deformation Modeling	21446

Small Steps and Level Sets: Fitting Neural Surface Models with Point Guidance	21456
CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs	21466
Yingji Zhong (The Hong Kong University of Science and Technology, China), Lanqing Hong (Huawei Noah's Ark Lab, China), Zhenguo Li (Huawei Noah's Ark Lab, China), and Dan Xu (The Hong Kong University of Science and Technology, China)	
GaussianEditor: Swift and Controllable 3D Editing with Gaussian Splatting	21476
Cam4DOcc: Benchmark for Camera-Only 4D Occupancy Forecasting in Autonomous Driving	
Applications Junyi Ma (Shanghai Jiao Tong University, China), Xieyuanli Chen (National University of Defense Technology, China), Jiawei Huang (HAOMO.AI, China), Jingyi Xu (Shanghai Jiao Tong University, China), Zhen Luo (Beijing Institute of Technology, China), Jintao Xu (HAOMO.AI, China), Weihao Gu (HAOMO.AI, China), Rui Ai (HAOMO.AI, China), and Hesheng Wang (Shanghai Jiao Tong University, China)	21486
UDiFF: Generating Conditional Unsigned Distance Fields with Optimal Wavelet Diffusion Junsheng Zhou (Tsinghua University, China), Weiqi Zhang (Tsinghua University, China), Baorui Ma (BAAI, China), Kanle Shi (Kuaishou Technology, China), Yu-Shen Liu (Tsinghua University, China), and Zhizhong Han (Wayne State University, USA)	21496
PanoRecon: Real-Time Panoptic 3D Reconstruction from Monocular Video	21507
Three Pillars Improving Vision Foundation Model Distillation for Lidar	21519
GARField: Group Anything with Radiance Fields	21530
Flexible Depth Completion for Sparse and Varying Point Densities Jinhyung Park (Carnegie Mellon University, USA), Yu-Jhe Li (Microsoft Research, USA), and Kris Kitani (Carnegie Mellon University, USA)	21540

ReconFusion: 3D Reconstruction with Diffusion Priors Rundi Wu (Columbia University), Ben Mildenhall (Google Research), Philipp Henzler (Google Research), Keunhong Park (Google Research), Ruiqi Gao (Google DeepMind), Daniel Watson (Google Research), Pratul P. Srinivasan (Google Research), Dor Verbin (Google Research), Jonathan T. Barron (Google Research), Ben Poole (Google DeepMind), and Aleksander Hołyński (Google Research)	. 21551
GLACE: Global Local Accelerated Coordinate Encoding	. 21562
NARUTO: Neural Active Reconstruction from Uncertain Target Observations Ziyue Feng (OPPO US Research Center, USA; Clemson University, USA), Huangying Zhan (OPPO US Research Center, USA), Zheng Chen (OPPO US Research Center, USA; Indiana University, USA), Qingan Yan (OPPO US Research Center, USA), Xiangyu Xu (OPPO US Research Center, USA), Changjiang Cai (OPPO US Research Center, USA), Bing Li (Clemson University, USA), Qilun Zhu (Clemson University, USA), and Yi Xu (OPPO US Research Center, USA)	. 21572
Photo-SLAM: Real-time Simultaneous Localization and Photorealistic Mapping for Monocular, Stereo, and RGB-D Cameras Huajian Huang (The Hong Kong University of Science and Technology, Hong Kong, China), Longwei Li (Sun Yat-sen University, China), Hui Cheng (Sun Yat-sen University, China), and Sai-Kit Yeung (The Hong Kong University of Science and Technology, Hong Kong, China)	. 21584
Detector-Free Structure from Motion Xingyi He (Zhejiang University), Jiaming Sun (Zhejiang University), Yifan Wang (Zhejiang University), Sida Peng (Zhejiang University), Qixing Huang (The University of Texas at Austin), Hujun Bao (Zhejiang University), and Xiaowei Zhou (Zhejiang University)	. 21594
Memory-based Adapters for Online 3D Scene Perception	. 21604
SurroundSDF: Implicit 3D Scene Understanding Based on Signed Distance Field	. 21614
CoGS: Controllable Gaussian Splatting	. 21624

DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving	1
Scenes	4
GS-IR: 3D Gaussian Splatting for Inverse Rendering	4
Cross-spectral Gated-RGB Stereo Depth Estimation	4
Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed	6
Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields	6
VGGSfM: Visual Geometry Grounded Deep Structure From Motion	6
Dynamic Cues-Assisted Transformer for Robust Point Cloud Registration	8
GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding	8

Compact 3D Gaussian Representation for Radiance Field	. 21719
Unsupervised Occupancy Learning from Sparse Point Cloud	21729
TACO: Benchmarking Generalizable Bimanual Tool-ACtion-Object Understanding Yun Liu (Tsinghua University, Shanghai Artificial Intelligence Laboratory, Shanghai Qi Zhi Institute), Haolin Yang (Beijing University of Posts and Telecommunications, China), Xu Si (Tsinghua University, China), Ling Liu (Beijing Institute of Technology, China), Zipeng Li (Tsinghua University, China), Yuxiang Zhang (Tsinghua University, China), Yebin Liu (Tsinghua University, China), and Li Yi (Tsinghua University, Shanghai Artificial Intelligence Laboratory, Shanghai Qi Zhi Institute)	. 21740
ImageNet-D: Benchmarking Neural Network Robustness on Diffusion Synthetic Object	. 21752
SynFog: A Photo-realistic Synthetic Fog Dataset based on End-to-end Imaging Simulation for Advancing Real-World Defogging in Autonomous Driving	. 21763
FineSports: A Multi-person Hierarchical Sports Video Dataset for Fine-grained Action Understanding Jinglin Xu (University of Science and Technology Beijing, China), Guohao Zhao (Peking University, China), Sibo Yin (Peking University, China), Wenhao Zhou (University of Science and Technology Beijing, China), and Yuxin Peng (Peking University, China)	21773
Infinigen Indoors: Photorealistic Indoor Scenes using Procedural Generation Alexander Raistrick (Princeton University, USA), Lingjie Mei (Princeton University, USA), Karhan Kayan (Princeton University, USA), David Yan (Princeton University, USA), Yiming Zuo (Princeton University, USA), Beining Han (Princeton University, USA), Hongyu Wen (Princeton University, USA), Meenal Parakh (Princeton University, USA), Stamatis Alexandropoulos (Princeton University, USA), Lahav Lipson (Princeton University, USA), Zeyu Ma (Princeton University, USA), and Jia Deng (Princeton University, USA)	. 21783
Probing the 3D Awareness of Visual Foundation Models Mohamed El Banani (University of Michigan), Amit Raj (Google), Kevis-Kokitsi Maninis (Google), Abhishek Kar (Google), Yuanzhen Li (Google), Michael Rubinstein (Google), Deqing Sun (Google), Leonidas Guibas (Google), Justin Johnson (University of Michigan), and Varun Jampani (Google)	.21795

VBench: Comprehensive Benchmark Suite for Video Generative Models Ziqi Huang (S-Lab, Nanyang Technological University), Yinan He (Shanghai Artificial Intelligence Laboratory), Jiashuo Yu (Shanghai Artificial Intelligence Laboratory), Fan Zhang (Shanghai Artificial Intelligence Laboratory), Chenyang Si (S-Lab, Nanyang Technological University), Yuming Jiang (S-Lab, Nanyang Technological University), Yuanhan Zhang (S-Lab, Nanyang Technological University), Tianxing Wu (S-Lab, Nanyang Technological University), Qingyang Jin (S-Lab, Nanyang Technological University), Nattapol Chanpaisit (S-Lab, Nanyang Technological University), Yaohui Wang (Shanghai Artificial	21807
Intelligence Laboratory), Xinyuan Chen (Shanghai Artificial Intelligence Laboratory), Limin Wang (Nanjing University, Shanghai Artificial Intelligence Laboratory), Dahua Lin (Shanghai Artificial Intelligence Laboratory, The Chinese University of Hong Kong), Yu Qiao (Shanghai Artificial Intelligence Laboratory), and Ziwei Liu (S-Lab, Nanyang Technological University)	
MAPLM: A Real-World Large-Scale Vision-Language Benchmark for Map and Traffic Scene Understanding	21819
Video Recognition in Portrait Mode	21831
MMVP: A Multimodal MoCap Dataset with Vision and Pressure Sensors He Zhang (Beihang University, China), Shenghao Ren (Nanjing University, China), Haolei Yuan (Beihang University, China), Jianhui Zhao (Beihang University, China), Fan Li (Beihang University, China), Shuangpeng Sun (Tsinghua University, China), Zhenghao Liang (Beijing Weilan Technology Co., Ltd., China), Tao Yu (Tsinghua University, China), Qiu Shen (Nanjing University, China), and Xun Cao (Nanjing University, China)	21842
What If the TV Was Off? Examining Counterfactual Reasoning Abilities of Multi-modal Language Models Letian Zhang (Tongji University), Xiaotong Zhai (University of Warwick), Zhongkai Zhao (National University of Singapore), Yongshuo Zong (University of Edinburgh), Xin Wen (The University of Hong Kong), and Bingchen Zhao (University of Edinburgh)	. 21853

COCONut: Modernizing COCO Segmentation	21863
Traffic Scene Parsing through the TSP6K Dataset Peng-Tao Jiang (Nankai University, China), Yuqi Yang (Nankai University, China), Yang Cao (Hong Kong University of Science and Technology, China), Qibin Hou (Nankai University, China), Ming-Ming Cheng (Nankai University, China), and Chunhua Shen (Zhejiang University, China)	21874
Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark Ziyang Chen (University of Michigan, USA), Israel D. Gebru (Codec Avatars Lab, Pittsburgh, Meta, USA), Christian Richardt (Codec Avatars Lab, Pittsburgh, Meta, USA), Anurag Kumar (Reality Labs Research, Meta, USA), William Laney (Codec Avatars Lab, Pittsburgh, Meta, USA), Andrew Owens (University of Michigan, USA), and Alexander Richard (Codec Avatars Lab, Pittsburgh, Meta, USA)	21886
Rethinking the Evaluation Protocol of Domain Generalization Han Yu (Tsinghua University, China), Xingxuan Zhang (Tsinghua University, China), Renzhe Xu (Tsinghua University, China), Jiashuo Liu (Tsinghua University, China), Yue He (Tsinghua University, China), and Peng Cui (Tsinghua University, China)	21897
MMSum: A Dataset for Multimodal Summarization and Thumbnail Generation of Videos	21909
Learning from Synthetic Human Group Activities	21922
Instance Tracking in 3D Scenes from Egocentric Videos	21933
Insect-Foundation: A Foundation Model and Large-scale 1M Dataset for Visual Insect Understanding Hoang-Quan Nguyen (University of Arkansas, USA), Thanh-Dat Truong (University of Arkansas, USA), Xuan Bac Nguyen (University of Arkansas, USA), Ashley Dowling (University of Arkansas, USA), Xin Li (The State University of New York at Albany, USA), and Khoa Luu (University of Arkansas, USA)	21945

Low-Resource Vision Challenges for Foundation Models 2: Yunhua Zhang (University of Amsterdam), Hazel Doughty (Leiden University), and Cees G. M. Snoek (University of Amsterdam)	.1956
OpenStreetView-5M: The Many Roads to Global Visual Geolocation 22 Guillaume Astruc (Ecole des Ponts, France; IGN, France; CNES, France), Nicolas Dufour (Ecole des Ponts, France; Ecole Polytechnique, France), Ioannis Siglidis (Ecole des Ponts, France), Constantin Aronssohn (Ecole des Ponts, France), Nacim Bouia (Ecole des Ponts, France), Stephanie Fu (Ecole des Ponts, France; UC Berkeley, USA), Romain Loiseau (Ecole des Ponts, France; IGN, France), Van Nguyen Nguyen (Ecole des Ponts, France), Charles Raude (Ecole des Ponts, France), Elliot Vincent (Ecole des Ponts, France; Inria Paris, France), Lintao Xu (Ecole des Ponts, France), Hongyu Zhou (Ecole des Ponts, France), and Loic Landrieu (Ecole des Ponts, France)	21967
FreeMan: Towards Benchmarking 3D Human Pose Estimation under Real-World Conditions 2 Jiong Wang (The Chinese University of Hong Kong, Shenzhen), Fengyu Yang (The Chinese University of Hong Kong, Shenzhen), Bingliang Li (The Chinese University of Hong Kong, Shenzhen), Wenbo Gou (The Chinese University of Hong Kong, Shenzhen), Danqi Yan (The Chinese University of Hong Kong, Shenzhen), Ailing Zeng (IDEA), Yijun Gao (Tencent), Junle Wang (Tencent), Yanqing Jing (Tencent), and Ruimao Zhang (The Chinese University of Hong Kong, Shenzhen)	:1978
LiDAR-Net: A Real-scanned 3D Point Cloud Dataset for Indoor Scenes Yanwen Guo (Nanjing University), Yuanqi Li (Nanjing University), Dayong Ren (Nanjing University), Xiaohong Zhang (Nanjing University), Jiawei Li (Nanjing University), Liang Pu (Nanjing University), Changfeng Ma (Nanjing University), Xiaoyu Zhan (Nanjing University), Jie Guo (Nanjing University), Mingqiang Wei (Nanjing University of Aeronautics and Astronautics), Yan Zhang (Nanjing University), Piaopiao Yu (Nanjing University of Aeronautics and Astronautics), Shuangyu Yang (Nanjing University), Donghao Ji (Nanjing University), Huisheng Ye (Nanjing University), Hao Sun (Nanjing University), Yansong Liu (Nanjing University), Yinuo Chen (Nanjing University), Jiaqi Zhu (Nanjing University), and Hongyu Liu (Nanjing University)	21989
View-decoupled Transformer for Person Re-identification under Aerial-ground Camera Network. 22000 Quan Zhang (Sun Yat-Sen University, China; Johns Hopkins University, USA), Lei Wang (Sun Yat-Sen University, China), Vishal M. Patel (Johns Hopkins University, USA), Xiaohua Xie (Sun Yat-Sen University, China; Pazhou Lab (HuangPu), China; Guangdong Province Key Laboratory of Information Security Technology, China; Key Laboratory of Machine Intelligence and Advanced Computing, China), and Jianhaung Lai (Sun Yat-Sen University, China; Pazhou Lab (HuangPu), China; Guangdong Province Key Laboratory of Information Security Technology, China; Key Laboratory of Machine Intelligence and Advanced Computing, China)	

UFineBench: Towards Text-based Person Retrieval with Ultra-fine Granularity	22010
Towards Automatic Power Battery Detection: New Challenge, Benchmark Dataset and Baseline 22020 Xiaoqi Zhao (Dalian University of Technology, China; X3000 Inspection Co., Ltd, China), Youwei Pang (Dalian University of Technology, China; X3000 Inspection Co., Ltd, China), Zhenyu Chen (Dalian University of Technology, China), Qian Yu (Dalian University of Technology, China), Lihe Zhang (Dalian University of Technology, China), Hanqi Liu (X3000 Inspection Co., Ltd, China), Jiaming Zuo (X3000 Inspection Co., Ltd, China), and Huchuan Lu (Dalian University of Technology, China)	
Abductive Ego-View Accident Video Understanding for Safe Driving Perception Jianwu Fang (Xi'an Jiaotong University, China), Lei-lei Li (Chang'an University, China), Junfei Zhou (Chang'an University, China), Junbin Xiao (National University of Singapore, Singapore), Hongkai Yu (Cleveland State University, USA), Chen Lv (Nanyang Technological University, Singapore), Jianru Xue (Xi'an Jiaotong University, China), and Tat-Seng Chua (National University of Singapore, Singapore)	22030
Multiagent Multitraversal Multimodal Self-Driving: Open MARS Dataset Yiming Li (New York University), Zhiheng Li (New York University), Nuo Chen (New York University), Moonjun Gong (New York University), Zonglin Lyu (New York University), Zehong Wang (New York University), Peili Jiang (New York University), and Chen Feng (New York University)	22041
Towards Surveillance Video-and-Language Understanding: New Dataset, Baselines, and Challenges	22052
Pre-training Vision Models with Mandelbulb Variations	22062
EgoExoLearn: A Dataset for Bridging Asynchronous Ego- and Exo-centric View of Procedural Activities in Real World	22072

JRDB-Social: A Multifaceted Robotic Dataset for Understanding of Context and Dynamics of Human Interactions Within Social Groups	087
Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset	ນ98
MatSynth: A Modern PBR Materials Dataset	109
When Visual Grounding Meets Gigapixel-level Large-scale Scenes: Benchmark and Approach 221 Tao Ma (Tsinghua Univiersity), Bing Bai (Tsinghua Univiersity), Haozhe Lin (Tsinghua Univiersity), Heyuan Wang (Peking University), Yu Wang (Tsinghua Univiersity), Lin Luo (Peking University), and Lu Fang (Tsinghua Univiersity)	119
HoloVIC: Large-scale Dataset and Benchmark for Multi-Sensor Holographic Intersection and Vehicle-Infrastructure Cooperative	129
EvalCrafter: Benchmarking and Evaluating Large Video Generation Models Yaofang Liu (City University of Hong Kong), Xiaodong Cun (Tencent AI Lab), Xuebo Liu (University of Macau), Xintao Wang (Tencent AI Lab), Yong Zhang (Tencent AI Lab), Haoxin Chen (Tencent AI Lab), Yang Liu (The Chinese University of Hong Kong), Tieyong Zeng (The Chinese University of Hong Kong), Raymond Chan (City University of Hong Kong), and Ying Shan (Tencent AI Lab)	139
Localization Is All You Evaluate: Data Leakage in Online Mapping Datasets and How to Fix	150
It	150
DL3DV-10K: A Large-Scale Scene Dataset for Deep Learning-based 3D Vision	160

OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM Yutao Hu (The University of Hong Kong, Hong Kong SAR; Shanghai AI Laboratory, China), Tianbin Li (Shanghai AI Laboratory, China), Quanfeng Lu (Shanghai AI Laboratory, China), Wenqi Shao (Shanghai AI Laboratory, China), Junjun He (Shanghai AI Laboratory, China), Yu Qiao (Shanghai AI Laboratory, China), and Ping Luo (The University of Hong Kong, Hong Kong SAR; Shanghai AI Laboratory, China)	. 22170
Can Biases in ImageNet Models Explain Generalization? Paul Gavrikov (Offenburg University, Germany) and Janis Keuper (Offenburg University, Germany)	. 22184
MVBench: A Comprehensive Multi-modal Video Understanding Benchmark Kunchang Li (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Yali Wang (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Yinan He (Shanghai AI Laboratory), Yizhuo Li (The University of Hong Kong), Yi Wang (Shanghai AI Laboratory), Yi Liu (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Zun Wang (Shanghai AI laboratory), Jilan Xu (Fudan University), Guo Chen (State Key Laboratory for Novel Software Technology, Nanjing University), Ping Luo (The University of Hong Kong), Limin Wang (State Key Laboratory for Novel Software Technology, Nanjing University), and Yu Qiao (Shanghai AI Laboratory)	. 22195
Towards Scalable 3D Anomaly Detection and Localization: A Benchmark via 3D Anomaly Synthesis and A Self-Supervised Learning Network	. 22207
Point-VOS: Pointing Up Video Object Segmentation Sabarinath Mahadevan (RWTH Aachen University, Germany), Idil Esen Zulfikar (RWTH Aachen University, Germany), Paul Voigtlaender (Google Research), and Bastian Leibe (RWTH Aachen University, Germany)	22217
GPT-4V(ision) is a Human-Aligned Evaluator for Text-to-3D Generation Tong Wu (The Chinese University of Hong Kong, Shanghai Artificial Intelligence Laboratory, Hong Kong), Guandao Yang (Stanford University, USA), Zhibing Li (The Chinese University of Hong Kong, Shanghai Artificial Intelligence Laboratory, Hong Kong), Kai Zhang (Adobe Research, USA), Ziwei Liu (S-Lab, Nanyang Technological University, Singapore), Leonidas Guibas (Stanford University, USA), Dahua Lin (The Chinese University of Hong Kong, Shanghai Artificial Intelligence Laboratory, Hong Kong), and Gordon Wetzstein (Stanford University, USA)	. 22227

ConCon-Chi: Concept-Context Chimera Benchmark for Personalized Vision-Language Tasks 22239 Andrea Rosasco (University of Genoa, IT; Istituto Italiano di Tecnologia, IT), Stefano Berti (University of Genoa, IT; Istituto Italiano di Tecnologia, IT), Giulia Pasquale (Istituto Italiano di Tecnologia, IT), Damiano Malafronte (Istituto Italiano di Tecnologia, IT), Shogo Sato (Sony Interactive Entertainment Inc., JP), Hiroyuki Segawa (Sony Interactive Entertainment Inc., JP), Tetsugo Inada (Sony Interactive Entertainment Inc., JP), and Lorenzo Natale (Istituto Italiano di Tecnologia, IT)
FISBe: A Real-World Benchmark Dataset for Instance Segmentation of Long-Range Thin Filamentous Structures
Inter-X: Towards Versatile Human-Human Interaction Analysis
TextNeRF: A Novel Scene-Text Image Synthesis Method based on Neural Radiance Fields 22272 Jialei Cui (Peking University, China), Jianwei Du (Southeast University, China), Wenzhuo Liu (Peking University, China), and Zhouhui Lian (Peking University, China)
Systematic Comparison of Semi-supervised and Self-supervised Learning for Medical Image Classification
Unexplored Faces of Robustness and Out-of-Distribution: Covariate Shifts in Environment and Sensor Domains

MCD: Diverse Large-Scale Multi-Campus Dataset for Robot Perception	14
360Loc: A Dataset and Benchmark for Omnidirectional Visual Localization with Cross-device Queries	4
JRDB-PanoTrack: An Open-world Panoptic Segmentation and Tracking Robotic Dataset in Crowded Human Environments	:5
MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark	5
RCooper: A Real-world Large-scale Dataset for Roadside Cooperative Perception	:7
UVEB: A Large-scale Benchmark and Baseline Towards Real-World Underwater Video Enhancement 22358 Yaofeng Xie (Ocean University of China), Lingwei Kong (Ocean University of China), Kai Chen (Ocean University of China), Ziqiang Zheng (The Hong Kong University of Science and Technology), Xiao Yu (Ocean University of China), Zhibin Yu (Ocean University of China), and Bing Zheng (Ocean University of China)	t.

Real-World Mobile Image Denoising Dataset with Efficient Baselines
RGBD Objects in the Wild: Scaling Real-World 3D Object Learning from RGB-D Videos
Evaluating Transferability in Retrieval Tasks: An Approach Using MMD and Kernel Methods 2239 Mengyu Dai (Microsoft), Amir Hossein Raffiee (Salesforce), Aashish Jain (Salesforce), and Joshua Correa (Salesforce)
BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation
MULAN: A Multi Layer Annotated Dataset for Controllable Text-to-Image Generation
Sieve: Multimodal Dataset Pruning using Image Captioning Models
Perceptual Assessment and Optimization of HDR Image Rendering
GlitchBench: Can Large Multimodal Models Detect Video Game Glitches?

WinSyn: : A High Resolution Testbed for Synthetic Data	2456
DiVa-360: The Dynamic Visual Dataset for Immersive Neural Fields	2466
Learning Discriminative Dynamics with Label Corruption for Noisy Label Detection	2477
DriveTrack: A Benchmark for Long-Range Point Tracking in Real-World Videos	2488
HouseCat6D - A Large-Scale Multi-Modal Category Level 6D Object Perception Dataset with Household Objects in Realistic Scenarios	22498
Benchmarking Segmentation Models with Mask-Preserved Attribute Editing	.2509
The Devil is in the Fine-Grained Details: Evaluating Open-Vocabulary Object Detectors for Fine-Grained Understanding	2520

PKU-DyMVHumans: A Multi-View Video Benchmark for High-Fidelity Dynamic Human Modeling 22530
Xiaoyun Zheng (Peking University Shenzhen Graduate School, China), Liwei Liao (Peking University Shenzhen Graduate School, China), Xufeng Li (City University of Hong Kong, China), Jianbo Jiao (University of Birmingham, United Kingdom), Rongjie Wang (Peng Cheng Laboratory, China), Feng Gao (Peking University, China), Shiqi Wang (City University of Hong Kong, China), and Ronggang Wang (Peking University Shenzhen Graduate School, China)
Insights from the Use of Previously Unseen Neural Architecture Search Datasets
TULIP: Multi-camera 3D Precision Assessment of Parkinson's Disease
LUWA Dataset: Learning Lithic Use-Wear Analysis on Microscopic Images
ShapeWalk: Compositional Shape Editing Through Language-Guided Chains
TRINS: Towards Multimodal Language Models that Can Read
MAGICK: A Large-scale Captioned Dataset from Matting Generated Images using Chroma Keying 22595
Ryan D. Burgert (Stony Brook University), Brian L. Price (Adobe Research), Jason Kuen (Adobe Research), Yijun Li (Adobe Research), and Michael S. Ryoo (Stony Brook University)
EFHQ: Multi-purpose ExtremePose-Face-HQ dataset
How to Train Neural Field Representations: A Comprehensive Study and Benchmark

A Noisy Elephant in the Room: Is Your Out-of-Distribution Detector Robust to Label Noise? . Galadrielle Humblot-Renaux (Aalborg University, Denmark), Sergio Escalera (Aalborg University, Denmark; University of Barcelona, Spain; Computer Vision Center, Spain), and Thomas B. Moeslund (Aalborg University, Denmark)	22626
eTraM: Event-based Traffic Monitoring Dataset Aayush Atul Verma (Arizona State University), Bharatesh Chakravarthi (Arizona State University), Arpitsinh Vaghela (Arizona State University), Hua Wei (Arizona State University), and Yezhou Yang (Arizona State University)	22637
SubT-MRS Dataset: Pushing SLAM Towards All-weather Environments Shibo Zhao (Carnegie Mellon University, USA), Yuanjun Gao (Carnegie Mellon University, USA), Tianhao Wu (Carnegie Mellon University, USA), Damanpreet Singh (Carnegie Mellon University, USA), Rushan Jiang (Carnegie Mellon University, USA), Haoxiang Sun (Carnegie Mellon University, USA), Mansi Sarawata (Carnegie Mellon University, USA), Yuheng Qiu (Carnegie Mellon University, USA), Warren Whittaker (Carnegie Mellon University, USA), Ian Higgins (Carnegie Mellon University, USA), Yi Du (University at Buffalo, USA), Shaoshu Su (University at Buffalo, USA), Can Xu (Carnegie Mellon University, USA), John Keller (Carnegie Mellon University, USA), Jay Karhade (Carnegie Mellon University, USA), Lucas Nogueira (Carnegie Mellon University, USA), Sourojit Saha (Carnegie Mellon University, USA), Ji Zhang (Carnegie Mellon University, USA), Wenshan Wang (Carnegie Mellon University, USA), Chen Wang (University at Buffalo, USA), and Sebastian Scherer (Carnegie Mellon University, USA)	22647
MSU-4S - The Michigan State University Four Seasons Dataset	22658
TUMTraf V2X Cooperative Perception Dataset	22668
Multiview Aerial Visual RECognition (MAVREC): Can Multi-view Improve Aerial Visual Perception? Aritra Dutta (University of Central Florida), Srijan Das (University of North Carolina at Charlotte), Jacob Nielsen (University of Southern Denmark), Rajatsubhra Chakraborty (University of North Carolina at Charlotte), and Mubarak Shah (University of Central Florida)	22678

Towards Co-Evaluation of Cameras, HDR, and Algorithms for Industrial-Grade 6DoF Pose	CO1
Estimation	991
Scaling Laws for Data Filtering — Data Curation cannot be Compute Agnostic	⁷ 02
Benchmarking Audio Visual Segmentation for Long-Untrimmed Videos	⁷ 12
Domain-Specific Block Selection and Paired-View Pseudo-Labeling for Online Test-Time Adaptation	7 2 3
VideoMAC: Video Masked Autoencoders Meet ConvNets	733
Unsupervised Universal Image Segmentation	⁷ 44
VideoCutLER: Surprisingly Simple Unsupervised Video Instance Segmentation	⁷ 55

What You See is What You GAN: Rendering Every Pixel for High-Fidelity Geometry in 3D C 22765	GANs
Alex Trevithick (University of California, San Diego, USA), Matthew Chan (NVIDIA, USA), Towaki Takikawa (NVIDIA, USA), Umar Iqbal (NVIDIA, USA), Shalini De Mello (NVIDIA, USA), Manmohan Chandraker (University of California, San Diego, USA), Ravi Ramamoorthi (University of California, San Diego, USA), and Koki Nagano (NVIDIA, USA)	
SPOT: Self-Training with Patch-Order Permutation for Object-Centric Learning with Autoregressive Transformers Ioannis Kakogeorgiou (National Technical University of Athens), Spyros Gidaris (valeo.ai), Konstantinos Karantzalos (National Technical University of Athens), and Nikos Komodakis (University of Crete)	22776
Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos	22787
Distributionally Generative Augmentation for Fair Facial Attribute Classification	22797
Estimating Noisy Class Posterior with Part-level Labels for Noisy Label Learning	22809
Unsupervised Keypoints from Pretrained Diffusion Models Eric Hedlin (University of British Columbia, Canada), Gopal Sharma (University of British Columbia, Canada), Shweta Mahajan (University of British Columbia, Canada; Vector Institute for AI, Canada), Xingzhe He (University of British Columbia, Canada), Hossam Isack (Google Research, USA), Abhishek Kar (Google Research, USA), Helge Rhodin (University of British Columbia, Canada), Andrea Tagliasacchi (Google DeepMind, USA; Simon Fraser University, Canada; University of Toronto, Canada), and Kwang Moo Yi (University of British Columbia, Canada)	22820
Learning to Rank Patches for Unbiased Image Redundancy Reduction	22831
Rethinking the Representation in Federated Unsupervised Learning with Non-IID Data Xinting Liao (Zhejiang University), Weiming Liu (Zhejiang University), Chaochao Chen (Zhejiang University), Pengyang Zhou (Zhejiang University), Fengyuan Yu (Zhejiang University), Huabin Zhu (Zhejiang University), Binhui Yao (Zhejiang University, Midea Group), Tao Wang (Midea Group), Xiaolin Zheng (Zhejiang University), and Yanchao Tan (Fuzhou University)	22841

GLID: Pre-training a Generalist Encoder-Decoder Vision Model Jihao Liu (Chinese University of Hong Kong), Jinliang Zheng (Institute for AI Industry Research (AIR), Tsinghua University), Yu Liu (SenseTime Research), and Hongsheng Li (Chinese University of Hong Kong)	. 22851
Sequential Modeling Enables Scalable Learning for Large Vision Models Yutong Bai (Johns Hopkins University), Xinyang Geng (UC Berkeley), Karttikeya Mangalam (UC Berkeley), Amir Bar (UC Berkeley), Alan L. Yuille (Johns Hopkins University), Trevor Darrell (UC Berkeley), Jitendra Malik (UC Berkeley), and Alexei A. Efros (UC Berkeley)	. 22861
VoCo: A Simple-yet-Effective Volume Contrastive Learning Framework for 3D Medical Image Analysis Linshan Wu (Hong Kong University of Science and Technology), Jiaxin Zhuang (Hong Kong University of Science and Technology), and Hao Chen (Hong Kong University of Science and Technology)	. 22873
Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection Chengjie Wang (Shanghai Jiao Tong University; Tencent Youtu Lab), Wenbing Zhu (Fudan University; Rongcheer Co. Ltd), Bin-Bin Gao (Tencent Youtu Lab), Zhenye Gan (Tencent Youtu Lab), Jiangning Zhang (Tencent Youtu Lab), Zhihao Gu (Shanghai Jiao Tong University), Shuguang Qian (Roogcheer Co., Ltd), Mingang Chen (Shanghai Development Center of Computer Software Technology), and Lizhuang Ma (Shanghai Jiao Tong University)	. 22883
BEM: Balanced and Entropy-based Mix for Long-Tailed Semi-Supervised Learning	. 22893
ReCoRe: Regularized Contrastive Representation Learning of World Model	. 22904
Universal Novelty Detection Through Adaptive Contrastive Learning Hossein Mirzaei (Sharif University of Technology, Iran), Mojtaba Nafez (Sharif University of Technology, Iran), Mohammad Jafari (Sharif University of Technology, Iran), Mohammad Bagher Soltani (Sharif University of Technology, Iran), Mohammad Azizmalayeri (Sharif University of Technology, Iran), Jafar Habibi (Sharif University of Technology, Iran), Mohammad Sabokrou (Okinawa Institute of Science and Technology, Japan), and Mohammad Hossein Rohban (Sharif University of Technology, Iran)	. 22914
Learning to Count without Annotations	. 22924

Point Cloud Pre-training with Diffusion Models Xiao Zheng (Shandong University, China), Xiaoshui Huang (Shanghai AI Laboratory, China), Guofeng Mei (Fondazione Bruno Kessler, Italy), Yuenan Hou (Shanghai AI Laboratory, China), Zhaoyang Lyu (Shanghai AI Laboratory, China), Bo Dai (Shanghai AI Laboratory, China), Wanli Ouyang (Shanghai AI Laboratory, China), and Yongshun Gong (Shandong University, China)	. 22935
Improving Unsupervised Hierarchical Representation with Reinforcement Learning	22946
Investigating and Mitigating the Side Effects of Noisy Views for Self-Supervised Clustering Algorithms in Practical Multi-View Scenarios	. 22957
Self-Supervised Representation Learning from Arbitrary Scenarios Zhaowen Li (Foundation Model Research Center, Institute of Automation, Chinese Academy of Science), Yousong Zhu (Foundation Model Research Center, Institute of Automation, Chinese Academy of Science), Zhiyang Chen (Foundation Model Research Center, Institute of Automation, Chinese Academy of Science), Zongxin Gao (Independent Researcher), Rui Zhao (Qing Yuan Research Institute, Shanghai Jiao Tong University), Chaoyang Zhao (Foundation Model Research Center, Institute of Automation, Chinese Academy of Science), Ming Tang (Foundation Model Research Center, Institute of Automation, Chinese Academy of Science), and Jinqiao Wang (Foundation Model Research Center, Institute of Automation, Chinese Academy of Science)	. 22967
Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform	. 22978
A Bayesian Approach to OOD Robustness in Image Classification	. 22988

Sculpting Holistic 3D Representation in Contrastive Language-Image-3D Pre-training	998
Solving Masked Jigsaw Puzzles with Diffusion Vision Transformers	009
DS-NeRV: Implicit Neural Video Representation with Decomposed Static and Dynamic Codes 230 Hao Yan (Tianjin University, China), Zhihui Ke (Tianjin University, China), Xiaobo Zhou (Tianjin University, China), Tie Qiu (Tianjin University, China), Xidong Shi (Tianjin University, China), and Dadong Jiang (Tianjin University, China)	019
Brain Decodes Deep Nets	030
Pose-Guided Self-Training with Two-Stage Clustering for Unsupervised Landmark Discovery 230 Siddharth Tourani (University of Heidelberg, Germany; Mohammad bin Zayed University of Artificial Intelligence, UAE), Ahmed Alwheibi (Mohamed bin Zayed University of Artificial Intelligence), Arif Mahmood (Information Technology University of Punjab), and Muhammad Haris Khan (Mohamed bin Zayed University of Artificial Intelligence)	041
Mitigating Object Dependencies: Improving Point Cloud Self-Supervised Learning through Object Exchange	052
Adaptive Slot Attention: Object Discovery with Dynamic Slot Number	062
Targeted Representation Alignment for Open-World Semi-Supervised Learning	072
Hierarchical Correlation Clustering and Tree Preserving Embedding	083

