

Reference Manual and User Guide

Serge Rosmorduc

Last Update on 2020/06/18
PDF version 1.2 2022/01/12

2/72

Table of Contents

Foreword ... 6

JSesh and Word processors .. 7

Overview of the JSesh Window ... 8

Editing texts ... 9

Mouse Editing .. 9

Setting a cursor position .. 9

Inserting signs with menus and palette .. 9

The Sign Button .. 9

The Sign Palette .. 9

Selecting a zone .. 11

Adding a sign chosen from a menu .. 11

Grouping signs .. 12

Ligatures .. 12

Complex ligatures ... 12

Editing groups .. 13

Keyboard Editing.. 13

Entering hieroglyphs .. 13

Phonetic codes .. 14

Grouping signs .. 15

Exempli gratia .. 15

Direct Manuel de codage entry ... 15

Glossary Editor .. 16

Complements ... 17

Shading/Hatching .. 17

Shading part of a quadrant ... 18

Current options to do some tricky shading 19

Short Texts and Annotations ... 20

Document presentation ... 22

Document preference ... 22

New document preferences ... 22

Graphical export ... 23

Copy and paste : configuration .. 23

3/72

Format choice ... 23

Fine settings ... 24

Cut and paste limitations .. 25

Advanced "copy" menu ... 25

Possibility to paste hieroglyphic back text to JSesh 25

Principles and problems ... 25

Mellel/Nissus writer and PDF ... 26

NeoOffice (OpenOffice) and RTF text ... 27

Others ... 29

Printing ... 29

Exporting PDF .. 29

Exporting as JPEG or PNG Pictures ... 29

Exporting RTF .. 30

Word processors specific issues ... 30

Format choices for Mac applications ... 30

Format choices for Windows applications 30

Format choices for Linux applications ... 30

Searching Texts .. 31

Searching in the current document ... 31

Searching for Hieroglyphic Text ... 31

Advanced Search for Hieroglyphic Text ... 32

The "*" wildcard .. 32

The "[...]" button .. 33

Variants in searches .. 33

Search in non-hieroglyphic texts .. 34

Search in folders .. 34

Tips and tricks on hieroglyphic text encoding...................................... 36

Encoding hieratic texts ... 36

Sign layout .. 37

Transliteration .. 38

Using a unicode font ... 38

Current problems with unicode fonts.. 39

Not using unicode .. 40

Easy way with the old font ... 40

Using your own MdC-compatible fonts ... 41

4/72

JSesh Menus Explanation ... 42

Menus .. 42

Application menu (mac only) .. 42

File .. 42

Edit ... 42

Group .. 42

Sign .. 42

Windows .. 42

Base Hieroglyphs .. 42

Extending the sign list ... 43

Introduction .. 43

Importing new glyphs ... 43

Choosing a folder for your signs .. 43

Actual sign insertion .. 44

Importing drawings ... 44

Fine tuning your signs .. 45

Attaching codes to drawings, and inserting them in JSesh 45

Alternative system for sign insertion .. 47

Creating a sign with Inkscape .. 47

Introduction ... 47

A few notions about vector drawing ... 47

Creating a background image ... 48

Draw the outline ... 48

Fit the outline ... 49

Working on details... 49

Ptah's beard ... 50

Ptah's necklace counterpoise .. 51

Choosing the right line width .. 53

Uniting everything ... 53

Adding other details .. 53

Final comments... 54

Advanced Information in Inkscape ... 55

Introduction ... 55

Ligature zones .. 55

Ligature zones gravity ... 56

5/72

Parts of SVG understood by JSesh .. 56

Appendix A. The current sign description system 57

Starting the Sign Description Editor .. 57

Editing sign descriptions ... 57

The Main Sign Info Editor Window ... 58

The Transliteration Editor ... 59

Types .. 59

Part of sign editor.. 60

Variant editor ... 60

Description editor .. 61

Tag list editor ... 62

The Tag creation window .. 62

The Menus ... 63

Contributing your sign description to JSesh 63

Appendix B: Technical information on the sign description file 64

Sign description DTD .. 65

Developpers' guide ... 69

Getting the code .. 69

Compiling the code... 69

How to.. 70

Add a hieroglyphic edition field in a SWING interface 70

Produce a bitmap picture from an MDC text 70

6/72

Foreword

You are currently using JSesh, which is both an editor for hieroglyphic texts and a
toolset for manipulating hieroglyphic texts in Java. As a user, you are probably more
interested in JSesh editing and printing capabilities.

JSesh covers most of the Manuel de Codage and can read files coming from a number
of other softwares, as Winglyph and Tksesh. Macscribe compatibility has not been
tested, and is probably not full.

The Manuel de codage is a standard which was created in 1984 for describing
hieroglyphic texts in ASCII. It's a bit old by now, and there are various suggestions to
improve it (or replace it). JSesh will propose a number of extensions. JSesh also allows
you to edit hieroglyphic texts, either by typing Manuel de codage codes, or by a more
intuitive menu system. Some Manuel de codage features are not available yet through
the menus, but you have always the possibility of writing the code directly.

JSesh has a number of output capabilities. It can print a file1, or save it in various
interesting graphic formats : pdf, jpg, or even as set of html files. Among the possible
outputs, one must note the WMF (windows metafiles output). Metafiles are vector
images, which means they are well suited for printing. WMF files can be read by almost
all word processors.

JSesh, contrarily to tksesh, is not primarily a text database. The text database
capabilities of tksesh will be added to JSesh in the future, but I thought it would be
better to provide a nice editor/displayer first, in order to involve people.

1 Well, it should, one day. See

http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:printing

https://en.wikipedia.org/wiki/Manuel_de_Codage
http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:printing

7/72

JSesh and Word processors
A detailled chapter is devoted to how to use JSesh with various word processors. Here
I will only make a small list, and give suggestions.

• MS WORD : your mileage may vary! This is not Microsoft bashing, it's a

simple constatation. JSesh exports its hieroglyphs as pictures, and Word
doesn't like them very much. To be honest, it depends on the version of Word.
Recently (as of 2016), I had the pleasant surprise to see that RTF+EMF was
now correctly handled by Word 2011 on the Mac. However, I have had many
problems with Mac OS versions of Word. Word 2008 tended to mix the pictures.
Signs would appear in unexpected parts of the document. Later versions of
Word on the Mac seem to have dropped Microsoft's own versions of its own
format. In the latest versions of Word, the picture formats supported by the
Mac OS and Windows versions of Word are not the same. Which means the
files are not portable. A random quote from an angry user on
http://www.officeformachelp.com/ : “It is true that Microsoft seems generally to

be against anything that would make printing documents on Win & mac
compatible. In addition to this problem, on Win you must use .emf for vector
graphics, while on Mac, pdf. Its only the 11th version of Office.”

• LibreOffice, OpenOffice and NeoOffice (Mac) are good, and provide a
reasonable compatibility with Word. They respect the pictures you give them,
and don't modify them. LibreOffice has a nicer screen display. To be honest, I
like the Word processing part, but the “slide” presentation system (Impress) is
not really good. OpenOffice (and co) have the really nice advantage that
everyone can have the same version of the software.

• Mac-Specific software like Mellel give good results, but have a hard time
exporting their text to the rest of the world, especially when the said text contains
pictures. So it depends on what you want to do with your texts.

http://www.officeformachelp.com/

8/72

Overview of the JSesh Window

(pre-5.4 version)

Currently, JSesh's working space contains a menu, a main editing window (the
“hieroglyphic window” above), and a number of fields.

The field termed “Manuel de Codage field” contains the Manuel de codage code for
the current line of text (the one pointed by the cursor).

You can modify directly this code ; the field termed “current sign code” is used in
interactive editing to show the code for the currently edited text. the field directly right
to it is a message field. It isn't of much use currently.

9/72

Editing texts

Mouse Editing

Editing with the mouse is a very simple, but slow process. Usually, you will mix it with
one of the two others.

Setting a cursor position

To set the current cursor position, simply click on the hieroglyphic panel.

Inserting signs with menus and palette

The faster way to insert signs is to use the keyboard [the section called “Keyboard

editing”], and type either Manuel de codage codes or translitteration. However, it is
possible to select the signs from either a menu or from the sign palette

The Sign Button

The Sign button only list the basic signs, from the usual Gardiner categories (with the
extra category Ff for signs taken from hieratic. This category was used in the original

Gardiner fonts). The Sign button is placed in the lower part of JSesh windows.

The Sign Palette

The Sign palette was created to propose a better solution than the menu. It can display
all available signs without any problem, and it features advance search options.

To open the Sign palette, use the menu Tools/Hide Show Hieroglyphic Palette.

The basic usage of the palette is quite simple: you select the family of signs you are
interested in (using the dropdown list (b)), and then you double click on the sign you
want to insert in the panel (e).

Not all signs are displayed (normally, the palette doesn't display variant signs). To
display all signs from a family, check the “show all” box (h). If you click only once on a
sign, the sign will be selected. Information about the sign (its code, its values, etc.) will
be displayed in the panel (i). More information will be available if you select the “Sign
Description” tab (a).

Please note that most information in JSesh is here for searching purposes. In
particular, details about what the values means are not fully displayed. For instance,
we use “bin” as a value for G37, but only because it is a convenient mnemonic. In

reality, the internal format of JSesh allows to store more information about what the
values are. Another example is Y1; for this one, we will keep the “sS” mnemonic, and
add the probably better “sXA”. More scientific information on the sign will belong to the
“Sign Description” (which is quite empty right now).

10/72

Advanced controls

▪ b The “family selector” holds two special families: “user palette” and “last used
signs”. See below for more information on user palette. “Last used signs”
contains all signs selected by the user in the palette during this session. It's
supposed to be usefull if the same signs appears often.

▪ c The “sub family” control allows to restrict the listing to the signs which share
certain characteristics. For instance, if you have selected the “God” family, you
can restrict the search to “hawk-headed” gods.

▪ d the translitteration filter allows to look for signs using their translitteration. The
translitteration used may be the phonetic value of a sign (for phonograms and
ideograms), or may be a value typical of a word the sign appear in. If you check

the “show all” box, all values known to JSesh will be used (TO BE
COMPLETED).

▪ f User palette selector. If you check this box, the currently selected sign will be
added to the user palette.

11/72

▪ g If you click on the “part of” button, Jsesh will display all signs that contain the
currently selected sign (well, if he knows). in the future, it may use the “select
all” box to choose how far to go. Each further click will extend the set of
displayed signs (the next one will list parts, and parts of parts, etc.)

