
On Generalization and Regularization

in Deep Learning

An Introduction for Data Scientists

Pirmin Lemberger
pirmin.lemberger@weave.eu

Weave Business Technology

37 rue du Rocher, 75008 Paris

weave.eu

April 10, 2017

Abstract

Why do large neural network generalize so well on complex tasks such
as image classification or speech recognition? What exactly is the role reg-
ularization for them? These are arguably among the most important open
questions in machine learning today. In a recent and thought provoking
paper [1] several authors performed a number of numerical experiments
that hint at the need for novel theoretical concepts to account for this
phenomenon. The paper stirred quit a lot of excitement among the ma-
chine learning community but at the same time it created some confusion
as discussions in [2] testifies. The aim of this pedagogical paper is to make
this debate accessible to a wider audience of data scientists without ad-
vanced theoretical knowledge in statistical learning. The focus here is on
explicit mathematical definitions and on a discussion of relevant concepts,
not on proofs for which we provide references.

1 Motivation

The heart and essence of machine learning is the idea of generalization. Put
in intuitive terms this is the ability for an algorithm to be trained on samples
S = {(x1, y1), . . . , (xn, yn)} of n examples of an unknown relation between some
features x = (x1 . . . , xp) and a target response y and to provide accurate predic-
tions on new, unseen data. To achieve this goal an algorithm tries to pick up an
estimator f̂ among a class of function F , called the hypothesis class hereafter,
which makes small prediction errors |yi − f̂(xi)| when evaluated on the train
set S. Of course such an endeavor makes no sense unless we can ascertain that
the train set error is close in some sense to the true error we would make on
the whole population. Practically this discrepancy is estimated using validation
and test sets, a procedure familiar to any data scientist.

1

ar
X

iv
:1

70
4.

01
31

2v
2

 [
st

at
.M

L
]

 6
 A

pr
 2

01
7

Again, on intuitive grounds we expect that in order to make good predic-
tions we need to select a hypothesis class F that is appropriate for the problem
at hand. More precisely we should use some prior knowledge about the nature
of the link between between the features x and the target y to choose which
functions the class F should possess. For instance if, for any reason, we know
that with high probability the relation between x and y is approximately lin-
ear we better choose F to contain only such functions fw(x) = w · x. In the
most general setting this relationship is encoded in a complicated and unknown
probability distribution P on labeled observations (x, y). In many cases all we
know is that the relation between x and y has some smoothness properties.

The set of techniques that data scientists use to adapt the hypothesis class
F to a specific problem is know as regularization. Some of these are explicit in
the sense that they constrain estimators f in some way as we shall describe in
section 2. Some are implicit meaning that it is the dynamics of the algorithm
which walks its way through the set F in search for a good f (typically using
stochastic gradient descent) that provides the regularization. Some of these
regularization techniques actually pertain more to art than to mathematics as
they rely more on experience and intuition than on theorems.

Figure 1: The architecture of AlexNet which is one of the networks used by the authors

in [1]

Deep Learning is a a very popular class of machine learning models, roughly
inspired by biology, that are particularly well suited for tackling complex, AI-
like tasks such as image classification, NLP or automatic translation. Roughly
speaking these models are defined by stacking layers that, each, combine linear
combinations of the input with non-linear activation functions (and perhaps
some regularization). We won’t enter into defining them in detail here as many
excellent textbooks [3, 4] will do the job. Figure 1 shows the architecture of
AlexNet a deep network used in the experiment [1]. For our purpose, which is a
discussion of the issue of generalization and regularization, suffice it to say here
that these Deep Learning problems share the following facts:

• The number n of samples available for training these networks is typically
much smaller than the number k of parameters w = (w1, . . . , wk) that
define the functions fw ∈ F 1.

• The probability distribution P (x, y) is impossible to describe in any sen-
sible way in practice. For concreteness, think of x as the pixels of and

1The number of parameters k of a Deep Learning network such as AlexNet can be over a
hundred of millions while being trained on “only” a few millions of images in image-net.