Contrastive Mean-Shift Learning for Generalized Category Discovery	094
CuVLER: Enhanced Unsupervised Object Discoveries through Exhaustive Self-Supervised Transformers	105
Institute of Technology) SODA: Bottleneck Diffusion Models for Representation Learning	115
HPL-ESS: Hybrid Pseudo-Labeling for Unsupervised Event-based Semantic Segmentation 231 Linglin Jing (Shanghai AI Laboratory; Loughborough University), Yiming Ding (Shanghai AI Laboratory), Yunpeng Gao (Shanghai AI Laboratory; Northwestern Polytechnical University), Zhigang Wang (Shanghai AI Laboratory), Xu Yan (CUHK-Shenzhen), Dong Wang (Shanghai AI Laboratory), Gerald Schaefer (Loughborough University), Hui Fang (Loughborough University), Bin Zhao (Shanghai AI Laboratory; Northwestern Polytechnical University), and Xuelong Li (Shanghai AI Laboratory; Institute of Artificial Intelligence (TeleAI))	128
Positive-Unlabeled Learning by Latent Group-Aware Meta Disambiguation	138
Aligning Logits Generatively for Principled Black-Box Knowledge Distillation 231 Jing Ma (Huazhong University of Science and Technology, China), Xiang Xiang (Huazhong University of Science and Technology, China), Ke Wang (Alibaba Damo Academy Hangzhou, China), Yuchuan Wu (Alibaba Damo Academy Hangzhou, China), and Yongbin Li (Alibaba Damo Academy Hangzhou, China)	148
Neural Modes: Self-supervised Learning of Nonlinear Modal Subspaces	158
Decentralized Directed Collaboration for Personalized Federated Learning	168

Improving Graph Contrastive Learning via Adaptive Positive Sampling Jiaming Zhuo (Hebei University of Technology), Feiyang Qin (Hebei University of Technology), Can Cui (Hebei University of Technology), Kun Fu (Hebei University of Technology), Bingxin Niu (Hebei University of Technology), Mengzhu Wang (Hebei University of Technology), Yuanfang Guo (Beihang University), Chuan Wang (Institute of Information Engineering Chinese Academy of Sciences), Zhen Wang (Northwestern Polytechnical University), Xiaochun Cao (Sun Yat-sen University), and Liang Yang (Hebei University of Technology)	. 23179
Integrating Efficient Optimal Transport and Functional Maps For Unsupervised Shape Correspondence Learning	23188
Unsupervised Feature Learning with Emergent Data-Driven Prototypicality	23199
Label Propagation for Zero-shot Classification with Vision-Language Models	23209
Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters Jiazuo Yu (Dalian University of Technology, China), Yunzhi Zhuge (Dalian University of Technology, China), Lu Zhang (Dalian University of Technology, China), Ping Hu (University of Electronic Science and Technology of China), Dong Wang (Dalian University of Technology, China), Huchuan Lu (Dalian University of Technology, China), and You He (Tsinghua University, China)	23219
Backpropagation-free Network for 3D Test-time Adaptation Yanshuo Wang (Australian National University, Australia), Ali Cheraghian (Data61-CSIRO, Australia), Zeeshan Hayder (Data61-CSIRO, Australia), Jie Hong (Australian National University, Australia), Sameera Ramasinghe (Amazon, Australia), Shafin Rahman (North South University, Bangladesh), David Ahmedt-Aristizabal (Data61-CSIRO, Australia), Xuesong Li (Australian National University, Australia), Lars Petersson (Data61-CSIRO, Australia), and Mehrtash Harandi (Monash University, Australia)	.23231
GDA: Generalized Diffusion for Robust Test-time Adaptation Yun-Yun Tsai (Columbia University, USA), Fu-Chen Chen (Amazon, USA), Albert Y. C. Chen (Amazon, USA), Junfeng Yang (Columbia University, USA), Che-Chun Su (Amazon, USA), Min Sun (Amazon, USA), and Cheng-Hao Kuo (Amazon, USA)	23242

Semantically-Shifted Incremental Adapter-Tuning is A Continual ViTransformer Yuwen Tan (Huazhong University of Science and Technology, China), Qinhao Zhou (Huazhong University of Science and Technology, China), Xiang Xiang (Huazhong University of Science and Technology, China), Ke Wang (Alibaba Group, China), Yuchuan Wu (Alibaba Group, China), and Yongbin Li (Alibaba Group, China)	23252
Few-shot Learner Parameterization by Diffusion Time-steps	23263
FREE: Faster and Better Data-Free Meta-Learning	23273
Classes Are Not Equal: An Empirical Study on Image Recognition Fairness Jiequan Cui (Nanyang Technological University, Singapore), Beier Zhu (Nanyang Technological University, Singapore), Xin Wen (The University of Hong Kong, Hong Kong), Xiaojuan Qi (The University of Hong Kong, Hong Kong), Bei Yu (The Chinese University of Hong Kong, Hong Kong), and Hanwang Zhang (Nanyang Technological University, Singapore)	23283
DAVE - A Detect-and-Verify Paradigm for Low-Shot Counting Jer Pelhan (University of Ljubljana, Slovenia), Alan Lukežič (University of Ljubljana, Slovenia), Vitjan Zavrtanik (University of Ljubljana, Slovenia), and Matej Kristan (University of Ljubljana, Slovenia)	23293
Density-guided Translator Boosts Synthetic-to-Real Unsupervised Domain Adaptive Segmentation of 3D Point Clouds	23303
D3T: Distinctive Dual-Domain Teacher Zigzagging Across RGB-Thermal Gap for Domain-Adap Object Detection	
AMU-Tuning: Effective Logit Bias for CLIP-based Few-shot Learning Yuwei Tang (Tianjin University, China), Zhenyi Lin (Tianjin University, China), Qilong Wang (Tianjin University, China), Pengfei Zhu (Tianjin University, China), and Qinghua Hu (Tianjin University, China)	23323

LEAD: Learning Decomposition for Source-free Universal Domain Adaptation	23334
Improving Generalized Zero-Shot Learning by Exploring the Diverse Semantics from External Class Names	23344
What, How, and When Should Object Detectors Update in Continually Changing Test Domains? 23354 Jayeon Yoo (Seoul National University), Dongkwan Lee (Seoul National University), Inseop Chung (Seoul National University), Donghyun Kim (Korea University), and Nojun Kwak (Seoul National University)	•••••
Split to Merge: Unifying Separated Modalities for Unsupervised Domain Adaptation	23364
Domain-Agnostic Mutual Prompting for Unsupervised Domain Adaptation	23375
Improving the Generalization of Segmentation Foundation Model under Distribution Shift via Weakly Supervised Adaptation	23385
DeiT-LT: Distillation Strikes Back for Vision Transformer Training on Long-Tailed Datasets 2 Harsh Rangwani (Indian Institute of Science, Bangalore), Pradipto Mondal (Indian Institute of Technology, Kharagpur), Mayank Mishra (Indian Institute of Science, Bangalore), Ashish Ramayee Asokan (Indian Institute of Science, Bangalore), and R. Venkatesh Babu (Indian Institute of Science, Bangalore)	23396
Unified Language-driven Zero-shot Domain Adaptation	23407

Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation	3416
A Simple Recipe for Language-guided Domain Generalized Segmentation 23 Mohammad Fahes (Inria, France), Tuan-Hung Vu (Valeo.ai, France), Andrei Bursuc (Valeo.ai, France), Patrick Pérez (Kyutai, France), and Raoul de Charette (Inria, France)	3428
TCP:Textual-based Class-aware Prompt tuning for Visual-Language Model	3438
Adapters Strike Back	3449
Improving Plasticity in Online Continual Learning via Collaborative Learning	3460
Visual Prompting for Generalized Few-shot Segmentation: A Multi-scale Approach	3470
Adaptive Random Feature Regularization on Fine-tuning Deep Neural Networks	3481
ESCAPE: Encoding Super-keypoints for Category-Agnostic Pose Estimation 23 Khoi Duc Nguyen (University of Wisconsin-Madison), Chen Li (National University of Singapore), and Gim Hee Lee (National University of Singapore)	3491
PracticalDG: Perturbation Distillation on Vision-Language Models for Hybrid Domain Generalization	3501
Rethinking Multi-domain Generalization with A General Learning Objective	3512

L2B: Learning to Bootstrap Robust Models for Combating Label Noise Yuyin Zhou (University of California, Santa Cruz), Xianhang Li (University of California, Santa Cruz), Fengze Liu (Johns Hopkins University), Qingyue Wei (Stanford University), Xuxi Chen (UT Austin), Lequan Yu (The University of Hong Kong), Cihang Xie (University of California, Santa Cruz), Matthew P. Lungren (Stanford University), and Lei Xing (Stanford University)	23523
Meta-Point Learning and Refining for Category-Agnostic Pose Estimation	23534
A2XP: Towards Private Domain Generalization	23544
Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning Da-Wei Zhou (Nanjing University), Hai-Long Sun (Nanjing University), Han-Jia Ye (Nanjing University), and De-Chuan Zhan (Nanjing University)	23554
VRP-SAM: SAM with Visual Reference Prompt	. 23565
Flatten Long-Range Loss Landscapes for Cross-Domain Few-Shot Learning Yixiong Zou (Huazhong University of Science and Technology), Yicong Liu (Huazhong University of Science and Technology), Yiman Hu (Huazhong University of Science and Technology), Yuhua Li (Huazhong University of Science and Technology), and Ruixuan Li (Huazhong University of Science and Technology)	23575
MAP: MAsk-Pruning for Source-Free Model Intellectual Property Protection Boyang Peng (Tongji University, China), Sanqing Qu (Tongji University, China), Yong Wu (Tongji University), Tianpei Zou (Tongji University, China), Lianghua He (Tongji University, China), Alois Knoll (Technical University of Munich, Germany), Guang Chen (Tongji University, China), and Changjun Jiang (Tongji University, China)	23585
Disentangled Prompt Representation for Domain Generalization	23595
Adapt Before Comparison: A New Perspective on Cross-Domain Few-Shot Segmentation <i>Jonas Herzog (Zhejiang University)</i>	23605

Convolutional Prompting meets Language Models for Continual Learning	5
Visual-Augmented Dynamic Semantic Prototype for Generative Zero-Shot Learning	7
InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning	8
Discriminative Pattern Calibration Mechanism for Source-Free Domain Adaptation	8
NICE: Neurogenesis Inspired Contextual Encoding for Replay-free Class Incremental Learning 23659 Mustafa Burak Gurbuz (Georgia Institute of Technology, USA), Jean Michael Moorman (Georgia Institute of Technology, USA), and Constantine Dovrolis (The Cyprus Institute, Cyprus; Georgia Institute of Technology, USA)	9
Orchestrate Latent Expertise: Advancing Online Continual Learning with Multi-Level Supervision and Reverse Self-Distillation	0
A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models	1
Towards Generalizing to Unseen Domains with Few Labels	1
Improved Self-Training for Test-Time Adaptation	1
Source-Free Domain Adaptation with Frozen Multimodal Foundation Model	1
Deep Imbalanced Regression via Hierarchical Classification Adjustment	1

A Versatile Framework for Continual Test-Time Domain Adaptation: Balancing Discriminability and Generalizability Xu Yang (Xidian University), Xuan Chen (Xidian University), Moqi Li	23731
(Xidian University), Kun Wei (Xidian University), and Cheng Deng (Xidian University)	
DYSON: Dynamic Feature Space Self-Organization for Online Task-Free Class Incremental Learning	23741
Yuhang He (Xi'an Jiaotong University), Yingjie Chen (Xi'an Jiaotong University), Yuhan Jin (Xi'an Jiaotong University), Songlin Dong (Xi'an Jiaotong University), Xing Wei (Xi'an Jiaotong University), and Yihong Gong (Xi'an Jiaotong University)	
Test-Time Linear Out-of-Distribution Detection Ke Fan (Fudan University), Tong Liu (BOE Technology Group), Xingyu Qiu (Fudan University), Yikai Wang (Fudan University), Lian Huai (BOE Technology Group), Zeyu Shangguan (BOE Technology Group), Shuang Gou (BOE Technology Group), Fengjian Liu (BOE Technology Group), Yuqian Fu (Fudan University), Yanwei Fu (Fudan University), and Xingqun Jiang (BOE Technology Group)	23752
APSeg: Auto-Prompt Network for Cross-Domain Few-Shot Semantic Segmentation	23762
LP++: A Surprisingly Strong Linear Probe for Few-Shot CLIP Yunshi Huang (ÉTS Montréal), Fereshteh Shakeri (ÉTS Montréal), Jose Dolz (ÉTS Montréal), Malik Boudiaf (ÉTS Montréal), Houda Bahig (Université de Montréal), and Ismail Ben Ayed (ÉTS Montréal)	23773
On the Test-Time Zero-Shot Generalization of Vision-Language Models: Do We Really Need Prompt Learning?	23783
Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-Domain Few-Shot Learning	23794
Regularized Parameter Uncertainty for Improving Generalization in Reinforcement Learning Pehuen Moure (ETH Zurich and University of Zurich, Switzerland), Longbiao Cheng (ETH Zurich and University of Zurich, Switzerland), Joachim Ott (ETH Zurich and University of Zurich, Switzerland), Zuowen Wang (ETH Zurich and University of Zurich, Switzerland), and Shih-Chii Liu (ETH Zurich and University of Zurich, Switzerland)	23805
An Empirical Study of the Generalization Ability of Lidar 3D Object Detectors to Unseen Domains	23815

MMA: Multi-Modal Adapter for Vision-Language Models	23826
PerAda: Parameter-Efficient Federated Learning Personalization with Generalization Guarantees	23838
Bayesian Exploration of Pre-trained Models for Low-shot Image Classification	23849
NAYER: Noisy Layer Data Generation for Efficient and Effective Data-free Knowledge Distillation	23860
Text-Enhanced Data-free Approach for Federated Class-Incremental Learning	<u>!</u> 3870
Pre-trained Vision and Language Transformers Are Few-Shot Incremental Learners	23881
CDMAD: Class-Distribution-Mismatch-Aware Debiasing for Class-Imbalanced Semi-Supervised Learning	23891
TEA: Test-time Energy Adaptation	23901

Universal Semi-Supervised Domain Adaptation by Mitigating Common-Class Bias	12
Leveraging Vision-Language Models for Improving Domain Generalization in Image Classification	22
Learning Equi-angular Representations for Online Continual Learning	33
Open-Set Domain Adaptation for Semantic Segmentation	43
Task-Adaptive Saliency Guidance for Exemplar-free Class Incremental Learning	54
Progressive Semantic-Guided Vision Transformer for Zero-Shot Learning	64
Unified Entropy Optimization for Open-Set Test-Time Adaptation	75

FedSelect: Personalized Federated Learning with Customized Selection of Parameters for Fine-Tuning	23985
Dual-Enhanced Coreset Selection with Class-wise Collaboration for Online Blurry Class Incremental Learning	23995
Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning	24005
Unveiling the Unknown: Unleashing the Power of Unknown to Known in Open-Set Source-Free Domain Adaptation	24015
Dual-Consistency Model Inversion for Non-Exemplar Class Incremental Learning	!4025
Domain-Rectifying Adapter for Cross-Domain Few-Shot Segmentation	24036
Overcoming Generic Knowledge Loss with Selective Parameter Update	24046
BrainWash: A Poisoning Attack to Forget in Continual Learning	<u>1</u> 4057

Enhancing Visual Continual Learning with Language-Guided Supervision Bolin Ni (Institute of Automation, Chinese Academy of Sciences, China), Hongbo Zhao (Institute of Automation, Chinese Academy of Sciences, China), Chenghao Zhang (Institute of Automation, Chinese Academy of Sciences, China), Ke Hu (Institute of Automation, Chinese Academy of Sciences, China), Gaofeng Meng (Institute of Automation, Chinese Academy of Sciences, China), Zhaoxiang Zhang (Institute of Automation, Chinese Academy of Sciences, China), and Shiming Xiang (Institute of Automation, Chinese Academy of Sciences, China)	. 24068
Orals 6A Low-level Vision and Remote Sensing	
LDP: Language-driven Dual-Pixel Image Defocus Deblurring Network Hao Yang (Beijing Institute of Technology, China), Liyuan Pan (Beijing Institute of Technology, China), Yan Yang (Australian National University, Australia), Richard Hartley (Australian National University, Australia), and Miaomiao Liu (Australian National University, Australia)	24078
S ² MVTC: a Simple yet Efficient Scalable Multi-View Tensor Clustering Zhen Long (University of Electronic Science & Technology of China), Qiyuan Wang (University of Electronic Science & Technology of China), Yazhou Ren (University of Electronic Science & Technology of China), Yipeng Liu (University of Electronic Science & Technology of China), and Ce Zhu (University of Electronic Science & Technology of China)	. 24088
Task-Driven Wavelets using Constrained Empirical Risk Minimization	24098
Image Processing GNN: Breaking Rigidity in Super-Resolution Yuchuan Tian (Peking University), Hanting Chen (Huawei Noah's Ark Lab), Chao Xu (Peking University), and Yunhe Wang (Huawei Noah's Ark Lab)	24108
DART: Implicit Doppler Tomography for Radar Novel View Synthesis Tianshu Huang (Carnegie Mellon University, USA), John Miller (Carnegie Mellon University, USA), Akarsh Prabhakara (Carnegie Mellon University, USA), Tao Jin (Carnegie Mellon University, USA), Tarana Laroia (Carnegie Mellon University, USA), Zico Kolter (Carnegie Mellon University and Bosch Research, USA), and Anthony Rowe (Carnegie Mellon University and Bosch Research, USA)	.24118
Orals 6B Image & Video Synthesis	
Alchemist: Parametric Control of Material Properties with Diffusion Models	. 24130

Generative Image Dynamics	. 24142
Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models Daniel Geng (University of Michigan, USA), Inbum Park (University of Michigan, USA), and Andrew Owens (University of Michigan, USA)	24154
MonoHair: High-Fidelity Hair Modeling from a Monocular Video	24164
Analyzing and Improving the Training Dynamics of Diffusion Models	. 24174
Orals 6C Multi-modal Learning	
InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks Zhe Chen (Nanjing University, China), Jiannan Wu (The University of Hong Kong, China), Wenhai Wang (The Chinese University of Hong Kong, China), Weijie Su (University of Science and Technology of China, China), Guo Chen (Nanjing University, China), Sen Xing (Tsinghua University, China), Muyan Zhong (Tsinghua University, China), Muyan Zhong (Tsinghua University, China), Lewei Lu (Sense Time Research, China), Bin Li (University of Science and Technology of China, China), Ping Luo (The University of Hong Kong, China), Tong Lu (Nanjing University, China), Yu Qiao (Shanghai AI Laboratory, China), and Jifeng Dai (Tsinghua University, China)	24185
Describing Differences in Image Sets with Natural Language	. 24199
NoiseCLR: A Contrastive Learning Approach for Unsupervised Discovery of Interpretable Directions in Diffusion Models Yusuf Dalva (Virginia Tech, USA) and Pinar Yanardag (Virginia Tech, USA)	24209
MetaCloak: Preventing Unauthorized Subject-driven Text-to-image Diffusion-based Synthesis via Meta-learning	. 24219