▪ j select known variants of the current sign. The term “variant” is here used quite
loosely. It may be real linguistic variants (as Z7 is a variant of G43, for instance),
or it may means “signs which are graphically based on another one”. For
instance, A17A is a variant of A17 in this meaning, even if its linguistic uses are
quite different. Each further click will extend the set. A second click would add
variant of variants, etc…

User palette

The user palette allows a user to compose his own list of prefered signs. Adding a sign
in the palette is simple: you simply select the sign, and check the “user palette control”
(f) in the bottom part of the palette. The content of the user palette is automatically

saved, so you will get your palette back next time you start JSesh. Removing a sign
from the palette is as simple as selecting it and unchecking the “user palette” control.

All signs selected for inclusion in the user palette will be displayed when the “user
palette” special family is selected.

You can help

You will find a description of the files used by the palette as an appendix to this
documentation. If you have a good knowledge of hieroglyphs, you can help improving

JSesh by extending the informations it uses. Mail the author (serge.rosmorduc AT
qenherkhopeshef.org) for more information.

Selecting a zone

The selection stands between the cursor, and what is called the mark. The whole
selection is drawn in light blue. Some operations are possible only if a zone of text is
selected.

To select a zone of text, you can use a number of ways :

▪ Mac style : shift-click on a point in the text ; the whole text between this point
and the cursor will be selected ;

▪ Unix style : same, but using right-mouse button. This might change one day if I
decide to use contextual menus.

▪ keyboard selection : shift + left or right arrow selects and move.
▪ mouse dragging

Adding a sign chosen from a menu

The Hieroglyphs menu gives access to the signs of the standard Gardiner list. Simply
select a sign, and it will be added at the cursor position.

12/72

Grouping signs

This is done using the Text manipulation menu. You can group signs into vertical or
horizontal groups, by selecting the signs (or quadrants), and choosing either “group
horizontal” or “group vertical”. Note that you can break the groups with the menu
“explode group”. All kinds of groups can be “exploded”.

“Group Horizontal” has the keyboard shortcut “Ctrl-h”

“Group Vertical” has the keyboard shortcut “Ctrl-g”

Ligatures

JSesh knows a number of “special groups”, or ligatures, which are beyond the
capabilities of “square” quadrants. For instance, “w” and “t” will likely be arrange like

that: . To achieve such a layout, select the signs you want to ligature, and use the
menu Text manipulation/Ligature elements.

However, JSesh doesn't know how to ligature all groups, even though it knows some

rather “sportive” ones: ligaturing gives .

Complex ligatures

Some ligatures can be considered as the ligature of a sign and a group.

Let's consider the group . It can be understood as a ligature between the

sign and the group . Such ligatures can be built with the menus Text
manipulation/Ligature group with hieroglyph or Text manipulation/Ligature hieroglyph
with group. In the first case, the group is “in front” of the hieroglyph, in the second case
(which corresponds to our example, the hieroglyph stands “in front of” the group.

For each sign, JSesh tries to find two areas. One for “front” ligatures, and one for “back”
ligatures. Some sign have their “ligature area” already set. For other signs, it is

computed automatically. To tell the whole truth, JSesh tries to see if it can fit a
rectangle in the bottom-left area of signs (for left-to-right orientation). This area would
be the “start” area. For the “end” area, two places are examined. First, the top-right
corner of the signs (like in the ligature, and then a large area in the bottom left, like in

the case. Signs creator can provide other areas, like in .

Please note that a sign can be ligatured at the same time with a group before it and
with a group after it.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=fed093&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fw_and_t.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=57df19&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fstp_n_ra1.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=4c9605&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fstp_n_ra2.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=4d152c&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fmr_xAswt.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=72f962&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fns.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=5b4492&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FxAswt.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=41038e&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FHm_kA.png

13/72

Editing groups

When you meet a very specific group, one-of-a-kind type, in which you want to place

the signs exactly where you want, you can select the Edit group menu entry. The edited
group will be either the selected group, if there is a selection (overlined in blue), or the
last group before the cursor, if there is no selection.

It will open the following window :

You will be able to move the signs, to scale them, and to rotate them. Note that scaling
and rotations are triggered by two buttons. To move a sign, click on it and drag it where
you want. To rotate or scale it, click and drag one of the small red boxes around the
currently selected sign.

Keyboard Editing

Entering hieroglyphs

To enter signs with the keyboard, click in the main window (the one that displays the

actual hieroglyphic text, not in the one with the so-called “Manuel de codage”). When
you type a letter or a number in the main window, this letter or number appears in the

small panel in the bottom left panel of JSesh. This allows you to type Manuel de

codage codes.

▪ Lots of signs have phonetic codes, which correspond to their translitteration;

▪ all signs are accessible through their code in the Gardiner's grammar. To find
the code, you can push the Basic Hieroglyphs button or look at the hieroglyphic
palette.

Once the code is typed, you must validate it. To validate, type one of space, ':', '*', '-',
enter

The sign will be added to the hieroglyphic text.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=bd3d61&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FgroupEditor.png

14/72

Phonetic codes can correspond to more than one sign. For instance, iw corresponds

to one of , , , and . The “official” sign for iw

is according to the manuel . However, you might want another sign. In this
case, it's quite simple : press the space bar, and the system will circle through the
possibilities, one at a time.

Your last choice will be retained the next time you type the code in this session.

Phonetic codes

The uniliteral signs have the following codes, which are also used when typing
transliteration:

Code Letter

A ꜣ (aleph)

i i̓ (yod)

y y

a ꜥ (ayin)

w w

b b

p p

f f

m m

n n

r r

l l

h h

H ḥ

x ḫ

X ẖ

z z

s s

S s

q ḳ

k k

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=b7ad57&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fiw1.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=65ca57&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fiw2.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=7c68f0&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fiw3.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=e62c81&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fiw4.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=80eab4&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fiw5.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=b7ad57&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fiw1.png

15/72

Code Letter

g g

t t

T ṯ

d d

D ḏ

W is also used for Z7, M for Aa15, and N for S3.

Grouping signs

The sign you type when validating can be used to group the hieroglyphs. Both 'space'
and '-' have the simple effect that the next sign will be added in a new cadrat.

▪ ':' and '*' will add the next sign respectively below and besides the last sign
entered.

▪ 'enter' has two consequences : it validates a sign (if there is one), and it adds a
new line.

If no code has been entered (that is, if the code window is entered), the previous
grouping sign type will group the last two cadrats. It looks a bit strange, but you will
see that it's quite natural. you can use it to group signs as an afterthough.

Exempli gratia

If you want to type the word , you can :

▪ type 'p', then '*', 't', ':', 'pt'
▪ type 'p', 't', then '*', space (which kind of validates the '*'), pt, ':', and space.

Direct Manuel de codage entry

When a text is displayed, the Manuel de codage codes for the current line are shown
in a text field :

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=f926ce&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fpt.jpg

16/72

This field is not here just for the sake of the Manuel beauty. In fact, you can edit its
content, and the text in the hieroglyphic window will be modified accordingly when you

validate (by typing the Enter key). Note that incorrect Manuel de codage code will be
refused.

I tend to use this system only in a few cases (for instance, when fixing errors in 'latin'
text.

Glossary Editor

The glossary editor allows you to create precomposed groups (even words or
sentences) and retrieve them easily for quick typing.

Suppose you would like to be able to type the article pꜣ in its hieratic form, which is
G41-A1, simply by typing “pA”. Here is what you need to do: type the text for the group

you want. select it, and call “Edit/Add Selection to glossary” :

The glossary editor window opens, and all you need to do is to type the code you want
to use, and then push the “add” button.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=fbde85&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FglossaryA.png

17/72

As soon as the group has been added, you can insert it by typing its code, just like you
type the code of a sign. In this precise case, as we used “pA” as code, and “pA” allows
to type G41 and G40, the space bar will allow you to cycle through all solutions.

Complements

▪ you can remove entries by clicking the Remove button which follows them in

the Glossary editor.
▪ you can open or close the glossary editor by using the Window/Glossary menu

entry.

Shading/Hatching

Shading/Hatching is currently a bit complex. The bad news is that it will become worse.

As an option (look at File/Document properties), shading can be either the classical
“cross-line shading” you can see in old publications, or a light gray background.
Although many users prefer the first one out of tradition, the second is indeed
typographically superior. Cross-line shading makes signs difficult to read, which is not
the case of the light gray background.

Shading comes in a number of flavors. This is due to the Manuel de Codage's history.

A good summary is available in the JSesh sample document (the one which used to

appear when you started JSesh, and which is now included in the JSesh text library
(in the next version, that is)).

But, to tell the whole story:

▪ Originally, there where two shading systems. The first one shaded a whole part

of a text. It's the shading you get when you ask “shade zone”. In JSesh, it works
on the selected text.

▪ The second shading system used shading symbols, used exactly as
hieroglyphs. In the original manual, cadrats where shaded by overwriting them
with the corresponding shading symbols. You get them from the “shading

symbol” menu entry. Thus, can be obtained by typing “wn”, then adding a

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=d395e6&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FglossaryB.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=ad316e&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fbasic_shading.png

18/72

shading symbol, and stacking both verticaly. JSesh understands this kind of
shading since the beginning, but a menu to use is was only made available in
version 2.10.

▪ then, around 1994, a new shading system was proposed, which covered most

simple cases. It's the one you get with the Shading menu. It applies to the
current group (the group in front of the cursor), and can be used to shade any
quarter of a group.

▪ MacScribe is able to shade quarter of individual signs. In MacScribe,
“p##13*p:pt” would have the “p” sign half shaded. A variant of this system is

understood by JSesh. The external MacScribe converter software
understands this.

▪ A “free” shading system would be nice too. In this case, the outline of the shaded
zone would be freely drawn. I plan to add it too (taking advantage of the group

editor). But currently, if you need to be that precise, the only option JSesh gives
you is to export your file in some convenient format (for instance SVG) and to
modify it there.

Shading part of a quadrant

The menu entry in Text Manipulation/Shading can apply to a selection. That is, you
can shade the top part of all groups in a selection in one operation (previously, you
had to shade each group individually).

More, for people who type texts with lots of lacunas, I have added a popup menu. If
you press the “#” key on your keyboard, this menu will appear. You can navigate in it
with the keyboard or select entries by a specific letter.

Here is an example. I have selected a part of the text and pressed “#”. The popup pops
up.

Now I can select the shading I need by various means (it depends on your computer
system). For instance, I can type “3”, move in the menu with the keyboard arrows or
select the menu item with the mouse. Then, the whole selected text is shaded:

http://jsesh.qenherkhopeshef.org/software/MacScribeImporter.zip
http://jsesh.qenherkhopeshef.org/software/MacScribeImporter.zip
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=734cc1&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fpartial_shading1.png

19/72

Current options to do some tricky shading

If you want, for instance, to add a shaded zone over the middle of a sign, you can now
do it. In fact, it's the reason why I added a menu to retrieve the “old” shading symbols.

