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Introduction 1
T

he ancient Egyptian hieroglyphs have always been a mysterious writing system as their
meaning was completely lost in the 4th century AD. The discovery of the Rosetta stone
in 1799 allowed researchers to investigate the hieroglyphs, but it wasnt until 1822 when

Thomas Young and Jean-François Champollion discovered that these hieroglyphs dont resemble
a word, but each hieroglyph resembles a sound and multiple hieroglyphs form a word. Their work
has had a revolutionary impact on the deciphering of ancient Egyptian hieroglyphs. The ability
to understand hieroglyphs has uncovered much of the history, customs and culture of Egypts
ancient past. It is these ancient hieroglyphs that tell the tales of the otherwise long forgotten
Pharaohs. Their achievements and victories on the battlefields have all been stored within these
hieroglyphs.
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Figure 1.1: (a) One possible reconstruction of the original stele of the Rosetta stone. (b) Map of
ancient Egypt, the pyramid icon indicates the pyramid of Unas. (c) Schematic drawing of what
the pyramid once used to look like. (d) Current state of the pyramid of Unas. Images courtesy of

Wikipedia, creative commons license.
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CHAPTER 1. INTRODUCTION 2

Much of the knowledge about the ancient Egyptian civilization would have been hidden if it
wasn’t for the Rosetta stone which was the key for deciphering the hieroglyphs. The Rosetta
stone was originally inscribed in 196 BC to acknowledge the accomplishments of the Pharaoh
Ptolemy V and to reassure the Egyptians that tax money was well spent. The Rosetta stone
offers three versions of the same text: the top is written in ancient Egyptian hieroglyphs, the
middle part is written in Demotic (derived from the ancient Egyptian hieroglyphic script, but
used for writing on documents) and the bottom is written in ancient Greek. The stone was
re-discovered by Napoleons army on a campaign through Egypt.

The ancient Egyptian civilization lived through three main stable periods known as the Old
Kingdom(2686-2181 BC), Middle Kingdom(2055-1650 BC) and the New Kingdom(1550-1069
BC). They were separated by relatively unstable periods (intermediate periods). During the
Old Kingdom, the Egyptian art flourished and it was during this time that the Great pyramids
of Giza were constructed as a burial tomb for the Pharaoh Khufu. It was also in the same
period that the pyramid of Unas was build, which plays a mayor role throughout this study
(see figure 1.1). Between 2200 and 2150 BC Egypt was hit by a severe drought period which
contributed to the collapse of the Old Kingdom. After the collapse, the Egyptians entered the
first Intermediate period, which is often described as a period of chaos and disorder. More than
a century after the collapse, a Pharaoh by the name of Mentuhotep II restored order and marked
the beginning of the Middle Kingdom. During the Middle Kingdom the Egyptians expanded
their empire and developed an understanding of basic mathematics, such as calculating the area
of a circle or the volume of a pyramid. With the death of Queen Sobekneferu came an end to
the Middle Kingdom. In the consecutive years Egypt was ruled by many different Pharaohs in
a relative short period of time. The second intermediate period came to an end when Ahmose I
ascended to the throne and led Egypt to what is known as the New Kingdom. It is thought to
be Egypts most prosperous era and marked the peak of its power. The New Kingdom brought
forth some of the most famous Pharaohs, including the controversial Pharaoh Akhenaten who
abandoned the traditional Egyptian religion and started worshipping a god by the name of Aten.
Akhenatens son Tutankhamun who became famous since the discovery of his grave in 1922 by
Howard Carter. Ramesses II (Ramesses the Great), who lived approximately 90 years, during his
lifetime he founded the city of Pi-Ramesses. He fought many battles and triumphed over Egypts
archenemy the Nubian and Hittite empires. Less than 150 years after the death of Ramesses II,
Egypt suffered from internal conflicts as well as new enemies invading Egypt. This meant the
end of the New Kingdom known as the golden era of Egypt.

Since the deciphering of the ancient Egyptian hieroglyphs, much of their culture has been
uncovered. By now, most of the ancient texts have been translated, but this does not put an
end to the mystic air revolving around the ancient Egyptian culture. In fact, many movies and
games only fuel the thought of Egypts magical powers and mummies. To this day only a few
people are capable of reading the ancient Egyptian hieroglyphs, but with the aid of current
technology it is possible to provide others, like tourists, the ability to uncover the mysteries of
ancient texts themselves. This can be made in the form of an App that allows tourists to receive
the translation and other background information of a given text, simply by taking a picture.

The aim for this thesis is to develop the essential first step; the creation of a system that is able
to automatically recognize ancient Egyptian hieroglyphs from photographs. I have subsequently
evaluated 5 visual descriptors in 3 different matching schemes on a newly created Egyptian
dataset. In addition to visual-only cues, I made use of a corpus of Egyptian texts to learn
language models that help re-rank the visual output.

Because the hieroglyphic writing system has been used for over 4 millennia, many regional
and temporal dialects existed. Therefore I chose to focus my thesis on the hieroglyphs found in
one pyramid to eliminate issues with different writing styles. The pyramid of Unas was a perfect
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(a) (the god) Sokar (b) Day

Figure 1.2: Use of determinants

candidate because all the pyramid texts have been carefully documented and photographed. The
pyramid itself was built in the fifth dynasty as a burial place for the Pharaoh Unas who ruled
over Egypt from 2375 BC to 2345 BC. It is located just south of the city of Giza.

One of first things to notice about the ancient Egyptian writing system is that it does not
contain any spaces. The lack of separation between words makes it difficult for the inexperienced
eye to find out where one word ends and the other begins. The relation between verbal and
written text is different from current day English. Each word can be written in a number of
different ways as long as the pronunciation remains the same. This can be compared by writing
bare when bear is meant. However some of the hieroglyphs do not have any sound related to them
and are used to illustrate the meaning of the word, these are called determinative hieroglyphs.
An example of this can be seen in figure 1.2a showing the name Sokar with an added glyph of a
deity to emphasize that Sokar is a god. Another example can be seen in figure 1.2b, representing
the word day with an added glyph of the sun. Furthermore, it was allowed to combine different
hieroglyphs in case the writer was lacking space. All these conditions present severe challenges
to automatic hieroglyph recognition.

Many different Computer Vision techniques have been developed, while most of them have
been created for a specific domain. The hieroglyphs that I’m interested in can be categorized as
a mix between handwritten characters and images of animals and objects known to the ancient
Egyptians. Therefore I make use of those Computer Vision techniques that were originally
developed for image recognition or handwriting recognition.

This study has 3 contributions, the first contribution is the introduction of a hieroglyph
dataset, containing nearly 4000 images of ancient Egyptian hieroglyphs manually annotated
from photos of the hieroglyphs texts inside the pyramid of Unas. Secondly are the results of
various known Computer Vision algorithms on this dataset, and finally are the results combined
with a language model in order to refine the classification results. The entire process is illustrated
in figure 1.3.

Input

Text detection

Reading order

Locate

MatchingHieroglyph
Ranking +
Language model

Heliopolis

In

Output

...

...

...

...

Figure 1.3: Pipeline for hieroglyph recognition. The 3rd output hieroglyph from the top is
corrected by the language model in order to find the word Heliopolis (birth-place of Unas).
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Computer Vision

Computer Vision is a field in Artificial Intelligence with the aim of using com-
puterized software for analysing and understanding images. Unlike our biological
ability to analyse visual input effortlessly, computers have trouble gaining a deep
understanding of these images. It is not so strange that computers have trouble
grasping the essence of an image, since to a computer, an image is just a bunch of
numbers. Over the years researchers have investigated how the brain manages to
analyse visual input so efficiently, and sought for ways to imitate its behaviour.

Image processing Image segmentation [20]

Computer Vision is a broad term that includes:

• Image processing: applying certain operations on the image such as sharp-
ening the image, changing the contrast or removing noise from an image.

• Image segmentation: assign each pixel in an image with a global label,
for example the sky/water/grass/building/person.

• Object detection: detect a certain type of object in an image such as faces
or written characters.

• Image recognition: the ability to classify the main object in an image.

Object(Face) detection [35]

bicycle air plane

bird boat

Image recognition [9]

Although there is still a lot of ground to cover in the field of Computer Vision,
many Computer Vision techniques have already been applied to real world appli-
cations with much success. For example, 3D modelling to reconstruct 3D buildings
from images. Face detection and Face recognition which is used for many appli-
cations including autonomous surveillance. Automatic character recognition for
recognizing postal codes on letters or number plates on cars. Recently Microsoft
introduced an application named Bing Translator, it is a smart phone App that can
read text in an image and is able to translate it to one of the other 45 languages.
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M

ultimedia tools have aided preservation, analysis and study of cultural, historical and
artistic content. For example, the digital Michelangelo project [22] created high quality
3D models of Michelangelo’s sculptures and architecture. Furthermore, wavelet analysis

of brush strokes in paintings can reveal artist identity [14], image composition has shown to aid
category labeling [12] and photographs can be classified as memorable or not [13]. In this thesis
I follow in these footsteps, and propose a new dataset, and a multimodal (visual and textual)
approach for automatic Egyptian hieroglyphs recognition.

Automatic Optical Character Recognition (OCR) has been a long term goal in Computer
Vision, and is currently at a state where it can be considered achieved. Current OCR systems
have been applied to real world applications, such as postal automatic postal code recognition
on letters [21], or number plate recognition [28]. Other applications of OCR have been utilized,
such as document scanning to digitalize books, a prominent example of this is the Tesseract
open-source OCR engine that was initially developed by HP [32]. Another example is proposed
by Karaoglu et al. (2012) [16] where text recognition is used to aid in object recognition tasks.