EGTR: Extracting Graph from Transformer for Scene Graph Generation	24229
Poster Session 6	
BadCLIP: Trigger-Aware Prompt Learning for Backdoor Attacks on CLIP Jiawang Bai (Tsinghua University, China), Kuofeng Gao (Tsinghua University, China), Shaobo Min (Tencent, China), Shu-Tao Xia (Tsinghua University, China), Zhifeng Li (Tencent, China), and Wei Liu (Tencent, China)	. 24239
Semantic-Aware Multi-Label Adversarial Attacks	24251
Defense without Forgetting: Continual Adversarial Defense with Anisotropic & Isotropic Pseudo Replay	. 24263
Learning to Transform Dynamically for Better Adversarial Transferability	. 2427 3
Infrared Adversarial Car Stickers Xiaopei Zhu (Tsinghua University, China), Yuqiu Liu (Beijing Forestry University, China), Zhanhao Hu (UC Berkeley, USA), Jianmin Li (Tsinghua University, China), and Xiaolin Hu (Tsinghua University, China)	. 24284
Unsegment Anything by Simulating Deformation	24294
Efficient Model Stealing Defense with Noise Transition Matrix Dong-Dong Wu (Southeast University), Chilin Fu (Ant Group), Weichang Wu (Ant Group), Wenwen Xia (Ant Group), Xiaolu Zhang (Ant Group), Jun Zhou (Ant Group), and Min-Ling Zhang (Southeast University)	24305
Fully Exploiting Every Real Sample: SuperPixel Sample Gradient Model Stealing	24316

Hide in Thicket: Generating Imperceptible and Rational Adversarial Perturbations on 3D Point Clouds Tianrui Lou (Sun Yat-Sen University), Xiaojun Jia (Nanyang Technological University), Jindong Gu (University of Oxford), Li Liu (National University of Defense Technology), Siyuan Liang (National University of Singapore), Bangyan He (Chinese Academy of Sciences), and Xiaochun Cao (Sun Yat-Sen University)	24326
Boosting Adversarial Transferability by Block Shuffle and Rotation	24336
Robust Overfitting Does Matter: Test-Time Adversarial Purification With FGSM	24347
Data Poisoning based Backdoor Attacks to Contrastive Learning Jinghuai Zhang (University of California, Los Angeles, USA), Hongbin Liu (Duke University, USA), Jinyuan Jia (Penn State University, USA), and Neil Zhenqiang Gong (Duke University, USA)	24357
NAPGuard: Towards Detecting Naturalistic Adversarial Patches Siyang Wu (Beihang University, China), Jiakai Wang (Zhongguancun Laboratory, China), Jiejie Zhao (Zhongguancun Laboratory, China), Yazhe Wang (Zhongguancun Laboratory, China), and Xianglong Liu (Beihang University, China; Zhongguancun Laboratory, China; Heifei Comprehensive National Science Center, China)	24367
Ensemble Diversity Facilitates Adversarial Transferability	24377
Revamping Federated Learning Security from a Defender's Perspective: A Unified Defense with Homomorphic Encrypted Data Space	24387
Can Protective Perturbation Safeguard Personal Data from Being Exploited by Stable Diffusion? Zhengyue Zhao (University of Chinese Academy of Sciences, China), Jinhao Duan (Drexel University, USA), Kaidi Xu (Drexel University, USA), Chenan Wang (Drexel University, USA), Rui Zhang (Institute of Computing Technology, Chinese Academy of Sciences, China), Zidong Du (Institute of Computing Technology, Chinese Academy of Sciences, China), Qi Guo (Institute of Computing Technology, Chinese Academy of Sciences, China), and Xing Hu (Institute of Computing Technology, Chinese Academy of Sciences, China)	24398

One Prompt Word is Enough to Boost Adversarial Robustness for Pre-trained Vision-Language Models
Lin Li (King's College London, UK), Haoyan Guan (King's College London, UK), Jianing Qiu (Imperial College London, UK), and Michael Spratling (King's College London, UK)
Watermark-embedded Adversarial Examples for Copyright Protection against Diffusion Models 24420
Peifei Zhu (LY Corporation, Japan), Tsubasa Takahashi (LY Corporation, Japan), and Hirokatsu Kataoka (LY Corporation, Japan)
Not All Prompts Are Secure: A Switchable Backdoor Attack Against Pre-trained Vision Transfomers
University, China), Kuofeng Gao (Tsinghua University, China), Yong Yang (Tencent Security Platform Department, China), Yiming Li (Zhejiang University, China), and Shu-Tao Xia (Tsinghua University, China)
Focus on Hiders: Exploring Hidden Threats for Enhancing Adversarial Training
Physical 3D Adversarial Attacks against Monocular Depth Estimation in Autonomous Driving . 24452 Junhao Zheng (Xi'an Jiaotong University, China), Chenhao Lin (Xi'an Jiaotong University, China), Jiahao Sun (Xi'an Jiaotong University, China), Zhengyu Zhao (Xi'an Jiaotong University, China), Qian Li (Xi'an Jiaotong University, China), and Chao Shen (Xi'an Jiaotong University, China)
Distraction is All You Need: Memory-Efficient Image Immunization against Diffusion-Based Image Editing
PAD: Patch-Agnostic Defense against Adversarial Patch Attacks

PeerAiD: Improving Adversarial Distillation from a Specialized Peer Tutor Jaewon Jung (Seoul National University, South Korea), Hongsun Jang (Seoul National University, South Korea), Jaeyong Song (Seoul National University, South Korea), and Jinho Lee (Seoul National University, South Korea)	24482
Revisiting Adversarial Training Under Long-Tailed Distributions	24492
Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversarial Robustness Sibo Wang (Institute of Computing Technology, Chinese Academy of Sciences, China), Jie Zhang (Institute of Computing Technology, Chinese Academy of Sciences, China), Zheng Yuan (Institute of Computing Technology, Chinese Academy of Sciences, China), and Shiguang Shan (Institute of Computing Technology, Chinese Academy of Sciences, China)	24502
Towards Transferable Targeted 3D Adversarial Attack in the Physical World	. 24512
Nearest is Not Dearest: Towards Practical Defense against Quantization-conditioned Backdoor Attacks Boheng Li (Zhejiang University & Wuhan University, China), Yishuo Cai (Central South University, China), Haowei Li (Wuhan University), Feng Xue (X Digital Dynamics, China), Zhifeng Li (Tencent Data Platform, China), and Yiming Li (Zhejiang University, China)	24523
Perturbing Attention Gives You More Bang for the Buck: Subtle Imaging Perturbations That Efficiently Fool Customized Diffusion Models Jingyao Xu (Beijing Jiaotong University, China), Yuetong Lu (Beijing Jiaotong University, China), Yandong Li (Google Research, USA), Siyang Lu (Beijing Jiaotong University, China), Dongdong Wang (University of Central Florida, USA), and Xiang Wei (Beijing Jiaotong University, China)	. 24534
Boosting Adversarial Training via Fisher-Rao Norm-based Regularization	24544
Random Entangled Tokens for Adversarially Robust Vision Transformer Huihui Gong (The University of Sydney, Australia; CSIRO Data61, Australia), Minjing Dong (City University of Hong Kong, Hong Kong), Siqi Ma (The University of New South Wales, Australia), Seyit Camtepe (CSIRO Data61, Australia), Surya Nepal (CSIRO Data61, Australia), and Chang Xu (The University of Sydney, Australia)	24554
Backdoor Defense via Test-Time Detecting and Repairing	24564

1-Lipschitz Layers Compared: Memory, Speed, and Certifiable Robustness	4574
DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection	4584
DAP: A Dynamic Adversarial Patch for Evading Person Detectors	4595
Adversarial Distillation Based on Slack Matching and Attribution Region Alignment	4605
Improving Transferable Targeted Adversarial Attacks with Model Self-Enhancement	4615
On the Robustness of Large Multimodal Models Against Image Adversarial Attacks	4625
Intriguing Properties of Diffusion Models: An Empirical Study of the Natural Attack Capability in Text-to-Image Generative Models	4635
BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive Learning 24 Siyuan Liang (National University of Singapore), Mingli Zhu (The Chinese University of Hong Kong, Shenzhen), Aishan Liu (Beihang University), Baoyuan Wu (The Chinese University of Hong Kong, Shenzhen), Xiaochun Cao (Sun Yat-sen University), and Ee-Chien Chang (National University of Singapore)	4645
MMCert: Provable Defense against Adversarial Attacks to Multi-modal Models	4655

MimicDiffusion: Purifying Adversarial Perturbation via Mimicking Clean Diffusion Model Kaiyu Song (Sun Yat-sen University), Hanjiang Lai (Sun Yat-sen University), Yan Pan (Sun Yat-sen University), and Jian Yin (Sun Yat-sen University)	24665
Revisiting Adversarial Training at Scale	. 24675
Language-Driven Anchors for Zero-Shot Adversarial Robustness	. 24686
Transferable Structural Sparse Adversarial Attack Via Exact Group Sparsity Training	24696
Fooling Polarization-Based Vision using Locally Controllable Polarizing Projection	. 24706
Overload: Latency Attacks on Object Detection for Edge Devices	. 24716
Attack To Defend: Exploiting Adversarial Attacks for Detecting Poisoned Models	24726
Towards Understanding and Improving Adversarial Robustness of Vision Transformers	24736
Towards Fairness-Aware Adversarial Learning	24746
Byzantine-robust Decentralized Federated Learning via Dual-domain Clustering and Trust Bootstrapping	24756

Towards General Robustness Verification of MaxPool-based Convolutional Neural Networks via	ì
	24766
Yuan Xiao (Nanjing University, China), Shiqing Ma (University of	
Massachusetts Amherst, USA), Juan Zhai (University of Massachusetts	
Amherst, USA), Chunrong Fang (Nanjing University, China), Jinyuan Jia	
(Pennsylvania State University, USA), and Zhenyu Chen (Nanjing	
University, China)	
·	0.4007
Soften to Defend: Towards Adversarial Robustness via Self-Guided Label Refinement	24//6
Zhuorong Li (Hangzhou City University, China), Daiwei Yu (Hangzhou	
City University, China), Lina Wei (Hangzhou City University, China),	
Canghong Jin (Hangzhou City University, China), Yun Zhang (Hangzhou	
City University, China), and Sixian Chan (Zhejiang University of	
Technology)	
SlowFormer: Adversarial Attack on Compute and Energy Consumption of Efficient Vision	
• • • •	24786
K L Navaneet (University of California, Davis), Soroush Abbasi	
Koohpayegani (University of California, Davis), Essam Sleiman	
(University of California, Davis; Harvard University), and Hamed	
Pirsiavash (University of California, Davis)	
	24798
	24/90
Siyuan Cheng (Purdue University, USA), Guanhong Tao (Purdue University, USA), Yingqi Liu (Microsoft, USA), Guangyu Shen (Purdue	
University, USA), Shengwei An (Purdue University, USA), Shiwei Feng	
(Purdue University, USA), Xiangzhe Xu (Purdue University, USA),	
Kaiyuan Zhang (Purdue University, USA), Shiqing Ma (University of	
Massachusetts at Amherst, USA), and Xiangyu Zhang (Purdue University,	
USA)	
Deep-TROJ: An Inference Stage Trojan Insertion Algorithm through Efficient Weight	
	24810
Sabbir Ahmed (Binghamton University (SUNY), USA), Ranyang Zhou (New	
Jersey Institute of Technology, USA), Shaahin Angizi (New Jersey	
Institute of Technology, USA), and Adnan Siraj Rakin (Binghamton	
University (SUNY), USA)	
Semantic Shield: Defending Vision-Language Models Against Backdooring and Poisoning via	
Fine-grained Knowledge Alignment	24820
Alvi Md Ishmam (Virginia Tech) and Christopher Thomas (Virginia Tech)	24020
,	
Initialization Matters for Adversarial Transfer Learning	24831
Andong Hua (University of California, Santa Barbara, USA), Jindong Gu	
(University of Oxford, United Kingdom), Zhiyu Xue (University of	
California, Santa Barbara, USA), Nicholas Carlini (Google, USA), Eric	
Wong (University of Pennsylvania, USA), and Yao Qin (University of	
California, Santa Barbara, USA)	
Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution	
	24841
Zhengwei Fang (Beijing Jiaotong University), Rui Wang (Beijing	
Jiaotong University), Tao Huang (Beijing Jiaotong University), and	
Liping Jing (Beijing Jiaotong University)	

HDRFlow: Real-Time HDR Video Reconstruction with Large Motions	. 24851
A Physics-informed Low-rank Deep Neural Network for Blind and Universal Lens Aberration Correction	. 24861
Jin Gong (Tsinghua University, China), Runzhao Yang (Tsinghua University, China), Weihang Zhang (Tsinghua University, China), Jinli Suo (Tsinghua University, China), and Qionghai Dai (Tsinghua University, China)	
Super-Resolution Reconstruction from Bayer-Pattern Spike Streams	. 24871
In2SET: Intra-Inter Similarity Exploiting Transformer for Dual-Camera Compressive Hyperspectral Imaging Xin Wang (Beijing Institute of Technology), Lizhi Wang (Beijing Institute of Technology), Xiangtian Ma (Beijing Institute of Technology), Maoqing Zhang (Beijing Institute of Technology), Lin Zhu (Beijing Institute of Technology), and Hua Huang (Beijing Normal University)	. 24881
SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis Teng Hu (Shanghai Jiao Tong University, China), Ran Yi (Shanghai Jiao Tong University, China), Baihong Qian (Shanghai Jiao Tong University, China), Jiangning Zhang (Youtu Lab, Tencent, China), Paul L. Rosin (Cardiff University, UK), and Yu-Kun Lai (Cardiff University, UK)	. 24892
Language-driven All-in-one Adverse Weather Removal Hao Yang (Beijing Institute of Technology, China), Liyuan Pan (Beijing Institute of Technology, China), Yan Yang (Australian National University, Australia), and Wei Liang (Beijing Institute of Technology, China)	. 24902
Language-guided Image Reflection Separation	24913
Time-Efficient Light-Field Acquisition Using Coded Aperture and Events Shuji Habuchi (Nagoya University, Japan), Keita Takahashi (Nagoya University, Japan), Chihiro Tsutake (Nagoya University, Japan), Toshiaki Fujii (Nagoya University, Japan), and Hajime Nagahara (Osaka University, Japan)	24923

NB-GTR: Narrow-Band Guided Turbulence Removal	. 24934
Complementing Event Streams and RGB Frames for Hand Mesh Reconstruction Jianping Jiang (Peking University, China), Xinyu Zhou (Peking University, China), Bingxuan Wang (Peking University, China), Xiaoming Deng (Chinese Academy of Sciences, China), Chao Xu (Peking University, China), and Boxin Shi (Peking University, China)	. 24944
Boosting Spike Camera Image Reconstruction from a Perspective of Dealing with Spike Fluctuations Rui Zhao (Peking University), Ruiqin Xiong (Peking University), Jing Zhao (Peking University), Jian Zhang (Peking University), Xiaopeng Fan (Harbin Institute of Technology), Zhaofei Yu (Peking University), and Tiejun Huang (Peking University)	24955
Frequency-aware Event-based Video Deblurring for Real-World Motion Blur	24966
Latency Correction for Event-guided Deblurring and Frame Interpolation	24977
Learning to Remove Wrinkled Transparent Film with Polarized Prior Jiaqi Tang (The Hong Kong University of Science and Technology (Guangzhou)), Ruizheng Wu (SmartMore Corporation), Xiaogang Xu (The Chinese University of Hong Kong), Sixing Hu (SmartMore Corporation), and Ying-Cong Chen (The Hong Kong University of Science and Technology (Guangzhou))	24987
Dispersed Structured Light for Hyperspectral 3D Imaging	24997
Generalized Event Cameras	25007
Intensity-Robust Autofocus for Spike Camera	. 25018

Selective Nonlinearities Removal from Digital Signals	. 25028
Close Imitation of Expert Retouching for Black-and-White Photography Seunghyun Shin (GIST AI Graduate School, South Korea), Jisu Shin (GIST AI Graduate School, South Korea), Jihwan Bae (Cha University, South Korea), Inwook Shim (Inha University, South Korea), and Hae-Gon Jeon (GIST AI graduate School, South Korea)	. 25037
Spike-guided Motion Deblurring with Unknown Modal Spatiotemporal Alignment	25047
Coherence As Texture – Passive Textureless 3D Reconstruction by Self-interference	. 25058
TurboSL: Dense, Accurate and Fast 3D by Neural Inverse Structured Light Parsa Mirdehghan (University of Toronto, Canada; Vector Institute, Canada), Maxx Wu (University of Toronto, Canada; Vector Institute, Canada), Wenzheng Chen (University of Toronto, Canada; Vector Institute, Canada), David B. Lindell (University of Toronto, Canada; Vector Institute, Canada), and Kiriakos N. Kutulakos (University of Toronto, Canada; Vector Institute, Canada)	25067
SPIDeRS: Structured Polarization for Invisible Depth and Reflectance Sensing	. 25077
CPP-Net: Embracing Multi-Scale Feature Fusion into Deep Unfolding CP-PPA Network for Compressive Sensing	. 25086
SwitchLight: Co-design of Physics-driven Architecture and Pre-training Framework for Human Portrait Relighting	
Diffeomorphic Template Registration for Atmospheric Turbulence Mitigation	. 25107
Towards HDR and HFR Video from Rolling-Mixed-Bit Spikings	. 25117