Let's say you want to create . You first need to enter both signs. The shading is
added through the menus :

Then, you simply need to use the group editor:

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=30cd9b&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fpartial_shading2.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=a0be6a&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fshading_pal_2.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=cc6121&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fshading_pal_1.img_assist_custom.png

20/72

You should probably enter the shading symbol first, and then the glyph. This way, if
your final output format doesn't understand transparency, you will still have a correct
rendering.

(By the way, ecdotic marks like […] are also glyphs. As such, they can be moved in
the group editor).

Short Texts and Annotations

It's quite usual to add small remarks, like “tr” or “sic”, or footnote references, like “(a)”,

in hieroglyphic texts. To do this in JSesh, use the menu entry Edit/insert short text.

Now, the text you type will behave just like a hieroglyphic sign. It will have a certain
size, but it can be part of a ligature or a group, which allows you to avoid disturbing the
other signs layout.

Example:

Suppose I want to add “(a)” after a G17 sign. I use “Edit/Insert Short Text”, and they I
type the correct text.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=cd23a4&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fshading_pal_3.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php/doc:en:specificproblems:short1.png

21/72

But the text appears after the sign:

I select both the hieroglyph and the text, and I use “Group/Ligature hieroglyph and
group”. And voilà:

Alternatively, you may use “Group/Edit Group”:

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php/doc:en:specificproblems:short2.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php/doc:en:specificproblems:short3.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php/doc:en:specificproblems:short4.png

22/72

Document presentation
JSesh allows you to make a number of choices about the way the document will be
displayed. You can change line spacing, sign sizes, and so on.

From JSesh 5 onward, most display information are saved with each document.
Changing them will only modify the currently edited text.

Document preference

(tbs)

New document preferences

(tbs)

23/72

Graphical export
As of version 5 and later, copy and paste can be used to transfer data between Jsesh
and other applications. You can :

▪ Copy/paste between different windows in JSesh itself.
▪ Copy text and signs to a word processor (it works with both OpenOffice and

Word)

Copy and paste : configuration

Often, one needs two sizes of signs in an application: one for main text, and a smaller

one for footnotes. JSesh allows one to keep two configurations for copy and paste.
The current size can be selected in the edit menu : simply choose “copy: small size”,
“copy: large size” or “copy: wysiwyg” (the latter should be used if you want the copied
glyph to retain the same disposition as the original ones).

Format choice

A cut and paste involves two software : JSesh and your word processor (Word,

OpenOffice, etc.) Now, JSesh will propose a number of different *formats* to your word
processor, letting it pick the one it likes the most. To control what will be proposed by

JSesh, you can use the Format Choice dialog (in the preferences).

I do most of my testing with OpenOffice and LibreOffice. They are not perfect, but
they tend to process pictures and unicode correctly, so I strongly encourage their use.
Their files tend to be very portable from one computer to the other. No problem of
different versions of the word processor there.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=7017de&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FformatChoice.img_assist_custom.png

24/72

▪ RTF : probably the most versatile choice for now. Works (almost) everywhere
and give reasonable results, especially for hieroglyphs mixed with alphabetic
text. Used to be problematic with some versions of Word on Mac, but has
recently (2016) improved.

▪ PDF : currently the most accurate choice. As far as I know, only Mac OS X
supports PDF cut and paste, and few software understand it. For instance, Word
2004 doesn't. Word 2008 does, however. Textedit has the bad idea of accepting
the PDF cut and paste, but transforming the result into a bitmap.

▪ bitmap : gives a (currently) low resolution bitmap, suitable for web pages for
instance.

▪ plain text : will copy the Manuel de Codage encoding to the clipboard.

For information specific to your word processor, see the chapter on Word processors
issues

Fine settings

The settings for “large size/small size/wysiwyg” can be changed in the preferences.
There are two tabs, one for “small” and the other for “large” size. The “wysiwyg” mode
uses the “large size settings”.

“Cadrat height” changes the size of the pasted hieroglyphic text. “Export mode” allows
you to chose how hieroglyphic text will be pasted in RTF exports. There are three
options:

▪ as one large picture The whole selected text will be pasted in your word
processor as a single picture. This is fine for text in columns, for instance, or if

you want to keep the graphical layout. It also seems that most word processors
prefer to handle large pictures than lots of small ones.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=e055e2&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fcut_and_paste_preferences.img_assist_custom.png

25/72

▪ grouped cadrats Adjacent hieroglyphic cadrats will be grouped in one picture.
The resulting text will alternate normal text and large pictures.

▪ one picture per cadrat The pasted text will contain normal text and pictures for
the hieroglyphic text. But then, each cadrat will be rendered as one picture. This
is fine for line-cutting, and might be interesting if you mix text and hieroglyphs.

Cut and paste limitations

Due to technical issues, we have put a limit on cut and paste. It's not possible to paste
very long texts in a word processor (you can “export as RTF instead”). We will try to
improve it, but we think it's a minor nuisance, as one typically paste small parts of
hieroglyphic texts rather than whole large document (the limit is currently 1000
cadrats).

Don't hesitate to write to the author () about

this (or other problems with JSesh).

Advanced "copy" menu

Normally, in JSesh, you chose the format you want for copy/paste in the preferences
menu. But in some cases, you might want to copy your text in a specific format which
is not the one you chose. Instead of going back to the preferences, you can use the
Copy As menu. It allows you to copy the selected text in PDF, RTF or Bitmap.

Possibility to paste hieroglyphic back text to JSesh

Principles and problems

(I'm sorry, this part is a bit technical. If someone is able to write the same explanations

in a clearer way, it would be a welcome contribution to JSesh's site)

On Windows (and on Mac OS prior to Mac OS X), there is a feature called “Object
linking and embedding”, wich is more or less an intelligent cut and paste. You
copy/paste a document from your hieroglyphic editor into Word, and then if you double
click on the pasted picture, it will open the hieroglyphic editor, so that you can change
the text.

This is not possible with JSesh, as this kind of capabilities are very system-specific (If
you really need it, I understand that it's well supported in Inscribe). However version

2.11 of JSesh provides a poor man's version. Basically the trick (also used in a few

other hieroglyphic editors, like MacScribe) is to use the comment field available in

some picture formats (like PDF or EMF), and to put the Manuel de codage text in this

comment field. When the picture is pasted into JSesh, one can simply extract the code.

Of course, this is more or less automatic. But I needed to explain it, because it depends

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php/doc:en:auteurm.png

26/72

on a number of factors:

▪ the picture format must support comments, and I need to write the
corresponding code. This is currently done only for EMF and PDF.

▪ the word processor must accept the pasted picture “as is”, and not modify it.
Modifications usually suppress the comment. For instance, on a Mac, you can
paste a PDF picture in MS/Word 2008. But Word will (I guess) transform the
picture into its own format, and lose the comment in the process.

All those explanations to tell you that this system won't function with all word

processors… and especially not with MS/Word (at least not with Word 2008 on a Mac).
I'm sorry for that.

Now for the possible solutions

Mellel/Nissus writer and PDF

If you use Mellel or Nissus Writer, and if you configure your cut and paste option to

use the PDF format), you will be able to paste back your hieroglyphs into JSesh.

Simply select the hieroglyphs in your text processor (e.g. Mellel) and copy them…

Then go to JSesh, and select File/Import/Import from Pasted PDF.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=876ee2&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fmellel_copy.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=2006a6&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fjsesh_pdf_import.png

27/72

The result will replace your current JSesh document:

NeoOffice (OpenOffice) and RTF text

This chapter describes manipulations made on a Macintosh using NeoOffice as a word

processor. It works also with OpenOffice on Windows and Linux (but it seems to fail

with OpenOffice 3.1.1 on Mac).

If you configure your cut and paste option to use the RTF format and if you
chose EMF as the picture format (see above), you will be able to paste back your

hieroglyphs into JSesh.

First, you must select “EMF” as the copy format to use.

Text pasted in EMF in NeoOffice can then be pasted back in JSesh:

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=5de06a&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fjsesh_pdf_import_result.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=605b91&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fcut_and_paste_preferences.png

28/72

Now, there is a little problem. We want NeoOffice to send RTF text (with the picture
embedded in it). This won't happen if you directly select the picture:

Note that in the “good” selection, the picture is outlined in black.

The direct selection of a picture will result in an (innocuitous) error message:

Now, the correct way to select the picture is to click in front of it in the text and to drag
with the mouse. Alternatively (and with less dexterity), you can select the picture by
moving the text cursor in front of it and then pressing “shift” and one of the keyboard
arrows (it's way simpler to do it than to describe it).

Note that you can select more than one picture:

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=04f9ec&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fimport_rtf.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=362600&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fimport_rtf_result.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=802b09&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fbad_copy_attempt_result.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=06955f&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fmulti_copy.png

29/72

And you will get one line by picture in JSesh:

Please note that this only works if your pictures have been pasted from version 2.11

or more of JSesh, and in the correct format.

Others

I would be very interested to know if other configurations work.

Printing

Currently, printing doesn't work, and is *not* a priority. Use PDF or SVG export instead,
and print from Acrobat Reader or Inkscape.

Exporting PDF

To export your text as a PDF, choose Export PDF. Explore the various renderings for
best results. There might currently be problems with the latin and translitteration fonts.

Exporting as JPEG or PNG Pictures

Pictures on computers come in two flavours: *bitmaps* and *vector* pictures. For a
quick idea of which is which, let's say that bitmaps are usually edited with software like
Photoshop (or Gimp if you use free software), and vector pictures are edited using
software like Adobe Illustrator (or Inkscape). Most software can display and read
bitmaps, so they tend to be easier to share. Their main problem is that you can't zoom
well on them. A bitmap fit for screen display will probably print poorly. However, sharing
vector pictures is quite difficult (for no good reason, but it's a sorry state of affairs), so
you might end up sending high-resolution bitmaps for printing.

To export a bitmap, choose the File/Export As/Export as Bitmap menu entry.

You can export a jpeg or png version of your text. If no text is selected, the whole text
will be rendered. If there is a selection, only the selected text will be drawn.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=240aa2&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fmulti_copy_result.png

30/72

Exporting RTF

RTF (Rich Text Format) is a portable document format that can be read by most word
processors (for instance, MS/Word and OpenOffice).

To export an rtf text, choose the File/Export/Export as RTF menu entry.

Word processors specific issues

Alas, alas, alas, copy/paste and graphic embedding are much more complex than they
should be, due to a generalized lack of cooperation between the main actors of the
domain. Thus we discuss here the issues related to specific word processors (and
similar softwares).