Related work on automatic hieroglyph recognition focuses on Mesoamerican culture, and in
particular on the ancient Maya hieroglyphs [10, 29, 30]. To this end, the HOOSC descriptor
was developed [30], which is a combination of HOG [5] and the Shape-Context [1]. The HOOSC
descriptor offers a robust approach in object recognition by adding contextual information to
the HOG descriptor based on the shape context. The authors of the HOOSC descriptor trained
their system on two small datasets, and reported mean average precision of 0.39, which is an
improvement of 21.1% compared to the Shape Context algorithm on the same datasets. Such
descriptors can be used for direct matching [29] or with a bag-of-words (BOW) approach [30].
Other work extracts detailed line segments for Maya hieroglyph matching [10]. In all these
works the hieroglyphs are typically manually extracted and individually digitized. In contrast,
the photographs of Egyptian hieroglyphs consists of noisy plates, which each typically contain
around 400 hieroglyphs (see figure 3.2). Moreover, the Maya culture used a different type of
hieroglyphs and I therefore evaluate the HOOSC and other descriptors on Egyptian hieroglyphs.

More work has been conducted on automatic character recognition for other writing systems
such as the Chinese or Hangul script. Much research on Chinese character recognition is cur-
rently ongoing, with an annual Chinese character recognition contest [23] where contestants are
presented a dataset to train their systems, in the end they are evaluated on an unseen dataset.
The best system in 2011 achieved a 92.18% correct classification rate for for offline character
recognition, and 95.77% for online character recognition. The most successful method for the
offline character recognition was proposed by The Dalle Molle Institute for Artificial Intelligence

5
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(IDSIA) [4, 3]. It uses a CNN (Convolutional Neural Network) to classify the characters. The
most successful method for the online character recognition was a system proposed by Zsolt
Wimmer. It makes use of a MLP (Multilayer Perceptron) enhanced with a tri-gram language
model.

Unlike the Chinese script, the Hangul script is a phonetic script, and is currently used by the
Koreans. Hangul character recognition has been performed by Kim and Kim (2001) [17], where
Hierarchical Random Graphs are used to recognize the Hangul characters. The authors reported
a 90.4% correct classification rate on a restricted dataset with 520 syllables.

Improving the recognition rates is not only achieved by improving the Optical Character
Recognition (OCR) method itself, but can also be achieved by looking at what the recognized
characters represent. In 1996 Tong and Evans [34] proposed a system to enhance recognition
rates on handwritten symbols with a statistical language model based on n-grams. It computes
the probability of inserting, deleting or replacing characters proposed by the Optical Character
Recognition (OCR) system. These probabilities for each n-gram are extracted from a database
containing around 100.000 words. The authors reported a 60.2% error reduction.

Aside from the Optical Character Recognition, statistical language models play an important
role in Automatic Speech Recognition (ASR). Magdin and Jiang (2009) [25] have proposed a
discriminative training method based on n-grams that manages to reduce the error rate by 3%
SPINE1 speech recognition task. The method formulates a discriminative object function of all
parameters of the n-gram language model.

Current work on automatic scene text detection and recognition [8, 16, 18] are typically
hand-tuned to the specific western or Chinese characters at hand which are quite different from
Egyptian hieroglyphs. In this work, I will draw inspiration from text detection to localize the
hieroglyphs and use generic image descriptors for the recognition.
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T

he dataset is composed of two parts, the first part is the visual component which contains
photographs of pyramid walls, each containing a large amount of hieroglyphs which were
used to train and test the different classification methods. The second part is the textual

component which contains a lexicon of ancient Egyptian words as well as the pyramid and coffin
texts written in transliteration, these are used to train a language model.

3.1 Images

There are sixty-six grey-scale photos taken of walls inside the pyramid of Unas. The photo’s are
taken from the book The Pyramid of Unas by Alexandre Piankoff [27]. Each photograph contains
around 400 hieroglyphs, I selected ten of these photographs for this database. The hieroglyphs
within the pyramid of Unas are written in columns such that the proper reading order is from
top to bottom. This is not always the case, the ancient Egyptians allowed the hieroglyphs to
be written in 3 directions, either from left to right, right to left and from top to bottom. The
only indication of the correct reading order is the direction in which the animals or humans are
facing. The rule of thumb is that these glyphs will always face the beginning of a line unless the
hieroglyphs are written from top to bottom, in which case vertical columns will indicate the text
should be read from top to down. Moreover, multiple hieroglyphs can be placed next to each
other in a single column which should be read by treating it as if it is a miniature horizontal
line. An example of a single column can be seen in figure 3.2, with its translation below. From
this point on I will distinguish the word ”picture” and ”image”, where I will use picture when I
mean a photograph containing multiple hieroglyphs, and when I write image, I mean an image
containing a single hieroglyph.

The hieroglyphs in the photographs were cut out and labelled according the Gardiner Sign list
[11], where each unique hieroglyph is labelled with an alphabetic character followed by a number.

Gardiner label I9 G17 E34 M17 S29

Image

Figure 3.1: Examples of resized images.

7
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Figure 3.2

The alphabetic character represents the class of the hieroglyph, for example, class ’A’
contains hieroglyphs about a man and his occupations while class ’G’ contains hiero-
glyphs of birds. The entire Gardiner Sign list consist of more than 1000 hieroglyphs in
25 classes. Furthermore, the images were resized to 50x75 pixels. The reason to resize all
images of hieroglyphs to a uniform size was to make the system scale-invariant. The im-
ages are not simply resized as this would induce a loss in heigh/width information from
the hieroglyph. Instead the images were resized in such a way that they would fit in a
50x75 image while preserving the hight/width ratio of the hieroglyph. The remaining
unfilled background was automatically generated to mimic the background texture from
the image. More over resizing the images and generating the background is explained in
section 4.2. A few examples of hieroglyphic images with their Gardiner label are shown
in figure 3.1.

“
· · ·
he shall not write with his little finger. How beautiful is indeed the
sight, how good indeed to see, so say they, so say the gods, (when)
this god ascends to heaven, (when) Unas ascends to heaven while his
power (bA.w) is over him
· · ·

The English translation of column 476 (see figure 3.2).
Translated by J.D. Degreef and R.O. Faulkner.”

Figure 3.3: Map of the Pyramid of Unas Image from

www.pyramidtextsonline.com/plan.html

Figure 3.3 shows the map of the sarcophagus chamber
and the ante chamber within the pyramid of Unas. Fig-
ure 3.4 shows a peek inside the sarcophagus chamber.
The inscriptions on the walls in the pyramid of Unas are
the oldest known pyramid texts, the purpose of these
texts were to describe the life of Unas with all of his
achievements, as well as to guide Unas on his journey
to heaven.

Figure 3.4: Photograph of the
sarcophagus chamber Image from

www.pyramidtextsonline.com/platevi.html

3.2 Text

Two different methods are used to refine the classification by means of a language model,
first is the lexicon-based method which searches for words in the proposed classification,
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the other method is based on n-grams, where the classification results are refined according the
probability of certain hieroglyphs occurring in a sequence.

For the first method a lexicon is used which holds over 12.000 ancient Egyptian words along
with their translation, transliteration and the hieroglyphs used to write the words. For the n-
grams I made use of a corpus from JSesh1, containing 158 pyramid texts, all written in a mixture
of transliteration (which is the language used to map hieroglyphic texts to a computer readable
format) and Gardiner labels. Once the texts are converted to only Gardiner labels, they can
be used to find the occurrence probability of n-grams as well as determining the occurrence
probability of a word in combination with the lexicon.

I should mention that the JSesh dataset was not the first choice, in fact a dataset provided
by Dr. H. Hays contained 444 coffin texts and 783 pyramid texts. The problem was that this
dataset is written in a transliteration that is different from the lexicon I possessed, and the
lexicon provided with this dataset does not contain any information about the hieroglyphs used
to write the words. Therefore it was impossible to transform the texts into the Gardiner format
which I’m interested in. The JSesh dataset did allow me to transform the texts into the Gardiner
format, which is the reason for choosing the JSesh dataset.

A representation of the JSesh dataset can be seen in table 3.1, it depicts a part of the Second
Semneh stela under Sesostris III, which I can only describe as an inspirational speech from
the Pharaoh to it’s successor(s). The JSesh format contains not only a mix between Gardiner
labels and transliteration but also contains information on how the hieroglyphs are positioned
or rotated. Although this information can be valuable in a latter stage of the project, it is not
useful for training the language model.

JSesh Format Hieroglyphs Translation

ib:Z1-A1-.:p\430:.-w-xpr-r:t-m-a:.-!

A1-A-d:.-w-I3:r-V15:t*t-!

A24-z:X-m-w-A24-r-m-a:r:Y2-!

· · ·
I am a king who speaks and
acts. I make happen what I
conceive, eager to seize, hasty
to succeed, in whose heart a
matter doesn’t slumber,
· · ·

Table 3.1: Part of the Second Semneh stela under Sesostris III, translated by M.J. Nederhof.

1Open source hieroglyph text editor
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L

ocating hieroglyphs is done both manually and automatically. The manually annotated
hieroglyphs are used in the train set and as a ground truth for evaluating the automatic
hieroglyph detection system.

4.1 Manual detection

To create the dataset containing so called perfect images of hieroglyphs (images portraying
exactly one hieroglyph), a large number of hieroglyph had to be annotated manually. To make
this task slightly more manageable I developed a program that allows for easy annotating of
hieroglyphs.