Progressive Divide-and-Conquer via Subsampling Decomposition for Accelerated MRI	25128
Generative Quanta Color Imaging Vishal Purohit (Purdue University, USA), Junjie Luo (Purdue University, USA), Yiheng Chi (Purdue University, USA), Qi Guo (Purdue University, USA), Stanley H. Chan (Purdue University, USA), and Qiang Qiu (Purdue University, USA)	25138
UFC-Net: Unrolling Fixed-point Continuous Network for Deep Compressive Sensing	25149
Batch Normalization Alleviates the Spectral Bias in Coordinate Networks Zhicheng Cai (Nanjing University, China), Hao Zhu (Nanjing University, China), Qiu Shen (Nanjing University, China), Xinran Wang (Nanjing University, China), and Xun Cao (Nanjing University, China)	. 25160
EVS-assisted Joint Deblurring, Rolling-Shutter Correction and Video Frame Interpolation through Sensor Inverse Modeling	25172
Unsupervised Deep Unrolling Networks for Phase Unwrapping	. 25182
LAN: Learning to Adapt Noise for Image Denoising	25193
Snapshot Lidar: Fourier Embedding of Amplitude and Phase for Single-Image Depth Reconstruction	. 25203
FC-GNN: Recovering Reliable and Accurate Correspondences from Interferences Haobo Xu (Shanghai Jiao Tong University), Jun Zhou (Shanghai Jiao Tong University), Hua Yang (Shanghai Jiao Tong University), Renjie Pan (Shanghai Jiao Tong University), and Cunyan Li (Shanghai Jiao Tong University)	. 25213

Projecting Trackable Thermal Patterns for Dynamic Computer Vision
PixelRNN: In-pixel Recurrent Neural Networks for End-to-end-optimized Perception with Neural Sensors
Image Restoration by Denoising Diffusion Models with Iteratively Preconditioned Guidance 25245 Tomer Garber (Open University of Israel) and Tom Tirer (Bar-Ilan University)
Equivariant Plug-and-Play Image Reconstruction
CodedEvents: Optimal Point-Spread-Function Engineering for 3D-Tracking with Event Cameras 25265
Sachin Shah (University of Maryland, College Park), Matthew A. Chan (University of Maryland, College Park), Haoming Cai (University of Maryland, College Park), Jingxi Chen (University of Maryland, College Park), Sakshum Kulshrestha (University of Maryland, College Park), Chahat Deep Singh (University of Maryland, College Park), Yiannis Aloimonos (University of Maryland, College Park), and Christopher A. Metzler (University of Maryland, College Park)
WaveMo: Learning Wavefront Modulations to See Through Scattering
Turb-Seg-Res: A Segment-then-Restore Pipeline for Dynamic Videos with Atmospheric Turbulence
DiffSCI: Zero-Shot Snapshot Compressive Imaging via Iterative Spectral Diffusion Model 25297 Zhenghao Pan (Harbin Institute of Technology (Shenzhen), China), Haijin Zeng (IMEC-UGent, Belgium), Jiezhang Cao (ETH Zurich, Switzerland), Kai Zhang (Nanjing University, China), and Yongyong Chen (Harbin Institute of Technology (Shenzhen), China)
Resolution Limit of Single-Photon LiDAR

QN-Mixer: A Quasi-Newton MLP-Mixer Model for Sparse-View CT Reconstruction	25317
Dual-Scale Transformer for Large-Scale Single-Pixel Imaging	25327
Rolling Shutter Correction with Intermediate Distortion Flow Estimation	25338
Passive Snapshot Coded Aperture Dual-Pixel RGB-D Imaging	25348
Single View Refractive Index Tomography with Neural Fields	25358
SPECAT: SPatial-spEctral Cumulative-Attention Transformer for High-Resolution Hyperspectral Image Reconstruction Zhiyang Yao (Tsinghua University), Shuyang Liu (Tsinghua University), Xiaoyun Yuan (Tsinghua University), and Lu Fang (Tsinghua University)	25368
Fourier Priors-Guided Diffusion for Zero-Shot Joint Low-Light Enhancement and Deblurring Xiaoqian Lv (Harbin Institute of Technology, China), Shengping Zhang (Harbin Institute of Technology, China), Chenyang Wang (Harbin Institute of Technology, China), Yichen Zheng (Huazhong University of Science and Technology, China), Bineng Zhong (Guangxi Normal University, China), Chongyi Li (Nankai University, China), and Liqiang Nie (Harbin Institute of Technology, China)	25378
Color Shift Estimation-and-Correction for Image Enhancement Yiyu Li (City University of Hong Kong), Ke Xu (City University of Hong Kong), Gerhard Petrus Hancke (City University of Hong Kong), and Rynson W.H. Lau (City University of Hong Kong)	25389
Video Super-Resolution Transformer with Masked Inter&Intra-Frame Attention	25399

Distilling Semantic Priors from SAM to Efficient Image Restoration Models Quan Zhang (Tsinghua Shenzhen International Graduate School, China; Huawei Noah's Ark Lab, China), Xiaoyu Liu (University of Science and Technology of China, China; Huawei Noah's Ark Lab, China), Wei Li (Huawei Noah's Ark Lab, China), Hanting Chen (Huawei Noah's Ark Lab, China), Junchao Liu (Huawei Noah's Ark Lab, China), Jie Hu (Huawei Noah's Ark Lab, China), Zhiwei Xiong (University of Science and Technology of China, China), Chun Yuan (Tsinghua Shenzhen International Graduate School, China), and Yunhe Wang (Huawei Noah's Ark Lab, China)	25409
Beyond Average: Individualized Visual Scanpath Prediction	25420
Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration	25432
Selective Hourglass Mapping for Universal Image Restoration Based on Diffusion Model Dian Zheng (Sun Yat-sen University), Xiao-Ming Wu (Sun Yat-sen University), Shuzhou Yang (Peking University), Jian Zhang (Peking University), Jian-Fang Hu (Sun Yat-sen University), and Wei-Shi Zheng (Sun Yat-sen University)	.25445
SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution Rongyuan Wu (The HongKong Polytechnic University; OPPO Research Institute), Tao Yang (ByteDance Inc.), Lingchen Sun (The HongKong Polytechnic University; OPPO Research Institute), Zhengqiang Zhang (The HongKong Polytechnic University; OPPO Research Institute), Shuai Li (The HongKong Polytechnic University; OPPO Research Institute), and Lei Zhang (The HongKong Polytechnic University; OPPO Research Institute)	25456
Revisiting Single Image Reflection Removal In the Wild Yurui Zhu (University of Science and Technology of China), Xueyang Fu (University of Science and Technology of China), Peng-Tao Jiang (vivo Mobile Communication Co., Ltd), Hao Zhang (vivo Mobile Communication Co., Ltd), Qibin Sun (University of Science and Technology of China), Jinwei Chen (vivo Mobile Communication Co., Ltd), Zheng-Jun Zha (University of Science and Technology of China), and Bo Li (vivo Mobile Communication Co., Ltd.)	25468
ODCR: Orthogonal Decoupling Contrastive Regularization for Unpaired Image Dehazing Zhongze Wang (East China University of Science and Technology, China), Haitao Zhao (East China University of Science and Technology, China), Jingchao Peng (East China University of Science and Technology, China), Lujian Yao (East China University of Science and Technology, China), and Kaijie Zhao (East China University of Science and Technology, China)	25479

Q-Instruct: Improving Low-level Visual Abilities for Multi-modality Foundation Models
Enhancing Quality of Compressed Images by Mitigating Enhancement Bias Towards Compression Domain
Qunliang Xing (Beihang University, China), Mai Xu (Beihang University, China), Shengxi Li (Beihang University, China), Xin Deng (Beihang University, China), Meisong Zheng (Alibaba Group, China), Huaida Liu (Alibaba Group, China), and Ying Chen (Alibaba Group, China)
Attentive Illumination Decomposition Model for Multi-Illuminant White Balancing
NightCC: Nighttime Color Constancy via Adaptive Channel Masking
Navigating Beyond Dropout: An Intriguing Solution towards Generalizable Image Super Resolution
Learning Inclusion Matching for Animation Paint Bucket Colorization
Defense Against Adversarial Attacks on No-Reference Image Quality Models with Gradient Norm Regularization
Towards Backward-Compatible Continual Learning of Image Compression

APISR: Anime Production Inspired Real-World Anime Super-Resolution	25574
Unifying Automatic and Interactive Matting with Pretrained ViTs Zixuan Ye (Huazhong University of Science and Technology), Wenze Liu (Huazhong University of Science and Technology), He Guo (Huazhong University of Science and Technology), Yujia Liang (Huazhong University of Science and Technology), Chaoyi Hong (Huazhong University of Science and Technology), Hao Lu (Huazhong University of Science and Technology), and Zhiguo Cao (Huazhong University of Science and Technology)	25585
Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring Chengxu Liu (Xi'an Jiaotong University, China, Shaanxi Yulan Jiuzhou Intelligent Optoelectronic Technology Co., Ltd, China), Xuan Wang (MEGVII Technology, China), Xiangyu Xu (Xi'an Jiaotong University, China), Ruhao Tian (Xi'an Jiaotong University, China), Shuai Li (MEGVII Technology, China), Xueming Qian (Xi'an Jiaotong University, China, Shaanxi Yulan Jiuzhou Intelligent Optoelectronic Technology Co., Ltd, China), and Ming-Hsuan Yang (University of California, Merced, USA)	25595
Genuine Knowledge from Practice: Diffusion Test-Time Adaptation for Video Adverse Weather Removal	
HomoFormer: Homogenized Transformer for Image Shadow Removal	25617
Bidirectional Multi-Scale Implicit Neural Representations for Image Deraining	25627
LED: A Large-scale Real-world Paired Dataset for Event Camera Denoising	25637

Seeing Motion at Nighttime with an Event Camera	25648
Leveraging Frame Affinity for sRGB-to-RAW Video De-rendering	25659
Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild Fanghua Yu (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Jinjin Gu (Shanghai AI Laboratory), Zheyuan Li (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Jinfan Hu (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Xiangtao Kong (The Hong Kong Polytechnic University), Xintao Wang (ARC Lab, Tencent PCG), Jingwen He (The Chinese University of Hong Kong; Shanghai AI Laboratory), Yu Qiao (Shanghai AI Laboratory), and Chao Dong (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shanghai AI Laboratory)	25669
AdaRevD: Adaptive Patch Exiting Reversible Decoder Pushes the Limit of Image Deblurring Xintian Mao (East China Normal University, China), Qingli Li (East China Normal University, China), and Yan Wang (East China Normal University, China)	25681
Unsupervised Blind Image Deblurring Based on Self-Enhancement Lufei Chen (Sichuan University, China), Xiangpeng Tian (Sichuan University, China), Shuhua Xiong (Sichuan University, China), Yinjie Lei (Sichuan University, China), and Chao Ren (Sichuan University, China)	25691
TTA-EVF: Test-Time Adaptation for Event-based Video Frame Interpolation via Reliable Pixel and Sample Estimation	25701
Learning Coupled Dictionaries from Unpaired Data for Image Super-Resolution Longguang Wang (Aviation University of Air Force), Juncheng Li (Shanghai University), Yingqian Wang (National University of Defense Technology), Qingyong Hu (Independent Researcher), and Yulan Guo (Sun Yat-sen University)	25712

Empowering Resampling Operation for Ultra-High-Definition Image Enhancement with Model-Aware Guidance	25722
Wei Yu (University of Science and Technology of China, China), Jie Huang (University of Science and Technology of China, China), Bing Li (University of Science and Technology of China, China), Kaiwen Zheng (University of Science and Technology of China, China), Qi Zhu (University of Science and Technology of China, China), Man Zhou (University of Science and Technology of China, China), and Feng Zhao (University of Science and Technology of China, China)	
Generating Content for HDR Deghosting from Frequency View Tao Hu (Northwestern Polytechnical University), Qingsen Yan (Northwestern Polytechnical University), Yuankai Qi (Macquarie University), and Yanning Zhang (Northwestern Polytechnical University)	25732
Dual Prior Unfolding for Snapshot Compressive Imaging	25742
Binarized Low-light Raw Video Enhancement	25753
Neural Spline Fields for Burst Image Fusion and Layer Separation	25763
Learning Degradation-Independent Representations for Camera ISP Pipelines	25774
SeD: Semantic-Aware Discriminator for Image Super-Resolution	25784
SinSR: Diffusion-Based Image Super-Resolution in a Single Step Yufei Wang (Nanyang Technological University, Singapore), Wenhan Yang (PengCheng Laboratory, China), Xinyuan Chen (Shanghai Artificial Intelligence Laboratory, China), Yaohui Wang (Shanghai Artificial Intelligence Laboratory, China), Lanqing Guo (Nanyang Technological University, Singapore), Lap-Pui Chau (The Hong Kong Polytechnic University, Hong Kong SAR), Ziwei Liu (Nanyang Technological University, Singapore), Yu Qiao (Shanghai Artificial Intelligence Laboratory, China), Alex C. Kot (Nanyang Technological University, Singapore), and Bihan Wen (Nanyang Technological University, Singapore)	25796

Self-Adaptive Reality-Guided Diffusion for Artifact-Free Super-Resolution Qingping Zheng (Northwestern Polytechnical University), Ling Zheng (Tsinghua-Fuzhou Institute for Data Technology), Yuanfan Guo (Huawei Noah's Ark Lab), Ying Li (Northwestern Polytechnical University), Songcen Xu (Huawei Noah's Ark Lab), Jiankang Deng (Huawei Noah's Ark Lab), and Hang Xu (Huawei Noah's Ark Lab)	. 25806
Improving Spectral Snapshot Reconstruction with Spectral-Spatial Rectification Jiancheng Zhang (Northwestern Polytechnical University, China), Haijin Zeng (IMEC & Universiteit Gent, Belgium), Yongyong Chen (Harbin Institute of Technology (Shenzhen), China), Dengxiu Yu (Northwestern Polytechnical University, China), and Yin-Ping Zhao (Northwestern Polytechnical University, China)	. 25817
Diffusion-based Blind Text Image Super-Resolution Yuzhe Zhang (Beijing Institute of Technology, China), Jiawei Zhang (SenseTime Research, China), Hao Li (SenseTime Research, China), Zhouxia Wang (The University of Hong Kong, China), Luwei Hou (SenseTime Research, China), Dongqing Zou (SenseTime Research, China), and Liheng Bian (Beijing Institute of Technology, China)	. 25827
CAMixerSR: Only Details Need More "Attention"	. 25837
ID-Blau: Image Deblurring by Implicit Diffusion-based reBLurring AUgmentation	. 25847
Low-Res Leads the Way: Improving Generalization for Super-Resolution by Self-Supervised Learning Haoyu Chen (The Hong Kong University of Science and Technology (Guangzhou), China), Wenbo Li (Huawei, China), Jinjin Gu (The University of Sydney, Australia), Jingjing Ren (The Hong Kong University of Science and Technology (Guangzhou), China), Haoze Sun (Tsinghua University, China), Xueyi Zou (Huawei, China), Zhensong Zhang (Huawei, China), Youliang Yan (Huawei, China), and Lei Zhu (The Hong Kong University of Science and Technology (Guangzhou), China)	. 25857
CoSeR: Bridging Image and Language for Cognitive Super-Resolution	. 25868

Real-World Efficient Blind Motion Deblurring via Blur Pixel Discretization Insoo Kim (Samsung Advanced Institute of Technology, South Korea; Korea Advanced Institute of Science and Technology, South Korea), Jae Seok Choi (Samsung Advanced Institute of Technology, South Korea), Geonseok Seo (Samsung Advanced Institute of Technology, South Korea), Kinam Kwon (Samsung Advanced Institute of Technology, South Korea), Jinwoo Shin (Korea Advanced Institute of Science and Technology, South Korea), and Hyong-Euk Lee (Samsung Advanced Institute of Technology, South Korea)	25879
SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder Dihan Zheng (Tsinghua University, China), Yihang Zou (Tsinghua University, China), Xiaowen Zhang (Hisilicon, China), and Chenglong Bao (Tsinghua University, China; Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, China)	25889
Text-guided Explorable Image Super-resolution	25900
Equivariant Multi-Modality Image Fusion	25912
Revisiting Spatial-Frequency Information Integration from a Hierarchical Perspective for Panchromatic and Multi-Spectral Image Fusion Jiangtong Tan (University of Science and Technology of China, China), Jie Huang (University of Science and Technology of China, China), Naishan Zheng (University of Science and Technology of China, China), Man Zhou (University of Science and Technology of China, China), Keyu Yan (University of Science and Technology of China, China), Danfeng Hong (Chinese Academy of Sciences, China), and Feng Zhao (University of Science and Technology of China, China)	25922
MCNet: Rethinking the Core Ingredients for Accurate and Efficient Homography Estimation Haokai Zhu (Zhejiang University, China), Si-Yuan Cao (Zhejiang University, China), Jianxin Hu (Zhejiang University, China), Sitong Zuo (Beijing University of Posts and Telecommunications, China), Beinan Yu (Zhejiang University, China), Jiacheng Ying (Zhejiang University, China), Junwei Li (Zhejiang University, China), and Hui-Liang Shen (Zhejiang University, China)	25932
Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment Ziyu Shan (Shanghai Jiao Tong University, China), Yujie Zhang (Shanghai Jiao Tong University, China), Qi Yang (Tencent, China), Haichen Yang (Shanghai Jiao Tong University), Yiling Xu (Shanghai Jiao Tong University), Jenq-Neng Hwang (University of Washington, USA), Xiaozhong Xu (Tencent, China), and Shan Liu (Tencent, China)	25942