Format choices for Mac applications

As of today (april the 21th, 2016)

▪ Word 2011 for Mac started (at last) to accept copy/paste of RTF texts containing
pictures (the “standard” way for JSesh to perform copy/paste), and it accepts
now EMF format in them. PDF is no longer the “best” solution as PDF pictures
tend to be badly cropped.

▪ On word 2008, usable formats are RTF and PDF, PDF giving the best results.
It seems that you can use “EMF” pictures in the RTF export. EMF gives much
better results than Mac Pict.

▪ On Word 2004, only RTF is reasonable. It should be configured to use MacPict
pictures

▪ On Nissus and Mellel, one can use either PDF or RTF. As the PDF keeps its
comments, it is possible to cut and paste to and from JSesh. For RTF, you need
to use MacPict as output format.

▪ On OpenOffice/NeoOffice, PDF doesn't work yet, so one needs to use RTF. The
suggested picture formats is EMF (with better graphical results).

▪ for non-text oriented software (like Powerpoint or Keynotes) : use PDF.

Format choices for Windows applications

▪ for Word or OpenOffice Writer : use RTF, with EMF as graphical format. You
might also use EMF directly.

▪ for non-text oriented software (like Powerpoint) : use EMF.

Format choices for Linux applications

For OpenOffice et al. : use RTF, with EMF as graphical format.

31/72

Searching Texts

Since JSesh version 7.2, it's possible to search in JSesh document (it was about time!).

It's possible to search either in the current document or in all the JSesh documents

contained in a given folder.

Searching in the current document

To Search in the current document, you can use the menu entries:

1. Edit/Find to open the “Find” dialog
2. Edit/Find Next to search for the next occurrence of a search.

You then need to describe what you want to search. JSesh is quite powerful here. You
can both search for hieroglyphic and non-hieroglyphic text.

By default, the search will look for corresponding sequences of signs, regardless of

their layout. If you want to search for a specific layout, check the Whole Quadrant
Match box.

Searching for Hieroglyphic Text

Searching for hieroglyphic text can be quite simple. Type the text you are looking for
in the search field (see picture below), and press the Search button.

32/72

By default, the search will look for sequences of signs, regardless of their layout. If you

want to search for a specific layout, check the Whole Quadrant Match box.

Advanced Search for Hieroglyphic Text

You will notice a number buttons below the text field. They allow you to include more
variability in the text you are looking for.

The "*" wildcard

The “*” button allows you to search for sequences of non-strictly consecutive signs.

For instance, 𓁹“*”𓏏 will search for sequences of signs containing 𓁹, then possibly a

number of other signs, then 𓏏.

As the search will find any corresponding sequence of signs, regardless of its length,

you may end up with unexpected results - matching a 𓁹 in the second line of your

text, and a 𓏏 in the fiftieth. To avoid this, you can limit the length of the expected result.

33/72

For instance, if you want to allow at most two signs between 𓁹 and 𓏏, you may limit

the result length to four signs, as is done in the example above, using the Max match

length field.

A search string can contain multiple “*” if you want.

If Max match length is 0, it will be understood as “no limit”.

Note: the “*” wildcard has nothing to do with the Manuel de Codage code “*” for
grouping signs.

The "[...]" button

This buttons allows you to introduce variation in the signs you want to find. The system
will search for any one of the signs between the […].

For instance, “𓊪[𓏲𓅱]” will search both for 𓊪𓏲 and for 𓊪𓅱.

Variants in searches

If you select “Extended variants”, search result will include texts which
contain any variant of your signs as recorded in JSesh.

As 𓏲 and 𓅱 are considered as variants, the following search will find occurrences of both

𓊪𓏲 and 𓊪𓅱.

Compared to the use of […], this system is less precise ([…] allows you to specify
exactly what you are looking for). It might be more exhaustive in some cases. It's
however dependent on the quality of JSesh sign descriptions. The current information
about variant is still very lacunar - sign descriptions require a lot of work.

Any kind of recorded variants will be used, as well as variants of variants. It is expected
that a more precise system will be implemented at some point.

34/72

Search in non-hieroglyphic texts

Search is no longer restricted to the hieroglyphs. If you have typed translation or
transliterations, you can search them too…

Select search in alphabetic texts…

Then type your text (search will disregard case) :

Search in folders

This is a very powerful feature of JSesh : it can search in all the glyph files contained
in a folder (and its sub-folders). In a way, you can use your texts (including translations
typed in JSesh) as a kind of rough linguistic database.

To use this function, use the menu Edit/Find in Folder. Then select the “root” folder for
your search. In the example below, I'm looking for attestation of Atum, using a fairly
generic wildcard. Note the use of […] to include variant signs (some possible
determinatives are however missing in this search, I leave it to the interested reader

35/72

as an exercice). Also note the length I have set to limit the false positive results.
Remember that this length includes the whole result, not only the part skipped over by
the “*”.

Once the search is started, the occurrences will appear in the list below the search
form. Double-clicking on an occurrence will open the corresponding document.

36/72

Tips and tricks on hieroglyphic text
encoding

Before describing the Manuel de codage itself, I'd like to make a point or two about
how one should encode a hieroglyphic text.

Typically, you have a source, which might be a) a printed source, with typeset
hieroglyphs, b) a photograph or an acurate facsimile of the original text, or c)
handwritten hieroglyph from an egyptological publication (for instance, the Urkunden).

You must decide how faithfull to the original you must be, and it's not a simple question.
The first point is that you can be sure that your Manuel de Codage text can't be a
facsimile, so, one way or another, it will betray the original. If the text is ultimately a
hieratic text, you are already creating something completely different anyway.

Now, when you have a sign, should you look for the most precise variant for it, or use
a somehow standardised one? To answer this, you should wonder if this variant is
relevant, in the text, and in the use you intend to make of it. For instance, in the Kanaïs

texts by Sethi the 1st, the first person pronoun uses many variants of A40 (). If you
intend the text to be for grammatical study, it's not very relevant. If you wonder whether
it's a free play to add diversity to the text, then you may take the time to encode the
variants. As a rule, if you are a beginner in Egyptian, I'd advise you to encode the
“standard” sign, as it will force you to read the text, not to copy signs. The problem you
have when you want to be very accurate is that you will find many cases of variants
which have no encoding anyway, and you take the chances to mislead your readers
by giving a false impression of accuracy.

When your source is an handwritten version of a text, like in the Urkunden, beware of
one point: unless a sign is very particular, an egyptologist will usually draw his glyphs

in the easiest way. That means, for instance, he will use V23A () instead

of (V22) which is the normal hieroglyphic sign. You must understand that, and
when a sign selection is simply caused by the individual hand of the author, render it
with the “standard” sign. On the other hand, when the author has drawn a very specific
sign form, it might be worthwhile to give it more consideration.

Encoding hieratic texts

The above rule is even stronger for hieratic texts. There is no point in making a

distinction between and , as both are rendered the same in hieratic!

Now, there are a number of peculiarities of hieratic which deserve more care. Those
have been pinpointed by sir Alan Gardiner in his article “The Transcription of New

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=622a55&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FA40.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=387250&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FV23A.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=376154&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FV22.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=387250&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FV23A.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=376154&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FV22.png

37/72

Kingdom Hieratic”, JEA 15 (1929), p. 48-55. The rendering of hieratic texts should hint
at the way the original signs are placed, in order to allow the reader to understand the
reason for the rendering, and to go back to the original when necessary. JSesh
includes a number of signs which are usefull for rendering hieratic texts:

Sign Code Use

Ff1 a sign particular to Ramesside texts, which serves as a kind of

“wildcard”. this is different from sign Z5 (). You can get it in JSesh
by typing “,” (comma) and then the space key.

Ff100 a non-standard sign, “dot space filler”. Use it to render the various
dots a scribe may use, when they are not a ponctuation.

Ff101 a non standard sign, horizontal space filler. Use it to render various
meaningless horizontal sign the scribe may use to fill voids.

JSesh includes also specific signs for numbers in hieratic texts. In those texts, the
“determinative” Z1 is often smaller than the “digit” Z1. Careless rendering might

cause to be read hrw 3 whereas the original has , which is clearly
hrw 2.

Sign layout

Use the various “ligature” capabilities of JSesh, and if everything else fails, go for the
“group editor”.

A few interesting points:

In the group “M17-M17”, the signs should often be closer than the standard spacing of
JSesh allows (actually, this is already stated by sir A. Gardiner in the catalogue of his
fonts). If one writes i*i:k (that is, two yod grouped horizontally, and a “k” below them),

the group JSesh creates is . To obtain the better layout: is simple: you only
need to ligature the two yods (type “i” “&” “i”, for instance).

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=fe920f&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FFf1.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=0b286a&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FZ5.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=b41407&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FFf100.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=62f689&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FFf101.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=841097&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fhrw3.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=f37ace&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fhrw2.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=c8a4c8&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FpAyk2.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=d5e7ab&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FpAyk1.png

38/72

Transliteration

Editing transliteration should be a simple affair. After all, it only uses a few alphabetic
signs. Alas, it isn't. In the MdC2, a simple, ASCII-based standard was used. But this
standard requires special fonts, where “a” are not “a” but “ayin”. This lead to many
problem when texts where exchanged. Passing from Mac to PC was a real problem,
and publishers were very unhappy. Hundreds of hours of unnecessary work was spent
converting files - or re-typing them.

Normally, Unicode should solve all those problems1). So, currently, JSesh proposes
choices to the user. Your personal choice will depend on what you want to do with your
texts. It's quite likely that unicode is needed for most publications, for instance.

You can choose the way transliteration will be dealt with from the Preferences menu.

Using a unicode font

To use a unicode font, you need to have a font with the correct signs. Currently, the
possible free fonts are:

▪ EgyptoSerif, my own transliteration font. The signs are not very good looking,
but they are in the correct place.

▪ Gentium Plus
▪ New Athena Unicode (see the exact details)

2 Shortcut for Manuel de codage (all foot notes were added by this PDF author).

http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:transliteration#fn__1
https://jsesh.qenherkhopeshef.org/fr/news/news_3091

39/72

1. You should open the Preferences menu (on the Mac, it's in the “JSesh” menu;
elsewhere, it's under the Edit Menu).

2. Go to the Font Preferences Tab.
3. Select a font for transliteration
4. Open the Show options panel, and check “Unicode Transliteration fonts”

Current problems with unicode fonts

The current support in operating system and software for the transliteration fonts is not
good. Even Java on the Mac - and hence, JSesh - has problems.

The real problems are H̱ and yod.