(a) (b) (c) (d)

(e)

Figure 4.1: Manually annotating hieroglyphs

Figure 4.1 depicts the process of annotating the hieroglyphs. Previously annotated hieroglyphs
are shown as a blue rectangle, while the current selected hieroglyph is indicated by a thick red
rectangle (a). Once the hieroglyph is selected, it is possible to remove any unwanted noise or
parts of other hieroglyphs that are not relevant for the main hieroglyph. This can be done in the
editor window (b), which shows an enlarged view of the selected hieroglyph. A simple tool allows
the user to select parts that should be removed (c) and when pressing the space bar the selected

10
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parts are filled with background texture (d). The last step is to actually label the hieroglyph
with the correct Gardiner label (e).

4.2 Generating background

Once the hieroglyphs are located with a bounding box, they are cut out and saved as a individual
image such that the classification algorithm can proceed to classify them. However, when looking
at the bounding boxes it becomes apparent that some of them are overlapping, which causes parts
of other hieroglyphs to exist in the same image. This can confuse the classification algorithm
since it’s only looking for a single hieroglyph in an image. To solve this, parts that do not belong
to the main hieroglyph are removed and a background generator will attempt to fill these pixels
with the appropriate colour such that they blend into the background. For the background
generator I made use of the Texture Synthesis method proposed by Efros and Leung (1999)
[7]. The Texture Synthesis works by filling the gaps layer after layer from the outside in. The
surrounding of each to be generated pixel is compared to the surrounding of every other pixel in
the image, the gray value of the most similar surrounding of a pixel is picked based on the least
SSD (Sum Squared Distance). Although the approach works well to remove other objects, it is
a rather cpu-intensive method, and in the light of creating an App for a smart-phone that can
detect the hieroglyphs, this could become a major problem. Therefore I implemented a faster
approximation to the Texture Synthesis method which is about 400 time faster and simply takes
a random grey value from the 20 nearest pixels. Once all gaps are filled with the background
texture, a blur-filter will smooth the generated pixel such that they blend in to the background.
The Result for both methods is shown in figure 4.2. Although the Texture Synthesis method
generates an almost indistinguishable background, it is rather unnecessary to have that level of
cloaking. The approximation is sufficient in masking the undesired parts in the image such that
the classification algorithm is able to train on them.

Texture Synthesis

Approximation

Original Mask

Figure 4.2: Removing other objects from the bounding box

Furthermore, images are resized to a 50x75 format. Resizing the images is important since some
methods require the images to have the same size. However, simply resizing the images would
induce a loss of width/height information which is undesired since the height/width information
is often important as it distinguishes an egg from a circle. Another possibility is to resize the
image to fit the desired size and fill the empty space with a certain grey-value. This would work,
although the images won’t look natural and it might disturb the edge detector. To solve this
problem I made use of a variation of the same background generator used to remove unwanted
objects from images. It attempts to mimic the background found within the image by detecting
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the actual background in the image followed by copying these background colours to nearby
empty pixels. This first step is to create a mask of the image which extracts the foreground from
the background. An important observation is that the hieroglyphs are always located in the
center of the image, which means that the edges of the images most likely contain background
texture. I make use of this by computing the the median grey-value at the edges of an image.
A mask of the entire image is created where each pixel within a certain distance of the median
value is labelled as background, whereas others are labelled as foreground (see figure 4.3).

(a) input Image (b) background colour range (c) mask

median

background colour

median

background colour

median

background colour

median

background colour

median

background colour

Figure 4.3: Computing the background mask

An overview of the algorithm which generates the background is shown in figure 4.4. First,
pixels that have been labelled as foreground in the mask are removed (b). For each to be
generated pixel, it locates the closest pixel in the image, from there on it will create a search
window around this pixel where the size of the window is determined by the distance to this pixel
(c). A random pixel is chosen from this search window (d), if the pixel is labelled as background
the colour is copied, if the pixel is labelled as foreground, the algorithm increases the size of the
search window and tries again. Finally, the generated pixels are smoothed, but the smoothing
factor is determined by the distance to the image, such that pixels further away from the image
are smoothed more than those who are close to the image. This will preserve local variations and
noise in the image and mimics those in the generated part of the image. At the same time, the
further the pixel is from the image the more it will be smoothed such that it does not introduce
much noise in the generated part and produces a more monotone colour at the edges, see figure
4.5 for the results after generating the background.

+

(a) (b) (c) (d)

Figure 4.4: Choosing the right color for each pixel
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Fitted image Mask Added background Added blur

Figure 4.5: Examples with generated background

4.3 Automatic detection

For the automatic hieroglyph detection system I made use of a text-detection algorithm proposed
by Karaoglu et al. (2012) [16]. The algorithm was originally designed for text detection in natural
images, but can also be used for object detection. It makes use of a saliency detector, which is
used to find strong curves in the image that could indicate the presence of text. When applied
to the a picture containing hieroglyphs, it produces a binary picture which highlights the pixels
with a high likelihood of being part of a hieroglyph (see figure 4.6b). In order to locate the
hieroglyphs, neighbouring pixels are grouped to form objects in a picture. Small objects are
possibly combined with the nearest larger objects depending on the distance and size. The
result is an unordered list of objects which are possibly hieroglyphs. After applying a noise filter
which removes small objects and cartouches (frame around the name of a Pharaoh), a list of
possible hieroglyphs remains as illustrated in figure 4.6c.

Input Text detection Locate Reading order

(a) (b) (c) (d)

Figure 4.6: Process of locating hieroglyphs on an image.
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Once all the objects have been detected in the picture, they are sorted by their reading order
such that the language model can find the words in a given text. To this end I created a system
that is able to determine the correct reading order of the hieroglyphs based on their position.
The first step in this method is to find the columns along which the hieroglyphs are written.
These can be located by applying a line filter on the picture to extract the vertical lines. Lines
that are longer than a certain threshold value are used as column separator. The algorithm will
proceed to sort the hieroglyphs by their reading order based one a few simple rules. These rules
distinguish horizontally- and vertically aligned hieroglyphs, for horizontally aligned hieroglyphs
the x values are used to sort them, while for vertically aligned hieroglyphs the y values are used
(see figure 4.7 for a more detailed explanation of this process).

a

b

c

d

e

f

a→ b No parts of a and b are overlapping, therefore they are
ranked according their y-values (top to bottom).

b→ c The center of c lies within the y-boundaries of b, therefore
they are horizontally aligned. This means that b and c are
ranked according their x-values (right to left).

c→ d Same as for a→ b

d→ e Same as for a→ b

e→ f e is completely overshadowing f in the x-dimension, there-
fore they are not horizontally aligned and will also use the
y-values to sort them.

Figure 4.7: Determining the order in which the hieroglyphs should be read



Classifying Hieroglyphs 5
T

he main part of the thesis was to classify the hieroglyphs. Therefore I’ve implemented a
range of different methods which have their origin in either image recognition or hand-
writing recognition. Classifying the hieroglyphs goes through two stages after the images

have been preprocessed, first the descriptors of the images are computed, and in the second
stage the descriptors are used to compare images to each other and to rank them according their
similarity.

Some of the following methods make use of image derivatives. The derivative of an image can
be used to find variations in an image and can therefore be used to find edges and to determine
the image gradient.

Image derivative

Computing the image derivative is a standard Computer Vision prac-
tise, and is used to determine changes in either the x or the y direc-
tion of the image. Large changes can indicate the presence of edges,
which is why it is used in edge-detection algorithms or to determine
the gradient in an image. It works by convolving the image with a
certain kernel function, convolving an image with a kernel function
is simply sliding the kernel function (aka. sliding window) over the
image, and multiplying the kernel values with the pixel values, the
sum of all these multiplications is taken as the new pixel value. An
example is shown in the figure below.

-1 0 1
Kernel Function Image

The most simple kernel function would be [−1, 0, 1] which translates
to the difference between the next pixel and the previous pixel. By
convolving this kernel function with the image, the derivative in the
x direction is computed. While the transposed version [−1, 0, 1]T

would result in the image derivative in the y direction.

15
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y-derivative
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kernel

kernel

More advanced kernels take more pixels in to consideration, and are
typically a the first derivative of a Gaussian function or a Sobel
operator:

Gx =

 +1 0 −1
+2 0 −2
+1 0 −1

 Gy =

 +1 +2 +1
0 0 0
−1 −2 −1


Sobel operator

∂
∂x

e−
(x− µ )2

2σ 2

1.4 4.8 9.5 9.0 0 -9.0 -9.5 -4.8 -1.4

Resulting kernel of Gaussian derivative (×10−2)

The difference between the various kernel function lies in how much
of their surrounding is taken to compute the pixel gradient. The
size of the kernel function should reflect the scale of the interesting
edges. A large kernel will find thick edges but could miss small
changes in the image that could be important, while a small kernel
will potentially label both sides of a thick line as a separate edge.
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5.1 Descriptors

A popular Computer Vision method for comparing images is to make use of local patches (small
parts of an image). The aim is to compare patches to each other, and patches of similar objects
should result in a high similarity score. The difficulty lies in matching patches of objects that have
been slightly rotated, skewed or zoomed in/out. Not to mention the different light conditions
under which the photos are taken. The task of the descriptor algorithm is to formulate the
descriptor in such a way that it is capable of dealing with these issues.

The location of the patches must be carefully selected to capture the most important aspects
of an image. Methods such as the Harris affine region detector [26] are specialised in finding the
most interesting locations in an image. For this study however, I used the Canny-edge detector
which finds the edges in an image. I chose to use the Canny-edge detector since the edges are
the most important features of a hieroglyph.