MuGE: Multiple Granularity Edge Detection Caixia Zhou (Beijing Jiaotong University, China), Yaping Huang (Beijing Jiaotong University, China), Mengyang Pu (North China Electric Power University, China), Qingji Guan (Beijing Jiaotong University, China), Ruoxi Deng (Beijing Jiaotong University, China), and Haibin Ling (Stony Brook University, USA)	25952
KVQ: Kwai Video Quality Assessment for Short-form Videos Yiting Lu (University of Science and Technology of China), Xin Li (University of Science and Technology of China), Yajing Pei (University of Science and Technology of China), Kun Yuan (Kuaishou Technology), Qizhi Xie (Tsinghua University), Yunpeng Qu (Tsinghua University), Ming Sun (Kuaishou Technology), Chao Zhou (Kuaishou Technology), and Zhibo Chen (University of Science and Technology of China)	259 63
Transfer CLIP for Generalizable Image Denoising Jun Cheng (Huazhong University of Science and Technology, China), Dong Liang (Huazhong University of Science and Technology, China), and Shan Tan (Huazhong University of Science and Technology, China)	25974
Improved Implicit Neural Representation with Fourier Reparameterized Training	2598 5
Deep Video Inverse Tone Mapping Based on Temporal Clues Yuyao Ye (Peking University, China), Ning Zhang (Baidu Netdisk), Yang Zhao (Hefei University of Technology, China), Hongbin Cao (Peking University, China; Bytedance Inc.), and Ronggang Wang (Peking University, China)	2599 5
Boosting Flow-based Generative Super-Resolution Models via Learned Prior Li-Yuan Tsao (National Tsing Hua University), Yi-Chen Lo (MediaTek Inc.), Chia-Che Chang (MediaTek Inc.), Hao-Wei Chen (National Tsing Hua University), Roy Tseng (MediaTek Inc.), Chien Feng (National Tsing Hua University), and Chun-Yi Lee (National Tsing Hua University)	2 6005
Look-Up Table Compression for Efficient Image Restoration Yinglong Li (University of Science and Technology of China, China), Jiacheng Li (University of Science and Technology of China, China), and Zhiwei Xiong (University of Science and Technology of China, China)	26016
Latent Modulated Function for Computational Optimal Continuous Image Representation Zongyao He (Sun Yat-sen University, China) and Zhi Jin (Sun Yat-sen University, China)	26026

Task-Aware Encoder Control for Deep Video Compression	6
Xingtong Ge (Beijing Institure of Technology, China), Jixiang Luo (SenseTime Research, China), Xinjie Zhang (The Hong Kong University of Science and Technology, China), Tongda Xu (Institute for AI Industry Research (AIR), Tsinghua University, China), Guo Lu (Shanghai Jiaotong University, China), Dailan He (The Chinese University of Hong Kong, China), Jing Geng (Beijing Institure of Technology, China), Yan Wang (Institute for AI Industry Research (AIR), Tsinghua University, China), Jun Zhang (The Hong Kong University of Science and Technology, China), and Hongwei Qin (SenseTime Research, China)	,
A Dynamic Kernel Prior Model for Unsupervised Blind Image Super-Resolution	5
Zero-Reference Low-Light Enhancement via Physical Quadruple Priors	7
ParamISP: Learned Forward and Inverse ISPs using Camera Parameters	7
FSC: Few-point Shape Completion	7
Generative Latent Coding for Ultra-Low Bitrate Image Compression	3
Neural Video Compression with Feature Modulation)
Driving-Video Dehazing with Non-Aligned Regularization for Safety Assistance	•

CFAT: Unleashing Triangular Windows for Image Super-resolution
Zero-Shot Structure-Preserving Diffusion Model for High Dynamic Range Tone Mapping
Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations. 26140 Chenyu You (Yale University), Yifei Min (Yale University), Weicheng Dai (Yale University), Jasjeet S. Sekhon (Yale University), Lawrence Staib (Yale University), and James S. Duncan (Yale University)
Learn from View Correlation: An Anchor Enhancement Strategy for Multi-view Clustering 26151 Suyuan Liu (National University of Defense Technology, China), Ke Liang (National University of Defense Technology, China), Zhibin Dong (National University of Defense Technology, China), Siwei Wang (Intelligent Game and Decision Lab, China), Xihong Yang (National University of Defense Technology, China), Sihang Zhou (National University of Defense Technology, China), En Zhu (National University of Defense Technology, China), and Xinwang Liu (National University of Defense Technology, China)
Circuit Design and Efficient Simulation of Quantum Inner Product and Empirical Studies of Its Effect on Near-Term Hybrid Quantum-Classic Machine Learning
Discriminability-Driven Channel Selection for Out-of-Distribution Detection
Efficient Hyperparameter Optimization with Adaptive Fidelity Identification
Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing

Online Task-Free Continual Generative and Discriminative Learning via Dynamic Cluster	
Memory Fei Ye (University of York, UK, Mohamed bin Zayed University of	26202
Artificial Intelligence, Abu Dhabi) and Adrian G. Bors (University of	
York, UK, Mohamed bin Zayed University of Artificial Intelligence, Abu	
Dhabi)	
Spanning Training Progress: Temporal Dual-Depth Scoring (TDDS) for Enhanced Dataset Pruning	26213
Xin Zhang (XiDian University, China), Jiawei Du (Agency for Science,	
Technology and Research (A*STAR), Singapore), Yunsong Li (XiDian	
University, China), Weiying Xie (XiDian University, China), and Joey	
Tianyi Zhou (Agency for Science, Technology and Research (A*STAR),	
Singapore)	
An Aggregation-Free Federated Learning for Tackling Data Heterogeneity	26223
POCE: Primal Policy Optimization with Conservative Estimation for Multi-constraint Offline	
Reinforcement Learning	26233
Jiayi Guan (Tongji University), Li Shen (JD Explore Academy), Ao Zhou	20233
(Tongji University), Lusong Li (JD Explore Academy), Han Hu (Beijing	
Institute of Technology), Xiaodong He (JD Explore Academy), Guang Chen	
(Tongji University), and Changjun Jiang (Tongji University)	
SVDinsTN: A Tensor Network Paradigm for Efficient Structure Search from Regularized	
Modeling Perspective	26244
Yu-Bang Zheng (Southwest Jiaotong University, China), Xi-Le Zhao	20244
(University of Electronic Science and Technology of China, China),	
Junhua Zeng (Guangdong University of Technology, China), Chao Li	
(RIKEN, Japan), Qibin Zhao (RIKEN, Japan), Heng-Chao Li (Southwest	
Jiaotong University, China), and Ting-Zhu Huang (University of	
Electronic Science and Technology of China, China)	
	26254
Fine-Grained Bipartite Concept Factorization for Clustering	26254
University, China), Yongyong Chen (Harbin Institute of Technology	
(Shenzhen), China), Zhao Kang (University of Electronic Science and	
Technology of China, China), Chenglizhao Chen (China University of	
Petroleum (East China)), and Qiang Cheng (University of Kentucky, USA)	
	2/2/5
Embodied Multi-Modal Agent trained by an LLM from a Parallel TextWorld	26265
Yijun Yang (Southern University of Science and Technology, China),	Kanxue Li sity, China),
Tianyi Zhou (University of Maryland, College Park, USA), Kanxue Li	
(Yunnan University, China), Dapeng Tao (Yunnan University, China),	
Lusong Li (JD Explore Academy), Li Shen (JD Explore Academy), Xiaodong He (JD Explore Academy), Jing Jiang (University of Technology Sydney),	
and Yuhui Shi (Southern University of Science and Technology, China)	
nim I mini Sin (Southern Ambersing of Science and I contiducy, Ciniu)	

The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes	'6
Myeongseob Ko (Virginia Tech), Feiyang Kang (Virginia Tech), Weiyan Shi (Columbia University), Ming Jin (Virginia Tech), Zhou Yu (Columbia University), and Ruoxi Jia (Virginia Tech)	
Improved Baselines with Visual Instruction Tuning	6
Linguistic-Aware Patch Slimming Framework for Fine-grained Cross-Modal Alignment	7
FlowVQTalker: High-Quality Emotional Talking Face Generation through Normalizing Flow and	
Quantization	/
Audio-Visual Segmentation via Unlabeled Frame Exploitation	8
Binding Touch to Everything: Learning Unified Multimodal Tactile Representations	0
MoDE: CLIP Data Experts via Clustering	4
X-MIC: Cross-Modal Instance Conditioning for Egocentric Action Generalization	4

PixelLM: Pixel Reasoning with Large Multimodal Model	26364
Probing Synergistic High-Order Interaction in Infrared and Visible Image Fusion Naishan Zheng (University of Science and Technology of China, China), Man Zhou (University of Science and Technology of China, China), Jie Huang (University of Science and Technology of China, China), Junming Hou (Southeast University, China), Haoying Li (Zhejiang University, China), Yuan Xu (Nanyang Technology University, Singapore), and Feng Zhao (University of Science and Technology of China, China)	. 26374
The Audio-Visual Conversational Graph: From an Egocentric-Exocentric Perspective	26386
MultiPLY: A Multisensory Object-Centric Embodied Large Language Model in 3D World Yining Hong (UCLA; MIT-IBM Watson AI Lab), Zishuo Zheng (UMass Amherst), Peihao Chen (SCUT), Yian Wang (UMass Amherst), Junyan Li (UMass Amherst), and Chuang Gan (UMass Amherst; MIT-IBM Watson AI Lab)	. 26396
GPT4Point: A Unified Framework for Point-Language Understanding and Generation	26407
LL3DA: Visual Interactive Instruction Tuning for Omni-3D Understanding, Reasoning, and Planning Sijin Chen (Fudan University), Xin Chen (Tencent PCG), Chi Zhang (Tencent PCG), Mingsheng Li (Fudan University), Gang Yu (Tencent PCG), Hao Fei (National University of Singapore), Hongyuan Zhu (Institute for Infocomm Research (I2R) & Centre for Frontier AI Research (CFAR), A*STAR, Singapore), Jiayuan Fan (Fudan University), and Tao Chen (Fudan University)	26418
Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision, Language, Audio, and Action Jiasen Lu (Allen Institute for AI), Christopher Clark (Allen Institute for AI), Sangho Lee (Allen Institute for AI), Zichen Zhang (Allen Institute for AI), Savya Khosla (University of Illinois Urbana-Champaign), Ryan Marten (University of Illinois Urbana-Champaign), Derek Hoiem (University of Illinois Urbana-Champaign), and Aniruddha Kembhavi (Allen Institute for AI)	. 26429

SHAP-EDITOR: Instruction-Guided Latent 3D Editing in Seconds	146
Learning to Visually Localize Sound Sources from Mixtures without Prior Source Knowledge 264. Dongjin Kim (Kyung Hee University), Sung Jin Um (Kyung Hee University), Sangmin Lee (University of Illinois Urbana-Champaign), and Jung Uk Kim (Kyung Hee University)	1 57
Bring Event into RGB and LiDAR: Hierarchical Visual-Motion Fusion for Scene Flow	167
Dispel Darkness for Better Fusion: A Controllable Visual Enhancer based on Cross-modal Conditional Adversarial Learning	177
Unraveling Instance Associations: A Closer Look for Audio-Visual Segmentation	187
DMR: Decomposed Multi-Modality Representations for Frames and Events Fusion in Visual Reinforcement Learning	198
Text-Guided Variational Image Generation for Industrial Anomaly Detection and Segmentation. 2656 Mingyu Lee (Chung-Ang University, Korea) and Jongwon Choi (Chung-Ang University, Korea)	509
Tactile-Augmented Radiance Fields	519
LION: Empowering Multimodal Large Language Model with Dual-Level Visual Knowledge 2650 Gongwei Chen (Harbin Institute of Technology, Shenzhen, China), Leyang Shen (Harbin Institute of Technology, Shenzhen, China), Rui Shao (Harbin Institute of Technology, Shenzhen, China), Xiang Deng (Harbin Institute of Technology, Shenzhen, China), and Liqiang Nie (Harbin Institute of Technology, Shenzhen, China)	530

SDSTrack: Self-Distillation Symmetric Adapter Learning for Multi-Modal Visual Object
Tracking Xiaojun Hou (Zhejiang University), Jiazheng Xing (Zhejiang University), Yijie Qian (Zhejiang University), Yaowei Guo (Zhejiang University), Shuo Xin (Zhejiang University), Junhao Chen (Zhejiang University), Kai Tang (Zhejiang University), Mengmeng Wang (Zhejiang University), Zhengkai Jiang (Youtu Lab, Tencent), Liang Liu (Huzhou Institute, Zhejiang University), and Yong Liu (Zhejiang University)
Exploring the Transferability of Visual Prompting for Multimodal Large Language Models 26552 Yichi Zhang (Tsinghua University, China), Yinpeng Dong (Tsinghua University, China), Siyuan Zhang (Tsinghua University, China), Tianzan Min (Tsinghua University, China), Hang Su (Tsinghua University, China), and Jun Zhu (Tsinghua University, China)
Mask Grounding for Referring Image Segmentation
OneLLM: One Framework to Align All Modalities with Language
EmoVIT: Revolutionizing Emotion Insights with Visual Instruction Tuning
ModaVerse: Efficiently Transforming Modalities with LLMs
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
Dynamic Prompt Optimizing for Text-to-Image Generation

Domain Prompt Learning with Quaternion Networks Qinglong Cao (Shanghai Jiao Tong University), Zhengqin Xu (Shanghai Jiao Tong University), Yuntian Chen (Eastern Institute of Technology, Ningbo), Chao Ma (Shanghai Jiao Tong University), and Xiaokang Yang (Shanghai Jiao Tong University)	26627
ViT-Lens: Towards Omni-modal Representations Weixian Lei (National University of Singapore, Singapore), Yixiao Ge (Tencent, China), Kun Yi (Tencent, China), Jianfeng Zhang (National University of Singapore, Singapore), Difei Gao (National University of Singapore, Singapore), Dylan Sun (Tencent, China), Yuying Ge (Tencent, China), Ying Shan (Tencent, China), and Mike Zheng Shou (National University of Singapore, Singapore)	26637
Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation Sihan Liu (Xiamen University), Yiwei Ma (Xiamen University), Xiaoqing Zhang (Xiamen University), Haowei Wang (Xiamen University), Jiayi Ji (Xiamen University), Xiaoshuai Sun (Xiamen University), and Rongrong Ji (Xiamen University)	26648
Cyclic Learning for Binaural Audio Generation and Localization Zhaojian Li (Northwestern Polytechnical University, China), Bin Zhao (Northwestern Polytechnical University, China), and Yuan Yuan (Northwestern Polytechnical University, China)	26659
Learning to Rematch Mismatched Pairs for Robust Cross-Modal Retrieval Haochen Han (Xi'an Jiaotong University, China), Qinghua Zheng (Xi'an Jiaotong University, China), Guang Dai (SGIT AI Lab, China), Minnan Luo (Xi'an Jiaotong University, China), and Jingdong Wang (Baidu Inc, China)	26669
VILA: On Pre-training for Visual Language Models Ji Lin (MIT), Hongxu Yin (NVIDIA), Wei Ping (NVIDIA), Pavlo Molchanov (NVIDIA), Mohammad Shoeybi (NVIDIA), and Song Han (MIT)	26679
A Picture is Worth More Than 77 Text Tokens: Evaluating CLIP-Style Models on Dense Captions	26690
How to Configure Good In-Context Sequence for Visual Question Answering Li Li (Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, China), Jiawei Peng (Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, China), Huiyi Chen (Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, China), Chongyang Gao (Northwestern University), and Xu Yang (Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, China)	26700

CrossMAE: Cross-Modality Masked Autoencoders for Region-Aware Audio-Visual Pre-Training 26711
Yuxin Guo (Institute of Automation, Chinese Academy of Sciences), Siyang Sun (Alibaba Group), Shuailei Ma (Northeastern University), Kecheng Zheng (Ant Group), Xiaoyi Bao (Institute of Automation, Chinese Academy of Sciences), Shijie Ma (Institute of Automation, Chinese Academy of Sciences), Wei Zou (Institute of Automation, Chinese Academy of Sciences), and Yun Zheng (Alibaba Group)
Modality-Collaborative Test-Time Adaptation for Action Recognition
T-VSL: Text-Guided Visual Sound Source Localization in Mixtures
UniBind: LLM-Augmented Unified and Balanced Representation Space to Bind Them All 26742 Yuanhuiyi Lyu (The Hong Kong University of Science and Technology (Guangzhou)), Xu Zheng (The Hong Kong University of Science and Technology (Guangzhou)), Jiazhou Zhou (The Hong Kong University of Science and Technology (Guangzhou)), and Lin Wang (The Hong Kong University of Science and Technology (Guangzhou))
Monkey: Image Resolution and Text Label Are Important Things for Large Multi-modal Models
Rethinking Multi-view Representation Learning via Distilled Disentangling
Causal Mode Multiplexer: A Novel Framework for Unbiased Multispectral Pedestrian Detection 26774 Taeheon Kim (KAIST, South Korea), Sebin Shin (KAIST, South Korea), Youngjoon Yu (KAIST, South Korea), Hak Gu Kim (Chung-Ang University, South Korea), and Yong Man Ro (KAIST, South Korea)

Image-Text Co-Decomposition for Text-Supervised Semantic Segmentation
Mirasol3B: A Multimodal Autoregressive Model for Time-Aligned and Contextual Modalities 26794 AJ Piergiovanni (Google Deepmind), Isaac Noble (Google Research), Dahun Kim (Google Deepmind), Michael S. Ryoo (Google Deepmind), Victor Gomes (Google Research), and Anelia Angelova (Google Deepmind)
Efficient Vision-Language Pre-training by Cluster Masking
MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models 26816 Sanjoy Chowdhury (University of Maryland College Park, USA), Sayan Nag (University of Toronto, Canada), K J Joseph (Adobe Research, India), Balaji Vasan Srinivasan (Adobe Research, India), and Dinesh Manocha (University of Maryland College Park, USA)
Weakly Misalignment-free Adaptive Feature Alignment for UAVs-based Multimodal Object Detection
DiVAS: Video and Audio Synchronization with Dynamic Frame Rates
Querying as Prompt: Parameter-Efficient Learning for Multimodal Language Model
SonicVisionLM: Playing Sound with Vision Language Models