Capital H̱

On some systems, H̱ (as in the ram-god H̱nmw) displays poorly. It depends on the

font and on the software and on the system. In most cases, it's ok. One annoying

exception is that it doesn't give a good result with JSesh on Mac OS X. Apparently, the
rendering system gives better results on Windows. Note that if you paste your text in a
word processor, you will probably get a good result anyway.

Yod

Unicode gives you a number of choices. I selected the two best solutions (the third
one, using a kind of half circle of the yod accent, is simply reproducing a trick used

http://jseshdoc.qenherkhopeshef.org/lib/exe/detail.php/doc:en:fontsprefsunicodetranslit.png?id=doc%3Aen%3Atransliteration

40/72

when people had typewriters, and hand-made their yods with “c” letters). The problem
is that, technically, the support for those solution is lacking.

The yod is supposed to be coded with a “i” (a dotted i, not a dotless one) and an accent.

The font should contain enough information to display those signs correctly. The
problem is that lots of software don't look at the font content, and work on their own.
The result is that the dot is not removed on many system (including JSesh on the Mac).
The positionning of the accent in front of the capital “I” is another problem.

With a correct configuration, it's possible to get good results with OpenOffice and Word.

The two possibilities for yod are

1. U+0313 : As i + “comma above” is already used in other languages, its chances
to be correctly supported are better. The only problem is that in the normal
display of this combination for capital “I”, the accent is supposed to be above
the I. As you know, the correct display for capital yod has the accent in front of
the “I”. If you can live with that, this solution is the safest one. It gives good
results in most cases (but not with Java and Mac OS X, so JSesh display on the
Mac is not correct).

2. U+0486 : this accent has the interesting feature of not being used for anything
else on latin letters. So a font is free to place it in front of capital “I”. In theory,
this is the good solution. In practice, it works with some, but not all, software.
OpenOffice gives good results, and the plain TextEdit software on the Mac too.
I could succeed with Word on the Mac by enabling all ligatures.

JSesh doesn't support the current IFAO/Unicode system. This standard was a
temporary “patch” using available unicode signs, done when no encoding was
available for Egyptian transliteration. Now that “Aleph” and “Ayin” have code, I want to
encourage (well, enforce) their use.

References

* Wikipedia article on transliteration and unicode

Not using unicode

You can select a font with a MdC-compatible encoding. In this case, JSesh does not
deal with capital letters. You can choose your own font, if you have one, or use the
default JSesh transliteration font. A version of this font is embedded in the software,
but you can install it on your system (to use with a word processor, for instance). A
copy of this font is available in the font folder of the JSesh installation3.

Easy way with the old font

You should open the “Preferences” menu (on the Mac, it's in the “JSesh” menu;

3 For Macintosh. In the C:\Windows\Fonts folder for Windows.

http://en.wikipedia.org/wiki/Transliteration_of_Ancient_Egyptian

41/72

elsewhere, it's under the “Edit Menu”). Go to the “Font Preferences” Tab, and click the
“use old transliteration font” button.

That's it. For your own Word (or OpenOffice…) documents, you can find the font in the
JSesh application folder (in the “font” folder4).

Using your own MdC-compatible fonts

If you have a font compatible with the MdC (that is, the “a” represents an ayn, the “A”
represents an aleph, etc…), you can use it too.

Simply select your font (using “Choose font” in front of the Transliteration font), and
then, in the advanced options, select “MdC (non Unicode) Transliteration font”.

1) as I have written elsewhere, I feel that Unicode for Hieroglyphs is a whole different business.

4 For Macintosh. In the C:\Windows\Fonts folder for Windows.

http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:transliteration#fnt__1
http://jseshdoc.qenherkhopeshef.org/lib/exe/detail.php/doc:en:fontprefsmdctranslit.png?id=doc%3Aen%3Atransliteration

42/72

JSesh Menus Explanation

Menus

(tbs)

Application menu (mac only)

File

Edit

Group

Sign

Windows

Base Hieroglyphs

http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:menus:application
http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:menus:file
http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:menus:edit
http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:menus:group
http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:menus:sign
http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:menus:windows
http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:menus:hieroglyphs

43/72

Extending the sign list

Introduction

From version 2.0beta onward, users of JSesh can create their own signs. A sign editor
and an elaborate database system are planned in the future, but, on a more practical
sign, it was decided to allow one to import signs created with various softwares.

So : a) JSesh has currently no sign editor but b) JSesh can import signs from :

▪ true type fonts (see FontForge for a free editor) ;
▪ SVG files : SVG is a relatively recent format for vector graphics. It's very

powerfull and complete. Currently, JSesh understands SVG files if the sign is
drawn in black over white. You can edit SVG files with a number of programs;
one of the best free ones is Inkscape, which has the advantage of being multi-
platform.

For compatibility with my previous software (tksesh), it can also read:

▪ font files exported from tksesh (.tml files)
▪ font files from the GNU font utils (.bzr files). Both types of files can be edited

with the fontedit software, included in tksesh. But this is of little interest for the
generic user.

Importing new glyphs

Choosing a folder for your signs

In order to be able to add new signs, you must first choose where they will be stored
on your computer. To do this, simply select Tools/Edit Preferences In the “Font
Selection” tab (currently the only one available), enter the folder you want to use in the
“Hieroglyphic font directory” field. You should create an empty folder for this specific
purporse.

https://fontforge.org/en-US/

44/72

You only have to do this once. Next invocations of JSesh will use this folder.

Actual sign insertion

To add new signs, you should import them from a file created with another software,
and then assign new codes to the created signs. The sign importing interface can be
started from the menu Tools/add new signs . Sign importing is done in two phases :

▪ you import a picture or set of pictures from some file (svg drawings, truetype
fonts, etc.)

▪ you assign a code for each sign you have imported, and then you insert the new
sign in the JSesh list of signs.

Importing drawings

Importing drawings is easy. JSesh can read: True Type fonts, .tml and bzr files, which
can be created with JSesh's forerunner, tksesh * SVG files

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=5cc3ba&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FglyphDir2.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=89302b&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FimportSigns1.png

45/72

Simply click on the Import file button, and select the file which contains your picture(s).
You can use the navigation buttons (those with arrows) to browse the available signs.

Fine tuning your signs

In some cases, the size or orientation of your signs won't be correct. For instance, in
the picture below, the duck is too large and its orientation is wrong.

You can correct this :

▪ the buttons and can be used to
change the sign orientation;

▪ the button Full cadrat height gives the sign the same size as the A1 sign;
▪ if you click on the sign's window and drag the mouse, the mouse position will

set the sign's height.

Attaching codes to drawings, and inserting them in JSesh

Once your sign is correct, it's time to give it a name. In a number of cases, JSesh will
have guessed one, but this doesn't mean the sign has been registered in its list.
Nothing is done when as long as you haven't pressed the Insert button.

Except when you are creating signs which are already documented in the Manuel de
Codage (for instance, because they are not available in JSesh), you should first get a
user ID, which will differentiate your signs from the signs created by other users.

To get an uid, register as JSesh user. Note for tksesh users: the uid is simply your
tksesh id.

Be carefull when giving signs a name. You want your files to be readable by anyone,
so be faithfull to the Manuel de codage. Our current suggestions are the following:

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=1513fa&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FimportSigns2.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=a675c6&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FimportSigns3.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=bbee4b&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FimportSigns4.png

46/72

▪ If you create your own version of a sign in the Manuel (either because it isn't
available in JSesh yet, or you don't like the default sign provided, use either the
standard Manuel de codage for the sign, or use the following notation: US uid +
Gardiner code, where uid is the user id.

▪ When you create a sign which you consider as a variant of a standard sign, you

should build its name like that: USuid+Gardiner Code+“VAR”+VARIANT CODE
where : Gardiner Code is the standard Manuel de codage code for the base
sign and VARIANT CODE is usually an uppercase letter. The Ramesside usual
form for the hare has a Seth animal tail. If I want to distinguish it from the
“normal” sign, I can call it US1E34VARA.

▪ When the sign you create corresponds to a completely new sign, give it a code

of the form: USuid+Gardiner Category + NUMBER +“XT”+OPTIONNAL
VARIANT CODE. \\ You are free to choose the number you like, but I would
suggest you try to find a logical layout. It would also be better if this number
does not correspond to a “standard” sign (to avoid confusing innocent users of
other softwares), So you can for instance start your numbering at 1000. Note
also that the number should not contain leading zeros. The Category should be
correct, and if you really don't have a clue, you should use the Aa category. “Ff”
is reserved for signs used specifically when transcribing hieratic.
Example : the Harp Louvre E 116 A has recently been published by C. Barbotin
(La voix des hiéroglyphes, p. 66-67), and in its text appears the unknown sign .
I can create this sign, and give it, for instance, the code US1Aa1000XT. On the
other hand, the Israel Stela contains a sign which is most probably a griffin, but
does not correspond to any registered griffin sign in the manuel. So I gave it the
code US1E162VARA, because E162 is a griffin sign.

▪ Using this system when importing texts from other softwares: it is possible that

other software provide their own “non standard” codes. If you want to import
texts from those software into JSesh, you might need to give a name to the new
signs they contain (note that fonts are usually protected by copyright laws, so
you will need to redraw the signs yourself, either by adaptating existing JSesh
signs or by finding a picture of the signs in original hieroglyphic sources). For
compatibility purposes, the following user codes can be used for other
softwares: winglyph 1000 macscribe 1001 inscribe 1002 got 1003 visualglyph
1004 If you think of other software I should add, please tell me.

▪ standard Manuel de codage code. You will find these codes in Hannig's WB, for

instance. A number of lists are also available on the web. Please, note that using
the codes is one thing, but that the actual signs drawing in the fonts of other
software are legally protected. So, have to come with you own versions of the
signs, either from actual sources or by re-creating them. You will find more
information on signs drawing in the next section. In our example, your duck
would replace the normal one, so it would have code “G39”.

We suggest that, if you create a sign with an “normal” Gardiner code, you also give it
an user sign code. This way, you will be sure to keep it even it a sign with this Gardiner
code is later added to the software.

47/72

Note that for compatibility with tksesh, we also support arbitrary “user glyph codes”.
These codes correspond to the codes tksesh gave to new signs. User glyph codes
have the form UG id M mid N sid , where id, mid, and sid are numbers. Avoid using
those codes for now.

When your sign is ready, click on the Insert button.

Alternative system for sign insertion

If your sign SVG file has a name which corresponds to a code (say, US1A1VARA.svg),
and the quadrant module is either 18px or 1800px, than you can simply put the sign in
your hieroglyphic folder.

Creating a sign with Inkscape

Introduction

JSesh doesn't include a hieroglyphic editor yet. However, it can include signs drawn
with a number of other softwares, like FontForge and Inkscape. Even if a sign editor is
added, this functionality will be kept.