Canny-Edge detector

The Canny-edge [2] detector algorithm was proposed by John F.
Canny and is designed to extract the edges in an image and thereby
to create an outline of the image. The first step in this algorithm

is to compute the magnitude =
√
G2

x +G2
y and the angle of the

gradient with direction = arctan
(

Gy

Gx

)
. Where Gx and Gy are

the image derivatives computed by the Sobel edge detector in the
x and y direction respectively. What follows is the non-maximum
suppression, where non local-maximum pixels are removed. This
works by comparing the magnitude response for the horizontal,
vertical and both diagonal directions. An edge can only head in on
of those 4 directions, the responses for the non-maximum directions
are suppressed. All pixels that exceed a certain threshold are now
considered part of an edge. After the non-maximum suppression,
only a set of thin-edges remains with possible gaps in between
them. These gaps are fixed in the thresholding with hysteresis
step, where the objective is to grow broken edges. Growing an
edge is done by looking at the direction of the edge, if pixels at
the end of the edge exceed a second threshold they are added to
the edge. This process is repeated until there are no edges left to add.
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Original image Magnitude of the gradient
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90

180

270
Line direction Colour code

The threshold value must be chosen with caution, as a high thresh-
old value will make the detector miss important edges, while allow
threshold will make the detector identify noise as being an edge.

Canny-edge detector result

The objective is to compare two images with each other to obtain a similarity score. Therefore the
Canny-edge detector is applied to both input images and the edge-pixels (pixels that are identified
as part of an edge) are used as patch-locations. The next step is to compute a descriptor of the
patch. The last step is to use the descriptors to compute a similarity score between two images.
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Shape Context Descriptor

The shape context algorithm was first proposed by Belongie et al. (2002) [1]. It was originally
designed for recognizing handwritten symbols and other objects by including the contour and
contextual information of an object in the descriptor. This information is important since it
is characteristic for each symbol. Because the Egyptian hieroglyphs are a type of handwritten
symbols it made the shape context an interesting choice to see whether or not it would work on
the hieroglyphs.

Once the Canny edge detector is applied to an image to extract the outline of the hieroglyph,
a descriptor for all the edge-pixels is computed by placing a log-polar mask around these pixels
and count the number of other edge-pixels that fall in each bin (see figure 5.1). This will generate
a histogram based descriptor for each edge-pixel.

(a) (b) (c)

Figure 5.1: Computing the patch descriptor with Shape Context

Figure 5.1 gives an insight in the Shape Context algorithm, 5.1a is the input image where the blue
circle indicates the patch area around an edge pixel. 5.1b shows the contour image generated by
the Canny edge detector, on top of that the log-polar is shown (in blue) which indicates the bins
of the resulting descriptor. Lastly, 5.1c gives an impression of the final Shape Context descriptor
where the colour in each bin represents its value.

Self-Similarity Descriptor

Self-Similarity is an algorithm proposed by Shechtman and Irani (2007) [31]. Its roots lie in
the object detection and image recognition. It’s main objective is to find shapes in an image
even though they are suffering from global geometric distortions. The Self-Similarity algorithm
attempts to omit these issues by looking at the similarities among parts of an object. Figure 5.2

Figure 5.2: Heart shaped objects identified using a Self-Similarity descriptor
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shows examples of heart-shaped objects which do not share common image properties (colours,
textures, edges), but do share a similar geometric layout of local internal self-similarities

The Self Similarity algorithm computes a correlation surface for each patch, a log-polar
histogram is placed on top of the correlation surface and the average correlation for each bin
is taken as value for that bin. A simple method to compute this correlation surface would be
to take the difference in grey value between 2 pixels. However this method does not capture
the surrounding pixels, so therefore the comparison is done on a bounding box around the main
pixel as well. Equation 5.1 shows the formula used to create the correlation surface. Hereby the
SSDq(x, y) is the Sum Squared Difference between the main patch q and the patch at x, y. The
entire process is captured in figure 5.3 where the small green rectangle indicates the window area
of the main patch q, which is then compared to all other window areas to compute the correlation
surface. The descriptor is extracted from the correlation surface by taking the average grey value
for each bin on a log-polar scale.

Sq(x, y) = exp

(
− SSDq(x, y)

max(varnoise, varauto(q))

)
(5.1)

The varnoise is constant value for the noise, and the varauto(q) is the noise specific for the patch
at location x, y. This currently equals the variance of this patch.

Correlation map SelfSimilarity DescriptorPatch area

Figure 5.3: The Self-Similarity descriptor

HOG Descriptor

The Histogram of Orientated Gradients (HOG) descriptor is a widely used descriptor within the
field of Computer Vision. It has proven successful in many domains including human recognition,
vehicle recognition (car/bus/bicycles) and animal recognition (dog/cat/cows). The success of the
HOG descriptor persuaded me to try it on the Egyptian hieroglyphs.

Histograms of Oriented Gradients

HOG was fist proposed by Dalal and Triggs (2005) [5] to detect hu-
man pedestrians in images. The thought behind the HOG descriptor
is that local features can be described by a set of edge gradients. In
the original implementation of HOG, the image was divided in to
a number of equally sized cells (6x6 pixels), the derivative for both
the x and the y direction was computed by convolving it with a
simple kernel: [−1, 0, 1] and [−1, 0, 1]T respectively. Although the
authors have experimented with other kernels, they found that the
most simple and straightforward option works best on their dataset.
The HOG descriptor makes use of the gradient and magnitude in-
formation of each pixel. These are computed according equation 5.3
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and 5.2 respectively

Magnitudex,y =
√

(δyx,y)2 + (δxx,y)2, (5.2)

Anglex,y = atan(δyx,y, δxx,y), (5.3)

where δyx,y represents the y derivative at location (x, y) in an image.
The HOG descriptor of a cell (6x6 pixel sized window) is computed
by compressing the gradient and magnitude information in to an
nine-bin histogram (from 0 to 360 degrees where each bin ranges 45
degrees). Each pixel in a cell contributes to the histogram by adding
its magnitude to the correct bin (based on the gradient value). The
entire HOG descriptor is then constructed by combining 9 different
cells in a 3x3 grid, this is called the rectangular HOG (R-HOG).
The authors have experimented with other shapes such as a circular
HOG (C-HOG) but found similar results.
Once the HOG descriptors have been computed, the results are fed
to a recognition system such as the Support Vector Machine (SVM).
SVM is a classifier that can analyse data and recognize patterns. In
this case it is used to classify an input image as being a pedestrian
or not, based on the HOG descriptors. The SVM is first trained
on a set of labelled data, and computes a certain weight for each
entry value. When a new entry arrives, the weighted sum of all
entry values and the SVM-weights is computed. If the weighted
sum exceeds a certain threshold value, the SVM will classify the
instance as being a pedestrian. The figure below vaguely shows the
results of the HOG descriptors when applied to the input image. The
figure on the right shows the HOG-values multiplied with the SVM-
weights, which clearly demonstrates the most important features of
a pedestrian.

Input image HOG descriptors SVM weights

The authors tested their method on two datasets. The first one
being the MIT-pedestrian database which contained 509 trainings
images and 200 test images, the HOG descriptor had a nearly zero
miss rate (10−4) . The second dataset was developed by the authors
themselves to include more difficult images of pedestrians in different
poses. The results for the second dataset was a miss rate of roughly
0.1 at 10−4 false positive rate.
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Figure 5.4: HOG descriptor

I implemented the HOG descriptor by dividing each patch
in to a 3x3 grid, the magnitude and gradient information is
computed for all 9 cells and is stored as a single histogram.
An overview of this process is shown in figure 5.5. A complete
patch is shown in figure 5.4, which is constructed from 9 cells
and 8 bins for each histogram in the cell. The direction of
the lines represents the gradient and the length represent the
magnitude of that particular bin. The image shows that cells
which consists mainly of background pixels have low values
for the magnitude, while cells which contain a mixture of
background and foreground pixels have a high magnitude.
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Figure 5.5: HOG pipeline

HOOSC Descriptor

Histogram of Orientation Shape Context (HOOSC) is a method proposed by Roman-Rangel et al.
(2011) [30]. The algorithm was initially developed for recognizing Maya hieroglyphs. Although
the Maya hieroglyphs are different from the Egyptian hieroglyphs, they may share some of the
same characteristics.

Figure 5.6: A few Maya glyphs taken from the Maya Haab Calendar

The Mayan script differs from the Egyptian script mainly because most characters in the Mayan
script do not depict any particular object (see figure 5.6), while the Egyptian hieroglyphs depict
things they saw in real life such as animals, plant and other objects.

The HOOSC algorithm is a combination of the HOG descriptor and the Shape context de-
scriptor. The HOOSC algorithm takes a patch and its edge-pixels. A small window (5x5) around
each edge-pixel is formed and the 8-bin HOG features are computed for each HOG-patch. A
log-polar is formed over the entire patch, and the HOOSC descriptor is build up by adding each
8-bin HOG-histogram to the appropriate HOOSC bin. Afterwards the bins are normalized to
compensate for the difference in the amount of edge-pixels across the image. An example of this
process is shown in figure 5.7.
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Figure 5.7: HOOSC process

The thought behind combining the HOG descriptor and the Shape context descriptor is to add
more contextual information to the HOG descriptor which is important to detect icons such as
Maya hieroglyphs.