2

image an of y as the name of an animal represented in the picture. Popu-
lar wisdom tells us nevertheless that conditional distributions P (x|y) are
located in the vicinity of some sort of “manifold” My ⊂ Rp.

• The hypothesis class F is defined implicitly by some neural network ar-
chitecture together with one or more regularization procedures. In section
4 we shall briefly describe the more common such procedures.

As a matter of fact, from a practitioner’s point of view, Deep Learning with
its many tips and tricks [5] generalizes almost unreasonably well. The question
thus is: why? There are two kind of attempts at explaining this mystery.

1. On the one hand there are heuristic explanations, which rely mostly on
variants of physicist’s multi-scale analysis [6]. Proponents of these expla-
nations argue that the efficiency of deep learning models F has its roots
in the physical generating process P of features x (such as image pixels)
that describe objects found in nature. They claim this process is generally
a hierarchy of simpler processes and that the multi-layered is well adapted
to learn such signals. We won’t touch upon this further here.

2. On the other there are classical results from Empirical Risk Minimization
theory [7] which substantiates the idea that the class F of hypothesis
functions should not be too flexible in order for a model to generalize
properly. This is our subject.

Numerical experiments in [1] are thought provoking because they challenge the
second class of explanations which all interpret regularization as a way of lim-
iting some specific measures of class complexity. In the sequel we shall use
hypothesis class and model interchangeably.

The main results from Empirical Risk Minimization (ERM) theory which form
the necessary background for interpreting the experimental results in [1] are
presented in section 3. However, to put things in perspective we first review the
concepts of generalization and regularization in the context of the bias-variance
trade-off which is more familiar for data scientists. Section 2 and 3 are actually
logically independent but the underlying theme of the rigidity of a class F of
functions unifies them. In the context of bias-variance trade-off the rigidity of
a model is optimized to minimize the so called expected loss, whereas in the
context of ERM the rigidity of a model allows to bound population errors with
sample errors. Finally, section 4 explains in what sense the experiments in [1]
are challenging ERM.

2 The Bias-Variance Trade-off

Readers in a hurry to learn the basics of ERM can skip this section except for
definitions (1) and (3).

2.1 The Expected Loss

In the most general setting the relationship between the features x and the
target y is given by an unknown probability distribution P from which labeled

3

observations (x, y) are drawn. Assume we use a function f ∈ F from our
hypothesis class to make predictions and that we pick a loss function `(y, f(x)) ≡
`f (x, y) to measure the error between the true value y and our prediction f(x).
The population error errP [f], also called the expected loss (EL), can then be
defined as

errP [f] ≡
∫
`(y, f(x))P (x, y) dx dy

≡ EP [`f].

(1)

This is the quantity that we would ideally like to minimize as a functional
over F . The special case of a square loss function `(y, f(x)) = [y − f(x)]2 is
interesting, not because it is particularly useful in practice, but because it leads
to explicit expressions of various quantities. In this special case, the optimal h
which minimizes (1) is given by the conditional mean

h(x) =

∫
yP (y |x)dy ≡ EP [y|x]. (2)

As P will forever remain unknown to us we must contend ourselves with esti-
mates ĥS of the optimal h based on finite samples S = {(x1, y1), . . . , (xn, yn)}.
An estimate ĥS can be defined as a minimizer over f ∈ F of the sample version
of errP [f]

êrrS [f] ≡ 1

n

n∑
i=1

`(yi, f(xi))

≡ ÊS [`f].

(3)

In a frequentist perspective, the accuracy of these empirical minimizers ĥS ∈ F
can then be defined by taking an average of the EL over train sets S. We call it
the Average Expected Loss (AEL) even if this naming doesn’t particularly shine
with elegance. We denote the averaging operation over training samples S by
Ave to distinguish it from the expectation EP over labeled observations

AEL ≡ Ave[errP [ĥS]]. (4)

2.2 The Bias-Variance Decomposition

It is instructive to examine the AEL for the special case of a square loss func-
tion `(y, f(x)) = [y − f(x)]2 because it allows an explicit decomposition of the
AEL into three components that are easy to interpret. Indeed, let us denote
the Average Expected Square Loss by AESL, the best possible estimator by
h(x) = EP [y|x] and the minimizer over F of the empirical error êrrS [.] by ĥS .
A straightforward application of the above definitions leads to the following
decomposition, see for instance [3]

AESL = (bias)2 + variance + noise, (5)

4

where

(bias)2 =

∫ (
Ave

[
ĥS(x)

]
− h(x)

)2
P (x)dx,

variance =

∫
Ave

[(
ĥS(x)− Ave[ĥS(x)]

)2]
P (x)dx,

noise =

∫
[h(x)− y]2 P (x, y)dx dy.