Embracing Unimodal Aleatoric Uncertainty for Robust Multimodal Fusion Zixian Gao (University of Electronic Science and Technology of China), Xun Jiang (University of Electronic Science and Technology of China), Xing Xu (University of Electronic Science and Technology of China; Tongji University), Fumin Shen (University of Electronic Science and Technology of China), Yujie Li (Kyushu Institute of Technology), and Heng Tao Shen (University of Electronic Science and Technology of China; Tongji University)	26866
C3Net: Compound Conditioned ControlNet for Multimodal Content Generation Juntao Zhang (The Hong Kong University of Science and Technology, China), Yuehuai Liu (The Hong Kong University of Science and Technology, China), Yu-Wing Tai (Dartmouth College, USA), and Chi-Keung Tang (The Hong Kong University of Science and Technology, China)	26876
Composed Video Retrieval via Enriched Context and Discriminative Embeddings	26886
Looking Similar, Sounding Different: Leveraging Counterfactual Cross-Modal Pairs for Audiovisual Representation Learning	26897
Anchor-based Robust Finetuning of Vision-Language Models Jinwei Han (Wuhan University), Zhiwen Lin (YouTu Lab, Tencent), Zhongyisun Sun (YouTu Lab, Tencent), Yingguo Gao (YouTu Lab, Tencent), Ke Yan (YouTu Lab, Tencent), Shouhong Ding (YouTu Lab, Tencent), Yuan Gao (Wuhan University), and Gui-Song Xia (Wuhan University)	26909
Event-based Visible and Infrared Fusion via Multi-task Collaboration Mengyue Geng (Peking University, China), Lin Zhu (Beijing Institute of Technology, China), Lizhi Wang (Beijing Institute of Technology, China), Wei Zhang (Peng Cheng Laboratory, China), Ruiqin Xiong (Peking University, China), and Yonghong Tian (Peking University, China)	26919
Prompt Learning via Meta-Regularization	26930
Knowledge-Enhanced Dual-stream Zero-shot Composed Image Retrieval Yucheng Suo (ReLER, CCAI, Zhejiang University, China), Fan Ma (ReLER, CCAI, Zhejiang University, China), Linchao Zhu (ReLER, CCAI, Zhejiang University, China), and Yi Yang (ReLER, CCAI, Zhejiang University, China)	.26941
Contextual Augmented Global Contrast for Multimodal Intent Recognition Kaili Sun (Wuhan University, China), Zhiwen Xie (Central China Normal University, China), Mang Ye (Wuhan University, China), and Huyin Zhang (Wuhan University, China)	26953

MRFS: Mutually Reinforcing Image Fusion and Segmentation	964
POPDG: Popular 3D Dance Generation with PopDanceSet	974
How to Make Cross Encoder a Good Teacher for Efficient Image-Text Retrieval? Yuxin Chen (Institute of Automation, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; Tencent PCG, China), Zongyang Ma (Institute of Automation, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; Tencent PCG, China), Ziqi Zhang (Institute of Automation, Chinese Academy of Sciences, China), Zhongang Qi (Tencent PCG, China), Chunfeng Yuan (Institute of Automation, Chinese Academy of Sciences, China), Bing Li (Institute of Automation, Chinese Academy of Sciences, China), Junfu Pu (Tencent PCG, China), Ying Shan (Tencent PCG, China), Xiaojuan Qi (The University of Hong Kong, China), and Weiming Hu (Institute of Automation, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; ShanghaiTech University, China)	984
Active Prompt Learning in Vision Language Models	994
Descriptor and Word Soups: Overcoming the Parameter Efficiency Accuracy Tradeoff for Out-of-Distribution Few-shot Learning	005
Text-IF: Leveraging Semantic Text Guidance for Degradation-Aware and Interactive Image Fusion	016
Hallucination Augmented Contrastive Learning for Multimodal Large Language Model	026
Beyond Text: Frozen Large Language Models in Visual Signal Comprehension	037
Learning Spatial Features from Audio-Visual Correspondence in Egocentric Videos	048

ES ³ : Evolving Self-Supervised Learning of Robust Audio-Visual Speech Representations	. 27059
PortraitBooth: A Versatile Portrait Model for Fast Identity-preserved Personalization	27070
ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding Le Xue (Salesforce AI Research, USA), Ning Yu (Salesforce AI Research, USA), Shu Zhang (Salesforce AI Research, USA), Artemis Panagopoulou (Salesforce AI Research, USA; University of Pennsylvania, USA), Junnan Li (Salesforce AI Research, Singapore), Roberto Martín-Martín (University of Texas at Austin, USA), Jiajun Wu (Stanford University, USA), Caiming Xiong (Salesforce AI Research, USA), Ran Xu (Salesforce AI Research, USA), Juan Carlos Niebles (Salesforce AI Research, USA; Stanford University, USA), and Silvio Savarese (Salesforce AI Research, USA; Stanford University, USA)	. 27081
AVFF: Audio-Visual Feature Fusion for Video Deepfake Detection Trevine Oorloff (University of Maryland - College Park), Surya Koppisetti (Reality Defender Inc.), Nicolò Bonettini (Reality Defender Inc.), Divyaraj Solanki (Reality Defender Inc.), Ben Colman (Reality Defender Inc.), Yaser Yacoob (University of Maryland - College Park), Ali Shahriyari (Reality Defender Inc.), and Gaurav Bharaj (Reality Defender Inc.)	27092
Language-aware Visual Semantic Distillation for Video Question Answering Bo Zou (Tsinghua University, China), Chao Yang (Shanghai AI Laboratory, China), Yu Qiao (Shanghai AI Laboratory, China), Chengbin Quan (Tsinghua University, China), and Youjian Zhao (Tsinghua University, China)	. 271 03
PerceptionGPT: Effectively Fusing Visual Perception into LLM Renjie Pi (Hong Kong University of Science and Technology), Lewei Yao (Hong Kong University of Science and Technology), Jiahui Gao (the University of Hong Kong), Jipeng Zhang (Hong Kong University of Science and Technology), and Tong Zhang (Hong Kong University of Science and Technology)	. 27114
Cooperation Does Matter: Exploring Multi-Order Bilateral Relations for Audio-Visual Segmentation Qi Yang (University of Chinese Academy of Sciences, China), Xing Nie (Institute of Automation Chinese Academy of Sciences, China), Tong Li (Meituan, China), Pengfei Gao (Meituan, China), Ying Guo (Meituan, China), Cheng Zhen (Meituan, China), Pengfei Yan (Meituan, China), and Shiming Xiang (Institute of Automation Chinese Academy of Sciences, China)	27124

MV-Adapter: Multimodal Video Transfer Learning for Video Text Retrieval	7134
Draw Step by Step: Reconstructing CAD Construction Sequences from Point Clouds via Multimodal Diffusion	7144
AV-RIR: Audio-Visual Room Impulse Response Estimation	7154
Link-Context Learning for Multimodal LLMs	7166
Unveiling the Power of Audio-Visual Early Fusion Transformers with Dense Interactions through Masked Modeling	7176
Noisy-Correspondence Learning for Text-to-Image Person Re-identification 27 Yang Qin (Sichuan University, China), Yingke Chen (Northumbria University, United Kingdom), Dezhong Peng (Sichuan University, China), Xi Peng (Sichuan University, China), Joey Tianyi Zhou (A*STAR, Singapore), and Peng Hu (Sichuan University, China)	7187
Mind Artist: Creating Artistic Snapshots with Human Thought	7197
VTQA: Visual Text Question Answering via Entity Alignment and Cross-Media Reasoning 27 Kang Chen (Harbin Institute of Technology, China) and Xiangqian Wu (Harbin Institute of Technology, China)	7208
THRONE: An Object-based Hallucination Benchmark for the Free-form Generations of Large Vision-Language Models	72 18
Data-Efficient Multimodal Fusion on a Single GPU	7229

SoundingActions: Learning How Actions Sound from Narrated Egocentric Videos	27242
Accept the Modality Gap: An Exploration in the Hyperbolic Space Sameera Ramasinghe (Amazon), Violetta Shevchenko (Amazon), Gil Avraham (Amazon), and Ajanthan Thalaiyasingam (Amazon)	27253
DiffSal: Joint Audio and Video Learning for Diffusion Saliency Prediction Junwen Xiong (Northwestern Polytechnical University, China), Peng Zhang (Northwestern Polytechnical University, China), Tao You (Northwestern Polytechnical University, China), Chuanyue Li (Northwestern Polytechnical University, China), Wei Huang (Nanchang University, China), and Yufei Zha (Northwestern Polytechnical University, China)	27263
DiPrompT: Disentangled Prompt Tuning for Multiple Latent Domain Generalization in Federated Learning	27274
Probabilistic Speech-Driven 3D Facial Motion Synthesis: New Benchmarks, Methods, and Applications Karren D. Yang (Apple), Anurag Ranjan (Apple), Jen-Hao Rick Chang (Apple), Raviteja Vemulapalli (Apple), and Oncel Tuzel (Apple)	27284
DIEM: Decomposition-Integration Enhancing Multimodal Insights Xinyi Jiang (Zhejiang University, China), Guoming Wang (Zhejiang University, China), Junhao Guo (Zhejiang University), Juncheng Li (Zhejiang University), Wenqiao Zhang (Zhejiang University), Rongxing Lu (University of New Brunswick), and Siliang Tang (Zhejiang University)	27294
MAFA: Managing False Negatives for Vision-Language Pre-training Jaeseok Byun (Seoul National University, the Republic of Korea), Dohoon Kim (Seoul National University, the Republic of Korea), and Taesup Moon (Seoul National University, the Republic of Korea)	27304
AV2AV: Direct Audio-Visual Speech to Audio-Visual Speech Translation with Unified Audio-Visual Speech Representation	27315
Enhancing Multimodal Cooperation via Sample-level Modality Valuation	27328

Diff-BGM: A Diffusion Model for Video Background Music Generation	338
SaCo Loss: Sample-wise Affinity Consistency for Vision-Language Pre-training	348
MoPE-CLIP: Structured Pruning for Efficient Vision-Language Models with Module-wise	
Pruning Error Metric	360
Haokun Lin (University of Chinese Academy of Sciences (UCAS), CRIPAC & MAIS, Institute of Automation, Chinese Academy of Sciences, City University of Hong Kong), Haoli Bai (Huawei Noah's Ark Lab), Zhili Liu (The Hong Kong University of Science and Technology, Huawei Noah's Ark Lab), Lu Hou (Huawei Noah's Ark Lab), Muyi Sun (CRIPAC & MAIS, Institute of Automation, Chinese Academy of Sciences), Linqi Song (City University of Hong Kong, City University of Hong Kong Shenzhen	
Research Institute), Ying Wei (Nanyang Technological University), and Zhenan Sun (CRIPAC & MAIS, Institute of Automation, Chinese Academy of Sciences)	
Mitigating Noisy Correspondence by Geometrical Structure Consistency Learning	371
DetCLIPv3: Towards Versatile Generative Open-vocabulary Object Detection	381
Lewei Yao (Hong Kong University of Science and Technology, Hong Kong), Renjie Pi (Hong Kong University of Science and Technology, Hong Kong), Jianhua Han (Huawei Noah's Ark Lab, China), Xiaodan Liang (Shenzhen Campus of Sun Yat-Sen University), Hang Xu (Huawei Noah's Ark Lab, China), Wei Zhang (Huawei Noah's Ark Lab, China), Zhenguo Li (Huawei Noah's Ark Lab, China), and Dan Xu (Hong Kong University of Science and Technology, Hong Kong)	<i>,</i> 001
Leveraging Cross-Modal Neighbor Representation for Improved CLIP Classification	392
OmniVec2 - A Novel Transformer based Network for Large Scale Multimodal and Multitask Learning	402
Siddharth Srivastava (Typeface) and Gaurav Sharma (Typeface)	
CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation	415

Differentiable Information Bottleneck for Deterministic Multi-view Clustering	. 27425
A Study of Dropout-Induced Modality Bias on Robustness to Missing Video Frames for Audio-Visual Speech Recognition Yusheng Dai (University of Science and Techlogy of China), Hang Chen (University of Science and Technology of China), Jun Du (University of Science and Technology of China), Ruoyu Wang (University of Science and Technology of China), Shihao Chen (University of Science and Technology of China), Haotian Wang (University of Science and Technology of China), and Chin-Hui Lee (Georgia Institute of Technology)	. 27435
Multimodal Representation Learning by Alternating Unimodal Adaptation	. 27446
View-Category Interactive Sharing Transformer for Incomplete Multi-View Multi-Label Learning Shilong Ou (Beijing University of Posts and Telecommunications, China), Zhe Xue (Beijing University of Posts and Telecommunications, China), Yawen Li (Beijing University of Posts and Telecommunications, China), Meiyu Liang (Beijing University of Posts and Telecommunications, China), Yuanqiang Cai (Beijing University of Posts and Telecommunications, China), and Junjiang Wu (Beijing University of Posts and Telecommunications, China)	. 27457
Scalable 3D Registration via Truncated Entry-wise Absolute Residuals	. 27467
Partial-to-Partial Shape Matching with Geometric Consistency Viktoria Ehm (Technical University of Munich, Germany), Maolin Gao (Technical University of Munich, Germany), Paul Roetzer (University of Bonn, Germany), Marvin Eisenberger (Technical University of Munich, Germany), Daniel Cremers (Technical University of Munich, Germany), and Florian Bernard (University of Bonn, Germany)	. 27478
Towards Robust Learning to Optimize with Theoretical Guarantees	. 27488
From Variance to Veracity: Unbundling and Mitigating Gradient Variance in Differentiable Bundle Adjustment Layers Swaminathan Gurumurthy (Carnegie Mellon University), Karnik Ram (TU Munich), Bingqing Chen (Bosch Center for Artificial Intelligence), Zachary Manchester (Carnegie Mellon University), and Zico Kolter (Carnegie Mellon University, Bosch Center for Artificial Intelligence)	. 27497

DIMAT: Decentralized Iterative Merging-And-Training for Deep Learning Models	7507
Ink Dot-Oriented Differentiable Optimization for Neural Image Halftoning	7518
Are Conventional SNNs Really Efficient? A Perspective from Network Quantization	7528
FedMef: Towards Memory-efficient Federated Dynamic Pruning	.7538
SD4Match: Learning to Prompt Stable Diffusion Model for Semantic Matching	7548
Purified and Unified Steganographic Network	.7559
Learned Lossless Image Compression based on Bit Plane Slicing	27569
Towards Calibrated Multi-label Deep Neural Networks	27579
Improving Generalization via Meta-Learning on Hard Samples	.7590
Learning with Structural Labels for Learning with Noisy Labels	.7600
DiffuseMix: Label-Preserving Data Augmentation with Diffusion Models	7611

Improving Out-of-Distribution Generalization in Graphs via Hierarchical Semantic Environments	7621
University), Yijingxiu Lu (Seoul National University), and Sun Kim (Seoul National University, AIGENDRUG Co., Ltd.)	
Patch2Self2: Self-supervised Denoising on Coresets via Matrix Sketching	'631
G-FARS: Gradient-Field-based Auto-Regressive Sampling for 3D Part Grouping	'642
Decompose-and-Compose: A Compositional Approach to Mitigating Spurious Correlation 27 Fahimeh Hosseini Noohdani (Sharif University of Technology, Iran), Parsa Hosseini (Sharif University of Technology, Iran), Aryan Yazdan Parast (Sharif University of Technology, Iran), Hamidreza Yaghoubi Araghi (Sharif University of Technology, Iran), and Mahdieh Soleymani Baghshah (Sharif University of Technology, Iran)	'652
SkySense: A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery	'662
Building Bridges across Spatial and Temporal Resolutions: Reference-Based Super-Resolution via Change Priors and Conditional Diffusion Model	7674
SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation	⁷ 685
S2MAE: A Spatial-Spectral Pretraining Foundation Model for Spectral Remote Sensing Data 27 Xuyang Li (Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Danfeng Hong (Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), and Jocelyn Chanussot (Univ. Grenoble Alpes, France)	'696

Poly Kernel Inception Network for Remote Sensing Detection
Learning without Exact Guidance: Updating Large-scale High-resolution Land Cover Maps from Low-resolution Historical Labels
3D Building Reconstruction from Monocular Remote Sensing Images with Multi-level Supervisions
Content-Adaptive Non-Local Convolution for Remote Sensing Pansharpening
SG-BEV: Satellite-Guided BEV Fusion for Cross-View Semantic Segmentation
DiffCast: A Unified Framework via Residual Diffusion for Precipitation Nowcasting
MoCha-Stereo: Motif Channel Attention Network for Stereo Matching 2776 Ziyang Chen (Guizhou University), Wei Long (Guizhou University), He Yao (Guizhou University), Yongjun Zhang (Guizhou University), Bingshu Wang (Northwest Polytechnical University), Yongbin Qin (Guizhou University), and Jia Wu (Guizhou University)
PBWR: Parametric-Building-Wireframe Reconstruction from Aerial LiDAR Point Clouds

Multi-modal Learning for Geospatial Vegetation Forecasting Vitus Benson (Max-Planck-Institute for Biogeochemistry, Germany), Claire Robin (Max-Planck-Institute for Biogeochemistry, Germany), Christian Requena-Mesa (Max-Planck-Institute for Biogeochemistry, Germany), Lazaro Alonso (Max-Planck-Institute for Biogeochemistry), Nuno Carvalhais (Max-Planck-Institute for Biogeochemistry, Germany), José Cortés (Max-Planck-Institute for Biogeochemistry, Germany), Zhihan Gao (Hong Kong University of Science and Technology, Hong Kong), Nora Linscheid (Max-Planck-Institute for Biogeochemistry, Germany), Mélanie Weynants (Max-Planck-Institute for Biogeochemistry, Germany), and Markus Reichstein (Max-Planck-Institute for Biogeochemistry)	27788
Relational Matching for Weakly Semi-Supervised Oriented Object Detection	27800
Rethinking Transformers Pre-training for Multi-Spectral Satellite Imagery Mubashir Noman (Mohamed bin Zayed University of Artificial Intelligence, United Arab Emirates), Muzammal Naseer (Mohamed bin Zayed University of Artificial Intelligence, United Arab Emirates), Hisham Cholakkal (Mohamed bin Zayed University of Artificial Intelligence, United Arab Emirates), Rao Muhammad Anwer (Mohamed bin Zayed University of Artificial Intelligence, United Arab Emirates), Salman Khan (Mohamed bin Zayed University of Artificial Intelligence, United Arab Emirates), and Fahad Shahbaz Khan (Mohamed bin Zayed University of Artificial Intelligence, United Arab Emirates)	27811
Unmixing Diffusion for Self-Supervised Hyperspectral Image Denoising Haijin Zeng (IMEC-UGent, Belgium), Jiezhang Cao (ETH Zurich, Switzerland), Kai Zhang (Nanjing University, China), Yongyong Chen (Harbin Institute of Technology, China), Hiep Luong (IMEC-UGent, Belgium), and Wilfried Philips (IMEC-UGent, Belgium)	27820
GeoChat: Grounded Large Vision-Language Model for Remote Sensing	27831
Parameter Efficient Self-Supervised Geospatial Domain Adaptation Linus Scheibenreif (University of St.Gallen, Switzerland), Michael Mommert (Stuttgart University of Applied Sciences, Germany), and Damian Borth (University of St.Gallen, Switzerland)	27841
Bridging Remote Sensors with Multisensor Geospatial Foundation Models Boran Han (Amazon Web Services), Shuai Zhang (Amazon Web Services), Xingjian Shi (Boson AI), and Markus Reichstein (Amazon Web Services\; Max Planck Institute for Biogeochemistry)	27852