HOOSS Descriptor

I tried a straightforward combination of the HOOSC descriptor with the Self Similarity algorithm,
thus being a Histogram Of Orientated Self Similarity (HOOSS). The method starts by
extracting HOG features for all pixels (not just the edge-pixels), and similar to the Self Similarity
method it will create a correlation map. But instead of using the raw gray values, it will use
HOG-features to compute the similarity score between 2 pixels. The resulting correlation map
will be divided into a log-polar where each bin will be assigned with the average value of each
pixel in the correlation map.

Patch Correlation map HOOSS Descriptor

Figure 5.8: HOOSS process
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5.2 Classification

Once the descriptors have been computed, all the information needed to classify an input image
is present. The general approach for all methods is to compare an input image with every image
in the train set (dataset which contains labelled images for different types of hieroglyphs). The
comparison produces a similarity score according which the hieroglyphs are ranked.

CV

Rank→
0 1 2 3

Figure 5.9: Example of ranked classification results

The similarity score is utilized as a confidence score for the Computer Vision part. The confidence
score is important to the language model which will be explained later. I distinguish three
different matching schemes for classifying an input image;

Image matching with RANSAC

The main classification scheme computes a similarity score between two images by comparing
all the descriptors from both images with each other. It’s a CPU-intensive process where each
descriptor of one image is compared with every descriptor in the other image according the
χ2-distance (Chi-squared distance) (see eq. 5.4),

χ2
ij ≡ χ2(pi, qj) =

1

2

K∑
k=1

(hi(k)− hj(k))2

hi(k) + hj(k)
. (5.4)

Where χ2(pi, qj) denotes the comparison between descriptor i from image p and the descriptor
j from image q, hi(k) and hj(k) denotes the k-th bin of descriptor pi and qj respectively. The
result is a cost matrix which contains the differences between all the descriptors in the first image
and all the descriptors in the second image. The next step is to match each patch in the first
image to exactly one patch in the second image such that the sum of all the costs is minimal.
The general idea is to connect similar patches in both images, for example if I were to compare
two images with the same bird, I want to connect the legs of the bird in the first image to the
legs of the bird in the second image (as well as connecting the eyes/beak/wings/etc...). This task
is known as a Linear Assignment Problem where each column can be matched with exactly one
row (in a square matrix). Several algorithms can be used to solve such a problem such as the the
Hungarian method [19] and LAP [15]. I chose to use the LAP algorithm as the authors guarantee
that it is much faster than the Hungarian method. The result is a set of matches between the
two images, however, a low difference score between two descriptor does not guarantee that the
match is correct, to find out whether or not a match is correct can be computed by the RANSAC
algorithm.
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RANSAC
Ransac is a popular method that can determine how an image should
be transformed to fit an other image and is usually applied when
stitching multiple images on each other to create a panorama view.
RANSAC is essentially a simple process, it takes a set of matching
points, these are certain points in the image which correspond to the
same point in another image. The Ransac algorithm selects a few (in
this case 10) matches and computes an affine transformation matrix
(with the least squares method) such that transforming the points
in the first image according this transformation matrix will move
each point as close to their matching point in the second image.
The entire image is then transformed according this matrix, after
the transformation is completed it will evaluate the transformation
by computing the distance between each point and their matching
point in the second image. If the distance exceeds a threshold
value it is considered an outlier, otherwise it’s an inlier. These
in- and outliers are important as they indicate how successful the
transformation is (the more inliers the better). This step is repeated
a number of times and eventually the transformation matrix which
yields the most amount of inliers is taken as the best transformation
and is applied to the whole image which results in the stitched
image as shown in the figure below.

Matches Stitched

I have used the RANSAC method to find the affine transformation between the two images, it
will transform one image to more resemble the other. The use of this transformation will make
the algorithm more robust against against a difference in scale of the hieroglyph and a shift
in the position. An overview of the stages within the RANSAC matching scheme is shown in
figure 5.10. Once the transformation is completed the similarity score between the two images
is computed according the following formula,

SimilarityScore =
P 2

m ·
∑P

(p1,p2)
χ2(p1, p2)

, (5.5)

where m denotes the number of matches and (p1, p2) the matching pairs in P . The more inliers
a transformation yields, the higher the SimilarityScore, it is divided by the total number of
matches as well as the total χ2 distance.
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211 inliers 92 outliers

TransformCost matrixEdges

Figure 5.10: Pipeline for the matching scheme using RANSAC

Image matching with BOW

A popular image matching method is the Bag Of Words (BOW) approach where image features
can be seen as words. The basic idea is to cluster similar features from all the images in the
trainings set to obtain the so called Bag Of Words. A histogram is made from each image simply
by counting how many of each word occur in the image.

face bicycle cello

Image Compute histogramClustered featuresFeatures(words)

Figure 5.11: Bag Of Words pipeline

In figure 5.11 the BOW pipeline is depicted, but I have to point out that even though the features
are depicted as a part of the image, they are actually the descriptors of these patches. Before the
method can start to classify images, it first needs to do compute the most prominent features
in the train set. First, all the features are extracted from the images in the train set, and then
mixed together, a k-means [24] clustering algorithm will determine the k most prominent features
(otherwise known as visual words). These visual words are then used to construct a histogram
for all the images, this is done by finding the most similar visual word for each feature in an
image and simply counting how many times each word occurs in that image.

The matching between two images comes down to comparing their histograms according the
χ2-distance (see equation 5.4).

Image matching with Single Descriptor

Although the RANSAC works great, it suffers from one major drawback, which is the large
amount of time it takes to classify a single image because of the transformation it has to compute.
This wouldn’t normally be a big issue, but with the prospect of running it on a smart-phone it
is vital to be able to classify a picture within a reasonable amount of time. Therefore the Single
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Descriptor method was developed which simply computes a single descriptor of the entire image.
Figure 5.12 shows how an image is divided in to an 8x8 grid.

Input Image Edges Single Descriptor (Shape context)

Figure 5.12: Single Descriptor bins

The matching between two images is once again computed by the χ2-distance (see equation
5.4). The 8x8 bins means that computing the similarity between two images only requires the
computation of the χ2-distance for 64 elements (after the descriptor has been computed).
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I

n the last phase the system has a chance to correct mistakes made in the previous step by
using a language model to refine the classification results. Two different methods have been
implemented where the first method uses a lexicon to find Egyptian words in the top-n

proposed classification. The second method uses an n-gram approach which determines the
likelihood of certain hieroglyphs occurring in a sequence.

6.1 Model by words

The Computer Vision part generates a ranking of possible classes for each input image, for the
language model only the top-n is used. Each input image is evaluated by iterating over the
top-n proposed classification, for each proposed classification the system searches for all words
that can possibly be made with that hieroglyph and computes the score for that word based
on the confidence of the Computer Vision part and the probability of that word occurring in
an Egyptian text. the word confidence is the product of the Computer Vision scores of each
hieroglyph in that word, normalised by the score of the highest ranked hieroglyph

cvWordConfidencew =

length(w)∏
j=0

(
cvScore(j+s),0

cvScore(j+s),cvIndex(j+s,w(j))

)3

, (6.1)

where j iterates over the every hieroglyph in word w. cvScore is a matrix containing all the ranked
Computer Vision scores for each hieroglyph, as an example cvScorea,0 is the best Computer Vision
score for hieroglyph at position a and cvScorea,1 the second best. s indicates the starting index
of word w in a given text, cvIndex(i,g) indicates the rank of glyph g at position i, and w(j)
indicates the hieroglyph in word w at position j.

To improve the results even more I’ve incorporated the probability of each word occurring in
an actual ancient Egyptian text. The addition of the word occurrence resolves issues with words
that are rarely used, but do match the Computer Vision part slightly better than a common
word. The word occurrence is computed by counting how many times a word appeared in the
JSesh database divided by the total amount of words in that database. The addition of the word
occurrence leads to the WordScore, and is computed by

WordScorew =
λ

cvWordConfidencew · (P (w) + λ)
· length(w), (6.2)

where P (w) is the probability of a word w occurring in an Egyptian text, λ indicates the smooth-
ing that determines the impact of adding the probability scores to the equation. The λ variable

28
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should be > 0 and is necessary to avoid a division by zero in-case the word occurrence could not
be determined because that word did not exist in the database used to mine the word-occurrence.
Furthermore, when the system is unable to find any words that match the proposed classifica-
tion, it will award the hieroglyph a default score based solely on the Computer Vision confidence.
Once the WordScore is computed, the system will begin to re-rank the hieroglyphs based on the
words that can be made with them.

A good example can be found in table 6.1, here the correct sequence of the hieroglyphs spells
the word Unas (which is the name of the Pharaoh who was buried within this pyramid). However,
the Computer Vision part makes a mistake and identifies the second hieroglyph as being a snake
instead of a water hieroglyph. The language model will attempt to correct this by searching for
words within the given top-n by the Computer Vision part.

CV

Rank→
0 1 2 3

Table 6.1: Example of where the word-model will correct the CV results (These hieroglyphs spell
the word Unas).