(6)

The (bias)2 measures how much our predictions ĥS(x) averaged over all train
sets S deviate from the optimal prediction h(x). The variance measures how

much our predictions ĥS(x) fluctuate around their average value when the train
set S varies. Finally the noise measures how much the true values y fluctuate
around the best possible prediction h(x), this is only term which is independent

of our predictions ĥS(x).

2.3 Regularization as Constraints

Remember that all prediction functions ĥS belong to some hypothesis class F
that defines our model. We can control the variance by putting some constraints
on functions which belong to F , thus preventing too large fluctuations of ĥS
when training the model on different samples S. Stronger constraint means
a more rigid model and thus typically a smaller variance but a larger (bias)2.
Regularization of the model amounts to choosing the amount of rigidity that
will minimize AEL using an optimal trade-off between the bias and the variance.
For the AESL it is simply their sum which should be minimized as (5) shows.

If we consider a parametric model, each function fw ∈ F is characterized
by a vector w ∈ Rp of parameters and in particular ĥ = fŵ. One way then to
make the regularization procedure explicit in this context is to put a constraint
on w such as for instance ‖w‖2 < c (Ridge regularization) or ‖w‖1 < c (Lasso
regularization) where the constant c can be tuned for optimal rigidity. To min-
imize êrrS [fw] under such a constraint one proceeds the usual way by defining
a Lagrange function and look for its minimum

êrr
reg
S [fw] ≡ êrrS [fw] + λ‖w‖p (7)

One can show that for each constraint c there is indeed a corresponding λ for
which ‖ŵ‖p < c. Summarizing the intuition gained so far and denoting Fλ the
class of regularized functions

larger λ ⇔ smaller c ⇔ stronger constraints ⇔
“smaller” Fλ ⇔ (smaller variance and larger bias).

If we want to explicit the dependence of our minimizer on the regularization
parameter λ we use ĥS,λ.

2.4 Regularization in Practice

Practically the proper amount of regularization λ in (7) is chosen by using a
procedure such as cross-validation (CV) well known to data scientist. This

5

procedure can be viewed as giving an estimate ÂEL for the true AEL defined
in (4) which involve two distinct sampling procedures:

1. The first procedure estimates Ave in (4) by an arithmetic mean over r
train sets S1, ..., Sr that correspond to a splitting of the original data S
into r folds as depicted in figure 2.

2. The second procedure estimates the population errors errP [·] in (4) by
their sample versions êrrTj [·] on the test sets Tj = S\Sj .

Figure 2: A data set S split into r = 4 folds. The red rectangles are the test sets
Tj = S\Sj associated to the train sets Sj .

We thus define the estimate of AEL as a function of λ

ÂEL(λ) ≡ 1

r

r∑
j=1

êrrS\Sj [ĥSj ,λ]. (8)

Plotting ÊSL as a function of the regularization λ allows to find an estimator
λ̂ of the optimal rigidity of the model. When r = 1 CV amounts to splitting
the data between a train set S and a test set T . The train error êrrS [ĥS,λ] is

usually smaller than the test error êrrT [ĥS,λ] which typically has an U-shaped
graph as shown in figure 3.

Remark 1 : The bias-variance decomposition in (5) is strictly valid only for a

Figure 3: Empirical estimation of the optimal regularization λ

6

squared loss function `(y, ŷ) = |y − ŷ|2. However on experimental grounds the
heuristics behind the trade-off, namely the set of equivalences above and the
intuition behind figure 3 are expected to remain valid for other loss functions `
as well.