In this tutorial, I show how to use the Inkscape software to create a new hieroglyph.

Drawing a new sign is a rather long and tedious task. It requires a basic understanding
of vector graphics (Inkscape, Adobe Illustrator…), which is not trivial, and it also
requires a lot of work anyway. Not only should you draw nice signs, but those signs
should blend with the other fonts.

A few notions about vector drawing

Drawing vectorial pictures requires some understanding of what it's all about. We will
write something about it later (except if some kind soul can contribute a nice free-of-
right tutorial). Requirement for JSesh-usable signs : you should draw your signs as

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=33c4c4&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FimportSigns5.png

48/72

black filled contours on a white background. The JSesh import module can read non
filled contours, but the import will give better results with filled contours with zero width.
Inkscape is able to convert curves into contours, so it's not a very heavy requirement.

Creating a background image

You can start by getting a picture of the glyph you want to create. This picture might
be a line-drawing, or a photograph from an actual glyph. You want the black lines of
your sign to be readable, so change the colors if needed (for instance, if you have a
line drawing of the sign, color it in light gray). Our example will be a low resolution
rendering of sign C102 (seated Ptah with wꜣs) from Israel stela. The original bitmap

is . With a drawing program, we have dimmed the picture to get

Draw the outline

We now start Inkscape, and import the bitmap drawing in it. Create a new layer, call it
“work”. That way, we won't disturb the bitmap drawing. We are then going to draw a
rough outline of the sign's shape. As we are not great drawers, we use the “Bezier
curve” tool to do it. We get the following result:

Note that we have selected “no fill” and a small contour width. We have also left the
“Was” sign alone.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=d3281e&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FptahHiero.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=692c22&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FptahHiero1.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=7b6200&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fink1.png

49/72

Fit the outline

Straight line segments won't make a great sign. So we convert some of them to curve,
we add new points if needed, etc… We start with the head…

And here is the result:

Working on details

We want our signs to be readable at small size, so we won't fill to much details.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=af78ce&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fink2.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=809de2&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fink3.png

50/72

Ptah's beard

The outline of Ptah's body will be enlarged to make the final sign. But we would like
the beard to be filled1). Hence, we must separate it from the rest of the drawing. This is
done by selecting the control points which separate the beard from the body:

And then selecting the “Break apart” entry in the “Path” menu, which gives us two
objects : the beard and the rest of the body. We can then fill the gap we have just

created (and give Ptah a chin).

http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:inkscape#fn__1
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=f61047&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fink4.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=3fa3ee&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fink5.png

51/72

Now, the beard should also be closed. We edit the fill and stroke characteristics of the
beard, and we give it a solid black filling, and no stroke. If the beard is too thin, we will
be able to dilate it with the “outset” action of the path menu.

Ptah's necklace counterpoise

For this one, the original scan is a bit rough. We dig some iconography, and we come
with a two parts necklace counterpoise.

The necklace is made of two parts: a string, and the counterpoise itself. The string is a
simple curved stroke, and the counterpoise is a filled path.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=b56854&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fink6.png

52/72

We want to join them into one object, which will be a filled path. To do this, we first
convert the string into a stroke.

We then select the two parts of the necklace, and use the “union” operator in the “path”
menu.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=a2ec63&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fink7.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=17bad3&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fink8.png

53/72

Choosing the right line width

At this stage, you might want to save your work twice. Once as a backup, and, one, of
course, as your working file. Now, select the main drawing, and choose a reasonable
stroke width for it. It should mix well with the rest of the fonts. It might be interesting to
zoom out in order to see the sign as it will be rendered.

Uniting everything

Now, get sure all strokes are transformed to path, and use the union operator on them.
You should get:

I strongly suggest you keep a backup version of your sign in which strokes are not
tranformed to path, it will allow you to rework your sign more easily, or to reuse it as
part of other signs. That's what I do for my Ramesside fonts.

Adding other details

Using the same techniques, we get to the final result:

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=622094&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fink9.png

54/72

which we save under the name C102.svg .

Final comments

From a rather low resolution picture, we can get a decent-looking glyph. Remember
that the sign will be rather small, and don't add too many details (giving the possibility
to increase the sign's details with its size is an interesting option, which is used in the
Gardiner's lead fonts). Try to mix with the existing signs.In fact, if you have SVG
sources for similar signs, try to reuse them.

The sign given in this example is not too good an example. The “Wꜣs”, for one, is too
high, and the sign won't mix well with the existing fonts. So we should make the scepter
shorter. In general, our Ptah is too lean compared with the other signs. Keeping
intermediate stages of your work will allow you to correct things more easily. For
instance, if the strokes are too fat, if you have kept a version of the sign where the
strokes are still strokes, and have not yet been replaced by paths, the correction is
very easy.

1) in this case, we gave Ptah an osirian beard, which is an error

http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:inkscape#fnt__1
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=d9ff5e&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fink10.png

55/72

Advanced Information in Inkscape

Introduction

JSesh has now a relatively advanced ligature mechanism, which is not as good as the
one in RES, but give reasonnable results in most cases. In many cases, JSesh is able
to “guess” where ligatured groups should fit, but it can also do with some extra help.
This help can be provided in the sign's SVG file itself, and we decided to use the
mechanisms of inkscape for that.

Ligature zones

For each sign, JSesh will try to compute two ligature zones, one for ligatures of groups
before the sign, the other for ligatures of groups after the sign. Those zones can be
computed automatically, but the sign author can also provide them.

To create one of the two ligature zones in Inkscape, do the following:

1. create a rectangle where the group should fit. Note that the whole group will be
scaled to fit there, so draw it large enough. I usually draw these rectangles in
red, but it's only a convention.

2. open the contextual menu for the rectangle (right-click over the rectangle), and
select Object properties . You will get the Object properties window (Figure
“Zone Properties” below.) Define the Id as either “zone1” or “zone2”. Don't forget
to click on the Define button to validate your modification. Also clear the label
(more on this in the section called “Ligature zones gravity”).

Admitedly, we are using the id and label information in a way they are not supposed to
be used.

The reason for this is purely pragmatic.

It's far easier to do things that way, as the sign creator has no need to know about the
inner organization of the XML format.

56/72

Ligature zones gravity

The ligatured group will go somewhere in the ligature zone. But where exactly ? It can
stand in the middle of the area, or stick to one of its sides. In fact, the behaviour of the

layout algorithm is not always the same. In , the “t” tends to fit on the bottom left of

the rectangular area. In , the U36 sign is more or less centered, both horizontally
and vertically. JSesh allows signs authors to design the behaviour of “ligature zones”,
in the following way. Remember the label of the previous paragraph? You can set it to

gravity: gravity specifications.

where gravity specifications can contain

▪ “s” or “e” to ask the group to stick to the start side or to the end side of the zone1).
If neither “s” nor “e” is specified, the group will be horizontally centered.

▪ “t” or “b” to ask the group to stick to the top or bottom of the zone. If neither “t”
nor “b” is specified, the group will be vertically centered.

“Zone Properties”, gravity:te means that the group which would be ligatured in zone1
(in front of the “child” sign) would stick to the top of the red rectangle, and stay near

the sign, for instance .

1) start and end are taken from M.-J. Nederhof's RES, and avoid the use of “left” and
“right”, which are not really usable for hieroglyphs!

Parts of SVG understood by JSesh

JSesh does not understand SVG fully. Basically, it expects the picture to be made of a
filled black path. All constructs in a path are understood, but I suggest to use lines and
splines mainly.

A bit more of the language is covered, but there are things it doesn't understand yet,
in particular transforms.

http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:inkspapeadvanced#fn__1
http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:inkspapeadvanced#fnt__1
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=e7ecb9&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FzoneProperties.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=fed093&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2Fw_and_t.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=41038e&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FHm_kA.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=c8221c&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FW_Xrd.png

57/72

Appendix A. The current sign
description system

It is possible to document the hieroglyphs (and in particular the new signs) so that the
palette can handle them in better ways. This is of course useful for your own new signs,
but also for “standard” JSesh signs, as the signs information provided by JSesh is
currently very partial. User input would be most welcome here, and above all user input
by professionals. The main feature of version 2.4.15 of JSesh is the availability of a
user friendly editor for adding information about signs.

Starting the Sign Description Editor

The Sign Description Editor is a separate program. To start it:

▪ on Windows, there is a shortcut for it5
▪ on Linux, there should be one too
▪ on Mac, go to your JSesh installation folder. You will find the editor in the “bin”

folder. It's called signInfoEditor.command.

Please note that you can play and test the editor at will, as long as you save nothing.
When you save, the result will be used the next time you start JSesh.

Editing sign descriptions

The signs are defined by the following information:

▪ The Transliterations associated with the sign
▪ The signs which are part of this sign. For instance, A6 contains a W54 sign
▪ The sign(s) of which they are variants
▪ Descriptions in free text of the sign, which may include for instance

bibliographical remarks
▪ Tags are short description items attached to the signs, and used to select them.

For instance, “enemy” is attached to signs which represent an ennemy.

When you start the sign description editor, it automatically read the standard sign
descriptions as well as your own descriptions. You can then add or change data, and
save the result (simply by choosing “save” in the menu). Note that the editor will prevent
you from changing the information which is stored in the system sign descriptions.

An important feature of the editor is that you can use the sign palette (from the tool
menu) to select signs.

5 If the shortcut didn’t show up at installation time or if you deleted it by accident, go to

folder C:\Programs (x86)\Jsesh-7.5.5 (for example), then right click on the SignInfo.exe

file and select Send to Desktop – Create shortcut.

58/72

The Main Sign Info Editor Window

The sign info editor main windows allows one to edit information on a given sign.
Selecting the sign you want to work on can be done in many ways. You can navigate
with the arrows on the bottom of the window, type the sign code in the “Code” field, or
simply drag and drop the sign from the palette. Once a sign appear, you can add
information about it.

The “basic sign” check box is used to say that the sign should appear in the sign palette
even if “show all” is not selected.

From this window, you can edit the sign transliterations, and many other things. The
bottom part of the window gives access to three kinds of information: relationships
between this sign and other signs, free text description of the sign, and tags.
Transliteration It is possible to associate a number of transliterations with a given sign.
Transliterations can be used in various contexts: to find a sign (in the palette, or typing
the transliteration directly at the keyboard), or simply for informative purposes, for
uncommon transliterations.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=c5ed6f&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FSignInfoWindow.png

59/72

The Transliteration Editor

To type a new transliteration, simply press the “+” button. If you enter some text in the
transliteration text fied, this text will be used as the new transliteration.