6.2 n-Grams

n-Grams are a number of subsequent characters which have a certain probability of occurring in
any given text, where n is the number of subsequent characters. n-grams with n = 1 are referred
to as uni-grams, while n = 2 are referred to as bi-grams and n = 3 are referred to as tri-grams.
For example the English word ’beautiful’ contains the following n-grams:

n-gram beautiful
uni-gram b e a u t i f u l
bi-gram be ea au ut ti if fu ul
tri-gram bea eau aut uti tif ifu ful

The most common tri-gram in English is ”the”, which makes up 3.4% of all tri-grams [33]. Tri-
grams are currently widely used to determine the language of a given text simply by looking at
which type of letter combinations are in present in the text. Dunning (1994) [6] demonstrated
that is is surprisingly easy to determine the language of a given text using n-grams. The author
tested with 9 different languages, he reported a 99.9% accuracy on large texts of 500 bytes and
92% accuracy on small texts of only 20 bytes.
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Figure 6.1: Example of n-gram process

To make use of the tri-grams for the hieroglyphs, I first train a model based on the Egyptian
texts found in the JSesh database. Each tri-gram in the Egyptian texts is counted to obtain a
probability score. The tri-grams are used to refine the classification results by mixing the tri-
gram probability scores with the Computer Vision confidence such that common tri-grams will
receive a boost in their score while rare tri-grams will receive a penalty. Although the effect of
the tri-grams is low, it is enough to rearrange the classification score when the Computer Vision
confidence is low.

In figure 6.1 an example is shown where the Computer Vision part misclassified the middle
hieroglyph. The normalised Computer Vision confidence is shown below the proposed classifi-
cation, this is the difference in score for the proposed classification at rank n and rank 1. The
larger the difference in score between the first ranked hieroglyph and the second, the higher the
confidence of the Computer Vision part. For the sake of this example, other glyphs surrounding
these three have been removed and only the top-2 of the proposed classification results is taken
as input. Eight different tri-grams can be made of the proposed classification and are shown in
the table. The score for each tri-gram is computed according the following formula,

Score(triGram) = (P (triGram) + λ) ·
3∏

i=0

(CvConfidence(triGrami))
3. (6.3)

To give the Computer Vision confidence more influence it is taken to the power of 3. P (tri-gram)
is the probability of that particular tri-gram occurring in an Egyptian text, this number is
smoothed with a Laplace (λ) value to allow tri-grams that did not occur in the train set to still
receive a proper score. The Laplace (λ) value is typically set to 50 · 10−5. The n-gram which
yields the highest score will be picked as final classification, in this case the mistake made by the
Computer Vision part is corrected by the language model.
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T

he dataset consist of 10 pictures of pyramid walls, totalling 3993 images of hieroglyphs and
161 different classes. For testing purposes, one pictures is taken aside and is used as the
test set while the other nine pictures are used as train set. This test is conducted twice

for two different pictures and the results are averaged. The two selected pictures for the test set
contain a total of 793 hieroglyphs, both input images have been manually annotated as well as
automatically annotated. The figure below illustrates the result for the automatically annotated
hieroglyphs using the HOG descriptor with the Single Descriptor comparison matching scheme.
The superimposed colours are identified below.

Failed to detect the hieroglyph.

Successful detection of the hiero-
glyph, but failed to classify it cor-
rectly.

Successful detection but misclassi-
fied because the hieroglyph is not
present in the trainings set, or be-
cause I was unable to determine
the correct class.

Successful detection and classifica-
tion.

Figure 7.1: Visualization of the final results

The automatic detection method finds 83% of all manually annotated hieroglyphs and 85.5%
of the detections are correct according the Pascal VOC overlap criteria (where a correct match
has more than 50% overlap between the manually annotated hieroglyph and the automatically
annotated).
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Figure 7.2: Results for the manually annotated dataset
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Figure 7.3: Results for the automatically annotated dataset
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The results of the manually annotated hieroglyphs can be seen in figure 7.2, where the percentage
of correct classifications is shown for all possible combinations of the following methods:
Descriptors: HOG, HOOSC, HOOSS, ShapeContext and SelfSimilarity
Matching scheme: Spatial (with RANSAC), BOW and Single descriptor
Language model: Visual (no language model), n-grams and Lexicon

One of the first things to notice about the classification results is that using the lexicon language
model does not improve the classification rate at all, in fact the classification rate becomes worse.
This was unexpected and after some research it turned out that the Egyptians had many small
words consisting out of only one or two glyphs. It was because of these small words that the
language model was able to come up with a multiple of possible words for each hieroglyph and had
to chose between them. The preference for small words is amplified by the word occurrence, since
single glyph-words dominate on this domain. For example, the word ”I” occurred over 3600 times
in the dataset, while the average word occurrence is only 12. Although after extensive testing
with different parameter settings on the test set, it was possible to improve the Computer Vision
output with an average of 1.3%. But this resulted in a set of parameters specifically fine-tuned
for the test set. The results show that the language model based on n-grams language model
does have a positive effect on the performance, a small, but consistent 1% improvement in the
classification rate.

Another important observation is that the Self-Similarity descriptor in combination with the
RANSAC matching scheme performs much worse than the other methods. A possible explanation
could be that the Self-similarity descriptor does not cope well with the spatial information, and
applying the RANSAC algorithm would cause wrong patches to be matched to each other and
confuse the comparison.

The difference between the automatically annotated hieroglyphs and the manually annotated
is more than just the positioning, in some cases parts that do belong to the hieroglyph are blend
in with the background because the system though it was noise. And as mentioned before,
the amount of correctly annotated hieroglyphs is 85.5% with the automatic detection, meaning
that 14.5% of the images cannot be correctly classified because these images do not contain any
hieroglyph. The results for the automatic dataset are shown in figure 7.3. This is the most
important test since it shows how many of the hieroglyphs are correctly classified given a raw
picture containing hundreds of hieroglyphs.

With the prospect of running the hieroglyph recognition on smart phones it should be able to
classify the images in a reasonable amount of time. In figure 7.4 the classification rate is shown
against the average time it takes to classify one hieroglyph when using a 2.93GHz machine. The
times are purely measured on the classification part and exclude the locating process as well as
the addition of the language model. Although the best performance is achieved by combining
a HOG descriptor with the Spatial comparison method (green triangle), it takes more than a
minute to compute a single hieroglyph. Needless to say that this combination is not suitable
to run on a mobile phone. The best choice is the HOG descriptor combined with the Single
matching scheme (red triangle), which is roughly 8000 times faster at the cost of only 2% in
classification rate.
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W

ith this study I show the effect of different Computer Vision techniques on a interesting
domain. I provide a unique dataset of ancient Egyptian hieroglyphs, containing 3993
annotated images of hieroglyphs. And with it the ability to easily annotate more

hieroglyphs. This study shows the obstacles and dilemmas when facing the task of recognize
ancient Egyptian hieroglyphs, and how to tackle them. I demonstrate that it is possible to
detect and recognize the ancient Egyptian hieroglyphs with a reasonable classification rate by
experimenting with different techniques, some of which can be applied on a smart-phone App.

Some of the methods used in this study have a common ground, for example the HOOSC
descriptor makes use of the same capabilities than the ShapeContext algorithm and the HOG
algorithm, which have also been tested individually.

Together with Jan van Gemert, we submitted a short paper titled ”Automatic Egyptian
Hieroglyph Recognition by Retrieving Images as Texts” to the ACM multimedia conference 2013
(see appendix A). By now I can happily announce that the paper has been accepted. However,
some questions arose from the reviewers, such as the difference between Maya hieroglyphs and the
Egyptian hieroglyphs. The questions is a reference to how the HOG descriptor can outperform
the HOOSC descriptor for the Egyptian dataset (only slightly), but not on the Maya dataset.
The reason for this might lie in the fact that the Maya hieroglyphs are much more detailed, while
the Egyptian hieroglyphs are mostly made from a few strong lines. Therefore the 3x3 grid of the
HOG descriptor is sufficient in capturing the essence of a patch. Another explanation might be
that the authors of the HOOSC were using images of a much higher resolution than the 50x75
used for the Egyptian hieroglyphs. The reason for choosing the 50x75 resolution is because it
was found sufficient for classifying the hieroglyphs.

At the moment, the classification system is unable to classify an input image as being ”non-
hieroglyphic” and can only classify it with a known hieroglyphic label. While this is of no
concern when using the manually annotated dataset, it could become a problem when using the
automatic detection system. Therefore, when focusing more on using the automatic detection
system, it has to be able to differentiate between hieroglyphic images and background images.

A part of my thesis was to prove that it would be possible to create an application (App.)
for smart phones which enables the users to gain background information and translation about
ancient Egyptian texts by taking a picture of it. This would allow anyone with with a smart
phone to unveil the mysteries of the ancient texts. I submitted the idea of creating such App
(named Tomb Reader) to the AMSIA (Amsterdam Science and Innovation Award). As part of
my proposal to the AMSIA I created a figure which illustrates the general idea of this App (see
figure 8.1).
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Location: Pyramid of Unas(2375 BC - 2345 
BC), Antechamber

Utterance 307
Column 482: To say the words: 
A Heliopolite is in Unas, O God. 
Your Heliopolite is in Unas, O God. 
A Heliopolite is in Unas, O Re. 
Your Heliopolite is in Unas, O Re. 
The mother of Unas is a Heliopolite.

Column 483:
The father of Unas is a Heliopolite.
Unas himself is a Heliopolite, 
born in Heliopolis when Re ruled the Two 
Enneads, 
when Nefertum ruled the human beings 
...

Tomb Wall Mobile
Phone

Machine algorithms Found meta-data

Unas (wn-n-i-s)

Figure 8.1: From a picture of a hieroglyphic text, the App will locate and classify each individual
glyph. The found glyphs will be matched to known and already translated texts. If it finds a
match it will display various information about the text, including translation, time period and
possibly related photographs.

I was among the 9 finalist from a total of 93 proposals. After a two and a half minute pitch in
front of the jury I was awarded with a honourable mention. For the full proposal see appendix B.