Remark 2 : Universality theorems for neural networks tell us that there exists
functions f , defined by even the simplest neural network (NN) architectures,
that will make the sample error êrrS [f] as small as we want when we minimize
without regularization constraints (λ = 0). In other words, neural networks can
possibly over-fit any sample S provided the network is large enough. These are
mere existence theorems however and they tell us nothing neither about how to
optimize regularization λ to minimize EL nor on our practical ability to find a
minimizer in Fλ with these constraints.

3 Empirical Risk Minimization

The whole analysis in last section rests on our ability to approximate the ex-
pected loss errP [f] = EP [`f] defined in (1) with its sample estimate êrrS [f] =

ÊS [`f] defined in (3). But how good exactly is this estimate? This is the ques-
tion we examine in the current section. It is also the subject matter of Empirical
Risk Minimization in general.

We expect the discrepancy between the population expectation EP [h] of a

function h and its empirical estimate ÊS [h] to depend on the class of function
H from which we pick h. Intuition suggests that if the set F is too flexible
then there are high chances that our empirical estimates could be way off the
population expectation. There are several ways to make such hand waving
statements rigorous but they all rely on some measure of complexity of a set
H of functions. We restrict in this paper to the Rademacher complexity for its
intuitive character and because its one of the more recent concepts.

3.1 Rademacher Complexity

To introduce this concept consider a class H of real valued function h defined on
an arbitrary space Z and let S = {z1, · · · , zn} be a set of examples zi drawn in-
dependently from a distribution P over Z. Our aim is to measure how well func-
tions in H are able to match any prescribed binary sequence σ = {σ1, . . . , σn}
when they are evaluated on samples S drawn from P . How well a single func-
tion h fits the prescribed sequence σ on the sample S can be defined as the
correlation 1

n

∑n
i=1 σih(zi) between σ and the values h(S) ≡ (h(z1), ..., h(zn)).

It equals 1 for a perfect fit between h(S) and σ. How well the class of functions
H as a whole can fit a specific sequence σ on the sample S can naturally be
defined as the highest correlation we can achieve using functions h ∈ H

sup
h∈H

(
1

n

n∑
i=1

σih(zi)

)
. (9)

A measure of how well functions in H can fit any sequence σ can be defined
as the expectation Eσ of (9) over sequences σ (sampled uniformly). This is by

7

definition the empirical Rademacher complexity of the class of functions H on
the sample S

R̂adn(H) ≡ Eσ

[
sup
h∈H

(
1

n

n∑
i=1

σih(zi)

)]
. (10)

Finally, the Rademacher complexity of the class H is defined as the expectation
of (10) over samples S of size n drawn from P

Radn(H) ≡ EP [R̂adn(H)]. (11)

If we assume that functions h ∈ H are binary classifiers, which means h(z) ∈
{−1,+1}, we see that (9) implies 0 < R̂adn(H) ≤ 1. When R̂adn(H) is close
to its upper bound 1 the binary classification model defined by H can literally
“store” any binary assignment σ to the examples in S.

3.2 Bounding Population Expectations

The Rademacher complexity is the key ingredient for bounding a population
expectation EP [h] with an empirical average ÊS [h]. Assume we draw samples
S = {z1, . . . , zn} of size n from a distribution P and that the functions h we
are interested in belong to a class H. Chose a small positive number 0 < δ < 1.
Then the following bound holds with a probability larger than 1 − δ for any
h ∈ H, see [7]

EP [h] ≤ ÊS [h] + 2 R̂adn(F) + 3

√
ln(2/δ)

n
. (12)

The second term on the right hand side substantiates our intuition that the
discrepancy between the population expectation EP [h] and the empirical ex-

pectation ÊS [h] can grow when the set of functions H becomes more and more
flexible. The last term is a price we pay for requiring small chances to be wrong,
fortunately it grows only logarithmicamlly as δ → 0.