If you want to suppress a transliteration of yours, select the line, and press the “minus”
button. This button is gray if no line is selected, or if the selected line can't be deleted.
You can then fix the “type” and “use” values.

I'm not sure whether or not the “type” is useful, and it's currently not used by JSesh.
The “use” column is, on the other hand, quite important.

The “use” explain in which context this transliteration is used in the software. Note that
each level of use in included in the next one. For instance, if you chose “keyboard”, the
sign will be also used in “palette” and “informative” contexts.

Types

▪ phonogram:
▪ ideogram: should be used both for simple ideograms (those followed by Z1),

and for so-called phonetic determinatives, which are really ideograms in
disguise.

▪ abbreviation: use for signs which are actual abbreviations for words. They are
not normally followed by Z1 in writing. Exempli gratia: G37 can be used as
abbreviation for “Sri”.

▪ typical: the sign is typical for some word. Often useful for some determinatives.
I use it for G37's value “bin”.

▪ keyboard: the sign will be accessible through this transliteration in JSesh when
using the keyboard to enter signs. For instance, D54's transliteration “iw”.

▪ palette: the sign will not be accessible from the keyboard through this
tranliteration, but will be accessible through the palette. Note that if a user uses
transliteration to access a sign in the palette, he will be able to access it through
its transliteration afterwards.

▪ informative: the transliteration is given only for informative purposes. It will
appear in the “value” field of the palette, but that's all.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=32b8b8&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FtransliterationEditor.png

60/72

Part of sign editor

The part of sign editor allows to describe the elements of a sign in terms of other signs.
For instance, the king of Upper Egypt figure A44 wears a white crown, holds a
nekhakha scepter, and wears also an uraeus. All of those, in turn, are hieroglyphs.
Note that you don't need to list all parts. For instance, if a god wears the Atef crown,
which in turn contains the Maat Feather, don't list the feather. It's already given as a
part of the Atef (thanks to J. Hallof for this remark at the Oxford 2006 conference).

Variant editor

The notion of variant is a tricky one. In fact, it's not that well defined, and, worse, its
useful meaning may depend on the context. There are in fact two notions. One is
graphical. A graphical variant of a sign is a sign which looks like another one. Another
notion is linguistic. A sign is a linguistic variant of another one if it has the same values

and uses.

The two notions often overlap, but not always. For instance, Y2 is both a graphical
variation of Y1, and a linguistic variant thereof. On the other hand, A17A is only a
graphical variant of A17. It doesn't have the same uses at all; and Z7 and G43 are
linguistic variants, but not graphical variant at all.

These notions will be used by JSesh both for the sign palette (with its “variant of ”
button) and for the search system. It may be usefull, while searching for words with
G43, to retrieve those with Z7.

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=d8a411&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FpartOfEditor.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=cd43e0&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FvariantOfEditor.png

61/72

▪ is similar: is checked if the signs “look the same”.
▪ degree

▪ list how close the relationship between the two signs is. It can be one of
:

▪ full: a full variant of a sign S is a sign with the exact same uses and values
as S.

▪ partial: the uses overlap significantly. Usually, the variant would cover
some of the uses of the original sign.

▪ other: other kinds of variants. For instance, D36 (the arm) can be
considered as a variant of D37 (the sign “rdi”), in some contexts, but the
two signs have a very distinct identity.

▪ no: the sign is not a linguistic variant at all
▪ unspecified: you don't really know, or don't have the time to bother.

Description editor

This field allows free text comments for signs. The most important use for this is to
document uncommon signs, giving bibliographical references about them, and in
general helping the user to select the best possible sign. If you want your sign
description to be included in the distributed version of JSesh, they should have
bibliographical references to back up their claim. Please also note that JSesh is a free
software, but that it must respect copyright. So, this is not the place for blind copying
of the sign lists of the usual grammars (it doesn't mean of course that you can't use

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=bde102&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FdescriptionEditor.png

62/72

them as sources). You can write descriptions in multiple languages, although it would
be better if there were an english version for each sign.

Tag list editor

This window allows to describe the sign in terms of various short descriptive words
called “tags”. Those are available in the palette to select sub-categories of a given
family. For instance, “standing” characters (obviously, the tags used here do not apply
to A44). The left window displays all available tags, listing first those which are already
used for this family, and then the other tags. The best way to tag signs is to look at
similar signs, and see how it's done.

I'd like to draw your attention toward some very useful tags, which are a bit different.
Those are “tall narrow sign”, “low broad sign”, and “long narrow sign”. Those tags are
used as special families in JSesh palette.

To add a new tag to a sign, simply select the tag in the left list, and click on the left-to-
right arrow. To remove a tag, use the same principle. Note that you can't remove tags
which are given in the “Official” JSesh list.

The Tag creation window

http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=3f0e21&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FSignTagsWindow.png
http://jseshdoc.qenherkhopeshef.org/lib/exe/fetch.php?tok=abb84a&media=http%3A%2F%2Fjsesh.qenherkhopeshef.org%2Ffiles_jsesh%2Fimages%2FtagEditor.png

63/72

This window (accessible through the tools menu) allows you to create new tag, and
associate multilingual translation with them. Those translation are not currently used.

The Menus

File

▪ Open user default file: opens the file which contains your own definitions for
signs. Those will automatically be used by JSesh the next time it's launched.

▪ Save :saves your work in your user definition file. As long as it hasn't been done,
your file is unchanged.

▪ Clear :create a brand new workspace, with no data in it but the “official” one.
Your user file will in any case be changed only if you save your work.

Edit

▪ copy: copy this sign's definition for future use
▪ paste: paste the data copyied for another sign into this sign definition. Very

usefull when dealing with close variants.

Tools

▪ Display/Hide Palette: allows to open the sign palette, for selecting signs (by drag
and drop)

▪ Display Tag Editor: open (or closes) the tag editor window, for creating new
tags.

Contributing your sign description to JSesh

Your sign descriptions are stored in a file called signs_definition.xml, which is placed
in:

▪ (Your home directory)/Library/Preferences/JSesh on macintoshes. For instance:
/Users/rosmord/Library/Preferences/JSesh/signs_definition.xml on my
machine.

▪ c:\Documents and Settings\YOUR LOGIN\JSeshData on Windows (basically,
JSeshData in your personnal folder). Normally, the JSeshData directory is
created by JSesh, so you can search for it if you have doubts. For
instance, C:\Documents and Settings\Rosmord\JSeshData.

▪ $HOME/.jsesh on Linux.

To contribute your sign descriptions to JSesh, simply send me this file. I will decide
what can go in the general JSesh distribution. There are many problems I must take
into account: the software must remain general enough, correct enough, and I must
avoid copyright infrigement.

64/72

Appendix B: Technical information on
the sign description file

Beware: technically explicit content. Pure souls, avert your eyes. A more user friendly
system has been created.

Alternatively, you may directly edit your file description file. You need some kind of
simple editor to do this : The notepad might do on Windows, and software like
TextWrangler can be used on Mac OS X. XML files are made of plain text.

JSesh won't accept badly formed files, so you may find yourself unable to launch
JSesh. If this is the case, either correct signs_definition.xml, or rename it to something
else, so that it will be ignored. In the future, I will add a user friendly editor, but I won't
do it until the format is completely defined. The file must have the following form:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE signs PUBLIC "-//ORG/QENHERKHOPESHEF//DTD SIGNDESCRIPTION 1.0"

"sign_description.dtd">

<signs>

<!-- here your signs definitions -->

</signs>

It is important to have exactly this content, specially the DOCTYPE line.

Here is a small example (actually, a part of JSesh standard sign description file). This
file describes signs C1 and C1A. You see that they are classified in a number of
categories. They are both human-headed deities and seated characters. The
translitteration of C1 is given. We have provided one for C1A as well. The
code “relevance='1'” means that this translitteration is here only for informationnal
purposes. Actually, the XML format has been prepared to accomodate a lot of different
data, which is not really used yet by JSesh, and I am very interested in getting
suggestions about it. The definition for the format (its “dtd”) is given just after this
appendix.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE signs PUBLIC "-//ORG/QENHERKHOPESHEF//DTD SIGNDESCRIPTION 1.0"

"sign_description.dtd">

<signs>

<!-- As C is the most complete part of JSesh fonts now, we try to cover it

fully. -->

<tagCategory tag="human-headed deity" label="human-headed deity"/>

<tagCategory tag="hawk-headed deity" label="hawk-headed deity"/>

<tagCategory tag="ibis-headed deity" label="ibis-headed deity"/>

<tagCategory tag="ram-headed deity" label="ram-headed deity"/>

<sign sign="C1">

 <hasTranslitteration sign="C1" translitteration="ra"/>

65/72

 <hasTag tag="human-headed deity"/>

 <hasTag tag="seated"/>

 <contains partCode="N6"/>

</sign>

<sign sign="C1A">

 <similarTo baseSign="C1"/>

 <hasTranslitteration translitteration="ra" relevance="1"/>

 <hasTag tag="human-headed deity"/>

 <hasTag tag="seated"/>

 <contains partCode="N6"/>

 <contains partCode="S40"/>

</sign>

</signs>

Note that tags must be defined before they are used (as tagCategory). A tag has a
name and a label ; it is indeed possible to define labels in multiple languages, although
this is not really used by JSesh now.

Sign description DTD

For the more technically-oriented, here is the current DTD used for sign descriptions.
It is still experimental, and has already changed since version 2.4.13.

<!-- DTD used to describe signs characteristics. -->

<!-- CATALOG NAME : "-//ORG/QENHERKHOPESHEF//DTD SIGNDESCRIPTION 1.0" -->

<!ENTITY % signInfo

"variantOf|hasTransliteration|partOf|contains|signDescription|isDeterminati

ve|hasTag|phantom"

>

<!ELEMENT signs

(sign|determinativeCategory|tagCategory|tagLabel|%signInfo;)*>

<!-- The sign element is optional, but allows to have a better structured

file. -->

<!ELEMENT sign (%signInfo;)* >

<!ATTLIST sign

 sign CDATA #REQUIRED

 alwaysDisplay (y|n) 'n'

>

<!—

 The notion of variant used here is somehow ad-hoc.

 The problem of variants is that there are two different notions behind it,

both useful in our software.

 The first notion is LINGUISTIC variant. A sign is a linguistic variant of

another one if it has the same uses.

 For instance, Y2 is a linguistic variant of Y1. Now, Y2 also "looks like"

66/72

Y1. We will call it a "graphical variation".

 Both notions are independant, though statistically linked. For instance,

Z7 is a linguistic variant of G43, but not a

 graphical variation thereof.

 the notion of "looking like" another sign is covered by the "isSimilar"

attribute.