In order to realise such App there is still some work to be done. The dataset must be
expanded to include photographs other than those found in the pyramid of Unas to familiarise
the classification algorithm with the different writing styles. Aside from expanding the visual
dataset, a whole new dataset must be created which holds the Egyptian texts with translation
and other background information. On top of that an algorithm has to be implemented that
can retrieve the Egyptian text based on the found hieroglyphs, it has to be able to retrieve the
correct text even though only a small section of the whole text is photographed.

After speaking with members of the Allard Pierson Museum, they were interested in such
application and provided me with the ability to test it in the museum. An Approval letter from
the Heritage lab of the Allard Pierson Museum is included in appendix C.

With this study I hope to give the readers some insights in the task of recognising ancient
Egyptian hieroglyphs. The achieved classification rates should be sufficient to implement the
second phase of the smart-phone App.
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ABSTRACT
In this paper we propose an approach for automatically rec-
ognizing ancient Egyptian hieroglyph from photographs. To
this end we first manually annotated and segmented a large
collection of nearly 4,000 hieroglyphs. In our automatic ap-
proach we localize and segment each individual hieroglyph,
determine the reading order and subsequently evaluate 5
visual descriptors in 3 different matching schemes to evalu-
ate visual hieroglyph recognition. In addition to visual-only
cues, we use a corpus of Egyptian texts to learn language
models that help re-rank the visual output.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; I.4 [Image Processing and Com-
puter Vision]: Features Measurement—Feature represen-
tation, size and shape

Keywords
Egyptian, Hieroglyphs, Automatic Recognition

1. INTRODUCTION
The ancient Egyptian hieroglyphs have always been a mys-

terious writing system as their meaning was completely lost
in the 4th century AD. The discovery of the Rosetta stone in
1799 allowed researchers to investigate the hieroglyphs, but
it wasn’t until 1822 when Jean-François Champollion discov-
ered that these hieroglyphs don’t resemble a word for each
symbol, but each hieroglyph resembles a sound and mul-
tiple hieroglyphs form a word. The ability to understand
hieroglyphs has uncovered much of the history, customs and
culture of Egypt’s ancient past.

In this paper we present a system that is able to auto-
matically recognize ancient Egyptian hieroglyphs from pho-
tographs. As illustrated in fig 4, a single photograph con-
tains several, often overlapping, hieroglyphs without proper
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Figure 1: The pyramid of Unas. (a) Location at red
triangle. (b) Schematic reconstruction. (c) Current
state. Images courtesy of Wikipedia, creative commons license.

segmentation or a-priori reading order. Moreover, the pass-
ing of 4 millennia has introduced noise, and broken or de-
stroyed the original symbols. These conditions present se-
vere challenges to automatic hieroglyph recognition. Auto-
matic hieroglyph recognition is useful for archaeology schol-
ars, the interested amateur, cultural heritage preservation
or as a smart-phone App for a tourist or museum visitor.

The paper has 3 contributions. First, we introduce a new
hieroglyph dataset where we manually segmented and la-
beled 3993 hieroglyphs of 10 photographs from the pyramid
of Unas. This pyramid is built in the fifth dynasty as a
burial place for the Pharaoh Unas and is located just south
of the city of Giza, see fig 1. We chose a single pyramid to
avoid issues with different dialectic writing styles. Second,
we show how to automatically locate, segment and recognize
hieroglyphs based on visual information. The third contri-
bution is a multimodal extension to the visual analysis with
statistical language models from hieroglyph texts. In fig 2
we show a schematic of our approach.

2. RELATED WORK
Multimedia tools have aided preservation, analysis and

study of cultural, historical and artistic content. For ex-
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Figure 2: Pipeline for hieroglyph recognition. The 3rd output hieroglyph from the top is corrected by the
language model in order to find the word ’Heliopolis’ (birth-city of Unas).

ample, the digital Michelangelo project [12] created high
quality 3D models of Michelangelo’s sculptures and archi-
tecture. Furthermore, wavelet analysis of brush strokes in
paintings can reveal artist identity [7], image composition
has shown to aid category labeling [17] and photographs
can be classified as memorable or not [6]. In this paper we
follow in these footsteps, and propose a new dataset, and
a multimodal (visual and textual) approach for automatic
Egyptian hieroglyphs recognition.

Related work on automatic hieroglyph recognition focuses
on Mesoamerican culture, and in particular on the ancient
Maya hieroglyphs [5, 14, 15]. To this end, the HOOSC
descriptor was developed [15], which is a combination of
HOG [2] and the Shape-Context [1]. Such descriptors can be
used for direct matching [14] or with a bag-of-words (BOW)
approach [15]. Other work extracts detailed line segments
for Maya hieroglyph matching [5]. In all these works the
hieroglyphs are typically manually extracted and individu-
ally digitized. In contrast, our photographs consists of noisy
plates, which each typically contain around 400 hieroglyphs
(see fig 4). Moreover, the Maya culture used a considerable
different type of hieroglyphs and we therefore evaluate the
HOOSC and other descriptors on Egyptian hieroglyphs.

Current work on automatic scene text detection and recog-
nition [4, 9, 10, 11] are typically hand-tuned to specific west-
ern or asian (e.g. Chinese or Hangul) characters which are
quite different from Egyptian hieroglyphs. In our work, we
will draw inspiration from text detection to localize the hi-
eroglyphs and use generic image descriptors for the recogni-
tion.

3. HIEROGLYPH RECOGNITION
Our approach has a visual component where the reading

order is determined, hieroglyphs are localized, pre-processed
and visually matched. The top-N visual matches are subse-
quently input to a textual component that re-ranks the hi-
eroglyphs according to a statistical language model trained
on other texts. In fig 2 we show a schematic of our approach.

3.1 Localization and Pre-Processing
We localize hieroglyphs with a saliency-based text-detection

algorithm [9] (software kindly provided by the authors). This
algorithm does not make assumptions on the shape of the
text, as done e.g. in [4]. The used algorithm creates a

Texture Synthesis ApproximationOriginal Mask

Figure 3: Removing unconnected hieroglyphs.

saliency map based on second order curvature statistics and
subsequently uses conditional dilation from border-seeds to
create a binary text/non-text mask. We group the noisy
masks by connected components after a dilation. The out-
put of the localization is an unordered list of bounding boxes
(BBs) fitted around each glyph. We experimentally evaluate
the localization performance in section 4.

From the unordered list the reading order is determined
to facilitate textual language modeling. The reading order
in Egyptian hieroglyphs is either from left to right, right to
left or from top to bottom. The only indication of the cor-
rect reading order is that glyphs will face the beginning of a
line, and top to bottom is indicated by columns separators.
Multiple horizontal hieroglyphs in a column should be read
as a single line. For the pyramid of Unas the reading order
is top-down, from right to left. We sort the unorderd list
accordingly to determine the sequence in which the hiero-
glyphs should be read.

The hieroglyphs BBs are often overlapping or they are
in contact with a ’cartouche’ (a frame around the name
of a royalty). To generate individual hieroglyph images
suitable for matching, we filled the overlapping parts with
background texture by a non-parametric texture synthesis
method [3]. This approach works well, however it is rather
slow. We therefore implemented a faster approximation. For
each pixel to generate we randomly sample from a search
window around the closest filled-in pixel. If the sampled
pixel is not part of the foreground mask it is kept, oth-
erwise the process is repeated with a larger window size.
After texture synthesis is complete, the final background is
smoothed to reduce noise. Our approximation is in the order
of 300 times faster, the results of both methods are shown in
fig 3. As a final step the patches are extended to 50x75 while
retaining their discriminative height/width ratio where the
background is again texture synthesized if necessary.



3.2 Image Descriptors
We evaluate five image descriptors, two based on shape,

one based on appearance, and the other two on a shape-
appearance combination. The Shape-Context (SC) [1] is a
shape descriptor originally designed for recognizing hand-
written symbols and therefore interesting for hieroglyphs.
The SC constructs a spatial log-polar histogram that counts
the frequency of edge pixels. Similar to the SC, the Self-
Similarity [16] (SS) descriptor was designed for shape match-
ing. Where the SC counts edge pixels, the SS computes the
pixel correlation between the central cell to the other cells
in a log-polar shaped region. The SC and the SS are shape
descriptors, but the hieroglyphs may also benefit from ap-
pearance matching. The Histogram of Oriented Gradients
(HOG) [2] is a popular appearance descriptor that computes
histograms of edge gradient orientations. A combination of
shape and appearance can be achieved by merging the HOG
and the SC. This combination is called the HOOSC [15]
and was developed for Maya hieroglyph matching. The
HOOSC replaces the edge pixels in the SC with a HOG.
As the fifth descriptor we add a straightforward combina-
tion of the SS with HOG which we dub HOOSS. For this
combination, the correlations in SS between pixels are re-
placed with similarities of HOGs. All similarities between
K-dimensional descriptors i and j are computed with the

χ2-distance, χ2(i, j) =
∑K

1
(ik−jk)

2

ik+jk
.

3.3 Visual Matching
To recognize a hieroglyph we compare it to labeled patches

in the training set. To this end, we evaluate three common
image patch matching schemes. The first method is sim-
ply using a single centered descriptor for a full patch. The
second approach uses interest points with the popular bag-
of-words framework as also used for Maya hieroglyphs [15].
The third approach has also been used for Maya glyphs [14]
and uses pair-wise patch matching using interest points with
spatial verification. This method starts with a variant of the
Hungarian method [8] to assign each descriptor in one patch
to a descriptor in the other patch. After obtaining matches,
the final matching score s is obtained by fitting an affine
transformation between the patches by using Ransac and is
computed as s = m ∗∑P

(p1,p2)
χ2(p1, p2)/|P |2, where m is

the number of matches, and (p1, p2) are matched pairs in
the set of Ransac inliers P .