3.3 Application to Binary Classification Errors

Let us apply (12) to a binary classification problem. In this case the set Z is
simply the set Rp × {−1,+1} of observations z = (x, σ). As errP [f] = EP [`f]
and êrrS [f] = ES [`f] the functions whose expectations we want to bound are
the errors function `f associated with binary classifiers f : Rp → {−1,+1}.
Therefore here H = {`f |f ∈ F} is the class of loss functions. We select the
miss-classification rate `f (x, σ) = If(x) 6=σ as our loss function. Using If(x)6=σ =
[1− σf(x)]/2 and the (almost) obvious property, see [7]

R̂adn(aF + b) = |a| R̂adn(F)

we get R̂adn(H) = 1
2 R̂adn(F). Using (12) we can thus express our basic in-

equality directly in terms of the complexity of the hypothesis class F

errP [f] ≤ êrrS [f] + R̂adn(F) + 3

√
ln(2/δ)

n
(13)

with probability > 1− η.

8

Inequality (13) is the basic prerequisite for interpreting the
challenging results in paper [1]

Remark 1: It is important to realize that inequality (13) holds, of course, uni-
formy for any f ∈ F . In particular f need not be a minimizer of the expected
loss which was our main concern in section 2.

Remark 2: Inequality (13) assumes that f is selected from a fixed class F
whereas in the previous section we empirically estimated an optimal rigidity λ̂
using a train set S and test set T . Although it is very tempting (and morally
right!) to substitute Fλ̂ for F in (13) strictly speaking this is not correct.

For parametric models the next step would be to bound R̂adn(F) as a func-
tion of the sample size n and the number k of parameters (w1, . . . , wk) defining
fw ∈ F . To our knowledge there are no explicit bounds of this kind. There
exists however an interesting bound for binary classification models which ex-

emplifies the asymptotic behavior of R̂adn(F) as n→∞ for a fixed class F . It
involves an alternative notion of complexity namely the VC dimension d of F
defined as follows: it is the size of the largest set S = {x1, . . . ,xd} such that
for any binary sequence σ = (σ1, . . . , σd) we can find an f ∈ F that takes these
values on S. The bound reads

R̂adn(F) ≤
√

2d lnn

n
, (14)

which vanishes when the sample size n grows larger which should come as no
surprise.

4 Regularization for Deep Neural Networks

Now asymptotic behavior is of interest for mathematicians but data scientist
are truly interested in finite samples! Here we can only speculate about the

value of R̂adn(F) as a function of the size n of the sample and the number k of
parameters. Or we can make experiments. In the context of Deep Learning the
case of particular interest is n� k. Recall the following:

Classical interpretation of regularization: Regularization is an explicit
or an implicit constraints on predictors f that shrinks the Rademacher com-
plexity of a neural network model F towards zero so that inequality (13) nearly
saturates.

The most common such mechanisms in Deep Learning are, see [3, 4]

• L2 penalty on weights was shortly discussed in 2.3

• Dropout consists in randomly dropping some links of the neural network
during training thus preventing the model to adapt to closely to the train
data.

• Early stopping consists in monitoring the prediction error on a validation
set while performing gradient descent and stopping it when the validation
error start to increase. Conceptually it is close to the Lp penalty [3].

9

• Data augmentation is used in image recognition problems. The original
data set is augmented with artificial images obtained by distorting (the
size, the orientation, the hue of) the original images. It thus acts to

increase n without changing F , thus reducing R̂adn(F) as (14) illustrates.

• Implicit regularization effectively shrinks the class of F as a conse-
quence of the dynamics of how the algorithm explores F when optimizing
the network parameters w. Why this happens is more mysterious than
for the previous techniques.

The numerical experiments described in [1] involve large neural networks with
a number of parameters p > 1 000 000 such as AlexNet and deep Multilayer Per-
ceptrons. The data sets S = {(x1, y1), . . . , (xn, yn)} that where used are image
data sets such as CIFAR-10 which contains n = 60 000 images categorized in 10
classes. The authors also trained the models on pure noise images.