 In lots of cases, especially for determinatives, the signs are not always

fully substitutable one for another.

 To allow the use of 'variant' information in searches, we introduce the

"linguistic" attribute.

 let B be a variant of A.

 "full" means that all uses of B are also possible uses of A, and all uses

of A are uses of B.

 "other" means that B is more specific than A, or that the degree is

unknown

 "partial" means that the uses of A and B intersect, but they have also

both significantly different uses.

 For instance, the D36 sign (ayin) is a partial variant of D37 (di), as

D36 can write "di". However,

 in this case, I would not consider D37 as a variant of D36, because it

would cause more harm than good.

 "no" is used when the sign is not at all a linguistic variant. In this

case, isSimilar is normally "y".

-->

<!ELEMENT variantOf EMPTY>

<!ATTLIST variantOf

 sign CDATA #IMPLIED

 baseSign CDATA #REQUIRED

 isSimilar (y|n) 'y'

 linguistic (full|partial|other|no|unspecified) 'unspecified'

>

<!ELEMENT hasTransliteration EMPTY>

<!-- the main purporse of transliteration is helping someone to find a

sign. -->

<!-- a few more information help here -->

<!--

 the "use" attribute explain where the transliteration will be visible

in JSesh.

 'keyboard' means the sign is typical of this transliteration, i.e. it

should be used

 in the main software when using "space" to circle among possible signs.

 'palette' means the sign is a not-too-unusual value for a given

transliteration.

 it should be accessible through the palette.

 'informative' means the value is here for informative purposes only.

 type allows one to specify whence the value comes. It might be that a sign

is a real

 phonogram (e.g. G1 for aleph), or an ideogram, or abbreviation, or simply

be typical of certain words (e.g. "bin" is not

 really a value for G37 ; but it's typical. G37 however is a known

abbreviation for Sri.

-->

67/72

<!ATTLIST hasTransliteration

 sign CDATA #IMPLIED

 transliteration CDATA #REQUIRED

 use (keyboard|palette|informative) 'keyboard'

 type (phonogram|ideogram|abbreviation|typical) 'phonogram'

>

<!ELEMENT hasShape EMPTY>

<!ATTLIST hasShape

 sign CDATA #IMPLIED

 shape (tallNarrow|lowBroad|lowNarrow) #REQUIRED

 order CDATA #IMPLIED

>

<!ELEMENT partOf EMPTY>

<!ATTLIST partOf

 sign CDATA #IMPLIED

 baseSign CDATA #REQUIRED

>

<!-- Easier to use (and to declare) than isPartOf -->

<!ELEMENT contains EMPTY>

<!ATTLIST contains

 sign CDATA #IMPLIED

 partCode CDATA #REQUIRED

>

<!ELEMENT determinativeCategory EMPTY>

<!ATTLIST determinativeCategory

 category CDATA #REQUIRED

 lang NMTOKEN 'en'

 label CDATA #REQUIRED

>

<!ELEMENT isDeterminative EMPTY>

<!ATTLIST isDeterminative

 sign CDATA #IMPLIED

 category CDATA #REQUIRED

>

<!ELEMENT hasTag EMPTY>

<!ATTLIST hasTag

 sign CDATA #IMPLIED

 tag CDATA #REQUIRED

>

<!-- Declares a tag (without any label) -->

<!ELEMENT tagCategory (tagLabel)*>

<!ATTLIST tagCategory

 tag CDATA #REQUIRED

>

<!-- Declares a label for a tag. -->

<!ELEMENT tagLabel EMPTY>

<!ATTLIST tagLabel

 tag CDATA #IMPLIED

 lang NMTOKEN 'en'

 label CDATA #REQUIRED

>

68/72

<!-- sign description, in Manuel de codage format.

 - lang can be used to describe the language. User "fr" for french, "de"

for german...

-->

<!ELEMENT signDescription (#PCDATA)>

<!ATTLIST signDescription

 sign CDATA #IMPLIED

 lang CDATA 'en'

>

<!-- A phantom is a redundant code. It states that a given code is the

exact equivalent of another one.

 This can be used for normalization purposes. For instance, There are a

few signs which have different encodings

 in winglyph, JSesh, and Inscribe. The use of phantom a) avoids having

multiple signs

 and b) allows to create a normalized text.

-->

<!ELEMENT phantom EMPTY>

<!ATTLIST phantom

 baseSign CDATA #REQUIRED

 existsIn CDATA 'jsesh'

>

69/72

Developpers' guide

If you know how to program in Java, you can use JSesh as a library for your own
programs.

Getting the code

The preferred way is to use git, with the command:

git clone https://github.com/rosmord/jsesh.git

Normally, the master branch contains up-to-date and compilable code. It's the only one
I would suggest to clone. Other branches are

▪ production: ongoing fixes and small changes, which will be applied to the master
branch. That's ongoing work, so don't expect it to compile all the time.

▪ development: ongoing work for next version of JSesh
▪ jfx-test: some work to see how to adapt JSesh to Java FX.

Compiling the code

That's

 mvn install

Before that, you might choose which version of JSesh you want to compile. Various
releases are tagged. So, you might do something like

 git checkout release-5.3

 mvn clean install

to compile JSesh version 5.3. all tags can be listed by typing

 git tag

Then, you can use the JSesh libraries in your program by referencing the in your
pom.xml. For instance:

<dependency>

 <groupId>org.qenherkhopeshef</groupId>

 <artifactId>jseshGlyphs</artifactId>

 <version>5.3</version>

 </dependency>

 <dependency>

 <groupId>org.qenherkhopeshef</groupId>

 <artifactId>jsesh</artifactId>

 <version>5.3</version>

 </dependency>

70/72

 <dependency>

 <groupId>org.qenherkhopeshef</groupId>

 <artifactId>qenherkhopeshefUtils</artifactId>

 <version>5.3</version>

 </dependency>

Note that, from JSesh 6.7 onward, the groupId will be changed to

 <groupId>org.qenherkhopeshef.jsesh</groupId>

in order to simplify maven repositories management (I want to be able to easily remove
all old versions of JSesh with a simple rm on my computer)

If you want to *run* JSesh, the module is jseshAppli. The latest version of jsesh-installer
provides two folders, one for Mac and one for Windows, with almost ready distributions
- the end of the production-building is currently manual, see README.md at the root
of the JSesh project.

How to
Add a hieroglyphic edition field in a SWING interface

Actually, this is quite easy to do. You need to have jsesh.jar in your classpath, and
probably jseshGlyphs.jar too if you want the full fonts. Then, having a hieroglyphic field
in your application is as easy as:

// The package may change one day in the (far) future.

import package jsesh.mdcDisplayer.swing.editor.*;

public MyClass {

 void buildInterface() {

 // A large editor, better placed in a JScrollPane

 JMDCEditor editor= new JMDCEditor();

 // A TextField-like editor

 JMDCField mdcField= new JMDCField();

 }

}

Now, you can manipulate the text directly through the HieroglyphicTextModel class,
which represents the text as a list of objects, or, if you need only simple functionalities,
use the methods setMDCText(String mdc) and getMDCText() to set and retrieve the
content of the field as “Manuel de codage”.

You can forbid the editing of the text with “setEditable(false)”

One thing which is currently missing from the libraries (but which should be fixed soon)
is a way to easily direct the information from the palette to various JSesh widgets (it
can be done with the overall structure, but it's not automatic at all).

Produce a bitmap picture from an MDC text

There are a number of reasons for which you might want to produce a picture from an
MDC Text. For instance, you might use JSesh as a library in a web application.

71/72

Of course, you need to have both jsesh.jar and jseshGlyphs.jar in your classpath.
Currently (JSesh 2.13.7) you also need jvectClipboard-1.0.jar, but this is a dependency
I will remove in a short while. You will need jvectClipboard-1.0.jar if you want to produce
SVG, WMF or the like. Then the following Java code will do:

 public static BufferedImage buildImage(String mdcText) throws

MDCSyntaxError {

 // Create the drawing system:

 MDCDrawingFacade drawing = new MDCDrawingFacade();

 // Create the picture

 BufferedImage result = drawing.createImage(mdcText);

 return result

}

That's all. Once you have a BufferedImage, it can be displayed on the screen, or written
in JPEG or PNG using ImageIO.

Optionnally, it's possible to customize the rendering. Here is a complete ready-to run
example:

 /**

 * How to use JSesh to create bitmaps in Java.

 * compile: javac -cp .:/FOLDER_CONTAINING/jsesh.jar TestJSeshBitmap.java

 * run: java -cp .:/FOLDER_CONTAINING/jsesh.jar TestJSeshBitmap

 *

 * jseshGlyphs.jar and jvectClipboard-1.0.jar should be in the same folder

as jsesh.jar.

 * (normally, there is no need to add them explicitely to the class path ,

as jsesh.jar contains the necessary

 * information in its manifest.

 */

import javax.imageio.ImageIO;

import java.io.*;

import java.awt.image.* ;

import jsesh.mdcDisplayer.preferences.*;

import jsesh.mdcDisplayer.draw.*;

import jsesh.mdc.*;

public class Test {

 public static BufferedImage buildImage(String mdcText) throws

MDCSyntaxError {

 // Create the drawing system:

 MDCDrawingFacade drawing = new MDCDrawingFacade();

 // Change the scale, choosing the cadrat height in pixels.

 drawing.setCadratHeight(60);

 // Change a number of parameters

 DrawingSpecification drawingSpecifications = new

DrawingSpecificationsImplementation();

 PageLayout pageLayout= new PageLayout();

 pageLayout.setLeftMargin(5);

 pageLayout.setTopMargin(5);

 drawingSpecifications.setPageLayout(pageLayout);

 drawing.setDrawingSpecifications(drawingSpecifications);

 // Create the picture

 BufferedImage result = drawing.createImage(mdcText);

 return result;

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bufferedimage
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bufferedimage
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bufferedimage
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bufferedimage

72/72

 }

public static void main(String args[]) throws MDCSyntaxError, IOException {

 // Create the picture

 BufferedImage img= buildImage("i-w-r:a-C1-m-p*t:pt");

 File f = new File("example.png");

 // save it in png (better than jpeg in this case)

 ImageIO.write(img, "png", f);

 }

}

The size of the signs is controlled using ‘drawing.setCadratHeight();‘. (note to self: it
should be easier to change the size of everything using drawingSpecification !!!)

This document is a PDF version of the online Jsesh documentation available at
http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:documentation
(CC BY-SA 2.0 FR) January 2022 - Didier Morandi - https://www.shpylgoreih.fr

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+ioexception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bufferedimage
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+file
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+file
http://jseshdoc.qenherkhopeshef.org/doku.php/doc:en:documentation