3.4 Language Modeling
The visual ranking is based on a single hieroglyph and

does not take the neighboring hieroglyphs into account. The
neighborhood can give valuable information since hieroglyphs
often co-occur to form words and sentences. To take the con-
text into account we employ language models of hieroglyph
occurrences to improve the visual ranking. We compare two
strategies: (1) a lexicon lookup and (2) N-grams which rep-
resent statistics of N-neighboring hieroglyphs.

The lexicon-based approach tries to match N consequative
hieroglyphs to existing words in a dictionary. For each hier-
oglyph i, we look at the top K=10 results (vi1, vi2, . . . , viK)
of the visual ranking. We re-rank each hieroglyph i by word
length |w| and occurrence probability P (w) as (p(w) +λw) ·
|w| ·∏K

j=1(vi1/vij)
2, where w is any exact word match that

is present in the Carthesian N ×K space of possible words
where N is equal to the largest word in the corpus. To re-

...
he shall not write with
his little finger. How
beautiful is indeed the
sight, how good in-
deed to see, so say
they, so say the gods,
(when) this god ascends
to heaven, (when) Unas
ascends to heaven while
his power is over him
...

Figure 4: Part of a plate taken from the north wall
of the antechamber (column 476) and its translation.

duce the influence of non-existing words we use a standard
Laplace smoothing term λw, which we set to 1/20. In sec-
tion 4 we give the details of the used corpus. We found the
best non-linear weighting of visual scores (in this case v2)
on a small hold-out set.

The N-gram approach uses the probability of hieroglyph
sub-sequences of length N occurring in a row. We re-rank
each hieroglyph i with

∏N
i=1

∏K
j=1(vi1/vij)

3 · (p(w) + λn),
where w is a hieroglyph sequence of length N = 3. To re-
duce the influence of non-existing N-grams we use a Laplace
smoothing term λn of 1/2000. Again, we found the best
non-linear weighting of visual scores (v3) on a hold-out set.

4. EXPERIMENTS
We evaluate all descriptors, matching techniques and lan-

guage models on our new hieroglyph dataset.

4.1 Dataset
The dataset consist of two sets: one being photographs of

hieroglyphic texts, the other being the textual corpus that
is used for the language model. The visual set consists of
10 plate photographs with hieroglyphs [13], as illustrated in
fig 4. These photographs contain 161 unique hieroglyphs
with a total of 3993. We manually segmented all individual
hieroglyphs with a bounding box and annotated them with
their label. To record the label we use a form of translit-
eration which transforms the hieroglyphs into a character.
Many transliteration variations exist among Egyptologists,
which are rarely compatible with each other. In this research
we chose to use the transliteration used by the open-source
JSesh project1 which also gave rise to the textual set of the
database, containing 158 pyramid texts (with a total size
of 640KB of text). This textual set is used to train the
language models and does not contain any texts from the
pyramid of Unas.

4.2 Implementation Details
To reduce differences between descriptors due to param-

eter setting we keep parameters as equal as possible over
the five variants. For HOG we use 8 angle bins, and 4x4
spatial binning. The HOG inside HOOSC and HOOSS also
use 8 angle bins. All log-polar histograms have 3 rings, and
8 segments. For the bag-of-words matching we found that
a vocabulary size of 200 visual words works well. In the
spatial matching we use 500 Ransac iterations. The interest

1http://jsesh.qenherkhopeshef.org/
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Figure 5: Results for manually cut-out hieroglyphs.
The average score is 74± 1%.

points in the BOW and in the spatial matching are based
on the contour [14, 15] of a Canny edge detector.

To simulate taking a single photograph, we use one plate
for testing and the other plates for training. We repeat the
experiment to obtain standard deviations.

4.3 Results
We give results for manually cut-out hieroglyphs recog-

nition in fig 5 and for our automatic detection approach
in fig 6. The automatic detection method finds 83% of all
manually annotated hieroglyphs, and 85.5% of the detec-
tions are correct according to the Pascal VOC overlap crite-
ria. The matching performance trend between the automatic
and the manual annotated hieroglyphs is similar, although
the single-descriptor HOG seems slightly more sensitive to
localization errors.

From the 5 descriptors, the HOOSC and the HOG are the
best performers. HOOSC is best on manually annotated hi-
eroglyphs whereas HOG is more robust for automatically de-
tected regions. This seems to indicate that flexibility in spa-
tial structure is important, given the reduced performance of
single descriptor HOG on the automatically detected glyphs.

Between the three matching schemes, the spatial-matching
performs best. Only for the Self-Similarity the BOW is bet-
ter. Generally the Self-Similarity does not perform as well
on this dataset, which could be attributed to the lack of
discriminative features such as color. The slightly better
performance of the spatial matching scheme, however, is a
factor of 8,000 times slower compared to a single descriptor
and 1,000 times slower than the BOW.

Language modeling with a lexicon decreases results on
average with 5%. This is due to a bias for smaller words and
the lack of word-separators. The N-grams always improves
results, albeit slightly, with on average 1%.

5. CONCLUSION
We presented a new Egyptian hieroglyph set with a thor-

ough evaluation of five popular image descriptors, three com-
mon matching schemes and two types of language modeling.
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Hieroglyph Recognition on a Smart Phone

Location: Pyramid of Unas(2375 BC - 2345 
BC), Antechamber

Utterance 307
Column 482: To say the words: 
A Heliopolite is in Unas, O God. 
Your Heliopolite is in Unas, O God. 
A Heliopolite is in Unas, O Re. 
Your Heliopolite is in Unas, O Re. 
The mother of Unas is a Heliopolite.

Column 483:
The father of Unas is a Heliopolite.
Unas himself is a Heliopolite, 
born in Heliopolis when Re ruled the Two 
Enneads, 
when Nefertum ruled the human beings 
...

Tomb Wall Mobile
Phone

Machine algorithms Found meta-data

Unas (wn-n-i-s)

Figure 1: From a picture of a hieroglyphic text, the App will locate and classify each individual glyph. Database
matching with known and already translated texts yield the translation and any desired amount of meta-data.

Main idea

The ancient Egyptian hieroglyphs have always been a mysterious writing system as their meaning was completely
lost in the 4th century. Despite the discovery of the Rosetta stone in 1799, it wasn’t until 1822 when Jean-François
Champollion discovered that these hieroglyphs don’t resemble a word for each symbol, but each hieroglyph resembles
a sound and multiple hieroglyphs form a word. To this day there are only a few people who are capable of reading
the ancient texts. With current technology, however, it is possible recognize these symbols such that anyone can
unveil the mysteries of the ancient writings. The main idea is illustrated in figure 1.

Current state

For my master thesis I developed a system that can automatically locate and identify Egyptian hieroglyphs. The
system is trained on more than 3000 images of hieroglyphs and achieved a classification rate of 89% on manually
annotated hieroglyphs. The algorithm starts by locating the hieroglyphs on an input image using an image saliency-
based algorithm, the hieroglyphs are cut out and compared with the images in the train set. Each comparison
between two images yields a similarity-score on which the hieroglyphs are ranked. Furthermore, the probability of
certain hieroglyphs occurring together is weighted and is used to refine the classification results. The entire process
is illustrated in figure 2.

Input

Text detection

Reading order

Locate

MatchingHieroglyph
Ranking +
Language model

Heliopolis

In

Output

...

...

...

...

Figure 2: Using detection, recognition and occurrence statistics to find the word ’Heliopolis’ (birth-place of Unas).
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Figure 3: Correct classification rate (%) plotted against the average processing time in milliseconds.

Five different image representations were used in combination with three different matching schemes in order to
evaluate the scalability for a mobile App. In figure 3 the average time it takes for a desktop computer to classify
one hieroglyph is plotted against the classification rate . Although the best performance is achieved by combining a
HOG descriptor with the Spatial comparison method (green triangle), it takes more than a minute to compute just
one hieroglyph. Needless to say that this combination is not suitable to run on a mobile phone. The best choice
is the HOG descriptor combined with the Single comparison method (red triangle), which is roughly 8000 times
faster at the cost of only 2% in classification rate.

The figure on the right illustrates the final classification result for
the HOG descriptor with the Single comparison method denoted
by the red triangle in figure 3.
The superimposed colors are identified below.

Failed to detect the hieroglyph.

Successful detection of the hieroglyph, but failed to
classify it correctly.

Successful detection but misclassified because the hi-
eroglyph is not present in the trainings set.

Successful detection and classification.

Towards the final App

The App is dependent on the training images and the available meta-data. The meta-data and the translations
have to be put into a database, which should be portable, and accessible on a mobile phone. The training images
should ideally be obtained from the locations where the App will be used. In practice though, I expect that images
obtained through a (digital) library are of sufficient quality, as long as copyright law is respected. All training
hieroglyphs need to be individually annotated with an identifier. For this, I have software readily available.

The remaining practical steps towards a fully-functional App are the linking of the meta-data and the consol-
idation of the research in a professional and high-quality smart phone App. This involves creating an intuitive
user interface and compiling versions for iPhone, Android and possibly Windows phone. Moreover, the App can be
primed with a GPS location of a pyramid or on a specific time period of the Egyptian dynasties.

In conclusion, my research has shown that a computer can recognize hieroglyphs, which makes it possible for
tourists or museum visitors to obtain a personalized and interactive tool to explore the mysteries of the ancient
Egyptian texts just by pointing a smart phone.
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