They then created artificial data sets Sσ = {(x1, σ1, . . . , (xn, σn)} in which
the labels σi where generated randomly. They noticed the surprising fact that
for these large networks, even without any explicit regularization mechanism
switched on, the train error êrrSσ [hSσ] was close to zero (< 0.18%) for any bi-
nary assignment σ and even for images made of random pixels. Assuming this
multi-class problem is cast into series of equivalent binary classification prob-
lems this strongly suggests:

Fact 1: The complexity R̂adn(F) of these large models is very close to 1. In
other words these large networks are able to “learn” or “store” these artificial
data sets almost perfectly. But remember:

Fact 2: Deep Learning models are known to generalize very well in practice.
This is the reason why people use them! In other words minimizers of the sam-
ple error êrrS [.] are also verified to usefully approximate minimizers of the true
population error errP [.].

Conclusion: Considering the basic bound (13), one way to reconcile fact 1
and fact 2 is simply to give up the classical interpretation of regularization that

pretends its role is to shrink the model complexity R̂adn(F) towards zero. An-
other possibility is that we need more refined bounds than (13). Remember that
this inequality assumed strictly nothing about the distribution P from which
samples S are drawn. It should be no surprise then that these kind of bounds
are way too rough. They really don’t take into account at all what makes the
specificity of deep neural networks! The whole point of using techniques such as
deep learning is that the models F they define are somehow well adapted to the
actual samples S that nature produces. What is a stake is better understanding
of the subtle interplay between the dynamics of the learning process of a mul-
tilayered network, which defines an effective F , and the nature of the physical
processes P that generate physical samples S on which they are trained. But
for the moment deep neural networks keep their mystery.

10

Acknowledgments

I would like thank my colleagues Olivier Reisse, the founder of Weave Business
Technology entity, and Christophe Vallet who is leading the Weave Data entity
for their consistent support for all activities at the Weave data lab where I work.
I would also like to thank Marc-Antoine Giuliani who is an expert in statistical
learning theory and data scientist at the Weave data lab for pointing our the
many intricacies of his field to a somewhat carefree physicist like me.

References

[1] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals,
Understanding Deep Learning Requires Rethinking Generalization, ICLR
2017, arxiv.org/abs/1611.03530v2.

[2] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol
Vinyals, Understanding Deep Learning Requires Rethinking Generaliza-
tion, OpenReview.net, https://openreview.net/forum?id=Sy8gdB9xx&

noteId=Sy8gdB9xx.

[3] Christopher M. Bishop, Pattern Recognition And Machine Learning,
Springer-Verlag New York Inc, second edition, 2011.

[4] Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT
Press, 2016, http://www.deeplearningbook.org.

[5] Nikolas Markou, The Black Magic of Deep Learning - Tips and Tricks for
the practitioner, EnVision blog, http://nmarkou.blogspot.fr/2017/02/

the-black-magic-of-deep-learning-tips.html.

[6] Henry W. Lin (Harvard), Max Tegmark (MIT), Why does deep and cheap
learning work so well? https://arxiv.org/abs/1608.08225v2.

[7] Maria-Florina Balcan, Rademacher Complexity, Lecture Notes in Ma-
chine Learning Theory CS 8803 - Georgia Tech, http://www.cs.cmu.edu/

~ninamf/ML11/lect1117.pdf

11

https://openreview.net/forum?id=Sy8gdB9xx¬eId=Sy8gdB9xx
https://openreview.net/forum?id=Sy8gdB9xx¬eId=Sy8gdB9xx
http://www.deeplearningbook.org
http://nmarkou.blogspot.fr/2017/02/the-black-magic-of-deep-learning-tips.html
http://nmarkou.blogspot.fr/2017/02/the-black-magic-of-deep-learning-tips.html
https://arxiv.org/abs/1608.08225v2
http://www.cs.cmu.edu/~ninamf/ML11/lect1117.pdf
http://www.cs.cmu.edu/~ninamf/ML11/lect1117.pdf

	1 Motivation
	2 The Bias-Variance Trade-off
	2.1 The Expected Loss
	2.2 The Bias-Variance Decomposition
	2.3 Regularization as Constraints
	2.4 Regularization in Practice

	3 Empirical Risk Minimization
	3.1 Rademacher Complexity
	3.2 Bounding Population Expectations
	3.3 Application to Binary Classification Errors

	4 Regularization for Deep Neural Networks