CLIP-Driven Open-Vocabulary 3D Scene Graph Generation via Cross-Modality Contrastive Learning	27863
Lianggangxu Chen (East China Normal University, China), Xuejiao Wang (East China Normal University, China), Jiale Lu (East China Normal University, China), Shaohui Lin (East China Normal University, China), Changbo Wang (East China Normal University, China), and Gaoqi He (East China Normal University, China)	
Learnable Earth Parser: Discovering 3D Prototypes in Aerial Scans Romain Loiseau (LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France and Univ Gustave Eiffel, IGN, ENSG, LASTIG, France), Elliot Vincent (LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France and INRIA, Paris, France), Mathieu Aubry (LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France), and Loic Landrieu (LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France and Univ Gustave Eiffel, IGN, ENSG, LASTIG, France)	27874
Semantics, Distortion, and Style Matter: Towards Source-free UDA for Panoramic Segmentation Xu Zheng (The Hong Kong University of Science and Technology (Guangzhou), China), Pengyuan Zhou (Aarhus University, Denmark), Athanasios V. Vasilakos (University of Agder, Norway), and Lin Wang (The Hong Kong University of Science and Technology (Guangzhou), China)	27885
Geometrically-driven Aggregation for Zero-shot 3D Point Cloud Understanding	27896
SAM-6D: Segment Anything Model Meets Zero-Shot 6D Object Pose Estimation	27906
Construct to Associate: Cooperative Context Learning for Domain Adaptive Point Cloud Segmentation	27917
Multi-Task Dense Prediction via Mixture of Low-Rank Experts Yuqi Yang (Nankai University, China), Peng-Tao Jiang (vivo Mobile Communication Co., Ltd, China), Qibin Hou (Nankai University, China), Hao Zhang (vivo Mobile Communication Co., Ltd, China), Jinwei Chen (vivo Mobile Communication Co., Ltd, China), and Bo Li (vivo Mobile Communication Co., Ltd, China)	27927
OED: Towards One-stage End-to-End Dynamic Scene Graph Generation	27938

OMG-Seg: Is One Model Good Enough For All Segmentation?	⁷ 948
DiffusionMTL: Learning Multi-Task Denoising Diffusion Model from Partially Annotated Data .27 <i>Hanrong Ye (HKUST) and Dan Xu (HKUST)</i>	⁷ 960
Bilateral Adaptation for Human-Object Interaction Detection with Occlusion-Robustness	'97 0
CurveCloudNet: Processing Point Clouds with 1D Structure	7981
VCoder: Versatile Vision Encoders for Multimodal Large Language Models	⁷ 992
Amodal Ground Truth and Completion in the Wild	3003
Living Scenes: Multi-object Relocalization and Reconstruction in Changing 3D Environments 28 Liyuan Zhu (Stanford University), Shengyu Huang (ETH Zurich), Konrad Schindler (ETH Zurich), and Iro Armeni (Stanford University)	3014
Single Domain Generalization for Crowd Counting	3025
LTA-PCS: Learnable Task-Agnostic Point Cloud Sampling	3035
Prompt3D: Random Prompt Assisted Weakly-Supervised 3D Object Detection	3046

No More Ambiguity in 360° Room Layout via Bi-Layout Estimation	28056
Semantic Line Combination Detector Jinwon Ko (Korea University), Dongkwon Jin (Korea University), and Chang-Su Kim (Korea University)	28066
From Pixels to Graphs: Open-Vocabulary Scene Graph Generation with Vision-Language 28076 Rongjie Li (School of Information Science and Technology), Songyang Zhang (Shanghai AI Laboratory), Dahua Lin (Shanghai AI Laboratory), Kai Chen (Shanghai AI Laboratory), and Xuming He (ShanghaiTech University; Shanghai Engineering Research Center of Intelligent Vision and Imaging)	Models
PanoContext-Former: Panoramic Total Scene Understanding with a Transformer	28087
DiffAssemble: A Unified Graph-Diffusion Model for 2D and 3D Reassembly	28098
ProMotion: Prototypes As Motion Learners Yawen Lu (Purdue University), Dongfang Liu (Rochester Institute of Technology), Qifan Wang (Meta AI), Cheng Han (Rochester Institute of Technology), Yiming Cui (Tiktok), Zhiwen Cao (Purdue University), Xueling Zhang (Rochester Institute of Technology), Yingjie Victor Chen (Purdue University), and Heng Fan (University of North Texas)	28109
HUNTER: Unsupervised Human-centric 3D Detection via Transferring Knowledge from S Instances to Real Scenes	
Rethinking the Up-Sampling Operations in CNN-based Generative Network for Generaliz Deepfake Detection	

Shadows Don't Lie and Lines Can't Bend! Generative Models don't know Projective Geometryfor now	. 28140
Ayush Sarkar (University of Illinois Urbana Champaign), Hanlin Mai (University of Illinois Urbana Champaign), Amitabh Mahapatra (University of Illinois Urbana Champaign), Svetlana Lazebnik (University of Illinois Urbana Champaign), D.A. Forsyth (University of Illinois Urbana Champaign), and Anand Bhattad (Toyota Technological Institute at Chicago)	
Text Grouping Adapter: Adapting Pre-trained Text Detector for Layout Analysis	. 28150
Groupwise Query Specialization and Quality-Aware Multi-Assignment for Transformer-based Visual Relationship Detection	. 28160
CoralSCOP: Segment any COral Image on this Planet Ziqiang Zheng (The Hong Kong University of Science and Technology, China), Haixin Liang (The Hong Kong University of Science and Technology, China), Binh-Son Hua (Trinity College Dublin, Ireland), Yue Him Wong (Shenzhen University, China), Put Ang Jr (The Chinese University of Hong Kong, China), Apple Pui Yi Chui (The Chinese University of Hong Kong, China), and Sai-Kit Yeung (The Hong Kong University of Science and Technology, China)	. 28170
Going Beyond Multi-Task Dense Prediction with Synergy Embedding Models Huimin Huang (Zhejiang University), Yawen Huang (Jarvis Research Center, Tencent YouTu Lab), Lanfen Lin (Zhejiang University), Ruofeng Tong (Zhejiang University, Zhejiang Lab), Yen-Wei Chen (Ritsumeikan University), Hao Zheng (Jarvis Research Center, Tencent YouTu Lab), Yuexiang Li (Guangxi Medical University), and Yefeng Zheng (Jarvis Research Center, Tencent YouTu Lab)	. 28181
Disentangled Pre-training for Human-Object Interaction Detection	. 28191
Osprey: Pixel Understanding with Visual Instruction Tuning	28202

Discovering Syntactic Interaction Clues for Human-Object Interaction Detection	8212
Flattening the Parent Bias: Hierarchical Semantic Segmentation in the Poincaré Ball	8223
HiKER-SGG: Hierarchical Knowledge Enhanced Robust Scene Graph Generation	8233
Hierarchical Intra-modal Correlation Learning for Label-free 3D Semantic Segmentation	8244
FreePoint: Unsupervised Point Cloud Instance Segmentation	8254
GoodSAM: Bridging Domain and Capacity Gaps via Segment Anything Model for Distortion-awar Panoramic Semantic Segmentation	
MaskClustering: View Consensus based Mask Graph Clustering for Open-Vocabulary 3D Instance Segmentation	
ECoDepth: Effective Conditioning of Diffusion Models for Monocular Depth Estimation	8285
Physical Property Understanding from Language-Embedded Feature Fields	8296

LLM4SGG: Large Language Models for Weakly Supervised Scene Graph Generation	. 28306
DSGG: Dense Relation Transformer for an End-to-end Scene Graph Generation	28317
OTE: Exploring Accurate Scene Text Recognition Using One Token Jianjun Xu (University of Science and Technology of China, China), Yuxin Wang (University of Science and Technology of China, China), Hongtao Xie (University of Science and Technology of China, China), and Yongdong Zhang (University of Science and Technology of China, China)	. 28327
SemCity: Semantic Scene Generation with Triplane Diffusion	28337
Advancing Saliency Ranking with Human Fixations: Dataset, Models and Benchmarks	. 28348
Choose What You Need: Disentangled Representation Learning for Scene Text Recognition, Removal and Editing Boqiang Zhang (University of Science and Technology of China), Hongtao Xie (University of Science and Technology of China), Zuan Gao (University of Science and Technology of China), and Yuxin Wang (University of Science and Technology of China)	. 28358
Leveraging Predicate and Triplet Learning for Scene Graph Generation Jiankai Li (Beihang University, China; Shanghai Artificial Intelligence Laboratory, China), Yunhong Wang (Beihang University, China), Xiefan Guo (Beihang University, China), Ruijie Yang (Beihang University, China), and Weixin Li (Beihang University, China; Shanghai Artificial Intelligence Laboratory, China)	. 28369
Regressor-Segmenter Mutual Prompt Learning for Crowd Counting Mingyue Guo (University of Chinese Academy of Sciences, China), Li Yuan (Peking University, China), Zhaoyi Yan (Pengcheng Lab, China), Binghui Chen (Alibaba, China), Yaowei Wang (Pengcheng Lab, China), and Qixiang Ye (University of Chinese Academy of Sciences, China)	28380
Learning from Observer Gaze: Zero-Shot Attention Prediction Oriented by Human-Object Interaction Recognition Yuchen Zhou (Sun Yat-sen University, China), Linkai Liu (Sun Yat-sen University, China), and Chao Gou (Sun Yat-sen University, China)	. 28390

SG-PGM: Partial Graph Matching Network with Semantic Geometric Fusion for 3D Scene Graph Alignment and Its Downstream Tasks
Open-Vocabulary Semantic Segmentation with Image Embedding Balancing
Bridging the Synthetic-to-Authentic Gap: Distortion-Guided Unsupervised Domain Adaptation for Blind Image Quality Assessment
Robust Distillation via Untargeted and Targeted Intermediate Adversarial Samples
Class Incremental Learning with Multi-Teacher Distillation
Large Language Models are Good Prompt Learners for Low-Shot Image Classification
Consistent Prompting for Rehearsal-Free Continual Learning
Tuning Stable Rank Shrinkage: Aiming at the Overlooked Structural Risk in Fine-tuning

Coherent Temporal Synthesis for Incremental Action Segmentation	28485
FCS: Feature Calibration and Separation for Non-Exemplar Class Incremental Learning	28495
DeIL: Direct-and-Inverse CLIP for Open-World Few-Shot Learning	28505
Understanding and Improving Source-free Domain Adaptation from a Theoretical Perspective Yu Mitsuzumi (NTT Corporation, Japan; Kyoto University, Japan), Akisato Kimura (NTT Corporation, Japan), and Hisashi Kashima (Kyoto University, Japan)	28515
Resurrecting Old Classes with New Data for Exemplar-Free Continual Learning Dipam Goswami (Computer Vision Center, Spain; Autonomous University of Barcelona, Spain), Albin Soutif-Cormerais (Computer Vision Center, Spain; Autonomous University of Barcelona, Spain), Yuyang Liu (University of Chinese Academy of Sciences, China; Shenyang Institute of Automation, Chinese Academy of Sciences, China), Sandesh Kamath (Computer Vision Center, Spain; Autonomous University of Barcelona, Spain), Bartłomiej Twardowski (Computer Vision Center, Spain; Autonomous University of Barcelona, Spain; IDEAS NCBR, Poland), and Joost van de Weijer (Computer Vision Center, Spain; Autonomous University of Barcelona, Spain)	28525
Adversarially Robust Few-shot Learning via Parameter Co-distillation of Similarity and Class Concept Learners Junhao Dong (Nanyang Technological University, Singapore and A*STAR, Singapore), Piotr Koniusz (CSIRO's Data61, Australia and Australian National University, Australia), Junxi Chen (Sun Yat-sen University, China), Xiaohua Xie (Sun Yat-sen University, China), and Yew-Soon Ong (Nanyang Technological University, Singapore and A*STAR, Singapore)	28535
Learning CNN on ViT: A Hybrid Model to Explicitly Class-specific Boundaries for Domain Adaptation	28545
Efficient Stitchable Task Adaptation	28555

Gradient-based Parameter Selection for Efficient Fine-Tuning	28566
ArGue: Attribute-Guided Prompt Tuning for Vision-Language Models Xinyu Tian (Australian National University, Australia), Shu Zou (Australian National University, Australia), Zhaoyuan Yang (GE Research, USA), and Jing Zhang (Australian National University, Australia)	28578
Simple Semantic-Aided Few-Shot Learning Hai Zhang (Sichuan University, China), Junzhe Xu (Sichuan University, China; Alibaba Group, China), Shanlin Jiang (University of Texas at Dallas, USA), and Zhenan He (Sichuan University, China)	28588
Long-Tail Class Incremental Learning via Independent Sub-prototype Construction	28598
Few-Shot Object Detection with Foundation Models	28608
Stronger, Fewer, & Superior: Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation	28619
Continual Forgetting for Pre-trained Vision Models	28631
AETTA: Label-Free Accuracy Estimation for Test-Time Adaptation	28643
Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation	28653

LEAD: Exploring Logit Space Evolution for Model Selection Zixuan Hu (Peking University, Beijing, China), Xiaotong Li (Peking University, Beijing, China), Shixiang Tang (The Chinese University of Hong Kong, Hongkong, China), Jun Liu (Singapore University of Technology and Design, Singapore), Yichun Hu (Peking University, Beijing, China), and Ling-Yu Duan (Peking University, Beijing, China; Peng Cheng Laboratory, Shenzhen, China)	28664
Instance-based Max-margin for Practical Few-shot Recognition	28674
Domain Gap Embeddings for Generative Dataset Augmentation	28684
JoAPR: Cleaning the Lens of Prompt Learning for Vision-Language Models	28695
Generative Multi-modal Models are Good Class Incremental Learners	28706
Dual Memory Networks: A Versatile Adaptation Approach for Vision-Language Models Yabin Zhang (HKPolyU), Wenjie Zhu (HKPolyu), Hui Tang (HKUST), Zhiyuan Ma (PolyU), Kaiyang Zhou (HKBU), and Lei Zhang (HKPolyU)	28718
UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memore Haiwen Diao (Dalian University of Technology, China), Bo Wan (Katholieke Universiteit Leuven, Belgium), Ying Zhang (Tencent WeChat, China), Xu Jia (Dalian University of Technology, China), Huchuan Lu (Dalian University of Technology, China), and Long Chen (The Hong Kong University of Science and Technology, China)	ory 28729
Federated Generalized Category Discovery Nan Pu (University of Trento, Italy), Wenjing Li (Hefei University of Technology, China; University of Leeds, UK), Xingyuan Ji (Xi'an Jiaotong University, China; Leiden University, The Netherlands), Yalan Qin (Shanghai University, China), Nicu Sebe (University of Trento, Italy), and Zhun Zhong (Hefei University of Technology, China; University of Nottingham, UK)	28741
Learning from One Continuous Video Stream João Carreira (Google DeepMind), Michael King (Google DeepMind), Viorica Patraucean (Google DeepMind), Dilara Gokay (Google DeepMind), Catalin Ionescu (Google DeepMind), Yi Yang (Google DeepMind), Daniel Zoran (Google DeepMind), Joseph Heyward (Google DeepMind), Carl Doersch (Google DeepMind), Yusuf Aytar (Google DeepMind), Dima Damen (University of Bristol, Google DeepMind), and Andrew Zisserman (Google DeepMind, University of Oxford)	28751

OrCo: Towards Better Generalization via Orthogonality and Contrast for Few-Shot Class-Incremental Learning Noor Ahmed (Max Planck Institute for Informatics), Anna Kukleva (Max Planck Institute for Informatics), and Bernt Schiele (Max Planck Institute for Informatics)	28762
SDDGR: Stable Diffusion-based Deep Generative Replay for Class Incremental Object Detection	28772
Junsu Kim (Ulsan National Institute of Science and Technology, Korea), Hoseong Cho (Ulsan National Institute of Science and Technology, Korea), Jihyeon Kim (Ulsan National Institute of Science and Technology, Korea), Yihalem Yimolal Tiruneh (Ulsan National Institute of Science and Technology, Korea), and Seungryul Baek (Ulsan National Institute of Science and Technology, Korea)	
Active Domain Adaptation with False Negative Prediction for Object Detection	28782
Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements	28793
Your Transferability Barrier is Fragile: Free-Lunch for Transferring the Non-Transferable Learning	28805
Transductive Zero-Shot and Few-Shot CLIP Ségolène Martin (Université Paris-Saclay, Inria, CentraleSupélec, France), Yunshi Huang (ETS Montréal, Canada), Fereshteh Shakeri (ETS Montréal, Canada), Jean-Christophe Pesquet (Université Paris-Saclay, Inria, CentraleSupélec, France), and Ismail Ben Ayed (ETS Montréal, Canada)	28816
Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships	28827

Unbiased Faster R-CNN for Single-source Domain Generalized Object Detection	
Yajing Liu (Shenyang Institute of Automation, Chinese Academy of	
Sciences, China; Institutes for Robotics and Intelligent	
Manufacturing, Chinese Academy of Sciences, China; University of	
Chinese Academy of Sciences, China), Shijun Zhou (Shenyang Institute	
of Automation, Chinese Academy of Sciences, China; Institutes for	
Robotics and Intelligent Manufacturing, Chinese Academy of Sciences,	
China; University), Xiyao Liu (Shenyang Institute of Automation,	
Chinese Academy of Sciences, China; Institutes for Robotics and	
Intelligent Manufacturing, Chinese Academy of Sciences, China),	
Chunhui Hao (Shenyang Institute of Automation, Chinese Academy of	
Sciences, China; Institutes for Robotics and Intelligent	
Manufacturing, Chinese Academy of Sciences, China), Baojie Fan	
(Nanjing University of Posts and Telecommunications, China), and	
Jiandong Tian (Shenyang Institute of Automation, Chinese Academy of	
Sciences, China; Institutes for Robotics and Intelligent	
Manufacturing, Chinese Academy of Sciences, China)	